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Abstract. We define strict confluent drawing, a form of confluent drawing in
which the existence of an edge is indicated by the presence of a smooth path
through a system of arcs and junctions (without crossings), and in which such a
path, if it exists, must be unique. We prove that it is NP-complete to determine
whether a given graph has a strict confluent drawing but polynomial to determine
whether it has an outerplanar strict confluent drawing with a fixed vertex ordering
(a drawing within a disk, with the vertices placed in a given order on the boundary).

1 Introduction

Confluent drawing is a style of graph drawing in which edges are not drawn explicitly;
instead vertex adjacency is indicated by the existence of a smooth path through a system
of arcs and junctions that resemble train tracks. These types of drawings allow even
very dense graphs, such as complete graphs and complete bipartite graphs, to be drawn
in a planar way [4]. Since its introduction, there has been much subsequent work on
confluent drawing [7,6,8,9,12,16], but the complexity of confluent drawing has remained
unclear: how difficult is it to determine whether a given graph has a confluent drawing?
Confluent drawings have a certain visual similarity to a graph drawing technique called
edge bundling [3,5,10,11,13], in which “similar” edges are routed together in “bundles”,
but we note that these drawings should be interpreted differently. In particular, sets of
edges bundled together form visual junctions, however, interpreting them as confluent
junctions can create false adjacencies.

Formally, a confluent drawing may be defined as a collection of vertices, junctions
and arcs in the plane, such that all arcs are smooth and start and end at either a junction
or a vertex, such that arcs intersect only at their endpoints, and such that all arcs that
meet at a junction share the same tangent line there. A confluent drawing D represents
a graph G defined as follows: the vertices of G are the vertices of D, and there is an
edge between two vertices u and v if and only if there exists a smooth path in D from
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u to v that does not pass any other vertex. (In some variants of confluent drawing an
additional restriction is made that the smooth path may not intersect itself [12]; however,
this constraint is not relevant for our work.)

(a) (b)

Fig. 1. (a) A drawing with a
duplicate path. (b) A draw-
ing with a self-loop.

Contribution. In this paper we introduce a subclass of con-
fluent drawings, which we call strict confluent drawings.
Strict confluent drawings are confluent drawings with the
additional restrictions that between any pair of vertices there
can be at most one smooth path, and there cannot be any
paths from a vertex to itself. Figure 1 illustrates the forbid-
den configurations. To avoid irrelevant components in the
drawing, we also require all arcs of the drawing to be part
of at least one smooth path representing an edge. We believe
that these restrictions may make strict drawings easier to read, by reducing the ambiguity
caused by the existence of multiple paths between vertices. In addition, as we show, the
assumption of strictness allows us to completely characterize their complexity, the first
such characterization for any form of confluence on arbitrary undirected graphs.

We prove the following:

– It is NP-complete to determine whether a given graph has a strict confluent drawing.
– For a given graph, with a given cyclic ordering of its vertices, there is a polynomial

time algorithm to find an outerplanar strict confluent drawing, if it exists: this is a
drawing in a disk, with the vertices in the given order on the boundary of the disk

– When a graph has an outerplanar strict confluent drawing, an algorithm based on
circle packing can construct a layout of the drawing in which every arc is drawn
using at most two circular arcs.

See Fig. 2(a) for an example of an outerplanar strict confluent drawing. Previous work
on tree-confluent [12] and delta-confluent drawings [6] characterized special cases of
outerplanar strict confluent drawings as being the chordal bipartite graphs and distance-
hereditary graphs respectively, so these graphs as well as the outerplanar graphs are all
outerplanar strict confluent. The six-vertex wheel graph in Fig. 2(b) provides an example
of a graph that does not have an outerplanar strict confluent drawing. (The central vertex
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Fig. 2. (a) Outerplanar strict confluent drawing of the GD2011 contest graph. (b) A graph with no
outerplanar strict confluent drawing.
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u needs to be placed between two of the outer vertices, say, a and b. The smooth path
from u to the opposite vertex d separates a and b, so there must be a junction shared by
the u–d and a–b paths, creating a wrong adjacency with d.)

2 Preliminaries

Let G = (V,E) be a graph. We call an edge e in a drawing D direct if it consists only
of a single arc (that does not pass through junctions). We call the angle between two
consecutive arcs at a junction or vertex sharp if the two arcs do not form a smooth path;
each junction has exactly two angles that are not sharp, and every angle at a vertex is
sharp (so the number of sharp angles equals the degree of the vertex).

Lemma 1. Let G be a graph, and let E′ ⊆ E be the edges of E that are incident to at
least one vertex of degree 2. If G has a strict confluent drawing D, then it also has a
strict confluent drawing D′ in which all edges in E′ are direct.

Proof. Let v be a degree-2 vertex in G with two incident edges e and f . We consider
the representation of e and f in D and modify D so that e and f are single arcs. There
are two cases. If e and f leave v on two disjoint paths, then these paths have only merge
junctions from v’s perspective. We can simply separate these junctions from e and f as
shown in Fig. 3(a). If, on the other hand, e and f share the same path leaving v, then
their paths split at some point. We need to reroute the merge junctions prior to the split
and separate the merge junctions after the split as shown in Fig. 3(b). This is always
possible since v has no other incident edges. Because D was strict and these changes do
not affect strictness, D′ is still a strict confluent drawing and edges e and f are direct. �

v v

(a)

v v

(b)

Fig. 3. The two cases of creating single arcs for edges incident to a degree-2 vertex.

Lemma 2. Let G be a graph. If G has no K2,2 as a subgraph, whose vertices have
degrees ≥ 3 in G, then G has a strict confluent drawing if and only if G is planar.

Proof. Since every planar drawing is also a strict confluent drawing, that implication is
obvious. So let D be a strict confluent drawing for a graph G without a K2,2 subgraph,
whose vertices have degrees ≥ 3 in G. Since larger junctions, where more than three
arcs meet, can easily be transformed into an equivalent sequence of binary junctions, we
can assume that every junction in D is binary, i.e., two arcs merge into one (or, from a
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different perspective, one arc splits into two). By Lemma 1 we can further transform
D so that all edges incident to degree-2 vertices are direct. Now for any vertex u in D
none of its outgoing paths to some neighbor v can visit a merge junction before visiting
a split junction as this would imply either a non-strict drawing or a K2,2 subgraph with
vertex degrees ≥ 3. So the sequence of junctions on any u-v path consists of a number
of split junctions followed by a number of merge junctions. But any such path can be
unbundled from its junctions to the left and right and turned into a direct edge without
creating arc intersections as illustrated in Fig. 4. This shows that D can be transformed
into a standard planar drawing of G. �

v

u

v

u

Fig. 4. Any strict confluent drawing of a graph without a K2,2 subgraph can be transformed into a
standard planar drawing.

The next lemma characterizes the combinatorial complexity of strict confluent draw-
ings. Its proof is found in Appendix A and uses Euler’s formula and double counting.

Lemma 3. The combinatorial complexity of any strict confluent drawingD of a graphG,
i.e., the number of arcs, junctions, and faces in D, is linear in the number of vertices
of G.

Lemma 3 is in contrast to previous methods for confluently drawing interval graphs [4]
and for drawing confluent Hasse diagrams [8], both of which may produce (non-strict)
drawings with quadratically many features.

3 Computational Complexity

We will show by a reduction from planar 3-SAT [14] that it is NP-complete to decide
whether a graph G has a strict confluent drawing in which all edges incident to degree-2
vertices are direct. By Lemma 1, this is enough to show that it is also NP-complete to
decide if G has any strict confluent drawing.

Consider the subdivided grid graph (a grid with one extra vertex on each edge). In
this graph, all edges are adjacent to a degree 2 vertex. Since a grid graph more than one
square wide has only one fixed planar embedding (up to choice of the outer face), the
subdivided grid graph has only one confluent embedding in which all edges are direct.
We will base our construction on a number of such grids.

Let S be a planar 3-SAT formula. Globally speaking, we will create a grid graph for
each variable of S, of size depending on the number of clauses that the variable appears
in. The external edges of this grid graph are alternatingly colored green and red. We
connect the variable graphs by identifying certain vertices: for each of the three variables
that appear in a clause, we select one subdivided edge (that is, three vertices connected
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¬x3 ∨ x4 ∨ x5

x2 ∨ x3 ∨ x4

¬x1 ∨ ¬x4 ∨ ¬x5

x1 ∨ x3 ∨ ¬x5

¬x1 ∨ ¬x2 ∨ x4

x1 ∨ x2 ∨ ¬x3

x1 x2 x3 x4 x5

(a)

x1 x2 x3 x4 x5

(b)

Fig. 5. (a) A planar 3-SAT formula. (b) The corresponding global frame of the construction:
one grid graph per variable, with some vertices identified at each clause. Green boundary edges
correspond to positive literals, red edges to negated literals. For easier readability the grids in this
figure are larger than strictly necessary.

Fig. 6. K4 and its two strict confluent drawings, without moving the vertices and keeping all arcs
inside the convex hull of the vertices.

by two edges) on the outer face, and identify the endpoints of these edges into a triangle
of subdivided edges (that is, a 6-cycle). We choose a green edge for a positive occurrence
of the variable and a red edge for a negated occurrence. This will become clear below.
We call the resulting graph F the frame of the construction; all edges of F are adjacent
to a degree-2 vertex and F has only one planar embedding (up to choice of the outer
face). Figure 5 shows an example.

(a) (b) (c)

Fig. 7. (a) A variable gadget consists of a grid of K4’s. Green (light) edges of the frame highlight
normal literals, red (dark) edges negated ones. (b) One of the two possible strict confluent drawings,
corresponding to the value true. (c) The other strict confluent drawing, corresponding to false.

5



(a) (b) (c) (d)

Fig. 9. (a) The input graph of the clause. (b, c, d) Three different strict confluent drawings.

Fig. 8. Three variables attached to a
clause gadget. The top left variable
occurs in the clause as a positive lit-
eral, the others as negative literals. The
clause can be satisfied because the top
right variable is set to false.

The main idea of the construction is based on
the fact that K4, when drawn with all four vertices
on the outer face, has exactly two strict confluent
drawings: we need to create a junction that merges
the diagonal edges with one pair of opposite edges,
and we can choose the pair. Figure 6 illustrates
this. We will add a copy of K4 to every cell of the
frame graph F . Recall that every cell, except for
the triangular clause faces, is a subdivided square
(that is, an 8-cycle). We add K4 on the four grid
vertices (not the subdivision vertices). The edges
that connect external grid vertices are called lit-
eral edges. Figure 7(a) shows this for a small grid.
Since neighboring grid cells share a (subdivided)
edge, the K4’s are not edge-independent. This im-
plies that in a strict confluent drawing, we cannot
“use” such a common edge in both cells. Therefore,
we need to orient the K4-junctions alternatingly,
as illustrated in Figures 7(b) and 7(c). If the grid is sufficiently large (every cell is part of
a larger at least size-(2× 2) grid) these choices are completely propagated through the
entire grid, so there are two structurally different possible embeddings, which we use to
represent the values true and false of the corresponding variable. For every green edge
of the frame in the true state and every red edge in the false state there is one remaining
literal edge in the outer face, which can still be drawn either inside or outside their grid
cells. In the opposite states these literal edges are needed inside the grid cells to create
the K4 junctions. The availability of at least one literal edge (corresponding to a true
literal) is important for satisfying the clause gadgets, which we describe next.

Inside each triangular clause face, we add the graph depicted in Figure 9(a). This
graph has several strict confluent drawings; however, in every drawing at least one of the
three outer edges needs to be drawn inside the subdivided triangle.

Lemma 4. There is no strict confluent drawing of the clause graph in which all three
long edges are drawn outside. Moreover, there is a strict confluent drawing of the clause
graph with two of these edges outside, for every pair.
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Proof. Recall that by Lemma 1 the subdivided triangle must be embedded as a 6-cycle
of direct arcs. To prove the first part of the lemma, assume that the triangle edges are all
drawn outside this cycle. The remainder of the graph has no 4-cycles without subdivision
vertices (that is, no K2,2 with higher-degree vertices), so by Lemma 2 it can only have
a strict confluent drawing if it is planar. However, it is a subdivided K5, which is not
planar. To prove the second part of the lemma, we refer to Figures 9(b), 9(c) and 9(d). �

This describes the reduction from a planar 3-SAT instance to a graph consisting of
variable and clause gadgets. Next we show that this graph has a strict confluent drawing
if and only if the planar 3-SAT formula is satisfiable. For a given satisfying assignment
we choose the corresponding embeddings of all variable gadgets. The assignment has at
least one true literal per clause, and correspondingly in each clause gadget one of the
three literal edges can be drawn inside the clause triangle, allowing a strict confluent
drawing by Lemma 4. Conversely, in any strict confluent drawing, each clause must be
drawn with at least one literal edge inside the clause triangle by Lemma 4, so translating
the state of each variable gadget into its truth value yields a satisfying assignment.

To show that testing strict confluence is in NP, recall that by Lemma 3 the combina-
torial complexity of the drawing is linear in the number of vertices. Thus the existence
of a drawing can be verified by guessing its combinatorial structure and verifying that it
is planar and a drawing of the correct graph.

Theorem 1. Deciding whether a graph has a strict confluent drawing is NP-complete.

4 Outerplanar Strict Confluent Drawings

For a graph G with a fixed cyclic ordering of its vertices, we can test in polynomial time
whether an outerplanar strict confluent drawing with this vertex ordering exists, and, if
so, construct one. This algorithm uses the closely related notion of a canonical diagram
of G, which is unique and exists if and only if an outerplanar strict confluent drawing
exists. From the canonical diagram a confluent drawing can be constructed. We further
show that the drawing can be constructed such that every arc consists of at most two
circular arcs.

4.1 Canonical Diagrams

We define a canonical diagram to be a collection of junctions and arcs connecting the
vertices in the given order on the outer face (as in a confluent drawing), but with some
of the faces of the diagram marked, satisfying additional constraints enumerated below.
Figure 10 shows a canonical diagram and an outerplanar strict confluent drawing of the
same graph. In such a diagram, a trail is a smooth curve from one vertex to another that
follows the arcs (as in a confluent drawing) but is allowed to cross the interior of marked
faces from one of its sharp corners to another. The constraints are:

– Every arc is part of at least one trail.
– No two trails between the same two vertices can follow different sequences of arcs

and faces.
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* *

Fig. 10. Three views of the same graph as a node-link diagram (left), canonical diagram (center),
and outerplanar strict confluent drawing (right).

– Each marked face must have at least four angles, all of which are sharp.
– Each arc must have either sharp angles or vertices at both of its ends.
– For each junction j with exactly two arcs in each direction, let f and f ′ be the two

faces with sharp angles at j. Then it is not allowed for f and f ′ to both be either
marked or to be a triangle (a face with three angles, all sharp).

Let j be a junction of a canonical diagram D. Then define the funnel of j to be the
4-tuple of vertices a, b, c, d where a is the vertex reached by a path that leaves j in one
direction and continues as far clockwise as possible, b is the most counterclockwise
vertex reachable in the same direction from j, c is the most clockwise vertex reachable
in the other direction, and d is the most counterclockwise vertex reachable in the other
direction. Note that none of the paths from j to a, b, c, and d can intersect each other
without contradicting the uniqueness of trails. We call the circular intervals of vertices
[a, b] and [c, d] (in the counterclockwise direction) the funnel intervals of the respective
funnel. We say a circular interval [a, b] is separated if either a and b are not adjacent in
G, or there exists a junction in the canonical diagram with funnel intervals [a, e] and
[f, b], where e, f ∈ [a, b].

A canonical diagram represents a graph G in which the edges in G correspond to
trails in the diagram. As we show in Appendix B, a graph G has a canonical diagram
if and only if it has an outerplanar strict confluent drawing, and if a canonical diagram
exists then it is unique.

4.2 Algorithm

By using the properties of canonical diagrams (see Appendix B), we may obtain an
algorithm that constructs a canonical diagram and strict confluent drawing of a given
cyclically-ordered graph G, or reports that no drawing exists, in time and space O(n2).
This bound is optimal in the worst case, as it matches the input size of a graph that may
have quadratically many edges.

Steps 1–3 of the algorithm, detailed below, build some simple data structures that
speed up the subsequent computations. Step 4 discovers all of the funnels in the input,
from which it constructs a list of all of the junctions of the canonical diagram. Step 5
connects these junctions into a planar drawing, a subset of the canonical diagram. Step 6
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builds a graph for each face of this drawing that will be used to complete it into the
entire canonical diagram, and step 7 uses these graphs to find the remaining arcs of the
diagram and to determine which faces of the diagram are marked. Step 8 checks that
the diagram constructed by the previous steps correctly represents the input graph, and
step 9 splits the marked faces, converting the diagram into a strict confluent drawing.

1. Number the vertices clockwise around the boundary cycle from 0 to n− 1.
2. Build a table, containing for each pair i, j, the number of ordered pairs (i′, j′) with
i′ ≤ i, j′ ≤ j, and vertices i′ and j′ adjacent in G. By performing a constant number
of lookups in this table we may determine in constant time how many edges exist
between any two disjoint intervals of the boundary cycle.

3. Build a table that lists, for each ordered pair u, v of vertices, the neighbor w of u
that is closest in clockwise order to v. That is, w is adjacent to u, and the interval
from v clockwise to w contains no other neighbors of u. The table entries for u
can be found in linear time by a single counterclockwise scan. Repeat the same
construction in the opposite orientation.

4. For each separated interval [a, b], let c be the next neighbor of a that is counter-
clockwise of b, and let d be the next neighbor of b that is clockwise of a. If (i) c
is a neighbor of b, (ii) d is a neighbor of a, (iii) a is the next neighbor of c that is
counterclockwise of d, and (iv) b is the next neighbor of d that is clockwise of c,
then (if a confluent diagram exists) a, b, c, d must form the funnel of a junction, and
all funnels have this form. We check all circular intervals in increasing order of their
cardinalities. For each discovered funnel, we mark the intervals that are separated by
the corresponding junction. This way we can check in O(1) time whether a circular
interval is separated. If the number of funnels exceeds the linear bound of Lemma 3
on the number of junctions in a confluent drawing, abort the algorithm.

5. Create a junction for each of the funnels found in step 4. For each vertex v, make
a set Jv of the junctions whose funnel includes that vertex; if they are to be drawn
as part of a canonical diagram, the junctions of Jv need to be connected to v by a
confluent tree. For any two junctions in Jv, it is possible to determine in constant
time whether one is an ancestor of another in this tree, or if not whether one is
clockwise of the other, by examining the cyclic ordering of vertices in their funnels.
Construct the trees of junctions and their planar embedding in this way. The result
of this stage of the algorithm should be a planar embedding of part of the canonical
diagram consisting of all vertices and junctions, and the subset of the arcs that are
part of a path from a junction to one of its funnel vertices. Check that the embedding
is planar by computing its Euler characteristic, and abort the algorithm if it is not.

6. For each face f of the drawing created in step 5, and each pair j, j′ of junctions
belonging to f , use the data structure from step 2 to test whether there is an edge
whose trail passes through both j and j′. This results in a graph Hf in which the
vertices represent the vertices or junctions on the boundary of f and the edges
represent pairs of vertices or junctions that must be connected, either by an arc or by
shared membership in a marked face. The remaining arcs to be drawn in f will be
exactly the edges of Hf that are not crossed by other edges of Hf ; the marked faces
in f will be exactly the faces that contain pairs of crossing edges of Hf .

7. Within each face f of the drawing so far, build a table using the same construction as
in step 2 that can be used to determine the existence of a crossing edge for an edge in
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Hf in constant time. Use this data structure to identify the crossed edges, and draw
an arc in f for each uncrossed edge. For each face g of the resulting subdivision of
f , if g has four or more vertices or junctions, find two pairs that would cross and
test whether both pairs correspond to edges in Hf ; if so, mark g.

8. Construct a directed graph that has a vertex for each vertex of G, two vertices for
each junction of the diagram (one in each direction), two directed edges for each arc,
and a directed edge for each ordered pair of sharp angles that are non-consecutive in
a marked face. By performing a depth-first search in this graph, determine whether
there exist multiple smooth paths in the resulting drawing from any vertex of G to
any other point in the drawing, and abort the algorithm if any such pair of paths is
found. Determine the set of vertices of G reachable from v and verify that it is the
same set of vertices that are reachable in the original graph. Additionally, verify
that the diagram satisfies the requirements in the definition of a canonical diagram.
Abort the algorithm if any inconsistency is found in this step.

9. Convert the canonical diagram into a confluent drawing and return it.

Theorem 2. For a given n-vertex graph G, and a given circular ordering of its vertices,
it is possible to determine whether G has an outerplanar strict confluent drawing with
the given vertex ordering, and if so to construct one, in time O(n2).

4.3 Drawings with low curve complexity

Suppose that we are given a topological description of an outerplanar strict confluent
drawing D of a connected graph G, describing the tangency pattern and ordering of
the arcs at each junction. It still remains to draw D (or possibly an equivalent but
combinatorially different outerplanar strict confluent drawing) in the plane using concrete
curves for its arcs. If we ignore the tangency requirements at its junctions, the arcs and
junctions of D form a planar graph, but applying standard planar graph drawing methods
will generate arcs that may not be smooth and that are not tangent to each other at the
junctions. So how are we to draw D? In this section we use a circle packing method to
draw D with a small number of circular arcs for each arc of D. Thus, these drawings
have low curve complexity in the sense of Bekos et al. [1], but with this complexity
measured along arcs of the confluent diagram rather than edges of another type of graph
drawing.

Given such a drawing D, let D′ be a modified version of D in which every junction
is incident to exactly three arcs, formed from D by suppressing two-arc junctions
and splitting junctions with more than three arcs. Assume also (again by adding more
junctions if necessary) that each vertex in D′ has only a single arc incident to it.

Given the topological diagram D′, we form a planar graph H that has a vertex for
each vertex or junction of D′, and an edge for each arc of D′. Additionally, we create an
edge in H for each two vertices that are consecutive in the cyclic ordering of the vertices
around the disk containing the drawing.

Lemma 5. H is planar, 3-regular, and 3-vertex-connected.

Proof. Planarity and 3-regularity follow immediately from the construction of H . Every
two vertices of G are connected by three vertex-disjoint paths in H: at least one (not
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necessarily a smooth path) throughD, using the assumption thatG is connected, and two
more around the boundary of the disk. Therefore, if H were not 3-vertex-connected, only
one of its 3-connected components could contain vertices of G. The other components
would either contain components of D that are not part of any smooth path between
vertices of G (forbidden in a strict confluent drawing) or would contain more than one
smooth path between the same sets of vertices (also forbidden). �

Theorem 3. Let D be an outerplanar strict confluent drawing of a graph G, given
topologically but not geometrically. Then we can construct an outerplanar strict confluent
drawing of G in which each arc of the drawing is represented by a smooth curve that is
either a circular arc or the union of two circular arcs.

Proof. By the Koebe–Thurston–Andreev circle packing theorem, there exists a system
C of circles representing the faces of H , such that two circles are adjacent exactly
when the corresponding faces share an edge. We may assume (by performing a Möbius
transformation if necessary) that the outer circle of this circle packing corresponds to the
outer face of H . C may be found efficiently (although not in strongly polynomial time)
by a numerical iteration that quickly converges to the system of radii of the circles, from
which their centers can also be computed easily [2,15].

Fig. 11. Construction of an outerplanar strict con-
fluent drawing from a circle packing. The ver-
tices of the drawing correspond to triangular gaps
adjacent to the outer circle, and the junctions cor-
respond to the remaining triangular gaps.

Each vertex of G corresponds in C
to one of the triangular gaps between the
outer circle and two other circles, and may
be placed at the point of tangency of the
two non-outer circles (one of the vertices
of this triangle); see Fig. 11. The junctions
in D′ lie at the meeting point of three
faces of H , and correspond in C to the
remaining triangular gaps between three
circles. A confluent drawing of G may
be formed by removing the outer circle,
removing all circular arcs bounding the
triangular gaps incident to the outer cir-
cle, and in each remaining triangular gap
removing the arc that is on the other side
of the sharp angle. The resulting drawing
contracts some edges of D′ to form junc-
tions with four incident arcs, but this does
not affect the correctness of the drawing.
In the resulting drawing, arcs of the dia-
gram that have merge points or vertices at both of their endpoints are drawn as two
circular arcs (possibly both from the same circle); other arcs of the diagram are drawn as
a single circular arc. ut

5 Conclusions

We have shown that, in confluent drawing, restricting attention to the strict drawings
allows us to completely characterize their complexity, and we have also shown that
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outerplanar strict confluent drawings with a fixed vertex ordering may be constructed in
polynomial time. The most pressing problem left open by this research is to recognize
the graphs that have outerplanar strict confluent drawings, without imposing a fixed
vertex order. Can we recognize these graphs in polynomial time?
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A Combinatorial Complexity

We first assume that every vertex has degree one and every junction has degree three in
the confluent drawing. Note that it is always possible to expand a confluent drawing to
satisfy these restrictions. This expansion maintains the number of faces, and can only
increase the number of arcs and junctions. Afterwards we will also consider junctions
and vertices of higher degrees. We also use the following lemma to reduce the number
of cases we need to consider.

Lemma 6. Let D be a strict confluent drawing. D cannot contain any smooth closed
curves.

Proof. Such a curve would either be irrelevant or would allow multiple paths (looping
around the curve multiple times) for some pair of vertices. �

The following simple lemma is crucial for our bounds.

Lemma 7. Every face in a strict confluent drawing must have at least three sharp
angles.

Proof. Consider a face with less than three sharp angles. If a sharp angle is at a junction,
then the arc opposite of the sharp angle must eventually reach a vertex, since by Lemma 6
the drawing cannot have loops. Hence we can assume that there is a vertex at each sharp
angle. But then the face must have at least three vertices, for otherwise it contains a
self-loop (one vertex) or multiple paths between the same pair of vertices (two vertices).
�

In the following, n is the number of vertices, k is the number of junctions, m is the
number of arcs, F is the number of faces, and c is the number of sharp angles. We first
bound the combinatorial complexity of strict confluent drawings.

Lemma 8. Every strict confluent drawing has at most 2n− 4 faces, 5n− 12 junctions,
and 8n− 18 arcs.

Proof. By double counting we get that 2m = n+ 3k. The total number of sharp angles
is c = n + k, and Lemma 7 implies that c ≥ 3F , so that n + k ≥ 3F . By combining
the above relations with Euler’s formula n+ k −m+ F = 2, we directly obtain that
F ≤ 2n− 4, k ≤ 5n− 12, and m ≤ 8n− 18. �

We can obtain similar bounds for outerplanar strict confluent drawings. Here we use Fin

to denote the number of internal faces (Fin = F − 1).

Lemma 9. Every outerplanar strict confluent drawing has at most n− 2 internal faces,
3n− 6 junctions, and 5n− 9 arcs.

Proof. By double counting we get that 2m = n+ 3k. The total number of sharp angles
in internal faces is c = k (every vertex is on the outer face), and Lemma 7 implies that
c ≥ 3Fin, so that k ≥ 3Fin. By combining the above relations with Euler’s formula
n+k−m+Fin = 1, we directly obtain that Fin ≤ n−2, k ≤ 3n−6, andm ≤ 5n−9.
�
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Complex junctions. If we allow junctions and vertices to have higher degree, then we
can consider minimal drawings, that is, confluent drawings with as few arcs and junctions
as possible. For strict confluent drawings that are minimal we can obtain stronger upper
bounds on the combinatorial complexity. Consider a junction of degree three. We call the
arc opposite of the sharp angle the free arc. Note that, regardless of what is on the other
side of a free arc, we can always contract a free arc without changing the underlying
graph represented by the confluent drawing. Furthermore, contracting a free arc will not
influence other free arcs. That means that we can contract all free arcs simultaneously.
Now consider the unique arc incident to a vertex. If this arc is not free, then the sharp
angle of the adjacent junction must be bounded by this arc. In this case we call the
respective sharp angle pointless. This angle lies in the face that contains the vertex, but
does not act as a “corner” of that face, and hence does not count towards the at least three
sharp angles necessary for a face in a strict confluent drawing, as required by Lemma 7.
Let k′ be the total number of pointless sharp angles. Following the arguments of the proof
of Lemma 8 and instead using n+ k − k′ ≥ 3F , we obtain bounds k ≤ 5n− 12− 2k′

and m ≤ 8n− 18− 3k′ for junctions and arcs, respectively. Note that at least n− 2k′

vertices must be adjacent to a free arc. Since every arc can be shared by at most two
junctions/vertices, there must be at least (k+n− 2k′)/2 free arcs. Hence there can be at
most k−(k+n−2k′)/2 ≤ 2n−6 junctions and at mostm−(k+n−2k′)/2 ≤ 5n−12
arcs (using 2m = n+ 3k) in a minimal strict confluent drawing.

For outerplanar strict confluent drawings, note that all pointless sharp angles lie in
the outer face. Using the same reasoning as above with the bounds of Lemma 9 (using
k − k′ ≥ 3Fin), we obtain the following lemma.

Lemma 10. Every strict confluent drawing that is minimal has at most 2n− 6 junctions
and 5n − 12 arcs. Every outerplanar strict confluent drawing that is minimal has at
most n− 3 junctions and 3n− 6 arcs.

Although we cannot prove a tight bound for strict confluent drawings, the above bound
for outerplanar strict confluent drawings is in fact tight.

Lemma 11. Every outerplanar strict confluent drawing of a clique on n ≥ 3 vertices
has n− 2 internal faces, and at least n− 3 junctions and 3n− 6 arcs.

Proof. It is easy to see that every outerplanar strict confluent drawing of a graph with a
triangle must contain an internal face f with three junctions. Also, since the underlying
graph is a clique, the drawing cannot contain outside connections to an arc of f , as the
origin of this connection will not be able to reach the junction of f opposite of the arc.
Hence, every vertex must reach f through one of the three junctions. This means we can
subdivide the drawing into three parts, each a clique including one of the junctions of f
of size at least two. This leads to the following general recurrence relation

T (2) = x

T (n) = y + T (n1 + 1) + T (n2 + 1) + T (n3 + 1)

where n = n1 + n2 + n3 and n1, n2, n3 ≥ 1

This recurrence solves to T (n) = x(2n− 3) + y(n− 2). Note that every arc of the face
f must be present in the drawing and cannot be contracted. For the number of internal
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faces we use (x, y) = (0, 1) to obtain n− 2 internal faces. For the number of arcs we
use (x, y) = (0, 3) to obtain 3n− 6 arcs. Finally, for the number of junctions/vertices
we use (x, y) = (1, 0) to obtain 2n−3 junctions/vertices, which implies n−3 junctions.
For the last two bounds it is important that every subproblem on two elements involves
at least one junction, which is true if we start with n ≥ 3 vertices. �

B Properties of Canonical Diagrams

Lemma 12. In every outerplanar strict confluent drawing or canonical diagram, in
which each vertex has at least one incident edge, there must be a pair of vertices that are
consecutive on the outer face of the drawing and adjacent in the corresponding graph. If
there are at least three vertices, then there must be at least two such pairs.

Proof. Let uv be an adjacent pair of vertices that are as close as possible to each other
on the outer face, as measured by the smaller of the two sequences of vertices from u to
v and from v to u around the outer face. Then uv must be consecutive. For, if they were
not consecutive, then there would be a vertex w between them. Any trail from w to one
of its neighbors would have to cross the trail for uv, causing w to be adjacent to one of
u or v. But this would contradict the choice of uv as being as close as possible for an
adjacent pair.

Next, suppose that there are three or more vertices and let u′v′ be an adjacent pair of
vertices that are as close as possible to each other by a different distance, the size of the
sequence of vertices from u′ to v′ or v′ to u′ around the outer face, whichever of these
two sequences does not contain the consecutive pair uv. Note that u′v′ cannot equal uv,
because uv is the pair with the largest distance by this measure. Again, we claim that
u′v′ must be consecutive, for if they were separated by another vertex w′ then the trail
from w′ to one of its neighbors would have to cross the trail for u′v′, causing w′ to be
adjacent to one of u′ or v′ and leading to a contradiction. �

Lemma 13. In every canonical diagram the dual graph of the set of marked faces forms
a forest.

Proof. Suppose for a contradiction that this dual graph contains an induced cycle C. It
is not possible for marked faces to entirely surround a single junction of the diagram,
because they all have sharp angles at the junction and every junction has two non-sharp
angles. Therefore, the part of the diagram inside C must consist of one or more faces
bounded by arcs of the faces in C. These surrounded faces may form a single connected
region R, or they may form multiple connected regions separated by junctions that
appear more than once along the boundary of C; in the latter case, these regions and
the junctions that connect them form a tree, and we may choose R to be a leaf of the
tree. Thus, in either of these two cases there exists a region R consisting of a set of
neighboring faces of the diagram, in which all but at most one of the junctions on the
boundary of R span an angle of 2π (the one exceptional junction being the one that
connects R to other connected regions within C).

The part of the diagram within C can itself be viewed as a confluent drawing, within
which each of the junctions that spans an angle of 2π is connected to at least one other
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Fig. 12. The simplification operations that transform an outerplanar strict confluent drawing into
its canonical diagram: contraction of arcs without sharp angles at both ends (left) and merger of
marked faces and triangles (right).

junction (otherwise the arcs into that junction could not be part of a complete trail). By
Lemma 12, there exist two consecutive junctions on the boundary ofC that are connected
by a smooth path within R. This path, together with a smooth path connecting the same
two junctions within the marked face of C that contains them both, forms a continuous
smooth loop in the original diagram, contradicting Lemma 6. This contradiction shows
that C cannot exist. �

Lemma 14. A graph G may be represented by a canonical diagram if and only if it may
be represented by an outerplanar strict confluent drawing.

Proof. To form a canonical diagram from a confluent drawing of G, repeatedly perform
the following two simplifications (Figure 12):

– Contract any arc that does not have sharp angles or vertices at both of its ends.
– Let j be any junction with exactly two arcs in each direction, let f and f ′ be the

two faces with sharp angles at j, and suppose that f and f ′ are both either marked
or a triangle. Then merge the two faces f and f ′ by connecting them through j,
removing the junction from the drawing, and mark the resulting merged face.

These operations preserve the properties that each arc is part of a trail, that each edge of
G is represented by a combinatorially unique trail, that each non-adjacent pair in G has
no trail, and that each marked face have the correct shape. Each step reduces the number
of arcs, so this simplification process eventually terminates with a canonical diagram.

Conversely, any canonical diagram can be converted to an equivalent confluent
drawing by repeatedly reversing the second of the two simplification operations. The
reverse of this operation splits a marked face f by pinching together two nonadjacent
sides to form a new junction with four incident arcs; the two faces formed from f are
marked if they have more than three angles, or left unmarked if they are triangles. It is
not possible to perform this pinching off step if one or both of the sides of the step is
the boundary of another marked face. However, by Lemma 13 it is always possible to
choose a marked face to simplify that forms an isolated vertex or leaf of the dual graph
of the set of remaining marked faces; such a face can always safely be simplified. �

In a canonical diagram D, define a pseudotriangle for a set K of vertices to be a face
of D that has exactly three sharp junctions, each of which is part of a trail from the face
to a vertex in K, and for which all other boundary junctions (if they exist) do not lead to
vertices in K. A side of a pseudotriangle is the path of arcs connecting two of its sharp
angles.
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Lemma 15. Let G be represented by a canonical diagram D and let K be a clique
of two or more vertices in G. Then the arcs and faces traversed by trails connecting
vertices of K form a tree of arcs, marked faces, and pseudotriangles for K, connected to
each other at junctions. In this tree, each junction is incident to exactly two arcs, marked
faces, or pseudotriangles, one in each direction.

Proof. We use induction on the size of K; as a base case, the result is clearly true for
|K| = 2, for which the single trail forms a path of arcs and marked faces. If |K| > 2 and
v is an arbitrary vertex of K, then the trails through K − v form a tree of arcs, marked
faces, and pseudotriangles by the induction hypothesis. In order to reach every vertex of
K − v, and avoid making multiple connections to any vertex, the trails from v to K − v
can only connect to this tree in one of three ways:

1. It may be incident to one of the sharp angles of a marked face of D that already
belongs to the tree.

2. It may be incident to a sharp angle of a marked face of D that is not already in the
tree, but that has an arc in the tree, causing the face to be added to the tree.

3. It may be incident to a sharp angle of a pseudotriangle of D that is not already in
the tree, but whose opposite side is already in the tree, again causing the face to be
added to the tree.

In any of these cases, outside of the tree forK−v, all the trails to v must follow the same
sequence of arcs and marked faces, for to do otherwise would violate the uniqueness
of trails in canonical diagrams. The tree for K − v, together with the arcs and marked
faces traversed by the rest of the trail from this tree to v, forms another structure of the
same type, and contains trails from all vertices of K − v to v. �

Lemma 16. For every junction j of a canonical diagram with funnel intervals [a, b] and
[c, d], at least one of the intervals must be separated.

Proof. For the sake of contradiction, assume that [a, b] and [c, d] are not separated. Then
the vertices a, b, c, and d form a clique. By Lemma 15 the drawing would have two
pseudotriangles or marked faces, one on each side of j. The boundaries of these faces
adjacent to j can be the only arcs into j, for otherwise one of a, b, c, or d would not be in
the funnel (see Fig. 13). Now assume there is a junction j′ between a and b (or c and d)
on the boundary of the face opposite to j (in this case the face must be a pseudotriangle).
Consider the path that leaves j′ in the direction of a and continues as far clockwise as
possible. This path cannot pass through the pseudotriangle, because that would result in
multiple paths between b and either c or a, which is not allowed. Hence this path must
reach a, for otherwise a would not be a funnel vertex of j. Similarly, the path that leaves
j′ in the direction of b and continues as counterclockwise as possible must reach b. The
other paths of the funnel must end at a vertex in the circular interval [a, b]. This would
imply that [a, b] is separated, which contradicts our assumption. Thus, the faces on either
side of j must be marked faces or triangles. But this configuration violates the condition
that there be no junction j with four arcs in which the two faces having sharp angles at j
are marked or triangles. �
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Fig. 13. The configuration of Lemma 16.

Lemma 17. Let D and D′ be canonical diagrams for the same graph G with the same
vertex ordering. Then for every junction j of D, there must be a junction j′ in D′ with
the same funnel.

Proof. For a junction j of D with funnel intervals [a, b] and [c, d], let [a, b] be the
separated funnel interval. We prove the lemma by induction on the cardinality of [a, b].
The existence of the junction implies that (a, c) and (b, d) are edges of G. Therefore, the
trail in D′ between a and c must cross the trail between b and d in the canonical diagram.
This can happen in three ways (see Fig. 14): (1) the trails from a and b merge and then
split towards c and d, (2) the trails from b and c merge and then split towards a and d,
or (3) the trails cross inside a marked face F from which each vertex a, b, c, and d is
reached by a different junction of F .

In case (1) the trails can travel together along a sequence p. But because [a, b] and
[c, d] are the funnel intervals for j, there can be nothing entering or leaving p between the
merge and split points, and p cannot contain a nonzero number of arcs without violating
the condition on arcs without sharp angles at both ends. Therefore, the merge point of
the trails from a and b is also the split point of the trails to c and d, and forms a single
junction j′ in D′ with the same funnel.

In the latter two cases, a and b are connected by a trail in D′, therefore they are
adjacent in G. Hence there must exist a junction ι in D with funnel intervals [a, e] and
[f, b], where e, f ∈ [a, b]. If [a, b] contains less than two vertices besides a and b, then
this is not possible (base case). Otherwise, by induction, there must exist a corresponding
junction ι′ in D′ with funnel intervals [a, e] and [f, b]. This junction must lie along the
trail between a and b. By the properties of a funnel, neither e nor f can be connected to
c or d. This directly makes case (2) impossible, since such a connection is necessary in
that configuration. In case (3) this implies that ι′ must lie on the part of the trail between
a and b that is along (or through) F . This is not possible if the trail passes through F , so
ι′ must be at the boundary of F . But this makes the marked face F invalid, as it may
have only sharp angles. �

Lemma 18. Let j be a junction of canonical diagram D with funnel a, b, c, d, and let uv
be an edge of the graph G represented by D. Then the trail for edge uv passes through j
if and only if exactly one of u and v is in the closed interval [a, b] and exactly one of u
and v is in the closed interval [c, d].
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Fig. 14. The cases of Lemma 17.

Proof. If the trail passed through j but u or v was outside these intervals, it would be
reached from j by a more extreme path than one of a, b, c, or d, violating the definition
of a funnel. If both are inside the same interval, but the trail between them goes through
j, then the diagram violates the requirement that trails be unique. And if u and v are
both inside different intervals, then the path must either go through j or it must cross the
funnel twice, again causing a violation of the requirement that trails be unique. �

Lemma 19. Let D be a canonical diagram in which two junctions j and j′ are consec-
utive on the trail from u to v. Then this trail passes across a marked face from j to j′

if and only if there exist vertices p and q, in the cyclic order u, p, v, q, such that u, v,
p, and q form a clique, and such that p and q are both in the same interval as v in the
funnel for j and in the same interval as u in the funnel for j′.

Proof. Suppose first that the trail crosses a marked face. This face must have sharp
angles on both sides of trail uv; let p and q be any two vertices reachable from two
angles on opposite sides. Then there also exist trails from u and v to p and q that diverge
from the trail from u to v within the marked face. The containment of p and q within the
stated intervals follows from Lemma 18.

In the other direction, suppose that the trail passes consecutively through j and j′

and that there exist p and q satisfying the conditions of the lemma. Since u, v, p, and q
form a clique, Lemma 15 implies that this clique is represented either by a marked face
with at least four sharp angles connecting to all four of these vertices, or by two marked
faces or triangles connected by a sequence of junctions, arcs, and additional marked
faces. However, because of the assumption in the lemma that p and q belonging to certain
intervals, all of these faces must lie between j and j′; the additional assumption that
j and j′ are consecutive on the trail means that there is only one possibility, a single
marked face with separate sharp angles connecting to the four vertices u, v, p, and q.
Thus, as the lemma states, the trail crosses a marked face. �

Lemma 20. Let D and D′ be canonical diagrams for the same graph G with the same
vertex ordering. Then for every arc from junction j to j’ of D, there must be an arc in
D′ connecting the corresponding junctions.

Proof. Let uv be an edge of G whose trail in D uses the arc. The trails in D and D′

from u to v both go through the same sets of junctions by Lemma 18. On the trail in
D from u to v, the junctions are monotonic in their ordering by the size of the sets of
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reachable vertices in each direction, and the same is true in D′, so the trails go through
the same junctions in the same ordering. Therefore, in D′, the trail from u to v also
goes from j to j′ with no intervening junctions. The only way it can avoid using an arc
that satisfies the lemma is for it to cross a marked face instead of an arc, but this would
violate Lemma 19 for either D or D′. �

Theorem 4. Every two canonical diagrams for the same graph G with the same vertex
ordering are isomorphic.

Proof. This follows from Lemma 17 (showing that they have the same set of junctions)
and Lemma 20 (showing that they have the same set of arcs). �
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