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1. Introduction

X. Jiang and H. Su [5] constructed a unital separable simple infinite-dimensional nuclear
C∗-algebra Z, called the Jiang–Su algebra, whose K-theoretic invariant is isomorphic
to that of the complex numbers. The Jiang–Su algebra has recently started to play a
central role in Elliott’s classification program for nuclear C∗-algebras. We say that a
unital C∗-algebra is Z-absorbing if A∼=A⊗Z. H. Lin, Z. Niu and W. Winter proved
that certain Z-absorbing C∗-algebras are classified by their ordered K-groups [13], [26].
Indeed, all classes of unital simple nuclear C∗-algebras for which Elliott’s classification
conjecture have been confirmed consist of Z-absorbing algebras. One may view Z as
being the stably finite analogue of the Cuntz algebra O∞. W. Winter also showed that
Z is the initial object in the category of strongly self-absorbing C∗-algebras [24].

In view of this, it is desirable to characterize Z-absorbing C∗-algebras in various
manners. In 2008, A. S. Toms and W. Winter conjectured that the properties of strict
comparison, finite nuclear dimension, and Z-absorption are equivalent for unital sepa-
rable simple infinite-dimensional nuclear C∗-algebras (see [22] and [27], for example).
M. Rørdam proved that Z-absorption implies strict comparison for unital simple exact
C∗-algebras [17]. W. Winter showed that any unital separable simple infinite-dimensional
C∗-algebra with finite nuclear dimension is Z-absorbing [25]. In the present paper we
provide another partial answer to the conjecture above. Namely, it will be shown that
strict comparison implies Z-absorption under the assumption that the algebra has finitely
many extremal traces.

The following is the main result of this paper.
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Theorem 1.1. Let A be a unital separable simple infinite-dimensional nuclear C∗-
algebra with finitely many extremal traces. Then the following are equivalent :

(i) A⊗Z∼=A;
(ii) A has strict comparison;
(iii) any completely positive map A!A can be excised in small central sequences;
(iv) A has property (SI).

Here, we recall the definition of strict comparison. In this paper we denote by
A+ the positive cone of A and by T (A) the set of tracial states on A. We define the
dimension function dτ associated with τ∈T (A) by dτ (a)=limn!∞ τ(a1/n) for a∈Mk(A)+,
where τ is regarded as an unnormalized trace on Mk(A). We say that a separable
nuclear C∗-algebra A has strict comparison if for a, b∈Mk(A)+, with dτ (a)<dτ (b) for any
τ∈T (A), there exist rn∈Mk(A), n∈N, such that r∗nbrn!a. The definition of excision
in small central sequences is given in Definition 2.1, and the definition of property (SI)
is given in Definition 4.1. As mentioned above, (i)⇒ (ii) was proved by M. Rørdam
[17, Corollary 4.6] without assuming that A has finitely many extremal tracial states.
The implication (iii)⇒ (iv) is immediate from the definitions and does not need the
assumption of finitely many extremal traces. We use the full assumption on A for the
implications (ii)⇒ (iii) and (iv)⇒ (i). It will also be shown that (i) implies (iii) and (iv)
without the assumption of finitely many extremal tracial states in Theorem 4.2. In §5,
using the same method, we shall show approximate divisibility of unital separable simple
nuclear C∗-algebras with tracial rank zero.

The main technical device in this paper is excision of completely positive maps.
In [1], C. A. Akemann, J. Anderson and G. K. Pedersen proved that any pure state
on a C∗-algebra can be excised by positive norm-1 elements. By using their result,
E. Kirchberg obtained a Stinespring dilation type theorem for unital nuclear completely
positive maps from a unital purely infinite simple C∗-algebra to itself. This theorem
is one of the technical cornerstones in the proof of Kirchberg’s celebrated embedding
theorem for exact C∗-algebras [7], [8]. In this article, by using the result of [1], we will
establish a similar ‘dilation’ type result for completely positive maps in the setting of
stably finite C∗-algebras. To this end, we have to work with central sequences and to
take into account the values of traces on them (Definition 2.1).

The other ingredient in this paper is property (SI) (SI stands for ‘small isometries’).
The idea of property (SI) originates with A. Kishimoto (see [11, Lemma 3.6]). Using
it, he proved that certain automorphisms of AT algebras (i.e., inductive limits of finite-
dimensional C∗-algebras over C(T)) have the Rokhlin property. (See [14] and [19] for
further developments.) In [15] and [20], property (SI) was used to show Z-absorption
of crossed products by strongly outer actions. The main theorem in the present paper
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implies that this property is not so restrictive but is shared by ‘many’ stably finite nuclear
C∗-algebras.

We recall the notion of central sequence algebras of C∗-algebras. Let A be a separable
C∗-algebra. Set

A∞= `∞(N, A)/{{an}n ∈ `∞(N, A) : limn!∞ ‖an‖=0}.

We identify A with the C∗-subalgebra of A∞ consisting of equivalence classes of constant
sequences. We let

A∞=A∞∩A′

and call it the central sequence algebra of A. A sequence {xn}n∈`∞(N, A) is called a cen-
tral sequence if ‖[a, xn]‖!0 as n!∞ for all a∈A. A central sequence is a representative
of an element in A∞.

2. Excision in small central sequences

In this section, we prove Proposition 2.2, which plays an important role in §3.

Definition 2.1. Let A be a separable C∗-algebra with T (A) 6=∅, and let ϕ:A!A be
a completely positive map. We say that ϕ can be excised in small central sequences if
for any central sequences {en}n and {fn}n of positive contractions in A satisfying

lim
n!∞

max
τ∈T (A)

τ(en) = 0 and lim
m!∞

lim inf
n!∞

min
τ∈T (A)

τ(fm
n )> 0,

there exist sn∈A, n∈N, such that

lim
n!∞

‖s∗nasn−ϕ(a)en‖=0 for any a∈A and lim
n!∞

‖fnsn−sn‖=0.

The following proposition is our main tool for the proof of the implication (ii)⇒ (iii)
in Theorem 1.1. This may be thought of as a stably finite analogue of Kirchberg’s
Stinespring type theorem [7] (see also [8, Proposition 1.4]).

Proposition 2.2. Let A be a unital separable simple infinite-dimensional C∗-al-
gebra with T (A) 6=∅. Suppose that A has strict comparison. Let ω be a state on A and
let ci, di∈A, i=1, 2, ..., N . Then the completely positive map ϕ:A!A defined by

ϕ(a) =
N∑

i,j=1

ω(d∗i adj)c∗i cj , a∈A,

can be excised in small central sequences.

In order to prove this proposition, we need a couple of lemmas.
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Lemma 2.3. Let A be a separable C∗-algebra with T (A) 6=∅. For any central se-
quence {fn}n of positive contractions in A, there exists a central sequence {f̃n}n of
positive contractions in A such that {f̃nfn}n={f̃n}n in A∞ and

lim
m!∞

lim inf
n!∞

min
τ∈T (A)

τ(f̃m
n ) = lim

m!∞
lim inf
n!∞

min
τ∈T (A)

τ(fm
n ).

Proof. We can find a natural number Nm∈N such that the inequality

lim inf
n!∞

min
τ∈T (A)

τ(fm
n )< min

τ∈T (A)
τ(fm

l )+
1
m

holds for every l>Nm. We may assume that Nm<Nm+1. Define a sequence {mn}n

of natural numbers such that mn=m when Nm<n6Nm+1. Note that {mn}n is an
increasing sequence such that mn!∞ and

lim inf
n!∞

min
τ∈T (A)

τ(fmn
n ) > lim

m!∞
lim inf
n!∞

min
τ∈T (A)

τ(fm
n ).

Let {m̃n}n be a sequence of natural numbers such that m̃n!∞, m̃n6m1/2
n and {f m̃n

n }n

is a central sequence. Let f̃n=f m̃n
n . It is easy to see that {fnf̃n}n={f̃n}n in A∞. Also,

lim
m!∞

lim inf
n!∞

min
τ∈T (A)

τ(fm
n ) > lim

m!∞
lim inf
n!∞

min
τ∈T (A)

τ(f̃m
n )

= lim
m!∞

lim inf
n!∞

min
τ∈T (A)

τ(fmm̃n
n )

> lim inf
n!∞

min
τ∈T (A)

τ(fmn
n )

> lim
m!∞

lim inf
n!∞

min
τ∈T (A)

τ(fm
n ).

Lemma 2.4. Let A be a unital separable simple C∗-algebra with T (A) 6=∅ and let
a∈A be a non-zero positive element. Then there exists α>0 such that

α lim inf
n!∞

min
τ∈T (A)

τ(fn) 6 lim inf
n!∞

min
τ∈T (A)

τ(f1/2
n af1/2

n )

for any central sequence {fn}n of positive contractions in A.

Proof. Since A is unital and simple, there exist v1, v2, ..., vm∈A such that

m∑
i=1

v∗i avi =1.

Set

α=
( m∑

i=1

‖vi‖2
)−1

> 0.
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Then we have

lim inf
n!∞

min
τ∈T (A)

τ(fn) = lim inf
n!∞

min
τ∈T (A)

m∑
i=1

τ(v∗i avifn)

= lim inf
n!∞

min
τ∈T (A)

m∑
i=1

τ(v∗i a
1/2fna

1/2vi)

= lim inf
n!∞

min
τ∈T (A)

m∑
i=1

τ(f1/2
n a1/2viv

∗
i a

1/2f1/2
n )

6
1
α

lim inf
n!∞

min
τ∈T (A)

τ(f1/2
n af1/2

n ).

Lemma 2.5. Let A be a unital separable simple C∗-algebra with T (A) 6=∅. Suppose
that A has strict comparison. Let {en}n and {fn}n be as in Definition 2.1. Then for
any norm-1 positive element a∈A, there exists a sequence {rn}n in A such that

lim
n!∞

‖r∗nf1/2
n af1/2

n rn−en‖=0 and lim sup
n!∞

‖rn‖= lim sup
n!∞

‖en‖1/2.

Proof. By [20, Lemma 3.2 (i)], we may assume that limn!∞maxτ∈T (A) dτ (en)=0.
Set

c= lim
m!∞

lim inf
n!∞

min
τ∈T (A)

τ(fm
n )> 0.

Take ε>0. It suffices to show that there exist rn∈A, n∈N, such that

lim sup
n!∞

‖r∗nf1/2
n af1/2

n rn−en‖6 ε and lim
n!∞

‖r∗nrn−en‖=0.

As ‖a‖=1, using continuous functional calculus, we get non-zero positive contrac-
tions a0, a1∈A such that ‖a0−a‖6ε and a16am

0 for all m∈N. Applying Lemma 2.4 to
a1∈A+\{0}, we obtain α>0. Then for any m∈N it follows that

αc6α lim inf
n!∞

min
τ∈T (A)

τ(fm
n )

6 lim inf
n!∞

min
τ∈T (A)

τ(fm/2
n a1f

m/2
n )

6 lim inf
n!∞

min
τ∈T (A)

τ(fm/2
n am

0 f
m/2
n ).

Put bn=f1/2
n a0f

1/2
n . Since {fn}n is central, one has

lim inf
n!∞

min
τ∈T (A)

τ(bmn ) = lim inf
n!∞

min
τ∈T (A)

τ(fm/2
n am

0 f
m/2
n ) >αc

for any m∈N. Then we have an increasing sequence mn∈N of natural numbers such that
mn!∞ and lim infn!∞minτ∈T (A) τ(bmn

n )>αc.
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For δ>0, define a continuous function gδ∈C([0, 1]) by gδ(t)=max{0, δ−1(t−1+δ)}.
Let εn>0, n∈N, be a decreasing sequence such that εn!0 and (1−εn)mn!0. Then we
have

lim inf
n!∞

min
τ∈T (A)

dτ (gεn(bn))> lim inf
n!∞

min
τ∈T (A)

τ(gεn(bn))> lim inf
n!∞

(
min

τ∈T (A)
τ(bmn

n )−(1−εn)mn

)
= lim inf

n!∞
min

τ∈T (A)
τ(bmn

n ) >αc> 0.

Because A has strict comparison, we can find a sequence {qn}n in A such that

lim
n!∞

‖q∗ngεn(bn)qn−en‖=0.

Note that {qn}n is not necessarily bounded. We define rn=g1/2
εn (bn)qn for n∈N. Then it

follows that

‖(1−bn)rn‖6 εn‖rn‖! 0 and ‖r∗nbnrn−en‖6 ‖r∗n(bn−1)rn‖+‖r∗nrn−en‖! 0,

as n!∞. Consequently, we have

lim sup
n!∞

‖r∗nf1/2
n af1/2

n rn−en‖6 lim sup
n!∞

‖r∗nf1/2
n a0f

1/2
n rn−en‖+ε= ε.

Now we are ready to prove Proposition 2.2.

Proof of Proposition 2.2. Let ϕ:A!A be as in the statement. Replacing ci and di

by ci/‖ci‖ and ‖ci‖di, we may assume that ‖ci‖61. Let F be a finite subset of the unit
ball of A and let ε>0. It suffices to show that there exist sn∈A, n∈N, such that

lim sup
n!∞

‖s∗nxsn−ϕ(x)en‖<ε and lim
n!∞

‖fnsn−sn‖=0

for any x∈F . Set G={d∗i xdj∈A:x∈F, i=1, 2, ..., N} and δ=ε/N2.
Since A is unital simple infinite-dimensional, by Glimm’s lemma, any state on A

can be approximated by pure states in the weak∗-topology. Hence we may assume that
ω is a pure state on A. By [1, Proposition 2.2], there exists a∈A+ such that ‖a‖=1
and ‖a(ω(x)−x)a‖<δ for every x∈G. Let {en}n and {fn}n be as in Definition 2.1. By
Lemma 2.3, we obtain a central sequence {f̃n}n of positive contractions in A satisfying
{f̃nfn}n={f̃n}n in A∞ and

lim
m!∞

lim inf
n!∞

min
τ∈T (A)

τ(f̃m
n ) = lim

m!∞
lim inf
n!∞

min
τ∈T (A)

τ(fm
n )> 0.

Applying Lemma 2.5 to {en}n, {f̃n}n and a2, we obtain rn∈A, n∈N, satisfying

lim
n!∞

‖r∗nf̃1/2
n a2f̃1/2

n rn−en‖=0 and lim sup
n!∞

‖rn‖6 1.
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We define

sn =
N∑

i=1

diaf̃
1/2
n rnci, n∈N.

Since {fn}n is central and {rn}n is bounded it follows that

lim sup
n!∞

‖fnsn−sn‖6 lim sup
n!∞

N∑
i=1

‖(1−fn)diaf̃
1/2
n ‖ ‖rn‖

= lim sup
n!∞

N∑
i=1

‖dia(1−fn)f̃1/2
n ‖=0.

Also, for any x∈F , we have

lim sup
n!∞

‖s∗nxsn−ϕ(x)en‖= lim sup
n!∞

∥∥∥∥ N∑
i,j=1

c∗i (r
∗
nf̃

1/2
n ad∗i xdjaf̃

1/2
n rn−ω(d∗i xdj)en)cj

∥∥∥∥
6 lim sup

n!∞

N∑
i,j=1

‖r∗nf̃1/2
n ad∗i xdjaf̃

1/2
n rn−ω(d∗i xdj)en‖

= lim sup
n!∞

N∑
i,j=1

‖r∗nf̃1/2
n (ad∗i xdja−ω(d∗i xdj)a2)f̃1/2

n rn‖

6 lim sup
n!∞

N∑
i,j=1

‖a(d∗i xdj−ω(d∗i xdj))a‖

<ε.

Remark 2.6. In the argument above, the assumption of strict comparison is used in
the proof of Lemma 2.5. But it should be pointed out that we need much less than the
full strength of strict comparison. Indeed, what we used in the proof of Lemma 2.5 is as
follows: if {en}n and {fn}n are sequences of positive contractions in A satisfying

lim
n!∞

max
τ∈T (A)

dτ (en) = 0 and lim inf
n!∞

min
τ∈T (A)

dτ (fn)> 0,

then there exists a sequence {rn}n in A such that

lim
n!∞

‖r∗nfnrn−en‖=0.

3. Proof of (ii) ⇒ (iii) in Theorem 1.1

In this section, we give a proof of the implication (ii)⇒ (iii) in Theorem 1.1, by using
Proposition 2.2. We begin with the following well-known fact. This is a special case of
[9, Proposition 4.2].
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Lemma 3.1. Let A be a unital separable simple infinite-dimensional nuclear C∗-
algebra, and let ω be a pure state of A. Then any completely positive map A!A can be
approximated in the pointwise norm topology by completely positive maps ϕ of the form

ϕ(a) =
N∑

l=1

N∑
i,j=1

ω(d∗i adj)c∗l,icl,j , a∈A,

where cl,i, di∈A, l, i=1, 2, ..., N .

Proof. Let %:A!MN and σ:MN!A be completely positive maps. Because A is
nuclear, any completely positive map is approximated by completely positive maps which
factor through full matrix algebras. Thus it suffices to show that σ�% can be approximated
in the pointwise norm topology by completely positive maps ϕ as in the lemma. Replacing
% and σ by %(1A)−1/2%( ·)%(1A)−1/2 and σ(%(1A)1/2 · %(1A)1/2) with inverses taken in the
respective hereditary subalgebra, we may assume that % is unital.

We denote by (π,H, ξ) the Gelfand–Naimark–Segal (GNS) representation associated
with ω. Since A is unital separable simple infinite-dimensional, π(A) does not contain
non-zero compact operators on H. Applying Voiculescu’s theorem (see, for example, [3,
Theorem 1.7.8]) to the unital completely positive map %�π−1:π(A)!MN , we can find
isometries Vn: CN!H, n∈N, such that

lim
n!∞

‖%(a)−V ∗n π(a)Vn‖=0

for any a∈A. Let {e1, e2, ..., eN} be a basis for CN and set ξi,n=Vnei∈H. By Kadison’s
transitivity theorem, we obtain di,n∈A, i=1, 2, ..., N , n∈N, such that π(di,n)ξ=ξi,n.
Then we have

ω(d∗i,nadj,n) = (π(a)ξj,n | ξi,n)H=(V ∗n π(a)Vnei | ej)

for i, j=1, 2, ..., N and a∈A, where ( · | ·)H and ( · | ·) denote the inner products. This
implies that

lim
n!∞

‖%(a)−(ω(d∗i,nadj,n))i,j‖=0, a∈A.

Let ei,j be the standard matrix units for MN . Since σ:MN!A is a completely
positive map, the matrix (σ(ei,j))i,j∈MN (A) is positive (see, for example, [3, Proposi-
tion 1.5.12]). Hence there exist cl,j∈A, l, j=1, 2, ..., N , such that

σ(ei,j) =
N∑

l=1

c∗l,icl,j .

The proof of the following lemma relies on A. Kishimoto’s technique used in the
proof of the implication (2)⇒ (1) in [10, Theorem 4.5]. For a state ω on A, we define
the seminorm ‖ · ‖ω by ‖a‖ω=ω(a∗a)1/2 for a∈A.
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Lemma 3.2. Let ω be a state on a unital separable C∗-algebra A and let k∈N. Let
{en}n be a central sequence of positive contractions in A and let {un}n be a central
sequence of unitary operators in A. If

lim
n!∞

‖Adui
n(en)en‖ω =0

holds for every i=1, 2, ..., k−1, then there exists a central sequence {e′n}n of positive
contractions in A such that

e′n 6 en, lim
n!∞

ω(en−e′n) = 0, and lim
n!∞

‖Adui
n(e′n)e′n‖=0

for every i=1, 2, ..., k−1.

Proof. For m∈N, we let fm denote the continuous function on [0,∞) defined by
fm(t)=min{1,mt}. Define central sequences {gn}n and {e′m,n}n by

gn = e1/2
n

( k−1∑
i=1

Adui
n(en)

)
e1/2
n

and
e′m,n = e1/2

n (1−fm(gn))e1/2
n .

Note that e′m,n6en for any m,n∈N. By the assumption of en and un, for any j∈N it
follows that

ω(e1/2
n gj

ne
1/2
n ) 6 ‖gn‖j−1ω(e1/2

n gne
1/2
n )

6 (k−1)j−1
k−1∑
i=1

ω(enAdui
n(en)en)

6 (k−1)j−1
k−1∑
i=1

‖Adui
n(en)en‖ω! 0 as n!∞.

Then we have

ω(en−e′m,n) =ω(e1/2
n fm(gn)e1/2

n )! 0 as n!∞

for any m∈N. Furthermore, for i=1, 2, ..., k−1 we have

‖Adui
n(e′m,n)e′m,n‖2 6 ‖e′m,nAdui

n(e′m,n)e′m,n‖

6

∥∥∥∥e′m,n

k−1∑
i=1

Adui
n(en)e′m,n

∥∥∥∥
=

∥∥∥∥e1/2
n (1−fm(gn))e1/2

n

k−1∑
i=1

Adui
n(en)e1/2

n (1−fm(gn))e1/2
n

∥∥∥∥
6 ‖(1−fm(gn))gn‖

<
1
m
.
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Since A is separable and {e′m,n}n is a central sequence, we can find an increasing
sequence {mn}n of natural numbers such that mn!∞, ω(en−e′mn,n)!0 and {e′mn,n}n

is a central sequence. Therefore e′n=e′mn,n, n∈N, satisfy the desired conditions.

In the proof of the following lemma, we use [21, Lemma 2.1]. We remark that this
lemma in [21] heavily depends on U. Haagerup’s theorem [4, Theorem 3.1], which says
that any nuclear C∗-algebra has a virtual diagonal in the sense of B. E. Johnson [6].

For the definition of order-zero maps, the reader should see [27, §1].

Lemma 3.3. Let A be a unital separable simple infinite-dimensional nuclear C∗-
algebra with finitely many extremal tracial states. For any k∈N, there exist a completely
positive contractive order zero map ψ:Mk!A∞ and a central sequence {cn}n of positive
contractions in A such that

lim
n!∞

max
τ∈T (A)

∣∣∣∣ τ(cmn )− 1
k

∣∣∣∣ =0

for any m∈N and ψ(e)={cn}n, where e is a minimal projection in Mk.

Proof. Let {τ1, τ2, ..., τN} be the set of extremal points of T (A). Set

τ =
1
N

N∑
i=1

τi

and let π be the GNS representation associated with τ∈T (A). Clearly τi and τ extend to
tracial states on π(A)′′. In what follows, we regard A as a subalgebra of π(A)′′ and omit
π. Since A is nuclear, A′′ is isomorphic to the direct sum of N copies of the approximately
finite-dimensional II1-factor R. In particular, A′′
⊗R∼=A′′. Hence, we have a sequence of
matrix units Ei,j,n∈A′′ for Mk such that

lim
n!∞

‖[Ei,j,n, x]‖τ =0

holds for any x∈A′′. Define a unitary Un∈A′′ by

Un =
k∑

i=1

Ei,i+1,n,

where i+1 is understood modulo k. By [21, Lemma 2.1], we can find a central sequence
{en}n of positive contractions in A and a central sequence {un}n of unitary operators in
A such that

lim
n!∞

‖en−E1,1,n‖τ =0 and lim
n!∞

‖un−Un‖τ =0.
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Then we have
lim

n!∞
‖Aduj

n(en)en‖τ =0

for every j=1, 2, ..., k−1. From Lemma 3.2, we may assume that {en}n and {un}n satisfy

lim
n!∞

‖Aduj
n(en)en‖=0.

It follows from [18, Proposition 2.4] that there exists a completely positive contractive
order zero map ψ:Mk!A∞ such that ψ(e)={en}n, where e is a minimal projection in
Mk. Because τi6Nτ for any i=1, 2, ..., N , one has∣∣∣∣ τi(em

n )− 1
k

∣∣∣∣ = |τi(em
n −E1,1,n)|6 ‖em

n −E1,1,n‖1/2
τi

6N1/2‖em
n −E1,1,n‖1/2

τ ! 0

as n!∞ for any m∈N. The proof is complete.

Lemma 3.4. Let A be a unital separable simple infinite-dimensional nuclear C∗-
algebra with T (A) 6=∅. Suppose that the conclusion of Lemma 3.3 holds for A. Then for
any central sequence {fn}n of positive contractions in A and any k∈N, there exist central
sequences {fi,n}n, i=1, 2, ..., k, of positive contractions in A such that {fnfi,n}n={fi,n}n

and {fi,nfj,n}n=0 for i 6=j, in A∞, and

lim
m!∞

lim inf
n!∞

min
τ∈T (A)

τ(fm
i,n) =

1
k

lim
m!∞

lim inf
n!∞

min
τ∈T (A)

τ(fm
n ).

Proof. Set c=limm!∞ lim infn!∞minτ∈T (A) τ(fm
n ). Take a finite subset F⊂A, ε>0

and N∈N arbitrarily. It suffices to show that there exist sequences {fi,n}n, i=1, 2, ..., k,
of positive contractions in A satisfying lim supn!∞ ‖[fi,n, a]‖<ε for each a∈F ,

lim sup
n!∞

‖fnfi,n−fi,n‖<ε and lim sup
n!∞

‖fi,nfj,n‖<ε

for i 6=j, and ∣∣∣ lim inf
n!∞

min
τ∈T (A)

τ(fm
i,n)− c

k

∣∣∣<ε
for any m6N . Let l∈N be such that |(t−1)tl|<ε for t∈[0, 1] and∣∣∣ lim inf

n!∞
min

τ∈T (A)
τ(f2lm

n )−c
∣∣∣< ε

2

for any m6N . Because we assumed that the conclusion of Lemma 3.3 holds for A, we
obtain positive contractions ei∈A, i=1, 2, ..., k, such that ‖[ei, a]‖<ε for a∈F , ‖eiej‖<ε
for i 6=j, and maxτ∈T (A) |τ(em

i )−1/k|<ε/4 for any m6N .
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Set fi,n=f l
neif

l
n, i=1, 2, ..., k. Clearly it follows that lim supn!∞ ‖[fi,n, a]‖<ε for

a∈F and ‖fnfi,n−fi,n‖6‖fnf
l
n−f l

n‖<ε for n∈N. For i 6=j we have

lim sup
n!∞

‖fi,nfj,n‖6 lim sup
n!∞

‖eif
2l
n ej‖<ε.

By [15, Lemma 4.6], we have

lim sup
n!∞

max
τ∈T (A)

∣∣∣∣ τ(f lm
n em

i f
lm
n )− τ(f

2lm
n )
k

∣∣∣∣ 6 2 max
τ∈T (A)

∣∣∣∣τ(em
i )− 1

k

∣∣∣∣< ε

2

for any m6N . Since ‖fm
i,n−f lm

n em
i f

lm
n ‖!0 as n!∞, we conclude that∣∣∣lim inf

n!∞
min

τ∈T (A)
τ(fm

i,n)− c

k

∣∣∣ = lim
N!∞

∣∣∣ inf
n>N

min
τ∈T (A)

τ(fm
i,n)− c

k

∣∣∣
6 lim sup

N!∞

∣∣∣∣ inf
n>N

min
τ∈T (A)

τ(f lm
n em

i f
lm
n )− 1

k
inf

n>N
min

τ∈T (A)
τ(f2lm

n )
∣∣∣∣

+
1
k

lim
N!∞

∣∣∣ inf
n>N

min
τ∈T (A)

τ(f2lm
n )−c

∣∣∣
<
ε

2
+
ε

2k
6 ε

for any m6N .

We are now ready to prove the implication (ii)⇒ (iii) in Theorem 1.1.

Proof of (ii)⇒ (iii) in Theorem 1.1. Let ϕ be a completely positive map A!A. We
would like to show that ϕ can be excised in small central sequences. Let {en}n and {fn}n

be as in Definition 2.1. By Lemma 3.1, we may assume that there exist a pure state ω
on A and cl,i, di∈A, l, i=1, 2, ..., N , such that

ϕ(a) =
N∑

l=1

N∑
i,j=1

ω(d∗i adj)c∗l,icl,j , a∈A.

Set

ϕl(a) =
N∑

i,j=1

ω(d∗i adj)c∗l,icl,j , a∈A,

so that ϕ=ϕ1+ϕ2+...+ϕN .
Applying Lemma 3.4 to {fn}n, we have central sequences {fl,n}n, l=1, 2, ..., N , of

positive contractions in A satisfying {fl,nfn}n={fl,n}n and {fl,nfl′,n}n=0 for l 6=l′, in
A∞, and

lim
m!∞

lim inf
n!∞

min
τ∈T (A)

τ(fm
l,n)> 0.
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Applying Proposition 2.2 to ϕl, {en}n and {fl,n}n, we obtain a sequence {sl,n}n in A

such that

lim
n!∞

‖s∗l,nasl,n−ϕl(a)en‖=0, a∈A, and lim
n!∞

‖fl,nsl,n−sl,n‖=0.

We define

sn =
N∑

l=1

sl,n

for n∈N. Since lim supn!∞ ‖sl,n‖6‖ϕl(1)‖, it follows that

‖fnsn−sn‖6
N∑

l=1

‖fnsl,n−sl,n‖

6
N∑

l=1

‖fn‖ ‖sl,n−fl,nsl,n‖+‖fnfl,n−fl,n‖ ‖sl,n‖! 0 as n!∞.

If l 6=l′, then

lim
n!∞

‖s∗l,nasl′,n‖= lim
n!∞

‖s∗l,nfl,nafl′,nsl′,n‖=0

for any a∈A. Therefore, we conclude that

lim
n!∞

‖s∗nasn−ϕ(a)en‖= lim
n!∞

∥∥∥∥ N∑
l=1

s∗l,nasl,n−ϕl(a)en

∥∥∥∥=0.

4. Proof of (iii) ⇒ (iv) ⇒ (i) in Theorem 1.1

In this section we prove the implications (iii)⇒ (iv)⇒ (i) in Theorem 1.1. First, let us
recall the definition of property (SI) from [15].

Definition 4.1. ([15, Definition 4.1]) Let A be a separable C∗-algebra with T (A) 6=∅.
We say that A has property (SI) if for any central sequences {en}n and {fn}n of positive
contractions in A satisfying

lim
n!∞

max
τ∈T (A)

τ(en) = 0 and lim
m!∞

lim inf
n!∞

min
τ∈T (A)

τ(fm
n )> 0,

there exists a central sequence {sn}n in A such that

lim
n!∞

‖s∗nsn−en‖=0 and lim
n!∞

‖fnsn−sn‖=0.
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Proof of (iii)⇒ (iv) in Theorem 1.1. Let {en}n and {fn}n be as in Definition 4.1.
By the assumption in statement (iii), idA can be excised in small central sequences. Thus
we have sn∈A, n∈N, such that ‖s∗nasn−aen‖!0 for any a∈A and ‖fnsn−sn‖!0. Since
A is unital, we get ‖s∗nsn−en‖!0. Also, for any a∈A, we obtain

lim sup
n!∞

‖[sn, a]‖2 = lim sup
n!∞

‖a∗s∗nsna−a∗s∗nasn−s∗na∗sna+s∗na
∗asn‖=0,

which means that {sn}n is central.

Proof of (iv)⇒ (i) in Theorem 1.1. By Lemma 3.3, we get central sequences {ci,n}n

in A, i=1, 2, ..., k, such that {ci,nc∗j,n}n=δi,j{c21,n}n in A∞ and

lim
n!∞

max
τ∈T (A)

∣∣∣∣ τ(cm1,n)− 1
k

∣∣∣∣ =0, m∈N,

and c1,n is a positive contraction for all n∈N. Let {en}n be a central sequence of positive
contractions in A such that

{en}n =
{

1−
k∑

i=1

c∗i,nci,n

}
n

in A∞.

Then we have

lim sup
n!∞

max
τ∈T (A)

τ(en) = lim sup
n!∞

max
τ∈T (A)

τ

(
1−

k∑
i=1

c∗i,nci,n

)
= lim sup

n!∞
max

τ∈T (A)
(1−kτ(c21,n))= 0

and
lim

m!∞
lim inf
n!∞

min
τ∈T (A)

τ(cm1,n) =
1
k
> 0.

Due to property (SI), we obtain a central sequence {sn}n in A such that

{
s∗nsn+

k∑
i=1

c∗i,nci,n

}
n

=1 and {c1,nsn}n = {sn}n in A∞,

which means that {{ci,n}n}k
i=1∪{{sn}n}⊂A∞ satisfies relation Rk defined in [20, §2].

It follows from [18, Proposition 5.1] (see also [20, Proposition 2.1]) that there exists a
unital homomorphism from the prime dimension drop algebra I(k, k+1) to A∞. The
Jiang–Su algebra Z is an inductive limit of such I(k, k+1)’s. By [23, Proposition 2.2],
we can conclude that A⊗Z∼=A.

In the same way as the proof above, we can show the following. Notice that we do
not need the assumption of finitely many extremal traces for this theorem.
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Theorem 4.2. Let A be a unital separable simple infinite-dimensional nuclear C∗-
algebra with T (A) 6=∅. Suppose that A is Z-absorbing. Then any completely positive
map A!A can be excised in small central sequences. Moreover, A has property (SI).

Proof. By [17, Corollary 4.6], A has strict comparison. Since Z is a unital separable
simple infinite-dimensional nuclear C∗-algebra with a unique trace, Lemma 3.3 is valid
for Z. Hence the conclusion of Lemma 3.3 also holds for A∼=A⊗Z. Then the proof of the
implication (ii)⇒ (iii) in Theorem 1.1 (see §3) works for A, and whence any completely
positive map A!A can be excised in small central sequences. By the proof of (iii)⇒ (iv)
in Theorem 1.1, we can conclude that A has property (SI).

5. C∗-algebras with tracial rank zero

In this section we prove that any unital separable simple nuclear infinite-dimensional
C∗-algebra with tracial rank zero is approximately divisible (Theorem 5.4).

Lemma 5.1. Let A be a unital separable simple infinite-dimensional C∗-algebra with
tracial rank zero and let k∈N. There exists a sequence {ϕn}n of homomorphisms from
Mk to A such that {ϕn(x)}n is a central sequence for any x∈Mk and

lim
n!∞

max
τ∈T (A)

τ(1−ϕn(1))= 0.

Proof. Let C be a unital simple infinite-dimensional C∗-algebra with real rank zero.
We first claim that for any ε>0 there exists a homomorphism ϕ:Mk!C such that one
has τ(1−ϕ(1))<ε for all τ∈T (C). Choose m∈N such that k/2m is less than ε. By
[28, Theorem 1.1 (i)], there exists a partition of unity 1=p1+p2+...+p2m +q consisting
of projections in C such that p1 is Murray–von Neumann equivalent to pi for every
i=1, 2, ..., 2m and q is Murray–von Neumann equivalent to a subprojection of p1. There
is a unital homomorphism from M2m to (1−q)C(1−q) and τ(q)<2−m for any τ∈T (C).
It follows that there exists a homomorphism ϕ:Mk!C such that

τ(1−ϕ(1))6 2−m(k−1)+τ(q)< 2−mk <ε.

We now prove the statement. Since A has tracial rank zero, there exist a sequence of
projections en∈A, a sequence of finite-dimensional subalgebras Bn of A, with 1Bn =en,
and a sequence of unital completely positive maps πn:A!Bn such that

• ‖[a, en]‖!0 as n!∞ for any a∈A;
• ‖πn(a)−enaen‖!0 as n!∞ for any a∈A;
• τ(1−en)<1/2n for all τ∈T (A).
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Choose a family of mutually orthogonal minimal projections pn,1, pn,2, ..., pn,kn of
Bn such that enAen∩B′n∼=

⊕kn

i=1 pn,iApn,i. As A has real rank zero, so does pn,iApn,i.
It follows from the claim above that we can find a homomorphism ϕn,i:Mk!pn,iApn,i

such that τ(pn,i−ϕn,i(1)) is arbitrarily small for all τ∈T (A). By taking a direct sum of
the ϕn,i’s, we get a homomorphism ϕn:Mk!enAen∩B′n such that τ(en−ϕn(1))<1/2n
for all τ∈T (A). It is easy to see that {ϕn(x)}n is a central sequence for any x∈Mk and
τ(1−ϕn(1))<1/n for every τ∈T (A). The proof is complete.

Lemma 5.2. Let A be a unital separable simple nuclear infinite-dimensional C∗-
algebra with tracial rank zero. Then any completely positive map A!A can be excised
in small central sequences.

Proof. By [12, Theorem 3.7.2] and [16, Corollary 3.10], A has strict comparison.
Then we can prove this lemma in the same way as the proof of the implication (ii)⇒ (iii)
in Theorem 1.1 (see §3), by using the lemma above instead of Lemma 3.3.

Lemma 5.3. Let A be a unital separable simple nuclear infinite-dimensional C∗-
algebra with tracial rank zero. Then A has property (SI).

Proof. This follows from the lemma above and the proof of the implication (iii)⇒ (iv)
in Theorem 1.1 (see §4).

Theorem 5.4. Let A be a unital separable simple nuclear infinite-dimensional C∗-
algebra with tracial rank zero. Then A is approximately divisible. In particular, A is
Z-absorbing.

Proof. In order to prove that A is approximately divisible, it suffices to construct a
unital homomorphism from M2⊕M3 to A∞ ([2, Proposition 2.7]). By Lemma 5.1, there
exists a sequence {ϕn}n of homomorphisms from M2 to A such that {ϕn(x)}n is a central
sequence for any x∈M2 and

lim
n!∞

max
τ∈T (A)

τ(1−ϕn(1))= 0.

By the lemma above, A has property (SI). It follows that there exists a central sequence
{sn}n such that

lim
n!∞

‖s∗nsn−(1−ϕn(1))‖=0 and lim
n!∞

‖ϕn(e11)sn−sn‖=0,

where e11∈M2 is a rank-1 projection in M2. Hence, there exists a unital homomorphism
from M2⊕M3 to A∞. Thus, A is approximately divisible. By [23, Theorem 2.3], a unital
separable approximately divisible C∗-algebra is Z-absorbing. The proof is complete.
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