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Abstract Adenosine A2A receptor (A2AR) is a G protein-
coupled receptor enriched in the striatum for which an in-
creased expression has been demonstrated in certain neuro-
logical diseases. Interestingly, previous in vitro studies dem-
onstrated that A2AR expression levels are reduced after treat-
ment with S-adenosyl-L-methionine (SAM), a methyl donor
molecule involved in the methylation of important biological
structures such as DNA, proteins, and lipids. However, the
in vivo effects of SAM treatment on A2AR expression are still
obscure. Here, we demonstrated that 2 weeks of SAM treat-
ment produced a significant reduction in the rat striatal A2AR
messenger RNA (mRNA) and protein content as well as
A2AR-mediated signaling. Furthermore, when the content of
5-methylcytosine levels in the 5′UTR region of ADORA2A
was analyzed, this was significantly increased in the striatum
of SAM-treated animals; thus, an unambiguous correlation

between SAM-mediated methylation and striatal A2AR ex-
pression could be established. Overall, we concluded that
striatal A2AR functionality can be controlled by SAM treat-
ment, an issue that might be relevant for the management of
these neurological conditions that course with increased A2AR
expression.
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Introduction

Adenosine mediates its actions by the activation of specific
plasma membrane G protein-coupled receptors (GPCRs) clas-
sically classified into four subtypes (A1R, A2AR, A2BR, and
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A3R) [1]. Both the A1Rs and A2ARs are primarily responsible
for the central effects of adenosine [2]. The A2AR, mostly
coupled to Gs/Golf proteins [3], is expressed at high levels in
only a few regions of the brain, namely primarily striatum,
olfactory tubercle, and nucleus accumbens [4]. Interestingly,
upregulation of A2AR expression levels has been shown in the
putamen and in peripheral blood cells from Parkinson’s dis-
ease (PD) patients with levodopa-induced dyskinesias, well-
correlating with the severity of the disease [5–9].

The gene that codifies human A2AR (ADORA2A) is located
at chromosome 22 [10–13], but its gene expression regulation
has not been widely studied [14]. However, we previously
demonstrated that DNA methylation plays a key role in both
the differential ADORA2A content within different brain areas
[15] and the receptor expression levels observed in patholog-
ical conditions such as Huntington’s disease and schizophre-
nia [16, 17]. In addition, we also demonstrated thatADORA2A
expression is modulated by S-adenosyl-L-methionine (SAM)
treatment in cultured cells [18]. Of note, SAM participates in
transmethylation, transsulfuration, and aminopropylation an-
abolic reactions. Accordingly, SAM constitutes the main bio-
logical methyl donor molecule involved in the methylation of
DNA, proteins, and phospholipids [19–21]. Interestingly, a
previous report showed that parenteral and oral SAM treat-
ments promoted an increase in SAM levels in the cerebrospi-
nal fluid of depressed patients, indicating that SAM crosses
the blood–brain barrier [22]. Hence, considering the presented
data, we previously proposed the use of SAM as an adjunctive
therapy in levodopa-treated PD patients to reduce striatal
A2AR levels [23].

Taking into account all these considerations, here, we
aimed to demonstrate that in vivo SAM treatment was indeed
able to control striatal A2AR expression. To this end, we
monitored striatal A2AR messenger RNA (mRNA) content
and A2AR ligand-binding avidity in both control and SAM-
treated animals. In addition, the 5-methylcytosine levels in the
5′UTR region of ADORA2Awere also analyzed, and a close
relationship between SAM-mediated methylation and decline
in striatal A2AR expression was established.

Materials and methods

Materials

[3H]ZM241385 ([2-3H](4-(2-[7-amino-2-(2-fury1) [1, 2, 4]
triazolo [2,3-a] [1, 3, 5] triazin-5-ylamino]ethyl)phenol
27.4 Ci/mmol) was from the American Radiolabeled
Chemicals (Saint Louis, USA). SAM, theophylline, and calf
intestine adenosine deaminase (ADA) were obtained from
Sigma (Madrid, Spain). All other products were of analytical
grade. SAM was diluted in sterile water.

Animals

Thirty rats (Sprague–Dawley, 100 g in weight) were housed
with access to food and water ad libitum in a colony room kept
at 19–22 °C and 40–60 % humidity under a 12:12 h light/dark
cycle. All procedures were performed in compliance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the local animal
care committee of Universitat de Barcelona (99/01) and the
Generalitat de Catalunya (99/1094). The rats were killed
under anesthesia (400mg/Kg chloral hydrate), and their brains
were rapidly removed from the skull. The whole left striatum
containing both dorsal (caudate–putamen) and ventral (nucle-
us accumbens) striatal areas were dissected and immediately
frozen at −80 °C.

In a first set of animals (saline- and SAM-treated rats, n=5
for each group), the left striatum was removed for mRNA and
DNA methylation analysis. In a second animal cohort (n=5–
10 for each group), the whole left striatum was used for
binding assay and cAMP determinations.

[3H]ZM 241385 binding assay to striatal membranes extracts

Striatal membrane extracts from saline- and SAM-treated rats
were obtained and used for A2AR radioligand-binding assays
as previously described [24]. Briefly, membrane extracts were
incubated with 5 U/mg ADA in 50 mM Tris HCl, 2 mM
MgCl2, 100 mM NaCl, pH 7.4 for 30 min at 25 °C in order
to eliminate endogenous adenosine from membrane
preparations. Then, membrane extracts (70 μg of pro-
tein) were incubated with the specific and selective
A2AR antagonist [3H]ZM 241385 at 40 nM for 2 h at
25 °C using 5-mM theophylline to obtain non-specific
binding. Binding assays were stopped by rapid filtration
through Whatman GF/B filters, which were immediately
washed and counted in a Microbeta Trilux liquid scin-
tillation counter (Wallac).

cAMP assay

Total cAMP accumulation was measured using the LANCE
Ultra cAMP kit (PerkinElmer, Waltham, MA, USA). Striatal
membrane extracts (1 μg) from saline- and SAM-treated rats
were resuspended in stimulation buffer (HBSS 1X, 5 mM
Hepes pH 7.4, 10 mM MgCl2, 0.1 % BSA) and incubated
for 20 min at room temperature. Afterwards, zardaverine
(10 μM), GTP (10 μM), and ATP (150 μM) were included
into the extract and were incubated for 10 min at room
temperature. Subsequently, the ligands (Basal, 1 μM
Forskolin and 200 nM CGS) were added for 30 min at room
temperature prior to lysis. Eu-cAMP tracer and ULight™-
anti-cAMP reagents were prepared and added to the sample
according to the LANCE® Ultra cAMP Kit instruction
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manual. Three hundred eighty-four-well plate was incubated
1 h at room temperature in the dark and was then read on a
POLARstar microplate reader (BMG Labtech, Durham, NC,
USA). Measurement at 620 and 665 nm were used to detect
the TR-FRET signal, and the concomitant cAMP levels were
calculated following the manufacturer’s instructions.

RNA purification

RNA purification was carried out with RNeasy Midi kit
(Qiagen, Hilden, Germany) following the protocol provided
by the manufacturer. The concentration of each sample was
obtained fromA260 measurements with Nanodrop 1000. RNA
integrity was tested using the Agilent 2100 BioAnalyzer
(Agilent, Santa Clara, CA, USA).

Retrotranscription reaction

The retrotranscriptase reaction (100 ng RNA/μL) was carried
out by using the High-capacity cDNA Archive kit (Applied
Biosystems, Madrid, Spain) following the protocol provided
by the supplier.

TaqMan PCR

TaqMan PCR conditions were the same as previously de-
scribed [18]. Standard curves for rat ADORA2A, ADORA1,
Drd2, and β-glucuronidase (GUS) were prepared using serial
dilutions of cDNA from wild-type rat brains. The identifica-
tion numbers for rat ADORA2A, ADORA1, Drd2, and the
endogenous control GUS probes were Rn00583935_m1,
Rn00567668_m1, Rn01418275_m1, and Rn00566655_m1,
respectively (Applied Biosystems, Madrid, Spain).

Quantitative DNA methylation analysis

DNA purification, bisulfite treatment, and quantitative DNA
methylation analysis byMassArray platform of SEQUENOM
were performed as described [18]. A locus located in the 5′
untranslated region (UTR) of rat ADORA2A gene was ana-
lyzed to learn the percentage of DNA methylation. Primers
were designed using MethPrimer (http://www.urogene.org/
methprimer/). The reverse primer presented a T7-promoter
tagged to obtain an appropriate product for in vitro transcrip-
tion and an 8-bp insert to prevent abortive cycling. The
forward primer contained a 10mer-tagged to balance
the PCR primer length. The sequences of primers used
for amplification of bisulfite-treated DNAwere (included tags
are indicated below in lower case): forward, 5 ′-
aggaagagagATTTTTTTAGTAGGAAGGAAGGGT-3′, re-
verse, 5′-cagtaatacgactcactatagggagaaggctAAAAAACCAA
AATAACACAAACAAC -3′. The locus amplified was located
at positions 16466335–16465793 of contig NC_005119.3.

Results and discussion

A fundamental goal of GPCR pharmacology is to settle re-
ceptor–ligand interactions in order to catalog receptors ac-
cording to their thermodynamic and kinetic properties.
Interestingly, an important aspect in drug action is not only
the ligand concentration but also the receptor availability.
Therefore, controlling GPCR expression constitutes a com-
pelling way to manipulate receptor-mediated physiological
responses both in normal and in pathological conditions.
Hence, here, we aimed to shed light into the in vivo control
of A2AR expression, a GPCR with eventual increased preva-
lence in certain neurological conditions. Indeed, A2AR levels
have been shown to be increased in the putamen of some PD
patients [5–9].

In order to evaluate whether SAM treatment was able to
modify A2AR expression levels in rat striatum, we adminis-
tered SAM (100 mg/kg, i.p.) [25] during 2 weeks, and the
amount of striatal A2AR was monitored by means of
radioligand-binding experiments using [3H]ZM241385, a se-
lective A2AR antagonist. Interestingly, while saline-treated
animals showed a [3H]ZM241385-specific binding of 571.6
±43.7 fmol/mg protein, the SAM-treated animals exhibited a
binding of 328.9±43.6 fmol/mg protein; thus, a significant
reduction of ∼40 % (P<0.001) in the A2AR content was
achieved after SAM treatment (Fig. 1). Subsequently, we

Fig. 1 SAM treatment reduced striatal A2AR ligand binding. The A2AR
expression in saline- (WT, n=10) and SAM-treated (n=10) rats was
determined by means of radioligand-binding experiments performed in
striatal membrane extracts (see “Materials and methods”). Thus, for each
animal, the striatal A2AR content was determined (in triplicate) by
displacing the binding of [3H]ZM 241385 (40 nM) to striatal membranes
with 5-mM theophylline (specific A2AR binding). The plot shows the
mean±SEM for control and SAM-treated rats. ***P<0.001 compared
with non-treated rats. Data were analyzed with Student’s t test
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assessed the A2AR functionality in striatal membranes from
saline- and SAM-treated animals by measuring the A2AR-
mediated cAMP accumulation upon agonist challenge (i.e.,
CGS21680). Thus, a significant reduction of ∼36 % (P<0.05)
in the A2AR-mediated cAMP accumulation in striatal mem-
branes of SAM-treated animals was observed (Fig. 2). Finally,
we measured the A2AR mRNA levels in the striatum of both
saline- and SAM-treated animals by means of TaqMan PCR.
Noteworthy, a significant reduction of ∼27 % (P<0.05) was
observed in the striatal A2AR mRNA content of SAM-treated
animals (Fig. 3a), while A1R and dopamine D2 receptor (D2R)
mRNA levels remained unchanged (Fig. 3b). Overall, these
results clearly suggested that SAM treatment reduced A2AR
expression and function in vivo, thus pointing up to the
potential use of SAM to reduce A2AR activity in terms of
ADORA2A repression.

Since gene repression could be accomplished through
DNA methylation and SAM constitutes one of the main
biological methyl donor molecules involved in DNA methyl-
ation [19–21], we next aimed to ascertain if ADORA2A down-
regulation was achieved throughout a methylation process. To
this end, the 5-methylcytosine content in the 5′UTR region of
rat A2AR gene was measured using theMassArray platform of
SEQUENOM. Interestingly, an increase in the percentage of
methylated DNA in several CpG sites was detected in SAM-

Fig. 2 SAM treatment reduced striatal A2AR function. The striatal A2AR
function in saline- (WT) and SAM-treated rats was determined by means
of cAMP assay performed in membrane extracts (see “Materials and
methods”). Thus, for each animal, the striatal A2AR-mediated cAMP
accumulation was determined upon incubation with CGS21680
(200 nM) during 30 min. Forskolin-stimulated cAMP was set as 100 %,
and bars represent the mean±SEM of five animals performed in quadru-
plicate. *P<0.05 compared with saline-treated rats. Data were analyzed
with Student’s t test

Fig. 3 SAM treatment reduces striatal A2ARmRNA levels. a ADORA2A
and b ADORA1 and Drd2 mRNA levels were measured in saline- (WT)
(n=5) and SAM-treated (n=5) rats by TaqMan PCR. The ADORA2A,
ADORA1, and Drd2 mRNA contents were normalized by the amount of
the endogenous GUS and expressed as arbitrary units (AU). The plots
show the mean±SEM. *P<0.05 (Student's t test) when compared to
saline-treated rats

Fig. 4 SAM-mediated striatal ADORA2A methylation. a Scaled repre-
sentation of 5′ UTR region of rat ADORA2A. Exons 1, 2, and 3 are
represented. White and black boxes represent coding and non-coding
sequences, respectively. The gray box represents the locus analyzed. b
DNA methylation percentage of a locus located in the 5′ UTR region of
rat ADORA2A. The graph represents the percentage of DNA methylation
of each CpG site located in a locus amplified by PCR from saline- (black
bars; n=5) and SAM-treated (white bars; n=5) rats (see “Materials and
methods” section). The x-axis indicates the data of each CpG site. The
plot shows the mean±SEM. *P<0.05 (Student's t test) when compared to
saline-treated rats
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treated rats when compared to saline-treated animals (Fig. 4).
It is worth mentioning here that some CpG sites within the 5′
UTR region of rat ADORA2A could not be quantified by the
MassARRAY platform [26]. In addition, some of the CpG
sites presented similar degree of methylation since the base-
specific cleavage of the in vitro transcription product was not
discriminated by the MALDI-TOF analysis (Fig. 4).
Nonetheless, SAM treatment mediated the specific methyla-
tion of several CpG sites within the striatal ADORA2A.
Overall, a clear correlation between SAM-mediated methyla-
tion and striatal A2AR expression could be established.

It has been proposed that the main cellular localization of
striatal A2AR confers an important role on dopaminergic sig-
naling through its interaction with D2R [27, 28]. As a result of
this direct A2AR-D2R interaction [29], antagonists for A2AR
have emerged as new targets for non-dopaminergic anti-
parkinsonian treatments [30]. Indeed, several clinical trials have
shown that the administration of istradefylline (or KW-6002),
an A2AR antagonist, ameliorates the dyskinesias induced by
chronic levodopa treatment of PD patients [31–38]. Similarly,
since A2AR levels have been shown to be increased in the
putamen of some PD patients [5–9], it seems likely that
ADORA2A repression would be an alternative therapy to reduce
A2AR activity. Interestingly, several cerebral areas, such as
cerebellum, show reduced A2AR levels, a fact that has been
correlated with a high percentage of DNA methylation in
ADORA2A. Therefore, SAM-based treatments would be more
effective in those brain regions with low 5-methylcytosine
levels in ADORA2A, as it occurs in the putamen [15]. In
conclusion, based on the restrictive expression of A2AR in the
brain and the present results showing that SAM treatment
affects striatal A2AR levels, it seems reasonable to consider that
SAM may represent a potential co-adjunctive therapy by re-
ducingA2A-mediated D2R inhibition in themanagement of PD.
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