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Abstract. We prove Strichartz type estimates for the Schrödinger equation
corresponding to a second order elliptic operator with variable coefficients. We
assume that the coefficients are a C2 compactly supported perturbation of the
identity, satisfying a nontrapping condition.

1. Introduction

The Strichartz estimates provide a good quantitative measure of the dispersion
phenomena for various dispersive equations such as wave, Schrödinger and KdV. As
it turns out, they are very useful in the study of various corresponding semilinear
equations. A new difficulty arises in the study quasilinear problems, namely that
one needs to deal with operators with rough coefficients.

Recently there has been considerable progress in deriving Strichartz type results
for the linear wave equations with nonsmooth coefficients. As it turns out, in order
to obtain full dispersive estimates one essentially needs to control two derivatives
of the coefficients. Wave operators with C2 coefficients are considered in Smith [15]
in 2 + 1 and 3 + 1 dimensions and in Tataru [20] in any dimension; this can be
further relaxed to ∂2g ∈ L1(L∞), see Tataru [18]. As the work of Chemin and
Bahouri [2],[1], Tataru [19],[18] and finally Klainerman and Rodnianski [13] has
showed, these results are fundamental in order to improve existence and uniqueness
results for quasilinear wave equations. In this paper we derive Strichartz type
estimates for a Schrödinger operator with nonsmooth coefficients. The situation
here is more complex because a Schrödinger operator does not enjoy the property
of finite speed of propagation. A localization argument, trivial in the case of the
wave operator, here requires considerably more care. But once this localization has
been made rigorous, the setting becomes very much like the one used in Tataru [20]
and the results follow by applying the method of the FBI transform. For the
constant coefficient case we refer the reader to the survey article [6] and also to the
endpoint result in [10].

In this first paper, in order to make the localization simpler we assume that
outside a large ball the operator we consider has constant coefficients. We plan to
investigate the same questions in a more general setting in a future paper.

Before we go to the details of the presentation of the problem we considerin this
paper, we would like to recall that the Scrödinger operator, with smooth variable
coefficients, appears in many papers concerning questions on well-posedness and
smoothing effect (see Doi [5] [4], Creg, Kappler and Strauss [3], Kapitanski and

Date: December 26, 2007.
The first author is partially supported by NSF grant DMS-9800879 and by the Terman Award.

The second author is partially supported by NSF grant DMS-9622942 .

1



2 GIGLIOLA STAFFILANI AND DANIEL TATARU

Safanov [9] [8], Kenig, Ponce and Vega [11] and Rolvung [14]). As mentioned above,
in our work the coefficients are instead relatively rough. But the FBI approach is
very effective in treating this nonsmooth situation.

We now start by introducing the initial value problem (IVP) we will be working
with and some notations. We write the IVP with a Schrödinger operator of variable
coefficients as

(1)

{
(i∂t −

∑n
k,j=1 ∂ka

kj(t, x)∂j)u = 0

u(x, 0) = u0(x), x ∈ Rn,

where

• (A1)

akj ∈ [L∞(C1,1) ∩ C0,1(L∞)](R × R
n), akj(t, x) = δkj outside R ×B(0, 1).

• (A2)
akj(t, x) is real and symmetric and there exists δ > 0 such that

δ|ξ|2 ≤
n∑

k,j=1

akj(t, x)ξkξj ≤ δ−1|ξ|2,

for any t ∈ R, x, ξ ∈ Rn.

In the rest of the paper we denote with P the differential operator

(2) P = i∂t −
n∑

k,j=1

∂ka
kj(x)∂j

and

(3) ∆a =

n∑

k,j=1

∂ka
kj(x)∂j .

We write a(x, ξ) =
∑n

k,j=1 a
kj(x)ξkξj and note that by (A1) and (A2) we have

a(x, ξ) > 0. We also denote with Hq the Hamiltonian vector field associated to a
function q ∈ C1(T ∗Rn), that is

Hq =

n∑

j=1

(∂ξjq∂xj − ∂xjq∂ξj ).

It is not difficult to prove that, by (A2), Ha is complete in T ∗Rn. We denote with
Strap the set of all (x, ξ) ∈ S∗Rn = {(x, ξ); a(x, ξ) = 1} such that the complete
integrable curve of Ha through (x, ξ) is contained in a compact set. Then property
(A3) is defined as

• (A3) Strap = ∅.
Remark 1. One could also consider an operator with lower order terms

Q = (i∂t −
n∑

k,j=1

∂ka
kj(t, x)∂j) +

n∑

j=1

bj(t, x)∂j + c(t, x)).

Here we decided to consider only the case b(x, t) = c(x, t) = 0 in order to simplify
the presentation. However, our arguments apply with few changes if for instance
b, c are bounded and compactly supported.

We now state the main theorem of the paper.
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Theorem 1. Assume (A1), (A2) and (A3), then for any T > 0, the unique solution
u of (1) satisfies

(4) ‖u‖Lq([0,T ],Lr) ≤ CT ‖u0‖L2

for any pair1 (q, r) such that

2

q
+
n

r
=
n

2
, 2 ≤ q ≤ ∞ for n 6= 2(5)

2

q
+

2

r
= 1, 2 < q ≤ ∞, for n = 2.(6)

Remark 2. Using arguments similar to those in [18] one can relax the C2 assumption
on the coefficients to

∂2
xa

jk, ∂ta
jk ∈ L1

xj
(L∞

t,x′
j
), j = 1, · · · , n

where x′j denotes the set of coordinates complementary to xj . This suffices in order
to guarantee the same regularity of the Hamilton flow which we use in this paper.

Note that for (q, r) = (∞, 2) (6) is a straightforward energy estimate, therefore
by interpolation it suffices to prove it for q < r. The proof of Theorem 1 relies on
the following localization. We split the solution u of problem (1) into v = χu and
w = (1− χ)u, where χ is a smooth characteristic function of the set B(0, 1) in Rn.
Observe that supp w ⊂ Rn/B(0,1), where ∆a = ∆. Then the functions v, w solve
the inhomogeneous Cauchy problems

(7)

{
(i∂t − ∆a)v = f(x, t)
v(x, 0) = χ(x)u0(x),

respectively

(8)

{
(i∂t − ∆)w = −f(x, t)
w(x, 0) = (1 − χ(x))u0(x).

The inhomogeneous term f has compact spatial support and is given by

f = [P, χ]u.

Our first step, in the next section, is to use local smoothing to establish the sharp
L2 regularity of v and f . Using an argument 2 due to Doi [5, 4] we prove that (see
Theorem 2)

(9) ‖v‖
L2

t H
1/2
x

+ ‖f‖
L2

t H
−1/2
x

. ‖u0‖L2
x
.

In Section 3 we establish the Lq(Lr) estimates for w,

(10) ‖w‖Lq
t Lr

x
. ‖f‖

L2
t H

−1/2
x

+ ‖w(0)‖L2
x
.

For this we use a classical approach. Note, however, that here the dispersive esti-
mates are combined with local smoothing, therefore we cannot employ directly the
dispersive estimates for the constant coefficient Schrödinger equation. It is essential
that the inhomogeneous term f has compact spatial support.

1Such a pair is usually called admissible.
2In Doi’s paper the coefficients akj are independent of t, but as he observes in [4], the proofs

work also when the coefficients are functions also of the time variable.
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The last part of the paper is devoted to the proof of the Strichartz estimate for
the ( compactly supported ) function v, namely

(11) ‖v‖Lq([0,T ],Lr) ≤ ‖v‖
L2

T H
1/2
x

+ ‖Pv‖
L2

T H
−1/2
x

.

This inequality is obtained using arguments similar to those in Tataru [20]. The
main idea is to use the FBI transform to construct a microlocal parametrix for
the Schrödinger equation. The parametrix is good enough so that it yields the
Strichartz estimates by using stationary phase methods.

2. Local smoothing

We first introduce a new space of functions that appears in Doi [5, 4].

Definition 1. Let λ : R+ −→ R+ be a positive integrable smooth nonincreasing
function. We define

Xs
λ = {f(x)/‖f‖Xs

λ
<∞},

where
‖f‖2

Xs
λ

= (λ(|x|)Ds+1/2f,Ds+1/2f) + ‖f‖2
Hs ,

where (·, ·) is the inner product in L(Rn).

The local smoothing result we need is contained in the following well-posedness
theorem:

Theorem 2. Assume (A1), (A2) and (A3). Then there exists a unique solution u
of (1) such that u ∈ C([0, T ], L2) ∪ L2([0, T ], X0

λ). Moreover

(12) ‖u‖L2([0,T ],X0
λ) . ‖u0‖L2 .

Regardless of the choice of the function λ this implies the estimate (9).

Remark 3. The proof of this theorem is due to Doi [5, 4] in the case when the
coefficients akj are smooth and asymptotically flat. Then one obtains the estimate

‖u‖L2([0,T ],Xs
λ) . ‖u0‖Hs .

for any s ∈ R. But if one wants it only for s = 0 (L2- theory), then the weaker
assumption akj ∈ C2 is enough.

For completeness we recall below the two propositions which, combined with a
classical Garding inequality, give Theorem 2.

Proposition 1. Assume (A1) and (A2) and that there exists q ∈ S0 such that

Haq ≥ −1.

Then there exists a unique solution u of (1) such that

u ∈ C([0, T ], L2) ∪ L2([0, T ], X̃),

where 3

‖u‖2
X̃

= ((Haq)
w(x,D)u, u) + C‖u‖2

L2 .

3In the standard Weyl calculus one writes

(qw(x, D)u)(x) = (2π)−n

Z Z

ei(x−y)·ξq((x + y)/2, ξ)u(y) dy dξ,

(see for example [7], Chapter 18).
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with a large constant C. Moreover,
∫ T

0

‖u‖2
X̃

(τ) dτ . ‖u0‖2.

Proposition 2. Assume (A1), (A2) and (A3). Let λ : R+ −→ R+ be an integrable
nonincreasing positive smooth function. Then there exists q ∈ S0 and c > 0 such
that

Haq ≥ cλ(|x|)|ξ| − 1 in T ∗
R

n.

Remark 4. The proof of the propositions is basically due to Doi [5, 4]. It is not
difficult to see how they imply Theorem 2. One considers the L2 energy functional

E(u(t)) =< Qwu(t), u(t) >L2 +C‖u(t)‖L2 .

Then
d

dt
E(u(t)) =< i[A,Qw]u, u >L2 .

But modulo an L2 bounded error, i[A,Qw] ≈ (Haq)
w. Now the conclusion of the

Theorem follows from Garding’s inequality combined with Gronwall’s inequality.
The main difference here is that we are not dealing with classical symbols, but

with nonsmooth symbols of the type described in Taylor [21] III, p. 45. To convince
the reader that the assumptions on the symbols are sufficient we state and prove
below, under our conditions, the main lemma used in Doi’s argument. The function
q in Proposition 2 can be obtained after an algebraic transformation from the
function q below.

Lemma 1. Assume (A1), (A2) and (A3). Then there exists a 0-homogeneous
symbol q : R × T ∗Rn −→ R such that

|∂m
t ∂

α
ξ ∂

β
x q| ≤ Cαβm(1 + |x|)|ξ|−|α|,(13)

Haq & |ξ|(14)

for any ξ, x ∈ Rn and any multiindex (m,α, β).

Proof. We first observe that it suffices to do this for fixed t. Indeed, if a function
q satisfies the above conditions for some t then it satisfies the same conditions for
t nearby. Hence we can use a partition of unit with respect to the time variable to
put together the choices of q for fixed time.

Recall that akj(x) = δkj for any x ∈ Rn/B1. Then we define

(15) q1(x, ξ) = x · ξ|ξ|−1

and we notice that for x ∈ Rn/B1

q1(x, ξ) = x · ξ a− 1
2

and

(16) Haq1 =
∑

j

2ξj∂xjq1 = |ξ|.

We have to modify q1 smoothly inside the ball so that (14) holds everywhere. Set
b =

√
a and let Φh be the Hb flow and Π the natural projection from T ∗Rn into
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Rn. Let χ ∈ C∞
0 be a positive function such that χ = 1 on |x| ≤ 2 and χ = 0 on

|x| ≥ 4. We set χr(x) = χ(x/r), for r > 0. We define

q2(x, ξ) = −
∫ ∞

0

χ2(Π ◦ Φh(x, ξ)) dh,

for any (x, ξ) ∈ {(x, ξ) ∈ T ∗Rn a(t, x, ξ) = 1} = S∗Rn. Then Hbq2 = χ2 and q2 is
bounded by the non-trapping condition (A3). Since the flow Hb is of class C1, it
also follows that q2 ∈ C1

loc(S
∗Rn). We claim that the function

q(x, ξ) = q1(x, ξ) +M1/2χM (x)q2(x, ξ),

satisfies

(17) Haq & 1 in S∗
R

n

provided that M is large enough. Indeed, for M > 4 we have

Haq = Haq1 +M1/2χ2(x) +M− 1
2 aξχx(

x

M
).

If |x| < 1 then the second term is positive and dominates the other two for large
M . If |x| ≥ 1 then the second term is nonnegative, but the first term is positive
and dominates the last one for large M .

Finally, we extend q as a 0-homogeneous symbol in T ∗Rn. Then (17) implies
(14). However, insofar (13) holds only for large x. To remedy this we observe that
(14) is stable with respect to small C1 0-homogeneous perturbations of q. Thus we
can approximate the q we have constructed with a smooth replacement which still
satisfies (14).

�

3. A constant coefficient dispersive/local smoothing estimate

The dispersive estimate (10) for w follows from the following more general result:

Theorem 3. Consider the initial value problem

(18)

{
P (D)w = f(x, t)
w(x, 0) = w0(x),

with f supported in [0, 1] ×B(0, 1). Then for any admissible couple (q, r) we have

(19) ‖w‖Lq(Lr) . ‖w0‖L2 + ‖f‖L2([0,1],H−1/2).

This result shows that the Strichartz estimates are compatible with the local
smoothing norms introduced by Kenig-Ponce-Vega [12] in connection to the local
well-posedness problem for semilinear Schröedinger type equations.

The compact support assumption in time is not needed in dimension n ≥ 2.
However, for n = 1 the fundamental solution decays only like t−

1
2 , therefore there

is an obstruction to (19) coming from the low frequencies in f .
With the exception of the end-point result (which corresponds to q = 2) one

can give a very simple proof of the Theorem using a lemma of Christ and Kiselev.
As observed by Tao, this lemma allows one to reduce inhomogeneous estimates
to homogeneous ones; in our case, it reduces the Theorem to the much simpler
Lemma 3 below (modulo the homogeneous Strichartz estimates, which are known).
For completeness we give the lemma in the formulation which was used in a similar
context by Smith-Sogge [16].
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Lemma 2. Let X and Y be Banach spaces and assume that K(t, s) is a continuous
function taking its values in B(X,Y ), the space of bounded linear mappings from
X to Y . Suppose that ∞ ≤ a < b ≤ ∞, and set

Tf(t) =

∫ b

a

K(t, s)f(s) ds, Wf(t) =

∫ t

a

K(t, s)f(s) ds

Assume that 1 ≤ p < q ≤ ∞ and

‖Tf‖Lq([a,b],Y ) ≤ C‖f‖Lp([a,b],X).

Then

‖Wf‖Lq([a,b],Y ) ≤ C‖f‖Lp([a,b],X).

Then one uses the lemma by setting X = H−1/2(Rn), Y = Lr(Rn), p = 2, q > 2,
with (q, r) an admissible couple,

Tf(x, t) =

∫ 1

0

ei(t−t′)∆f(x, t′) dt′,

and

Wf(x, t) =

∫ t

0

ei(t−t′)∆f(x, t′) dt′.

In our case we also want to get the endpoint estimates. The idea of the proof
is the same, namely to reduce the problem to the corresponding estimates for the
homogeneous Schröedinger equation. The argument is somewhat more complicated
but it is self-contained.

Proof of Theorem 3. We start with a Lemma in which we compute the regularity
of the Fourier transform of f on the characteristic paraboloid τ = ξ2.

Lemma 3. If f ∈ L2(R,H−1/2(Rn)), with support in [0, 1] ×B1, then

(20) ‖f̂(ξ, τ = |ξ|2)‖L2
ξ

. ‖f‖L2([0,1],H−1/2).

Taking the Fourier transform of f , the estimate would follow from

‖f̂(ξ, τ = |ξ|2)‖L2
ξ

. ‖(1 + |ξ|)− 1
2 f̂‖L2 + ‖(1 + |ξ|)− 1

2 ∂ξ f̂‖L2 + ‖(1 + |ξ|)− 1
2 ∂τ f̂‖L2

which is equivalent to

‖(1 + |ξ|)− 1
2 f̂‖L2(K) . ‖(1 + |ξ|)− 1

2 f̂‖L2 + ‖(1 + |ξ|)− 1
2 ∂ξ f̂‖L2 + ‖(1 + |ξ|)− 1

2 ∂τ f̂‖L2

where the first norm is taken with respect to the surface measure on the character-
istic set K = {τ = |ξ|2}. But this follows easily from the trace theorem. Note that
one has to use the ξ derivative for large ξ and the τ derivative for small ξ. ♣

The next step in the proof of the Theorem is to obtain a decomposition of u
into a sum of truncated L2 solutions to the homogeneous equation modulo a nice
remainder. Let χ be a function of one variable whose Fourier transform is compactly
supported and so that χ̂− 1

x−i0 is bounded.Then χ is smooth and behaves like the
Heaviside function at ±∞.
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Lemma 4. Let w solve the equation

(i∂t − ∆)w = f

where f is supported in [0, 1] ×B(0, 1). Then there is a decomposition

w = χ(t)w0 +

n∑

j=1

χ(∓xj)w
±
j + w̃

so that the functions w±
j solve the homogeneous equation (i∂t − ∆)w±

j = 0 and

(21)

‖w0(0)‖L2 +

n∑

j=1

‖w±
j (0)‖L2 + ‖

(
(1 + |ξ|) 1

2 +
|τ − |ξ|2|
(1 + |ξ|) 1

2

)
̂̃w‖L2 . ‖f‖

L2(H− 1
2 )
.

To construct the functions wj we start with a nice partition of unit with respect
to ξ, namely 1 = φ0(ξ) +

∑n
j=1 φ

±
j (ξ), so that

supp φ0 ⊂ B(0, 20), supp φ±j ⊂ {|ξ| ≤ ±2ξj} \B(0, 10).

We set the spatial Fourier transforms of the initial data for wj as

ŵ0(0)(ξ) = φ0(ξ)f̂(ξ, ξ2), ŵ±
j (0)(ξ) = φ±j (ξ)f̂(ξ, ξ2).

Then, by Lemma 3, (21) holds for the wj ’s. It remains to verify the estimate for
w̃. We have

ŵ0
±

(τ, ξ) = φ0(ξ)f̂(ξ, ξ2)δτ=ξ2 , ŵj
±

(τ, ξ) = φ±j (ξ)f̂(ξ, ξ2)δτ=ξ2 .

Hence

χ̂(t)w0(τ, ξ) = φ0(ξ)f̂(ξ, ξ2)χ̂(τ − ξ2).

For j = 1, ..., n we denote by ξ′j the vector of all coordinates except ξj . On the
paraboloid we write

ξj = ξ±j (τ, ξ′) = ±
√
τ − (ξ′j)

2.

Then

δτ=ξ2 =
1

2ξ±j (ξ′j , τ)
δξj=ξ±

j (ξ′
j ,τ)

and

̂χ(∓xj)wj(τ, ξ) =
φj(ξ

′
j , ξ

±
j (τ, ξ′j))

2ξ±j (ξ′j , τ)
f̂(ξ′j , ξ

±
j (τ, ξ′j), τ)χ̂(∓(ξj − ξ±j (τ, ξ′j))).

Now we are in a position to estimate the Fourier transform of w̃. Outside a neigh-
borhood of size 1 of the paraboloid we have |τ − ξ2| & (1 + |ξ|) and

̂̃w = ŵ = f̂(τ − ξ2)−1

so the conclusion follows. Near the paraboloid, on the other hand, we have

̂̃w = g0 +

n∑

j=1

g±j

where

g0 = φ0(ξ)

(
f̂(τ, ξ)

(τ − ξ2 − i0)
− χ̂(τ − ξ2)f(ξ, ξ2)

)
,
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g±j = φ±j (ξ)
f̂(τ, ξ)

(τ − ξ2 − i0)
−
φ±j (ξ′j , ξ

±
j (τ, ξ′j))

2ξ±j (ξ′j , τ)
f̂(ξ′j , ξ

±
j (τ, ξ′j), τ)χ̂(∓(ξj − ξj(τ, ξ

′
j))).

We estimate each term separately. For g0 we have

g0 = φ0(ξ)

(
f̂(ξ, τ) − f̂(ξ, ξ2)

(τ − ξ2 − i0)
− (χ̂(τ − ξ2) − 1

(τ − ξ2 − i0)

)
f(ξ, ξ2))

which is bounded in the range |ξ|, τ . 1 due to our compact support assumption
on f . It remains to estimate gj in the range

A±
j = {|ξ| ≤ 2 ± ξj , |ξ| > 10, |ξj − ξj(τ, ξ

′
j)| ≤ 1}.

We decompose it as before,

g±j = φ±j (ξ)
f̂(τ, ξ) − f̂(τ, ξ′j , ξ

±
j (τ, ξ′j))

(τ − ξ2 − i0)

−
(
φ±j (ξ′j , ξj(τ, ξ

′
j))

2ξj(ξ′j , τ)
χ̂(∓(ξj − ξj(τ, ξ

′
j))) −

φ±j (ξ)

(τ − ξ2 − i0)

)
f̂(ξ′j , ξ

±
j (τ, ξ′j), τ).

For the first term we observe that in A±
j

|τ − ξ2| ≈ |ξ||ξj − ξ±j (τ, ξ′j))|.

Then we bound the increment of f̂ by its derivative to get

‖φ±j (ξ)
f̂(τ, ξ) − f̂(τ, ξ′j , ξ

±
j (τ, ξ′j))

(τ − ξ2 − i0)
‖L2(A±

j ) . ‖|ξ|−1∂ξj f̂‖L2(A±
j ).

Since f has compact support, it follows that ∂ξj f̂ has the same regularity as f̂ .
Then we get the desired estimate.

The bound for the second term in the region Aj follows from the L2(H− 1
2 )

regularity of f ; indeed, due to the choice of χ̂ it is easy to verify that
∣∣∣∣∣
φ±j (ξ′j , ξ

±
j (τ, ξ′j))

2ξ±j (ξ′j , τ)
χ̂(∓(ξj − ξj(τ, ξ

′
j))) −

φ±j (ξ)

(τ − ξ2 − i0)

∣∣∣∣∣ .
1

1 + |ξ| .

This concludes the proof of the Lemma. ♣.
Now we conclude the proof of the Theorem. We know that the Lq(Lr) estimates

hold for L2 solutions to the homogeneous equation. This gives the correct bound
for χ(t)w0 and χ(∓xj)wj . It remains to look at w̃. We can use a Littlewood-Paley
decomposition to reduce the estimate for w̃ to the case when w̃ is frequency localized

in the region |ξ| ∼ λ. Thus we substitute ̂̃w with ̂̃wλ = χ(|ξ|/λ) ̂̃w), where χ is a
smooth characteristic function of the interval [1, 2]. Then we foliate its Fourier
transform with respect to translated paraboloids,

̂̃wλ(ξ, τ) =

∫

R

̂̃wλ(ξ, ξ2 + s)δτ−ξ2=sds.

If we denote by w̃s,λ the solution to the homogeneous equation with initial data

˜̂ws,λ(0) = ̂̃wλ(ξ, ξ2 + s) then

w̃λ(x, t) =

∫

R

eistw̃s,λ(x, t)ds.
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Hence, using the Strichartz estimates for the homogeneous equation,

‖w̃λ‖Lq(Lr) .

∫
‖̂̃wλ(ξ, ξ2 + s)‖L2

ξ
ds.

From Cauchy-Schwartz with respect to s we get

‖w̃‖2
Lq(Lr) .

(∫
(λ1/2 + λ−1/2|s|)2|̂̃wλ|2(ξ, ξ2 + s)dξds

)(∫

s&λ

λ(λ+ s)−2ds

)

which after the change of coordinates τ = s+ |ξ|2 gives

‖w̃λ‖2
Lq(Lr) . ‖̂̃wλ(ξ, τ)(λ1/2 + λ−1/2|τ − |ξ|2|)‖2

L2 .

Given the bound for w̃ in (21), this concludes our proof. �

4. The localized variable coefficient estimate

Here we prove that the Strichartz estimates hold locally for the variable coeffi-
cient Schröedinger equation, in the context provided by local smoothing.

Theorem 4. Assume that (A1) and (A2) are satisfied. Let (q, r) be an admissible
pair. Then for any v supported in a fixed compact set we have

(22) ‖v‖Lq(Lr) ≤ ‖v‖L2H1/2 + ‖Pv‖L2H−1/2 .

whenever the right hand side is finite.

This implies (11) after a truncation in time. Note that the first term on the
right can be estimated by the second whenever local smoothing holds. For this one
needs the nontrapping condition (A3). Our result is formulated in such a way so
that we avoid the need for a nontrapping assumption.

The argument is fairly long, so we provide a brief outline here. ℵ 4.1 contains
several localization type arguments. More precisely, we use a Paley-Litlewood de-
composition to reduce the problem to the corresponding dyadic estimates at fixed
frequency λ. Simultaneously we truncate the coefficients of P at frequency

√
λ.

In ℵ 4.2 we describe the FBI transform and show how to conjugate pseudodif-
ferential operators with respect to it. Conjugating the operator P with respect
to the FBI transform in ℵ 4.3 we get two ode’s in the phase space. One of these
ode’s is along the gradient flow of p and provides an elliptic estimate away from
the characteristic set of P in ℵ 4.4. The other one is along the Hamilton flow of p
and corresponds to propagation of singularities. In ℵ 4.5 we study the regularity
of the gradient flow, which in ℵ 4.6 yields a nice representation (parametrix) of the
function v in terms of certain oscillatory integrals which are reminiscent of Fourier
integral operators with complex phase.

The last step is to prove the estimates for the oscillatory integrals, using sta-
tionary phase and Stein’s complex interpolation theorem. In ℵ 4.7 we set up the
interpolation argument. The easy part in the interpolation, namely the reduction
to a pointwise bound for an oscillatory integral, is carried out in ℵ 4.8 and ℵ 4.9.

The estimate for the oscillatory integral requires a careful analysis of the regu-
larity of the Hamilton flow, which is done in ℵ 4.10. This opens the way for the
short range estimate in ℵ 4.11 and the long range estimate in ℵ 4.12.
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4.1. Reduction to dyadic estimates. Given a smooth function s supported in
[ 12 , 2] so that ∑

j∈Z

s(2−jx) = 1,

we define the multipliers

sλ = s(λ−1(τ2 + ξ4)
1
4 )

which are supported in the region at frequency λ. We also define the multipliers

Uλ =
∑

µ<λ

sλ

which select the frequencies λ and lower. Correspondingly, let

Pλ = i∂t − ∂ia
ij
λ ∂j , aij

λ = U√
λa

ij

be the “mollified” operator obtained from P by truncating the coefficients at fre-
quency λ

1
2 . The new coefficients aij

λ are a small perturbation of aij , in the sense
that

(23) ‖aij − aij
λ ‖L∞ . λ−1(‖|∂2

xa
ij | + |∂ta

ij |‖L∞).

Then we claim that (22) reduces to the corresponding dyadic estimates,

(24) ‖Sλu‖Lq(Lr) ≤ λ
1
2 ‖Sλu‖L2 + λ−

1
2 ‖PλSλu‖L2 .

In order to obtain (22) from (24) we square (24) and sum over λ = 2j , j ≥ 0.
We get (22) provided we can handle the errors and show that

∑

λ=2j

‖(PλSλ − SλP )u‖2

H− 1
2

. ‖u‖2

H
1
2
.

This would in turn follow by summation from

(25) ‖(PλSλ − SλP )u‖L2 . min{‖u‖H1 , λ‖u‖L2},
where the two bounds on the right are used for the low (. λ) respectively for the
high frequencies in u. The first part of (25) reduces to

‖aij
λ Sλ − Sλa

ij‖L2→L2 . λ−1

and further, by (23), to the commutator estimate

‖[aij , Sλ]‖L2→L2 . λ−1.

This is a consequence of the following bound for the kernel K of the commutator:

|K(t, x, s, y)| = |(aij(t, x) − aij(s, y))λn+2ŝ(λ2(t− s), λ(x− y))|
. λn+1(1 + λ2|t− s| + λ|x− y|2)−N .

For the second part of (25) we move all the derivatives to the left of the coeffi-
cients, so that they are only used at frequency λ,

∂ia
ij∂j = ∂i∂ja

ij − ∂i(∂ja
ij)

and similarly for aij
λ . Then we need to show that

‖aij
λ Sλ − Sλa

ij‖L2→L2 . λ−1, ‖(∂xa
ij
λ )Sλ − Sλ(∂xa

ij)‖L2→L2 . 1.

But the first bound was proved before and the second is trivial.
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4.2. The FBI transform and error estimates. The FBI transform has been
an essential tool in the proof of the Strichartz estimates for the wave equation with
nonsmooth coefficients in [19, 20, 18]. We plan to use a similar strategy here. The
Schrödinger equation, however, has a different scaling. Thus the first step is to
introduce a modified FBI transform adapted to this case. Our results here parallel
the corresponding results in [19].

The FBI transform of a temperate distribution f in R × Rn is a holomorphic
function in Cn+1 defined as

(26) (Tλf)(z0, z) = cnλ
3(n+2)

4

∫
e−

λ
2 (z−y)2e−

λ2

2 (z0−s)2f(s, y) dy ds

where cn = 2−
n+1

2 π− 3(n+1)
4 . Set

z0 = t− iτ, z = x− iξ, Φ(z0, z) = e−λξ2−λ2τ2

.

Then the operator Tλ is an isometry from L2(Rn+1) onto the closed subspace of
holomorphic functions in L2

Φ(Cn+1). One inversion formula is provided by the
adjoint operator:

f(s, y) = cnλ
3(n+2)

4

∫
Φ(z0, z)e

−λ
2 (z̄−y)2e−

λ2

2 (z̄0−s)2(Tλf)(z0, z)dzdz̄dz0dz̄0.

The FBI transform of a function f can also be expressed in terms of the Fourier
transform of f ,
(27)

Tλf(z0, z) = cnλ
5(n+2)

4 e
λ
2 ξ2

e
λ2

2 τ2

∫
e−

λ
2 (η−ξ)2eiλxηe−

λ2

2 (θ−τ)2eiλ2tτ f̂(λ2θ, λη)dη dθ.

Given a compactly supported symbol q(t, x, τ, ξ) we define the rescaled operators

Qλ = Q(t, x,
Dt

λ2
,
Dx

λ
).

Then our main result deals with the problem of conjugating the operator Qλ with
respect to Tλ. We define our candidate for the conjugated operator as

Q̃λ = q(t, x, τ, ξ) +
1

−iλqx(∂ξ − λξ) +
1

λ
qξ(

1

i
∂x − λξ).

Define also the remainder

Rλ,q = TλQλ − Q̃λTλ.

Then our main result is

Theorem 5. Assume that ∂2
xq, ∂tq ∈ L∞

t,x(C∞
0 ). Then

‖Rλ,q‖L2→L2
φ
≤ cλ−1

and

‖(∂ξ − λξ)Rλ,q‖L2→L2
φ
≤ cλ−

1
2 .

This theorem shows that the approximation we consider is precise up to one
derivative. The proof is identical to the proof of Theorem 1 in [19].
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4.3. Conjugation and the ode’s in the phase space. Set

vλ = TλSλu.

Then we try to get good L2 estimates for vλ. The function Sλu can then be
recovered from

Sλu = T ∗
λΦvλ.

Observe first that vλ is concentrated in the region

U = {|x| ≤ 2,
1

4
≤ |ξ|2 + |τ | ≤ 4}.

Indeed, outside this region we have

‖vλ‖L2
Φ(Uc) ≤ e−cλ‖Sλu‖L2

which is a straightforward consequence of the representation formula (27). Hence
it suffices to get good estimates for vλ in the region U .

Start with Sλu as in (24), i.e. satisfying

λ
1
2Sλu ∈ L2, λ−

1
2PλSλu ∈ L2.

Since the coefficients of P are C2, we can use Theorem 5 for vλ in U . Note that
P is a second order operator, therefore compared with Theorem 5 we need another
λ2 factor in the conjugation. We get

(28) λ
1
2 vλ ∈ L2

Φ, λ
3
2 P̃λvλ ∈ L2

Φ

and also

(29) (∂ξ − λξ)vλ ∈ L2
Φ, λ(∂ξ − λξ)P̃λvλ ∈ L2

Φ.

Here

P̃λ = p(t, x, τ, ξ) +
1

−iλpx(∂ξ − λξ) +
1

λ
pξ(

1

i
∂x − λξ).

Since the operators i(∂ξ − λξ) and (∂ − iλξ) coincide on holomorphic functions,
combining the second relation in (28) with the first in (29) we get

(30) λpvλ ∈ L2
Φ.

Away from the paraboloid K = {p = 0} this yields an additional λ
1
2 gain for the

L2 norm of vλ compared to (28). This translates into a 1/2 derivative gain in the
physical space, which suffices for our estimates by the Sobolev embeddings. Hence
it suffices to study vλ further in a small neighborhood of the characteristic set
K = {p(t, x, τ, ξ) = 0} in U .

To get good L2 estimates for vλ it is useful to eliminate first the weight Φ using
the substitution

w = Φ
1
2 vλ.

Also set

g = λΦ
1
2 P̃λvλ.

Then from (28), (29) we get

(31) λ
1
2w ∈ L2, λ

1
2 g ∈ L2

respectively

(32) ∂ξw ∈ L2, ∂ξg ∈ L2.
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Using the trace theorem, this yields

(33) λ
1
4w ∈ L2(K), λ

1
4 g ∈ L2(K).

The relation between w and g is obtained by conjugating P̃λ with respect to Φ,
i.e. by replacing ∂ξ − λξ by ∂ξ:

(34)

[
λp+

1

−ipx∂ξ + pξ(
1

i
∂x − λξ)

]
w = g.

On the other hand, since vλ is holomorphic, the operators 1
i ∂x − λξ and ∂ξ − λξ

acting on it are interchangeable. After the conjugation with respect to Φ
1
2 , this

implies that the operators 1
i ∂x − λξ and ∂ξ are interchangeable when acting on w.

Consequently, from (34) we get a second equation, namely

(35)

[
λp+

1

−ipx(
1

i
∂x − λξ) + pξ∂ξ

]
w = g.

The first equation is an ode along the Hamilton flow of p, while the second
equation is an ode along the gradient curves of p. Our strategy is now to use the
(34) to obtain good estimates for w on the characteristic paraboloid K, and then
to use (35) to obtain good decay rates away from the paraboloid.

4.4. Estimates away from the paraboloid. We use (34) and (35) to decompose
w into two parts,

w = w1 + w2

where w1 solves the inhomogeneous equation

(36) [λp+ px(∂x − iλξ) + pξ∂ξ]w1 = g, w1|K = 0

and w2 solves the homogeneous equation

(37) [λp+ px(∂x − iλξ) + pξ∂ξ]w2 = 0, w2|K = w.

Correspondingly we split Sλu into u1 + u2 with

ui = T ∗
λΦ

1
2wi.

We claim that w1 satisfies the following bound

(38) λw1 ∈ L2.

This implies that u1 is one half derivative more regular than Sλu, which is exactly
what is needed in order to get the Lq(Lr) bounds in the Strichartz estimates simply
from Sobolev embeddings.

Since λ
1
2 g ∈ L2, (38) would follow from an estimate of the form

(39) ‖w1‖L2 . λ−
1
2 ‖g‖L2 .

It suffices to do this in the region p > 0. The argument in the region p < 0 is
symmetric. Let φ be a positive nonincreasing function to be chosen later. We
multiply the equation (36) by λ−

1
2φ(λ

1
2 p)w̄1 and integrate by parts. This gives

2λ−
1
2ℜ
∫
φ(λ

1
2 p)w̄1g dxdξ =

∫
ψ(x, ξ)|w1|2dxdξ,

where

ψ(x, ξ) = 2λ
1
2 pφ(λ

1
2 p) − φ′(λ

1
2 p)|∇p|2 − φ(λ

1
2 p)λ−

1
2 ∆x,ξp.
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This implies (39) provided we can choose the function φ so that

c(1 + φ2(p)) + Cφ(p) ≤ pφ(p) − φ′(p)

for a large constant C and some small constant c. But this is easily achieved if we
take for instance

φ(p) = max{e2C(1−p), 1}.
Note that this integration by parts argument requires in effect just one derivative
for the coefficients of P , together with the fact that they are frequency localized in
a ball of radius

√
λ. This suffices in order to guarantee that ∆xp has size at most

λ
1
2 .

4.5. The gradient flow. The next step in our analysis is to estimate w2 using
(37). To achieve that we need to compute the regularity of the gradient flow of p
with respect to the (x, ξ) variables. Throughout this analysis (t, τ) are fixed. This
is related to the infinite speed of propagation phenomena.

Suppose we start with initial data (t, x, τ, ξ) on the characteristic set K = {p =
0}. Denote by q the natural parameter along the flow, chosen so that q = 0 on K.
Set (xq, ξq) the image of (x, ξ) along the flow. Then (xq, ξq) solve the equations

{
∂qxq = px(xq, ξq) x(0) = x
∂qξq = pξ(xq, ξq) ξ(0) = ξ.

The following result describes the regularity of the gradient flow. Although our
operator P has C2 coefficients, in effect C1 suffices for the arguments involving the
gradient flow.

Theorem 6. Assume that P has C1 coefficients with Fourier transform supported
in B(0,

√
λ). Then

|∂α
x ∂

β
ξ xq| ≤ cα,βλ

|α|−1
2 ecαβ

√
λ|q| |α| + |β| > 0

|∂α
x ∂

β
ξ (ξq − ξ)| ≤ cα,βλ

|α|−1
2 ecαβ

√
λ|q| |α| + |β| > 0.

Thus the gradient flow blows up exponentially on the λ
1
2 scale. This is, however,

compensated by the fact that the fundamental solution to (37) exhibits Gaussian
decay on precisely the same scale.

Proof. The linearization of the gradient flow is given by the system

(40)

{
∂qy = pxxy + pxξη
∂qη = pξxy + pξξη.

This implies the inequalities
{

|∂qy| ≤ c(
√
λ|y| + |η|)

|∂qη| ≤ c(|y| + |η|).
If we take (y, η) = (∂xxq, ∂xξq) then the Cauchy data in (40) is (I, 0). Thus we
obtain the bounds

|∂xxq| ≤ ec
√

λ|q|, |∂xξq| ≤ λ−
1
2 ec

√
λ|q|.

If we take (y, η) = (∂ξxq, ∂ξξq) then the Cauchy data in (40) is (0, I). Then we get
the bounds

|∂ξxq| ≤ λ−
1
2 ec

√
λ|q|, |∂ξ(ξq − ξ)| ≤ λ−

1
2 ec

√
λ|q|.
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The rest follows by induction. �

4.6. The oscillatory integral for u2. The function u2 (which we need to esti-
mate) can be expressed in terms of w2, and further in terms of the trace of w on
the paraboloid. This computation is carried out in the following theorem:

Theorem 7. Assume that P has C1 coefficients frequency localized in B(0,
√
λ).

Then we have

u2 = λ−
1
2VλδKw

where Vλ is an integral operator,

(Vλw)(s, y) = λ
3(n+2)

4

∫
eiλξ(y−x)eiλ2τ(s−t)e−

λ2

2 (t−s)2G(t, x, y, ξ)w(t, x, τ, ξ)dxdξdt

with a kernel G satisfying

(41) |∂α
x ∂

β
ξ G(t, x, y, ξ)| ≤ cα,βλ

|α|
2 e−cλ(x−y)2 .

Proof. We have

u2(s, y) = λ
3(n+2)

4

∫
eiλξ(x−y)eiλ2τ(s−t)e−

λ2

2 (t−s)2e−
λ
2 (x−y)2w2(t, x, τ, ξ)dtdxdτdξ.

Now we choose q = 0 on the characteristic set K = {τ = a(t, x, ξ)}. Then (t, x, ξ, q)
can be interpreted locally as a new set of coordinates by

(t, x, ξ, q) → (t, xq, ξq, a(t, x, ξ)).

In these new coordinates we write

u2(s, y) = λ
3(n+2)

4

∫
eiλξq(xq−y)eiλ2a(t,x,ξ)(s−t)e−

λ2

2 (t−s)2e−
λ
2 (xq−y)2

w2(t, xq, a(t, x, ξ), ξq)dtdxqda(t, x, ξ)dξq.

Since w2 solves the ode (37) we can represent it as

w2(t, xq, a(t, x, ξ), ξq) = F (t, x, ξ, q)w(t, x, a(t, x, ξ), ξ)

where F is the solution to the homogeneous equation

[∂q + λ(p(t, xq, a(t, x, ξ), ξq) − ipx(t, xq, a(t, x, ξ), ξq) · ξq)]F = 0 F (t, x, ξ, 0) = 1.

After the change of variable, u2 has the form

u2(s, y) = λ
3(n+2)

4

∫
eiλξq(xq−y)eiλ2a(t,x,ξ)(s−t)e−

λ2

2 (t−s)2e−
λ
2 (xq−y)2

F (t, x, ξ, q)
∂(xq, a(t, x, ξ), ξq)

∂(x, ξ, q)
w(t, x, a(t, x, ξ), ξ)dtdxdξdq

or, recombining the exponents,

u2(s, y) = λ
3(n+2)

4

∫

K

∫

R

eiλξ(x−y)eiλ2τ(s−t)e−
λ2

2 (t−s)2eiλ(ξq−ξ)(xq−y)e−
λ
2 (xq−y)2

eiλξ(xq−x)F (t, x, ξ, q)
∂(xq, τ, ξq)

∂(x, ξ, q)
w2(t, x, τ, ξ)dtdxdξdq.

Then

G(t, x, ξ, y) = λ
1
2

∫

R

e(t, x, ξ, y, q)dq
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where

e(x, ξ, y, q) = eiλ(ξq−ξ)(xq−y)e−
λ
2 (xq−y)2eiλξ(xq−x)F (t, x, ξ, q)

∂(xq, a(t, x, ξ), ξq)

∂(x, ξ, q)
.

Hence in order to obtain (41) it suffices to show that

|∂α
x ∂

β
ξ e(x, ξ, y, q)| ≤ cα,βλ

|α|
2 e−cλ(x−y)2e−cλq2

.

This, in turn, would follow from

(42)
∣∣∣∂α

x ∂
β
ξ e

iλ(ξq−ξ)(xq−y)e−
λ
2 (xq−y)2

∣∣∣ ≤ cα,βλ
|α|
2 e−cλ(xq−y)2ec

√
λq

(43)

∣∣∣∣∂
α
x ∂

β
ξ

∂(xq, a(t, x, ξ), ξq)

∂(x, ξ, q)

∣∣∣∣ ≤ cα,βλ
|α|
2 ec

√
λq

(44) |∂α
x ∂

β
ξ e

iλξ(xq−x)F (t, x, ξ, q)| ≤ cα,βλ
|α|
2 e−cλq2

.

The bounds (42) and (43) can be easily obtained from Theorem 6. For (44) observe
that

F (t, x, ξ, q) = eλ
R q
0

ipx(t,xq̃,τ,ξq̃)ξq̃−p(t,xq̃,τ,ξq̃)dq̃

therefore

eiλξ(x−xq)F (t, x, ξ, q) = eλ
R q
0

ipx(t,xq̃,τ,ξq̃)(ξq̃−ξ)−p(t,xq̃,τ,ξq̃)dq̃.

Since p ≈ q we obtain the desired Gaussian decay, therefore it remains to show that

λ|∂α
x ∂

β
ξ (ipx(t, xq, τ, ξq)(ξq − ξ) − p(t, xq, τ, ξq))| ≤ cα,βλ

|α|+1
2 ec

√
λq.

This again follows from Theorem 6. �

If we use the equation (34) on K then we get

[−px∂ξ + pξ∂x − iλpξξ)]w = −ig.
Furthermore, on K we have

pξξ = aξξ = 2a = 2τ

therefore
(Hp − 2iλτ)w = −ig.

Taking into account the bound (33) for the trace of g on the paraboloid, we need
to prove the estimate

(45) ‖VλδKw‖Lq(Lr) ≤ λ
3
4 ‖(Hp − 2iλτ)w‖L2(K)

for all w supported in K ∩ U . Note that, since w is compactly supported, the
operator Hp − 2iλτ can be replaced by Hp − 2iλτ + 1.

Given (t, x, τ, ξ) on K we denote by (t, xh, τ, ξh) its image along the Hamilton
flow (t and τ rest unchanged). Then (45) is equivalent to

Theorem 8. Let α(x, ξ) be a smooth compactly supported function, which is 0 near
ξ = 0 and 1 in 1/4 ≤ |ξ| ≤ 4. Then

(46) ‖Vλα(x, ξ)δKL‖L2(K)→Lq(Lr) . λ
3
4

where L is the operator along the Hamilton flow with kernel

L(h, h̃) = e2iλτ(h−h̃)sgn(h− h̃)e−|h−h̃|

which is an inverse for Hp − 2iλτ + 1.
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This is further equivalent to the corresponding bound for the operator

(47) Z = (VλαL)(VλaL)∗ = VλαLL
∗δKαV

∗
λ ,

namely

(48) ‖Z‖Lq′ (Lr′ )→Lq(Lr) . λ
3
2 .

The operator LL∗ is an integral operator along bicharacteristics, with kernel

l(h, h̃) = e2iλτ(h−h̃)e−|h−h̃|.

Next we use complex interpolation to prove the estimate (48) for the non-endpoint
case 2 < r ≤ q. Then, due to (a simple modification of) Theorem 4 in [19], the
endpoint estimate (corresponding to r = 2) follows from the non-endpoint estimate
and the bound for the kernel HZ of Z,

|HZ(s, y, s̃, ỹ)| ≤ cλn+ 3
2 (1 + λ2|s− s̃|)−n

2

which is a special case of (51) (or a simple consequence of (54)).

4.7. The complex interpolation. Here we set up the complex interpolation ar-
gument in order to prove (48) for 2 < r ≤ q. First we need to break our operator
into a short range and a long range part with respect to time, on the scale of λ−3/2.
Let χ be a smooth function, compactly supported and equal to 1 in a neighborhood
of the origin. Then for ǫ > 0 we set

χǫ(x) = χ(ǫx).

Given an integral operator W with kernel K(s, s̃, y, ỹ) and a smooth, bounded
function χ we denote by Wǫ the operator with kernel K(s, s̃, y, ỹ)χǫ(s− s̃).

Now consider two analytic family of operators

W 1
θ = Vλαp

−θ(t, x, τ, ξ)L1
θαV

∗
λ

W 2
θ = Vλαp

−θ(t, x, τ, ξ)L2
θαV

∗
λ

where L1
θ, L

2
θ are the operators along the Hamilton flow of P with kernels

l1θ = θhθ−1e−|h|e2ihλa(t,x,ξ), l2θ = θhθ−1e−|h|e2ihλτ .

and pθ is the distribution

p−θ = (p+ i0)−θ − (p− i0)−θ.

Then
Z = W 1

1 = W 2
1 .

We combine these two families, using W 1
θ for the short range and W 2

θ for the long
range,

Zθ = W 1

θ,λ
3
2

+W 2
θ −W 2

θ,λ
3
2
,

so that we still have Z1 = Z.
Choose q1, θ1 so that the points

(49) (
1

2
,
1

2
, 0), (

1

q
,
1

r
, 1), (

1

q1
, 0, θ1)

are collinear. Then our estimate follows by interpolation from the following:

‖Zθ‖L2→L2 ≤ 1 ℜθ = 0

‖Zθ‖Lq′1 (L1)→Lq1 (L∞)
≤ λ

3
2ℜθ ℜθ = θ1.
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4.8. The L2 estimate. We first prove that W 1
θ , W 2

θ are L2 bounded. It is easy to

see that for ℜθ = 0 the operators Lj
θ are L2 bounded. Hence it remains to prove

that Vλ is L2 bounded.
The kernel of VλV

∗
λ is

K0(s, s̃, y, ỹ) = λ
3(n+2)

2

∫
eiλ(y−ỹ)ξeiλ2τ(s−s̃)e−

λ2

2 ((t−s)2+(t−s̃)2)

× G(t, x, ξ, y)G(t, x, ξ, ỹ)α2(t, x, τ, ξ)dtdxdτdξ.

Integration in (τ, ξ) yields

|K0(s, s̃, y, ỹ)| ≤ λ
3(n+2)

2

∫
e−cλ(y−x)2e−cλ(ỹ−x)2e−

λ2

2 ((t−s)2+(t−s̃)2)

(1 + λ|y − ỹ| + λ2|s− s̃|)N
dxdt

≤ λn+2(1 + λ|y − ỹ| + λ2|s− s̃|)−N

and the L2 boundedness follows.
To transfer the result to Zθ we use the following simple Lemma, proved in [20]:

Lemma 5. Let T : L2 → L2 be a bounded operator. Then the operators Tǫ are
bounded from L2 into L2, uniformly in ǫ > 0.

4.9. The Lq′
1(L1) → Lq1(L∞) estimate. This would follow from the following

bound on the kernel of Zθ,

(50) |Kθ,Z(s, s̃, y, ỹ)| ≤ cλ
3
2 θ1 |s− s̃|− 2

q1 , ℜθ = θ1.

Observe that
2

q1
=
n+ 2

2
− θ1.

This follows from the relation
2

q
+
n

r
=
n+ 2

2
− θ

which, by (6), holds for the first two points in (49) therefore it must also hold for
the third.

Then it suffices to prove that

(51) |Kθ,Z(s, s̃, y, ỹ)| . cλn+2−ℜθ
2 (1 + λ2|s− s̃|)−( n+2

2 −ℜθ) 1 ≤ ℜθ ≤ n+ 1

2

which requires that

(52) |KW 1
θ
(s, s̃, y, ỹ)| . cλn+2−ℜθ

2 (1 + λ2|s− s̃|)−( n+2
2 −ℜθ) |s− s̃| ≤ cλ−

3
2

respectively

(53) |KW 2
θ
(s, s̃, y, ỹ)| . λn+2−ℜθ

2 (1 + λ2|s− s̃|)−( n+2
2 −ℜθ) |s− s̃| ≥ cλ−

3
2 .

Our aim is to eliminate the parameter θ and reduce these estimates to simpler
ones. Towards this goal denote by Fh the translation by h along the Hamilton flow.
Then introduce the kernel Hh of the operator

Zh = VλaF
he2iλhaδp(t,x,τ,ξ)=0aV

∗
λ .

Theorem 9. The kernels Hh satisfy the following estimate:

(54) |Hh(s, s̃, y, ỹ)| . λn+2(1 + λ2|s− s̃|)−n
2 ((1 +

√
λ|λ(s̃− s)− h|)−N .+ e−ch2λ)
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Now we prove that (54) implies (52) and (53). Observe that as a particular case
of (51) for θ = 1 we also obtain a bound for the kernel HZ of Z:

Corollary 1. The kernel HZ of the operator Z defined in (47) satisfies the bound

(55) |HZ(s, y, s̃, ỹ)| ≤ cλn+2− 1
2 (1 + λ2|s− s̃|)−n

2 .

To prove that (54) implies (52) we claim that the kernel KW 1
θ

can be represented
as

(56) KW 1
θ
(s, s̃, y, ỹ) = (λ2(s− s̃))θ−1

∫
θhθ−1e−|h|Hh(s, s̃, y, ỹ) dh.

Indeed, observe first that

L1
θ =

∫
θhθ−1e−|h|Fhe2ihλadh.

Then it remains to verify that

Vλap
−θFhe2ihλaaVλ(s, s̃) = (λ2(s− s̃))θ−1VλaδKF

he2ihλaaVλ(s, s̃).

For this we take advantage of the special form of the symbol,

p(x, ξ) = τ − a(t, x, ξ).

and also of the fact that t, τ, a(x, ξ, τ) are preserved along the Hamilton flow. Then
the only part which depends on τ in the integral expression for the kernel of
Vλap

−θeihλaFhaVλ(s, s̃) is

I =

∫
eiλ2τ(s−s̃)(θ − 1)(τ − a(t, x, ξ))−θdτ

= (λ2(s− s̃))θ−1eiλ2a(t,x,ξ)(s−s̃)

= (λ2(s− s̃))θ−1

∫
eiλ2τ(s−s̃)δKdτ.

This concludes the proof of (56). Combined with (54) this gives (52) provided that
we verify the inequality

∫
|h|θ−1((1 +

√
λ|λs− h|)−N + e−ch2λ)dh ≤ cλ−

θ
2 ,

for

1 ≤ θ ≤ n+ 1

2
, |s| < λ−

3
2 .

But this is straightforward.
To prove that (54) implies (53) we compute in a similar manner

KW 2
θ
(s, s̃, y, ỹ) = (λ2(s− s̃) − λh)θ−1

∫
hθ−1e−|h|Hh(s, s̃, y, ỹ) dh

Combined with (54) this gives (53) provided that we verify the inequality
∫

|h|θ−1|λ2s− λh|θ−1(1 +
√
λ|λs− h|)−N + e−ch2λ)dh ≤ λ−

θ
2 |λ2s|θ−1

for

1 ≤ θ ≤ n+ 1

2
, |s| & λ−

3
2 .

This is again straightforward.
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It remains to prove the kernel bound (54). The integrand involves the Hamilton
flow (x, ξ) → (xh, ξh). Hence, our next goal is to study the regularity of the flow
map.

4.10. The regularity of the Hamilton flow. Here we obtain precise bounds on
the derivatives of the flow map Fh with respect to ξ. Observe first that if the (C2)

coefficients aij have Fourier transform supported in |ξ| ≤
√
λ then the following

relations hold:

(57) |∂α
x a

ij | ≤ cαλ
α−2

2 , |α| ≥ 2

We start with a weaker result which we strengthen afterwards:

Lemma 6. Assume that the coefficients of P are of class C2, with Fourier trans-
form supported in B(0,

√
λ). Then the following bounds hold

(58)
|∂α

ξ xh| ≤ h(1 + h
√
λ)|α|−1, |α| ≥ 1

|∂α
ξ ξh| ≤ (1 + h

√
λ)|α|−1 |α| ≥ 1

Proof. We use induction with respect to α. For α = 1 the functions (∂ξxh, ∂ξξh)
solve the linearized system

(59)
d

dh

(
y
η

)
= A(h)

(
y
η

)
, A(h) =

(
aξx(xh, ξh) aξξ(xh, ξh)
−axx(xh, ξh) −axξ(xh, ξh)

)

with initial data (
y(0)
η(0)

)
=

(
0
In

)

Since A(h) is bounded, it follows that the solutions remain bounded. Furthermore,
the Cauchy data of the first component is 0, therefore the first component can be
bounded by ch.

For the induction step, compute

d

dh
∂α

ξ xh = ∂α
ξ

d

dh
xh = ∂α

ξ aξ(xh, ξh)

and
d

dh
∂α

ξ ξh = ∂α
ξ

d

dh
ξh = −∂α

ξ aξ(xh, ξh)

Then the functions ( d
dt∂

α
ξ xt,

d
dt∂

α
ξ ξt) solve a system of the form

d

dh

(
y
η

)
= A(h)

(
y
η

)
+

(
ȳ(h)
η̄(h)

)

with zero initial data, where the inhomogeneous term (ȳ(h), η̄(h)) can be expressed
in terms of the lower order derivatives as a sum of products of the form

(∂α1
x ∂α2

ξ a)(xh, ξh)

|α1|∏

k=1

(∂αk
1xh)

|α2|∏

k=1

(∂
αk

2

ξ ξh)

where

1 ≤ |α1| + |α2| ≤ |α|, 1 ≤ |αk
1 |, |αk

2 | ≤ |α| − 1
∑

|αk
1 | + |α2|k = |α|

Since the coefficients of P are of class C2, with Fourier transform supported in
B(0,

√
λ), it follows that

(∂α1
x ∂α2

ξ a)(xh, ξh) ≤ cα1,α2λ
|α1|−2

2 , |α1| ≥ 2
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Then, given the induction hypothesis, we can bound both ȳ(h) and η̄(h) by (1 +

t
√
λ)|α|−1 and the desired bound follows by integrating the system. �

We can use the above Lemma to produce an expansion of xh, ξh in terms of
powers of h:

Lemma 7. Assume that the coefficients of P are of class C2, with Fourier trans-
form supported in B(0,

√
λ). Then the following estimates hold:

(60) xh = x+ haξ + h2g(h, x, ξ)

(61) ξh = ξ + hm(h, x, ξ)

where g,m satisfy the following bounds:

(62) |∂α
ξ m(h, x, ξ)|, |∂α

ξ g(h, x, ξ)| ≤ (1 + h
√
λ)|α|−1,

Proof. We have

xh = x+ haξ +

∫ h

0

(h− h̃)
d2

dh̃2
xh̃dh̃

= x+ haξ +

∫ h

0

(h− h̃)f(xh̃, ξh̃)dh̃

where f can be computed from the flow equation,

f(x, ξ) = aξxaξ − aξξax

Then it suffices to estimate the derivatives

|∂α
ξ f(xh, ξh)| ≤ 1 + h(h

√
λ)|α|−1,

By hypothesis

|∂α
x ∂

β
ξ f(x, ξ)| ≤ cα,β(

√
λ)|α|−1

so this can be easily done using the previous Lemma. The estimate for ξh is
similar. �

Another straightforward consequence of Lemma 6 is the following bound for the
Gaussians in our kernel:

Lemma 8. For ξ in a compact set and away from 0 we have

|∂α
ξ G(t, xh, ξh)| ≤ cαe

−cλ(xh−ỹ)2(1 + h
√
λ)α,

It is somewhat more difficult to prove a related result for the exponent in the
“bad” oscillatory term in our kernel,

φh(t, x, ξ) = λ[(ỹ − xh)ξh + 2ha(t, x, ξ)]

Choose ξ̃ so that ỹ = x̃h. By (60) we have

|xh − x̃h| ≈ h|ξ − ξ̃|
Hence it follows that

(63) (x− y)2 + h2(ξ − ξ̃)2 ≤ c[(x− y)2 + (xh − ỹ)2]

Now we can state our result
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Lemma 9. For ξ in a compact set and away from 0 we have

(64) |∂ξ

(
φh(t, x, ξ) + hλξaξ(t, x, ξ̃)

)
| ≤ (1 + λ(xh − ỹ)2)(1 + h

√
λ)

and

(65) |∂α
ξ φh(t, x, ξ)| ≤ cα(1 + λ(xh − ỹ)2)(1 + h

√
λ)α, |α| ≥ 2

In the case when |h| ≤ λ−
1
2 , we can replace (64) with

(66) |∂ξ (φh(t, x, ξ) + λ(ỹ − x)ξ) | ≤ (1 + λ(xh − ỹ)2)(1 + h
√
λ)

The above bound on the second and higher derivatives of the phase shows that
we can replace the phase by a linear one modulo a factor which can be included
in the Gaussians. This will allow us later to work with phase functions which are
linear in ξ.

Proof. Observe that

(67) ξh · ∂ξxh = haξ(t, x, ξ)

Indeed, this is trivially true at h = 0. If we use the linearized equations (59) then
we get

d

dh
(ξh · ∂ξxh) = −ax · ∂ξxh + ξh · (aξx∂ξxh + aξξ∂ξξh)

Since a is homogeneous of order 2 in ξ, this implies that

d

dh
(ξh · ∂ξxh) = (ax∂ξxh + aξ∂ξξh) = ∂ξa(t, xh, ξh) = ∂ξa(t, x, ξ)

Hence (67) follows.
Then the first derivative of φh is

∂ξφh(t, x, ξ) = λ((ỹ − xh)∂ξξh + 2haξ(t, x, ξ))

= hλ(∂ξm(t, x, ξ))(ỹ − xh) + λ(ỹ − xh) + hλaξ(t, x, ξ)

= hλ(∂ξm(t, x, ξ))(ỹ − xh) + λ(ỹ − x) − h2λg(t, x, ξ))

Now (65) follows easily from the bounds on the derivatives of xh in Lemma 6 and
the bounds on the derivatives of g,m in Lemma 7. To prove (64) it suffices to

observe that the ξ gradient of φh(t, x, ξ) + hλξaξ(t, x, ξ̃) vanishes at ξ = ξ̃. Then
we can use (65) with |α| = 2 to obtain

|∂ξ(φh(t, x, ξ) + hλξaξ(t, x, ξ̃))| . (1 + λ(xh − ỹ)2)(1 + h
√
λ)2|ξ − ξ̃|

Thus (64) follows by (63). �

4.11. The short range kernel estimate. We want to estimate the kernel

Hh(s̃, ỹ, s, y) = λ
3(n+2)

2

∫

K

G(t, ξ, x, y)G(t, ξh, xh, ỹ)e
−λ2

2 (t−s)2

e−
λ2

2 (t−s̃)2eiλ2τ(s̃−s)eiλξ(x−y)eiλξh(ỹ−xh)e2iλτhdtdxdτdξ

in (54) for h < λ−
1
2 . Due to Lemmas 8,9 and the gaussian bounds (41) on G, the

integrand can be represented in the form

e−cλ(x−y)2e−cλ(x−ỹ)2e−
λ2

2 (t−s)2e−
λ2

2 (t−s̃)2eiλ2τ(s̃−s)eiλξ(y−ỹ)f(t, y, ỹ, x, ξ)
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where f is bounded, compactly supported away from ξ = 0 and has bounded
derivatives in ξ. Hence the kernel Hh can be represented as

Hh(s̃, ỹ, s, y) = λ
3(n+2)

2

∫

K

e−cλ(x−y)2e−cλ(x−ỹ)2eiλ2τ(s̃−s)eiλξ(ỹ−y)

e−
λ2

2 (t−s)2e−
λ2

2 (t−s̃)2f(t, y, ỹ, x, ξ)dtdxdτdξ

To estimate this we use standard oscillatory integral estimates of the form

(68)

∫

K

f(ξ, τ)ei(yξ+τs)dξdτ . (1 + |y| + |s|)−n
2

( 1 + |y|
1 + |y| + |s|

)N

for f smooth, compactly supported, vanishing near 0. What is important in these
oscillatory integral estimates is that the characteristic set K = {p = 0} has n
nonvanishing curvatures (see e.g. Stein [17] 8.3.1 and 9.1.2). The decay given by
the first factor on the right is sharp in the cone of directions in the conormal bundle
of K ∩ supp f . Away from this cone, the integral is rapidly decreasing. Since f is
supported away from 0 it follows that our oscillatory integral is rapidly decreasing
in a conical neighborhood of y = 0. This motivates the second factor in the right
hand side of (68).

From (68) we obtain

|Hh(s, s̃, y, ỹ)| ≤ λ
3(n+2)

2 (1 + λ2|s− s̃|)−n
2

( 1 + λ|y − ỹ|
1 + λ|y − ỹ| + λ2|s− s̃|

)N

∫
e−

λ2

2 (t−s)2e−
λ2

2 (t−s̃)2e−cλ(x−y)2e−cλ(x−ỹ)2dtdx

Then the desired bound (54) follows after integration in x, t.

4.12. The long range estimate. As in the short range estimate, our strategy
will be to replace the phase function by a linear one and treat everything else as
a perturbation. This time the derivatives in ξ are of the order of (h

√
λ)|α|, but

this is compensated by the fact that our estimates are localized in ξ on the scale of
(h
√
λ)−1.

Again, due to Lemmas 8,9 and the gaussian bounds (41) on G, the integrand
can be represented in the form

Eh(s, y, s̃, ỹ, t, x, τ, ξ) = e−cλ(x−y)2e−cλh2(ξ−ξ̃)2e−
λ2

2 (t−s)2e−
λ2

2 (t−s̃)2

eiλ2τ(s−s̃)eihλξpξ(t,x,ξ̃)f(t, y, ỹ, x, ξ)

where f satisfies

(69) |∂α
ξ f | ≤ cα(1 + h

√
λ)α

Here ξ̃ depends on t, x, y, ỹ but this does not matter since we estimate the ξ integral
first. We need to prove that

λ
3(n+2)

2

∣∣∣∣
∫

K

Ehdtdxdξ

∣∣∣∣ ≤ cλn+2(1 + λ2|s− s̃|)−n
2

(
(
√
λ(λ(s− s̃) − h))−N + e−cλh2

)
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This follows after a straightforward integration in x, t from the corresponding bound
for the integral with respect to ξ,

∣∣∣∣
∫

K

eiλ2τ(s−s̃)eihλξpξ(t,x,ξ̃)e−cλh2(ξ−ξ̃)2f(ξ)dξ

∣∣∣∣ .

(1 + λ2|s− s̃|)−n
2 (
(√

λ(λ(s− s̃) − h)
)−N

+ e−ch2λ)

for f compactly supported away from 0 and satisfying (69). In the region |ξ− ξ̃| & 1
we have

|∂α
ξ e

−cλh2(ξ−ξ̃)2f(ξ)| ≤ cαe
−c1λh2

therefore the stationary phase estimate (68) yields a bound of e−c1h2λ(1 + λ2|s −
s̃|)−n

2 for the integral.
It remains to consider the case when f is supported in a small neighborhood

of ξ̃. In this case we must necessarily have |ξ̃| = O(1). The argument simplifies
considerably if we take into account the fact that a is quadratic in ξ. Then we can
make the substitution

s := s− s̃, ξ := ξ − ξ̃

The new phase function is

λ2a(ξ + ξ̃)s− hλ(ξ + ξ̃)pξ(ξ̃) = λ2a(ξ)s+ λ(λs− h)ξpξ(ξ̃) + λ2a(ξ̃)s

and the estimate to prove is
∣∣∣∣
∫

K

eiλ2τseiλ(λs−h)ξaξ(t,x,ξ̃)e−cλh2ξ2

f(ξ)dξ

∣∣∣∣ . (1 + λ2s)−
n
2

(√
λ(λs− h)

)−N

with f supported in a small neighborhood of 0.
If |λs| . |λs − h| then the phase is nondegenerate, and a simple integration by

parts yields
∣∣∣∣
∫

K

eiλ2τseiλ(λs−h)ξpξ(t,x,ξ̃)e−cλh2ξ2

f(ξ)dξ

∣∣∣∣ . (h
√
λ)−

n
2

( h
√
λ

(1 + λ2|s| + λ|h|)
)N

which is more than we need.
Finally, we consider the interesting case, i.e. when |λs − h| ≪ |λs|. Then

λs = O(h). After a linear change of coordinates we can assume that a(ξ) = ξ2. Set

t = λs, x = (λs− h)aξ(ξ̃).
Then we have to show that

(70)

∣∣∣∣
∫
eiλtξ2

eiλxξe−λt2ξ2

f(ξ)dξ

∣∣∣∣ . (1 + λ|t|)−n
2

(
1 +

√
λ|x|

)−N

, |x| . |t| . 1

where
|∂αf | ≤ cα(

√
λ|t|)α

We interpret the last integral as a convolution of the Fourier transforms of eiλtξ2

e−λt2ξ2

,

respectively e−λt2ξ2

f(ξ). We have

|
∫
eixξeiλtξ2

e−λt2ξ2

dξ| = c|(iλt+ λt2)−
n
2 e

x2

−λt2+iλt |

. (λt)−
n
2 e−c x2

λ

while

|
∫
eixξe−λt2ξ2

f(ξ)dξ| . (t
√
λ)−n(1 +

|x|
t
√
λ

)−N
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Then their convolution is bounded by

|(λt)−n
2 e−c x2

λ ⋆ (t
√
λ)−n(1 +

|x|
t
√
λ

)−N | . (λt)−
n
2 (1 +

|x|√
λ

)−N

Replacing x by λx we get (70).
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