
Strict Intersection Types for the Lambda Calculus

This version has all proofs included, rather than accumulated in an appendix.

(ACM Computing Surveys, 43(3) article 20, April 2011)

Steffen van Bakel

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, U.K.

svb@doc.ic.ac.uk

Contents

1 Introduction 2

2 The λ-calculus 6

2.1 Approximate normal forms . 7

3 A historical perspective 9

3.1 Curry Type Assignment . 9
3.2 The Coppo-Dezani type assignment system . 10
3.3 The Coppo-Dezani-Venneri type assignment systems 11
3.4 A system with principal pairs . 13
3.5 The Barendregt-Coppo-Dezani system . 16
3.6 Principal pairs for ‘⊢bcd’ . 19

4 Essential Intersection type assignment 19

4.1 Eta reduction . 21
4.2 Subject reduction and expansion . 23

5 The strict system 24

5.1 Principal pairs for ‘⊢s’ . 25

6 Approximation and head-normalisation results 27

6.1 Approximation result . 27
6.2 The relation between ‘⊢bcd’ and ‘⊢e’ . 29
6.3 Characterisation of (head) normalisation . 30

7 Semantics and completeness for essential type assignment 32
7.1 The Essential Filter model . 33
7.2 Soundness and completeness of essential type assignment 34
7.3 Completeness for ‘⊢s’ . 36

8 Strong normalisation result for the system without ω 37

8.1 Intersection Type Assignment without ω . 37
8.2 Strong Normalisation implies Typeability . 38
8.3 Strong normalisation . 40

ACM Computing Surveys, 43(3) article 20, April 2011 2

9 Strong normalisation for Derivation Reduction 43

9.1 Partial order on derivations . 43
9.2 Derivation reduction . 45
9.3 Strong normalisation result . 48
9.4 New proofs of Approximation and Strong Normalisation 51
9.5 Derivation reduction in other type assignment systems 51

10 Principal pairs for ‘⊢e’ 52
10.1 The relevant system . 53
10.2 Principal Pairs . 54
10.3 Substitution . 55
10.4 Expansion . 55
10.5 Covering . 57
10.6 Lifting . 58
10.7 Completeness of operations . 59

11 Concluding remarks 61

1 Introduction

In the recent years several notions of type assignment for several (extended) lambda calculi
have been studied. The oldest among these is known as the Curry type assignment system
[26] (see also [39]). Formulated via natural deduction1, using the arrow type constructor
‘→’, it expresses abstraction and application, and can be used to obtain a (basic) functional
characterisation of terms. It is well known that in Curry’s system, the problem of typeability

Given a term M, are there a context Γ and a type σ such that Γ ⊢ M : σ?

is decidable, and for this reason it gained popularity as the basis for modern type systems
for (functional) programming languages, like Haskell [41] and ML [48]. Although Curry’s
system is already powerful, in that many programs can be typed with it2, it has drawbacks.
It is, for example, not possible to assign a type to the term λx.xx, and some β-equal terms
can be assigned different types - an example will be given at the end of Section 3.1.

The Intersection Type Discipline is an extension of Curry’s system that does not have
these drawbacks. The extension made consists mainly of allowing for term-variables (and
terms) to have more than one type, joined via the intersection type constructor ‘∩, that gets
added next to the type constructor ‘→’ of Curry’s system, as well as the type constant
‘ω’, which is the universal type and is used for otherwise untypeable terms or terms that
disappear during reduction. This simple extension made the proof of many strong semantic
and characterisation results achievable for the λ-calculus, the most important of which we
will discuss here in the context of strict intersection types.

This survey starts in Section 3, where we will discuss a number of papers that treat inter-
section types, focussing on their main results. We first look at the system defined by [20]
that introduced intersection types3 (‘⊢cd’, see Definition 3.2). From this initial system sev-
eral others emerged; the best known and most frequently quoted is the BCD-system (‘⊢bcd’,
see Definition 3.10) as presented by Barendregt, Coppo, and Dezani-Ciancaglini in [15], but

1 Curry’s system (‘⊢c’, see Definition 3.1) enjoys the Curry-Howard correspondence – also attributed to de
Bruijn – with respect to implicative intuitionistic logic.

2 This problem is normally addressed via more expressive type systems, using polymorphism and recursion
[27], but these can be mapped back onto the Curry system, using a translation of programs into λ-terms, and
adding the black box fixed point combinator Y with type (A→A)→A, for all A.

3 That paper uses the word ‘sequence’ instead of ‘intersection’.

ACM Computing Surveys, 43(3) article 20, April 2011 3

there are two earlier papers [22, 21] that investigate interesting systems that can be regarded
as in-between ‘⊢cd’ and ‘⊢bcd’. In the first, Coppo, Dezani-Ciancaglini, and Venneri present
two type assignment systems, that, in approach, are more general than ‘⊢cd’: in addition to
the type constructors ‘→’ and ‘∩’, they also contain the type constant ‘ω’4. The first system
presented in [22] (‘⊢cdv’, see Definition 3.3) is a true extension of ‘⊢cd’; the second one (‘⊢r’,
see Definition 3.6) limits the use of intersection types in contexts.

The BCD-system is based on ‘⊢cdv’; it generalises intersection types by treating ‘∩’ as a
general type constructor, and introduces two derivation rules for introduction and elimi-
nation of intersections; the handling of intersection in this way is inspired by the similarity
between intersection and logical conjunction. To treat extensionality, it also introduces a type
inclusion relation ‘≤’ that is contra-variant in arrow types, and closes type assignment for
this relation.

As mentioned above, the slight generalisation of allowing for terms to have more than
one type causes a great change in complexity; in fact, now all terms having a (head-)normal
form can be characterised by their assignable types (see Section 6.3), a property that imme-
diately shows that type assignment (even in the system that does not contain ω, see Section
8.1) is undecidable. Also, by introducing this extension a system is obtained that is closed
under β-equality: if Γ ⊢ M : σ and M =β N, then Γ ⊢ N : σ (see Section 4.2). This property is
exploited in the main contribution of [15] to the theory of intersection types when it shows
that intersection types can be used for semantics: it introduces a filter λ-model and shows
completeness of type assignment.

Another way to define semantics for the λ-calculus is through approximation: as in [59, 14],
the set of terms can be extended by adding the term-constant ⊥, which leads to the notion
of approximate normal forms that are in essence finite rooted segments of Böhm-trees [14].
It is well known that interpreting a term by its Böhm tree gives a model for the Lambda
Calculus, and so the same is possible when using the set of its approximants. From the
Approximation Theorem, i.e. the observation that there exists a very precise relation between
types assignable to a term M and those assignable to its approximants, A(M), formulated
as

Γ ⊢ M : σ⇐⇒ ∃A ∈ A(M) [Γ ⊢ A : σ]

(see [21, 55, 3, 7] and Section 6.1 and 9.4), it is immediately clear that the set of intersection
types assignable to a term can be used to define a model for the Lambda Calculus (see
[15, 3, 7] and Section 7.1).

Another reason for the popularity of Curry’s system within the context of programming
languages is that it has the principal pair5 property:

If M is typeable, then there are Π,π such that Π ⊢ M : π, and,
for every Γ,σ such that Γ ⊢ M : σ, there exist a way of (constructively) generating 〈Γ,σ〉 from

〈Π,π〉.

Historically, principal types were first studied by [36] in the context of Combinator Systems,
exploiting successfully for the first time [53]’s notion of unification in the context of type
theory. This property found its way into programming, mainly through the pioneering work
of [48] (see also [27]). He introduced a functional programming language ml, of which the
underlying type system is an extension of Curry’s system, using Hindley’s approach6. The
extension consists of the introduction of polymorphic functions, i.e. functions that can be

4 The type constant ω was first introduced by [56]; a joint paper appeared as [19].
5 In the past, often the terminology ‘principal type’ was used, but ‘principal pair’ expresses this property

better; see also [60] and [44] for discussions on principal types, pairs and typings.
6 This type system is sometimes also called the Hindley-Milner system.

ACM Computing Surveys, 43(3) article 20, April 2011 4

applied to various kinds of arguments, even of incomparable type. The formal motivation
of this concept lies directly in the notion of principal types [17].

A disadvantage of ‘⊢bcd’ (and of any real intersection system, for that matter) is that type
assignment is undecidable and it therefore cannot be used directly for programming lan-
guages. For this reason, in recent years, some decidable restrictions have been studied. The
first was the Rank2 intersection type assignment system [5], as first suggested by [47], that
is very close to the notion of type assignment as used in ml. The key idea for this system
is to restrict the set of types to those of the shape (σ1∩ · · ·∩σn)→τ, where the σi are types
that do not contain intersections. This kind of type later was used outside the context of the
λ-calculus [8, 9, 28, 30, 58]; many decidable restrictions of various ranks were later defined
by [45], [46].

That intersection types can be used as a basis for programming languages was first dis-
cussed by [51]. This led to the development of the (typed, i.e. terms contain types syntac-
tically) programming language Forsythe [52], and to the work of Pierce [1991, 1993], who
studied intersection types and bounded polymorphism in the field of typed lambda calculi.
Because there only typed systems are considered, the systems are decidable. Intersection
types have found their use also in the context of abstract interpretation [42, 43, 24, 16].

Another disadvantage of ‘⊢bcd’ is that it is too general: there are several ways to deduce a
desired result, due to the presence of the derivation rules (∩I), (∩E) and (≤). These rules
not only allow of superfluous steps in derivations, but also make it possible to give essen-
tially different derivations for the same result. Moreover, in [15] the relation ‘≤’ induced an
equivalence relation ‘∼’ on types. Equivalence classes are big (for example: ω∼σ→ω, for
all types σ) and type assignment is closed for ‘∼’. This makes the problem of inhabitation
(is there a closed term that has this type).

Building on the definition of principal context and type scheme introduced in [21], [55]
showed that ‘⊢bcd’ has the principal pair property. But, although, for every M, the set {〈Γ,σ〉 |
Γ ⊢ M : σ} can be generated using operations specified in that paper, the problem of type-
checking

Given a term M and type σ, is there a context Γ such that Γ ⊢bcd M : σ?

is complicated. This is not only due to the undecidability of the problem, but even a semi-
algorithm is difficult to define, due to the equivalence relation on types. Moreover, because
of the general treatment of intersection types, the sequence of operations needed to go from
one type to another is normally not unique.

The strict type assignment system (‘⊢s’, see Definition 5.1) as defined in [3] (a first version
appeared in [2], that coined the moniker strict) is a restriction of ‘⊢bcd’; it uses a set of strict
types, a variant of intersection types that has been used in many papers since, and that are
actually the normalised tail-proper types of [22]. Although there are rather strong restrictions
imposed, the provable results for ‘⊢s’ are very close to those for ‘⊢bcd’. For example, the sets of
normalisable terms and those having a normal form can be equally elegantly characterised.
The main difference between the two systems is that ‘⊢s’ is not extensional (closed for η-
reduction), whereas ‘⊢bcd’ is.

‘⊢s’ gives rise to a strict filter λ-model that satisfies all major properties of the filter λ-
model as presented in [15], but is an essentially different λ-model, equivalent to [33]’s model
DA. With the use of the inference type semantics, in [3] soundness and completeness for
strict type assignment was proven, without having the necessity of introducing ‘≤’ (see also
Section 5).

This paper will show the usefulness and elegance of strict intersection types. We will focus
on the notion of essential intersection type assignment (‘⊢e’, see Definition 4.3) for the Lambda
Calculus that was first defined in [5, 7] (albeit in different notation), and later studied in [11];

ACM Computing Surveys, 43(3) article 20, April 2011 5

we will revisit the results of those papers, give in part new proofs, and briefly compare it
with other existing systems. ‘⊢e’ is a true restriction of ‘⊢bcd’ that satisfies all properties of
that system, and is an extension of ‘⊢cd’. It is also an extension of ‘⊢s’; the major difference
is that it, like ‘⊢bcd’, will prove to be closed for η-reduction: if Γ ⊢e M : σ and M→η N, then
Γ ⊢e N : σ.

By establishing all major properties in the context of strict types, we will show that the
treatment of intersection types as in [15] has been too general; the same results can be ob-
tained for a far less complicated system, that follows more closely the syntactical structure
of terms, and treats the type ω not as a type constant, but as the empty intersection. Great
advantages of the ‘strict’ approach are a less complicated type language, less complicated
proofs, and more precise and elegant definitions. For example, the operations that are de-
fined [7] (see Section 10), needed in a proof for the principal pair property, in particular that
of expansion, are less complicated; moreover, they are ‘orthogonal’: they do not overlap. In
addition, in order to prove a completeness result using intersection types, there is no need
to be as general as in [15]; this result can also be obtained for ‘⊢e’ (see Section 7.2).

In previous papers, the Approximation Theorem and Strong Normalisation Theorem were
proven independently [7, 3], though both using [57]’s technique of Computability Predi-
cates. This technique has been widely used to study normalisation properties or similar
results, as for example in [23, 31, 54]. In this survey, we will show that both are special
cases of a more fundamental result, using a variant of the technique developed in [12] for
Term Rewriting, that has also found its application in the field of Combinator Systems in
[13]. This more fundamental result, first published in [11], consists of defining a notion of
reduction on derivations that generalises cut-elimination, and the proof of the theorem that
this kind of reduction is strongly normalisable; a similar result for ‘⊢s’ was published in
[10]. For intersection systems, there is a significant difference between derivation reduction
and ordinary reduction (see Section 9.2); unlike normal typed or type assignment system,
in ‘⊢e’ not every term redex occurs with types in a derivation. Moreover, especially the use
of a contra-variant relation ‘≤’ on types, together with an associated derivation rule, greatly
disturbs the smoothness of proofs (see again Section 9.2).

From this strong normalisation result for derivation reduction, the Approximation Theo-
rem and Strong Normalisation Theorem follow easily. The first of these implies the Head-
Normalisation Theorem and (indirectly) the Normalisation Theorem, as was already shown
in [7] (see Section 6).

Some results already known to hold for, for example, ‘⊢bcd’, will be shown to hold for ‘⊢e’:

• If Γ ⊢e M : σ and M =β N, then Γ ⊢e N : σ.
• If Γ ⊢e M : σ and M→η N, then Γ ⊢e N : σ.
• Γ ⊢e M : σ and σ = ω, if and only if M has a head-normal form.
• Γ ⊢e M : σ and ω does not occur in Γ and σ, if and only if M has a normal form.
• Γ ⊢e M : σ and ω is not used at all, if and only if M is strongly normalisable.
• Γ ⊢e M : σ if and only it there exists A ∈ A(M) such that Γ ⊢e A : σ.
• ‘⊢e’ has the principal pair property.
• cut-elimination is strongly normalisable, and the characterisation properties are all con-

sequences of this result.

These properties and their proofs will be reviewed here.

Paper outline

In Section 2, we repeat some definitions for the λ-calculus that are relevant to this paper,
and introduce the notion of approximation and approximants. In Section 4, we will recall

ACM Computing Surveys, 43(3) article 20, April 2011 6

the definition of the essential type assignment system of [7], together with some of its main
properties. This system is placed in the context of other, previously published intersection
systems in Section 3, like the initial Coppo-Dezani system, and the well-known BCD-system,
and the strict system in Section 5.

In Section 6 we will prove the approximation result, and show that it leads to the char-
acterisation of head-normalisability and normalisability. The relation between the essential
and the BCD-system is shown in Section 7, followed by the proof of completeness of type
assignment. This will be followed in Section 8 by a new proof for the property that, in the
system without ω, the typeable and strongly normalisable terms coincide.

In Section 9.2, a notion of reduction on derivations in the essential system is defined, for
which we will show a strong normalisation result in Section 9.3. This result will lead in
Section 9.4 to new proofs for the approximation and strong-normalisation result; we will
briefly discuss the proof for the strong normalisation of derivation reduction in the strict
and in the relevant system. Finally, in Section 10, we will discuss the proof for the principal
pair property for the essential system.

The larger part of the contents of this survey has appeared in [2, 3, 5, 6, 4, 7, 10, 11].

Notations

In this survey, the symbol ϕ will be a type-variable; Greek symbols like α, β, φ, ψ, ρ, σ, and τ

will range over types, and π will be used for principal types. The type constructor ’→’ will
be assumed to associate to the right, and ‘∩’ binds stronger than ‘→’. M, N, P, Q are used
for λ-terms; x, y, z for term-variables; M[N/x] for the usual operation of substitution on λ-
terms; A for terms in λ⊥-normal form. Γ is used for contexts, Γ\x for the context obtained
from Γ by erasing the statement that has x as subject, and Π for principal contexts. Two types
(contexts, pairs of context and type) are disjoint if and only if they have no type-variables in
common. All symbols can appear indexed.

Notions of type assignment are defined as ternary relations on contexts, terms, and types,
that are denoted by ‘⊢’, possibly indexed if necessary. If in a notion of type assignment
for M there are context Γ and type σ such that Γ ⊢ M : σ, then M is typed with σ, and σ is
assigned to M. We will write n for the set {1, . . . ,n}, and will often use a vector notation ‘ · ’
for the purpose of abbreviation. For example, PMi stands for PM1 · · ·Mn for a suitable n,
and [N1/x1, . . . , Nn/xn] is abbreviated by [Ni/xi].

2 The λ-calculus

We assume the reader to be familiar with the λ-calculus [18, 14]; we just recall the definition
of λ-terms and β-contraction and some notions that are relevant to this survey.

Definition 2.1 (λ-terms, free and bound variables, and substitution)

i) The set Λ of λ-terms is defined by the grammar:

M, N ::= x | λx.M | MN

A (term)-context C[] is a term with a unique hole, obtained by removing a subterm.

ii) The set of free variables and of bound variables are defined by:

fv (x) = {x}

fv (M1M2) = fv (M1)
⋃

fv (M2)

fv (λy.M) = fv (M)\{y}

bv(x) = ∅

bv(M1M2) = bv(M1)
⋃

bv(M2)

bv(λy.M) = bv(M)
⋃
{y}

ACM Computing Surveys, 43(3) article 20, April 2011 7

iii) The replacement of the free occurrences of x in M by N, M [N/x], is defined by:

x [N/x] = N

y [N/x] = y, if y = x

(M1M2) [N/x] = M1 [N/x]M2 [N/x]

(λy.M) [N/x] = λy.(M [N/x])

This notion is normally assumed to be capture avoiding, i.e. in the last case, y does not occur
free in N.

Definition 2.2 (β-contraction) i) The reduction relation →β is defined as the contextual
(i.e. compatible [14]) closure of the rule:

(λx.M)N →β M[N/x]

ii) The reduction relation →→β is defined as the reflexive, transitive closure of →β, and =β

as the equivalence relation generated by →→β.

iii) The λI-calculus is defined by restricting binding to: if λx.M ∈ΛI, then x ∈ fv (M).

To guarantee that reduction is capture-free, α-conversion (renaming of bound variables) is
to take place silently.

Normal forms and head-normal forms are defined as follows:

Definition 2.3 i) The set N ⊂Λ of normal forms that is defined by the grammar:

N ::= xN1 · · ·Nn (n ≥ 0) | λx.N

ii) The set H of head-normal forms is defined by:

H ::= xM1 · · ·Mn (n ≥ 0) | λx.H

where the Mi (i ∈ n) are arbitrary λ-terms.

We will use the following notions:

Definition 2.4 A term M is called:

i) normalisable if there exists an N ∈ N such that M→→β N.

ii) head-normalisable if there exists an H ∈ H such that M→→β H.

iii) strongly normalisable if all reduction paths starting from M are finite.

2.1 Approximate normal forms

The notion of approximant for λ-terms was first presented by [59], and is defined using the
notion of terms in λ⊥-normal form7.

Definition 2.5 i) The set Λ⊥ of λ⊥ -terms is defined by:

M ::= x | ⊥ | λx.M | M1M2

ii) The notion of reduction →β⊥ is defined as →β, extended by:

λx.⊥ →β⊥ ⊥

⊥M →β⊥ ⊥.

iii) The set of normal forms for elements of Λ⊥, with respect to →β⊥, is the set A of λ⊥-normal
forms or approximate normal forms, ranged over by A, defined by:

A ::= ⊥ | λx.A (A = ⊥) | xA1 · · ·An (n≥0)

7 Like in [14], we use ⊥ (called bottom) instead of Ω; also, the symbol
∼

is used for a relation on λ⊥-terms,

inspired by a similar relation defined on Böhm-trees in [14].

ACM Computing Surveys, 43(3) article 20, April 2011 8

Definition 2.6 (Approximants) i) The partial order ⊑ ⊆ (Λ⊥)2 is defined as the smallest
pre-order (i.e. reflexive and transitive relation) such that:

⊥ ⊑ M

M ⊑ M′ ⇒ λx.M ⊑ λx.M′

M1 ⊑ M′
1 & M2 ⊑ M′

2 ⇒ M1M2 ⊑ M′
1M′

2

ii) For A ∈ A, M ∈Λ, if A ⊑ M, then A is called a direct approximant of M.

iii) The relation ∼⊆ A × Λ⊥ is defined by:

A ∼ M⇐⇒ ∃M′ [M′ =β M & A⊑ M′]

If A ∼ M, then A is called an approximant of M.

iv) A(M) = {A ∈ A | A ∼ M}.

The following properties of approximants hold and are needed below:

Lemma 2.7 i) If A ∈ A(xM1· · ·Mn), A = ⊥ and A′ ∈ A(N), then AA′ ∈ A(xM1· · ·MnN).

ii) If A ∈ A(Mz) and z ∈ fv (M), then either:

– A≡ A′z, z ∈ fv (A′), and A′ ∈ A(M), or

– λz.A ∈ A(M).

iii) If M =β N, then A(M) =A(N).

Proof: Easy.

The following definition introduces an operation of join on λ⊥-terms.

Definition 2.8 i) On Λ⊥, the partial mapping join, ⊔: Λ⊥ × Λ⊥→Λ⊥, is defined by:

⊥ ⊔ M ≡ M ⊔ ⊥ ≡ M

x ⊔ x ≡ x

(λx.M) ⊔ (λx.N) ≡ λx.(M ⊔ N)

(M1M2) ⊔ (N1N2) ≡ (M1 ⊔ N1) (M2 ⊔ N2)

ii) If M ⊔ N is defined, then M and N are called compatible.

The last alternative in the definition of ‘⊔’ defines the join on applications in a more general
way than that of [35], that would state that

(M1M2) ⊔ (N1N2) ⊑ (M1 ⊔ N1)(M2 ⊔ N2),

since it is not always sure if a join of two arbitrary terms exists. However, that is only an
issue if the function should be total, which is not the case here; our more general definition
will only be used on terms that are compatible, so the conflict is only apparent.

Remark 2.9 Because of 2.7(iii), A(M) can be used to define a semantics for the Lambda
Calculus. In fact, it is possible to show that

⊔
{A | A ∈ A(M)} ∼ BT(M)

where BT(M) stands for the Böhm tree of M, a tree that represents the (possible infinite)
normal form of M (see [14]).

The following lemma shows that ‘⊔’ acts as least upper bound of compatible terms.

Lemma 2.10 If M1 ⊑ M, and M2 ⊑ M, then M1 ⊔ M2 is defined, and:

M1 ⊑ M1 ⊔ M2, M2 ⊑ M1 ⊔ M2, and M1 ⊔ M2 ⊑ M.

Proof: By induction on the definition of ‘⊑’.

ACM Computing Surveys, 43(3) article 20, April 2011 9

i) If M1 ≡⊥, then M1 ⊔M2 ≡ M2, so M1 ⊑M1 ⊔ M2, M2 ⊑M1 ⊔M2, and M1 ⊔ M2 ⊑ M2 ⊑
M. (The case M2 ≡ ⊥ goes similarly.)

ii) If M1 ≡ λx.N1, then M ≡ λx.N, N1 ⊑ N, and either M2 =⊥ or M2 ≡ λx.N2 with N2 ⊑ N.
The first case has been dealt with in part (i), and for the other, by induction, N1 ⊑
N1 ⊔ N2, N2 ⊑ N1 ⊔ N2, and N1 ⊔ N2 ⊑ N. Then also λx.N1 ⊑ λx.N1 ⊔ N2, λx.N2 ⊑
λx.N1 ⊔ N2, and λx.N1 ⊔ N2 ⊑ λx.N. Notice that, by definition, we have λx.N1 ⊔ N2 ≡
(λx.N1) ⊔ (λx.N2).

iii) If M1 ≡ P1Q1, then M ≡ PQ, P1 ⊑ P, Q1 ⊑ Q, and either M2 = ⊥ or M2 ≡ P2Q2. Again,
the first case has been dealt with in part (i), and for the other: then P2 ⊑ P, Q2 ⊑ Q. By
induction, we know P1 ⊑ P1 ⊔ P2, P2 ⊑ P1 ⊔ P2, and P1 ⊔ P2 ⊑ P, as well as Q1 ⊑ Q1 ⊔
Q2, Q2 ⊑ Q1 ⊔ Q2, and Q1 ⊔ Q2 ⊑ Q. Then we have also P1Q1 ⊑ (P1 ⊔ P2)(Q1 ⊔ Q2),
P2Q2 ⊑ (P1 ⊔ P2)(Q1 ⊔ Q2), and (P1 ⊔ P2)(Q1 ⊔ Q2) ⊑ PQ. Notice that, by definition,
(P1 ⊔ P2)(Q1 ⊔ Q2) ≡ (P1Q1) ⊔ (P2Q2).

Notice that M1 ⊑ (M1 ⊔ M2) ⊑ (M1 ⊔ M2 ⊔ M3) ⊑ · · ·, so it is natural to consider ⊥ to be
the empty join, i.e. if M ≡ M1 ⊔ · · · ⊔ Mn, and n = 0, then M ≡ ⊥.

Lemma 2.11 i) If M ⊑ Mi, for all i ∈ n, then M ⊑ M1 ⊔ · · · ⊔ Mn.

ii) If M ⊑ N, and N ⊑ P, then M ⊑ P.

iii) If M ⊑ M1M2, and M = ⊥, then there are M3, M4 such that M = M3M4, and both M3 ⊑ M1,
M4 ⊑ M2.

Proof: By induction on the definition of ‘⊑’.

3 A historical perspective

In this section, we discuss briefly the various intersection systems as they appeared, in order
to be able to compare them with ‘⊢e’ that we will present in Section 4.

3.1 Curry Type Assignment

Type assignment for the Lambda Calculus was first studied by [25] (see also [26, 39]). Curry’s
original system expresses abstraction and application, and types are built over the single type
constant o using the type constructor ‘→’ (arrow). The system we will present in this section
is a generalisation of that system in that types are built over type variables and terms have
infinitely many types.

Definition 3.1 i) Let V be a countable (infinite) set of type-variables, ranged over by ϕ. The
set of Curry-types is inductively defined by the following grammar:

σ,τ ::= ϕ | (σ→τ)

ii) Curry-type assignment is defined by the following natural deduction system.

(→I) :

[x:σ]
...

M : τ
(a)

λx.M : σ→τ

(→E) :
M : σ→τ N : σ

MN : τ

(a) If x:σ is the only statement about x on which M : τ depends.

ACM Computing Surveys, 43(3) article 20, April 2011 10

iii) A context is a partial mapping from term-variables to types, normally written as a set
of statements of the shape x:σ, where the x are distinct; we write Γ, x:σ for the context
Γ∪{x:σ}, when x does not occur in Γ.

iv) We write Γ ⊢c M : τ if there exists a derivation built using the above rules with conclusion
M : τ and the context Γ contains at least all the not cancelled statements in that derivation
(notice that, in rule (→I), the statement x:σ is cancelled).

As used above (and as also used in [22, 20, 15, 3, 7]), the notation for the type assignment
rules is that of natural deduction. A disadvantage of that notation is that the precise structure
of contexts, i.e. the collection of statements for the free variables on which the typing of a
term depends, is left unspecified; in intersection systems that use ω, not every term variable
necessarily carries a type, and the content of the context is not as obvious. So, rather, in this
survey we opt for a sequent-style notation (as also used in [10, 11]), always explicitly stating
the context:

(→I) :
Γ, x:σ ⊢ M : τ

Γ ⊢ λx.M : σ→τ
(→E) :

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Notice that, in rule (→I), the cancellation of x:σ is expressed by removing it from the context,
since the conclusion no longer depends on it; we then also need a rule that deals with
variables:

Γ, x:σ ⊢ x : σ

stating the extraction of a statement for a variable from the context.
The main results proven for this system are:

• The principal pair property: for every typeable M there is a pair 〈Π,π〉, such that:
Π ⊢c M : π, and for every pair 〈Γ,σ〉 such that Γ ⊢c M : σ, there exists a type-substitution
S (replacing type variables by types) such that S (〈Π,π〉) = 〈Γ,σ〉.

• Decidability of type assignment: there exists an effective algorithm that, give a term M,
will return a pair 〈Γ,σ〉, i.e. such that Γ ⊢c M : σ if M is typeable - in fact, it then returns
the principal pair.

• Strong normalisability of all typeable terms; this is also a result of Theorem 8.15.

Curry’s system has drawbacks: it is for example not possible to assign a type to the λ-term
λx.xx, and although the λ-terms λcd.d and (λxyz.xz(yz))(λab.a) are β-equal, the principal
type schemes for these terms are different, respectively ϕ0→ϕ1→ϕ1 and (ϕ1→ϕ0)→ϕ1→ϕ1.
The Intersection Type Discipline as presented below is an extension of Curry’s system for the
pure Lambda Calculus that does not have these drawbacks. It has developed over a period
of several years; below, in order to develop a concise overview of the field, various systems
will be shown.

3.2 The Coppo-Dezani type assignment system

Intersection type assignment is first introduced by [20]. The system presented in that paper
is a true extension of Curry’s system, by allowing for more than one type for term-variables
in the (→I)-derivation rule and therefore to also allow for more than one type for the right-
hand term in the (→E)-derivation rule.

Definition 3.2 (c.f. [20]) i) The set of types is inductively defined by:

ACM Computing Surveys, 43(3) article 20, April 2011 11

φ,ψ ::= ϕ | σ→ψ

σ,τ ::= φ1∩ · · ·∩φn (n ≥ 1)

ii) Type assignment is defined by the following natural deduction system:

(∩E) : (i ∈ n)
Γ, x:φ1∩ · · ·∩φn ⊢ x : φi

(∩I) :
Γ ⊢ M : φ1 · · · Γ ⊢ M : φn

(n≥1)
Γ ⊢ M : φ1∩ · · ·∩φn

(→I) :
Γ, x:σ ⊢ M : φ

Γ ⊢ λx.M : σ→φ
(→E) :

Γ ⊢ M : σ→φ Γ ⊢ N : σ

Γ ⊢ MN : φ

We write Γ ⊢cd M : σ for statements derivable in this system.

The main properties of that system proven in [20] are:

• subject reduction: If Γ ⊢cd M : σ, and M→β N, then Γ ⊢cd N : σ.

• normalisability of typeable terms: If Γ ⊢cd M : σ, then M has a normal form.

• typeability of all terms in normal form.

• closure for β-equality in the λI-calculus: if Γ ⊢cd M : σ, and M =βI N, then Γ ⊢cd N : σ.

• in the λI-calculus: Γ ⊢cd M : σ if and only if M has a normal form.

This system is not closed for β-expansion for the full λ-calculus: when the term-variable x
does not occur in M, the term N is a not a subterm of M[N/x], and if there is no ρ such that
Γ ⊢cd N : ρ, the redex (λx.M)N cannot be typed.

3.3 The Coppo-Dezani-Venneri type assignment systems

In [22] two type assignment systems are presented by Coppo, Dezani-Ciancaglini, and Ven-
neri, that, in approach, are more general than ‘⊢cd’: in addition to the type constructors ‘→’
and ‘∩’, they also contain the type constant ‘ω’, as first introduced by [56]. The first system
presented in [22] is a true extension of the one presented in Definition 3.2. The second one
is a relevant restriction.

Definition 3.3 (c.f. [22]) i) The set of types is inductively defined by:

φ,ψ ::= ϕ | ω | σ→ψ

σ,τ ::= φ1∩ · · ·∩φn (n ≥ 1)

ii) Every non-intersection type is of the shape σ1→·· ·→σn→φ, where σ1, . . . ,σn are inter-
sections, and φ is a type-variable or ω. The type is called tail-proper if φ = ω.

iii) Type assignment is defined by:

(∩E) : (i ∈ n)
Γ, x:φ1∩ · · ·∩φn ⊢ x : φi

(ω) :
Γ ⊢ M : ω

(→I) :
Γ, x:σ ⊢ M : ψ

Γ ⊢ λx.M : σ→ψ

(∩I) :
Γ ⊢ M : φ1 · · · Γ ⊢ M : φn

(n≥1)
Γ ⊢ M : φ1∩ · · ·∩φn

(→E) :
Γ ⊢ M : σ→φ Γ ⊢ N : σ

Γ ⊢ MN : φ

We write Γ ⊢cdv M : σ for statements derivable in this system.

As remarked above, the original presentation of this system used natural deduction rules,
where the context used is implicit; as a result, rule (∩E) was not part of that definition, but
is added here since we have switched to a sequent style presentation. Also, the original
presentation for rule (→I)

ACM Computing Surveys, 43(3) article 20, April 2011 12

(→I) :

[x:σ1] · · · [x:σn]
...

M : τ
(ρ is a sequence at least containing σ1, . . . ,σn)

λx.M : ρ→τ

allowed for a number of statements for a bound variable to be combined (including some
that are not used in the derivation), so has rule (∩E) implicitly present.

The changes with respect to ‘⊢cd’ are small, but important. By introducing the type con-
stant ω next to the intersection types, a system is obtained that is closed under β-equality for
the full λ-calculus; ω is used to type those sub-terms that disappear during reduction, and
that cannot be typed from the current context. This addition also makes all terms having a
head-normal form typeable.

Recognising an undesired complexity in the language of types, that paper also introduces
a notion of normalisation for types.

Definition 3.4 (Normalised types) The set of normalised types is inductively defined in [22]
by:

i) All type-variables are normalised types.

ii) If σ is a normalised intersection type and ψ is a normalised type, then σ→ψ is a nor-
malised type.

iii) ω is a normalised intersection type.

iv) If φ1, . . . ,φn are normalised types (n ≥ 1), then φ1∩ · · ·∩φn is a normalised intersection
type.

Observe that the only normalised non-tail-proper type is ω, and that, if σ→ψ is a normalised
type, then so is ψ, so, in particular, ψ = ω.

The main properties of this system proven in [22] are:

• If Γ ⊢cdv M : σ and M =β N, then Γ ⊢cdv N : σ.

• Γ ⊢cdv M : σ and σ is tail-proper, if and only if M has a head-normal form.

• Γ ⊢cdv M : σ and ω does not occur in Γ and σ, if and only if M has a normal form.

Normalised types play an important role in these characterisation properties.

The second type assignment system presented in [22] is a restricted version of the first,
by restricting to normalised types and limiting the possible contexts that can be used in a
derivation; therefore, it is not a proper extension of Curry’s system: if Γ ⊢ M : φ and x does
not occur in Γ, then for λx.M only the type ω→φ can be derived. We present it here as a
relevant system, i.e. a system that has only those statements in the context that are relevant
to reach the conclusion; to have a consistent, inductive definition, we combine contexts in
the rules, using intersection.

Definition 3.5 If Γ1, . . . , Γn are contexts, then ∩{Γ1, . . . , Γn} is the context defined as follows:
x:σ1∩· · ·∩σm ∈ ∩{Γ1, . . . , Γn} if and only if {x:φ1, . . . , x:φm} is the set of all statements about x
that occur in the set Γ1∪ . . . ∪Γn, and x occurs in this set.

We write ∩nΓi for ∩{Γ1, . . . , Γn}.

Definition 3.6 (c.f. [22]) Restricted type assignment is defined by:

(Ax) : x:φ ⊢ x : φ (ω) :
⊢ M : ω

(→I) :
Γ, x:σ ⊢ M : ψ

Γ ⊢ λx.M : σ→ψ

Γ ⊢ M : ψ
(a)

Γ ⊢ λx.M : ω→ψ

ACM Computing Surveys, 43(3) article 20, April 2011 13

(→E) :
Γ1 ⊢ M : σ→φ Γ2 ⊢ N : σ

∩{Γ1, Γ2} ⊢ MN : φ
(∩I) :

Γ1 ⊢ M : φ1 · · · Γn ⊢ M : φn

∩nΓi ⊢ M : φ1∩ · · ·∩φn

We write Γ ⊢r M : σ for statements derivable in this system.

(a) : If x does not occur in Γ.

Again, the original natural deduction formulation of rule (→I) had the side-condition:

“ If σ = ∩nσi, and x:σ1, . . . , x:σn are all and nothing but the statements about x on which
M : ψ depends; if n = 0, so in the derivation for M : ψ there is no premise whose subject is
x, then ∩nσi = ω ”

Since the context is relevant, this is implied in the above definition.
Notice that, in rule (→I), only those types actually used in the derivation can be abstracted.

This implies that, for example, for the λ-term λab.a the type φ→ψ→φ cannot be derived, only
types like φ→ω→φ can.

Properties of ‘⊢r’ proven in [22] are:

• If Γ ⊢r M : σ, then σ is a normalised type.

• If Γ ⊢r M : σ and M→η N, then Γ ⊢r N : σ.

It is obvious that Γ ⊢r M : φ implies Γ ⊢cdv M : φ, and that the converse does not hold, since
⊢cdv λab.a : φ→ψ→φ. Moreover, type assignment in the unrestricted system is not invariant
under η-reduction. For example, in ‘⊢cdv’ we can derive

x : σ→φ,y : σ∩ρ ⊢ x : σ→φ
(∩E)

x : σ→φ,y : σ∩ρ ⊢ y : σ
(→E)

x : σ→φ,y : σ∩ρ ⊢ xy : φ
(→I)

x : σ→φ ⊢ λy.xy : σ∩ρ→φ
(→I)

∅ ⊢ λxy.xy : (σ→φ)→σ∩ρ→φ

but we cannot derive ∅ ⊢r λx.x : (σ→φ)→σ∩ρ→φ; this is due to the fact that, in ‘⊢r’, there is
no way to obtain x:σ∩ρ→φ from x:σ→φ. In ‘⊢r’, in the (→I)-rule, only types actually used
for a term-variable can be used; the above use of rule (∩E) is there not allowed, forcing the
above derivation to become:

x : σ→φ ⊢ x : σ→φ y : σ ⊢ y : σ
(→E)

x : σ→φ,y : σ ⊢ xy : φ
(→I)

x : σ→φ ⊢ λy.xy : σ→φ
(→I)

∅ ⊢ λxy.xy : (σ→φ)→σ→φ

The closure under η-reduction, therefore, holds for ‘⊢r’.

3.4 A system with principal pairs

[21] also presents a system for which the principal pair property

If M is typeable, then there are Π,π such that Π ⊢ M : π, and, for every Γ,σ such that Γ ⊢ M : σ,
there exist a way of generating 〈Γ,σ〉 from 〈Π,π〉

is shown. The technique used for the proof of this property is very different for the one used
for Curry’s system, where unification [53] is the main tool to type an application [36], and
type-substitution is the only operation used for the generation of pairs.

ACM Computing Surveys, 43(3) article 20, April 2011 14

The principal type scheme for a term is in [21] (as well as in [55], and [6, 7], see Sections
3.6, 5.1, and 10) studied through the approximants of a term: terms with a finite number of
approximants have a single principal pair, while terms with a infinite number of approxi-
mants have infinitely many ‘principal pairs’. This can be understood from the observation
that, using intersection types, also terms that do not have a normal form, but do have a
head-normal form, or, in other words, terms that have an ‘infinite’ normal form, have types;
in fact, they have infinitely many, inherently different types.

Example 3.7 Take, for example, the term Y = λ f .(λx. f (xx))(λx. f (xx)). The set of approxi-
mants of the term is infinite (as is its Böhm tree):

A(Y) = {⊥}∪{λ f . f n⊥ | n ≥ 1}

(where f 0⊥ = ⊥, and f n⊥ = f (f n−1⊥)). It is easy to check that the elements of this set can
be typed as follows:

⊢ ⊥ : ω

⊢ λ f . f 1⊥ : (ω→φ)→φ

⊢ λ f . f 2⊥ : (ω→φ2)∩(φ2→φ1)→φ1
...

⊢ λ f . f n⊥ : (ω→φn)∩(φn→φn−1)∩ · · ·∩(φ2→φ1)→φ1
...

For example (where Γ = f :(ω→φ2)∩(φ2→φ1)):

Γ ⊢ f : φ2→φ1

Γ ⊢ f : ω→φ2

(ω)
Γ ⊢ ⊥ : ω

(→E)
Γ ⊢ f⊥ : φ2

(→E)
Γ ⊢ f (f⊥) : φ1

(→I)
⊢ λ f . f (f⊥) : (ω→φ2)∩(φ2→φ1)→φ1

Notice that, for each n≤m, we can generate (ω→φn)∩(φn→φn−1)∩ · · ·∩(φ2→φ1)→φ1 from
(ω→φm)∩(φm→φm−1)∩ · · ·∩(φ2→φ1)→φ1 using substitution, but cannot do so for the reverse
using the operations provided below. Therefore, a functional characterisation of these terms,
through a principal pair, cannot be represented in a finite way.

The type assignment system studied in [21] is the restricted one from [22], but with the set
of types of the unrestricted system. The reason to not use the normalised types as well is the
fact that ω is treated as a type constant; since ω can be substituted for ϕ in σ→ϕ, also σ→ω

is considered a type.
That paper’s main contribution is the proof of the principal pair property; the generation

of ‘instances’ of the principal pair is done via the operation of substitution, which is stan-
dard and replaces type variables by types, and the newly defined operation of expansion
(cf. Section 10.4).

The definition of expansion is rather complicated and deals with the replacement of a
(sub)type by a number of copies of that type. Expansion on types corresponds to the du-
plication of (sub)derivations: a subderivation in the right-hand side of an (→E)-step is ex-
panded by copying. In this process, the types that occur in the subderivation are also copied,
and the types in the conclusion and in the context of the subderivation will be instantiated
into a number of copies.

Remark 3.8 For an illustration, suppose the following is a correct derivation:

ACM Computing Surveys, 43(3) article 20, April 2011 15

Γ, x:σ→φ ⊢ x : σ→φ Γ ⊢ N : σ
(→E)

Γ, x:σ→φ ⊢ xN : φ

then, in general, the expansion that replaces σ by ∩nσi creates the following derivation:

Γ′, x:∩nσi→φ ⊢ x :∩nσi→φ

Γ′ ⊢ N : σ1 · · · Γ′ ⊢ N : σn
(∩I)

Γ′ ⊢ N :∩nσi
(→E)

Γ′, x:∩nσi→φ ⊢ xN : φ

An expansion indicates not only the type to be expanded, but also the number of copies
that has to be generated, and possibly affects more types than just the one to be expanded.
To clarify this, consider the following: suppose that µ is a subtype of σ that is to be expanded
into n copies µ1, . . . , µn. If τ→µ is also a subtype of σ, then there are several ways to create
the expansion of τ→µ: just replacing µ by an intersection of copies of µ would generate
τ→µ1∩· · ·∩µn, which is not a correct type in ‘⊢cdv’. It could be replaced by ∩n(τ→µi), but
such an operation of expansion would not be complete, a property that is needed in the
proof that the operations are sufficient (see Section 10.7). The subtype τ→µ will therefore be
expanded into ∩n(τi→µi), where the τi are copies of τ. Then τ is affected by the expansion of
µ; all other occurrences elsewhere of τ should be expanded into ∩nτi, with possibly the same
effect on other types. Apparently, the expansion of µ can have a more than local effect on σ.
Therefore, the expansion of a type is defined in a such a way that, before the replacement of
types by intersections, all subtypes are collected that are affected by the expansion of µ. Then
types are traversed top down, and types are replaced if they end with one of the subtypes
found.

The construction of the principal pair property follows the outline of Section 10; the tech-
nique used to show this property is the same as later used in [55] and [6]: it defines principal
pairs of context and type for terms in λ⊥-normal form, specifying the operations of expan-
sion and substitution, proved sufficient to generate all possible pairs for those terms from
their principal pair, and generalising this result to arbitrary λ-terms.

The set of ground pairs for a term A ∈ A, as defined in [21], is proven to be complete for
A, in the sense that all other pairs for A (i.e. pairs 〈Γ,σ〉 such that Γ ⊢ A : σ) can be generated
from a ground pair for A. Ground pairs are those that express the essential structure of a
derivation, and types in it are as general as possible with respect to substitutions.

The proof of the principal type property is obtained by first proving the following:

• If Γ ⊢ A : σ with A ∈ A, then there is a substitution S and a ground pair 〈Γ′,σ′〉 for A
such that S (〈Γ′,σ′〉) = 〈Γ,σ〉.

• If 〈Γ,σ〉 is a ground pair for A ∈ A and 〈Γ′,σ′〉 can be obtained from 〈Γ,σ〉 by an
expansion, then 〈Γ′,σ′〉 is a ground pair for A.

• For all A ∈ A, every ground pair for A is complete for A.

In the construction of principal pairs for λ-terms, first, for every A ∈ A, a particular pair
pp (A) is chosen of context Π and type π (exactly the same as in Definition 10.6), called the
principal context scheme and principal type scheme of A, respectively. This pair is called the
principal pair of A.

The proof is completed by proving:

• pp (A) is a ground pair for A.

ACM Computing Surveys, 43(3) article 20, April 2011 16

• The Approximation Theorem: Γ ⊢cdv M : σ if and only if there exists A ∈ A(M) such that
Γ ⊢cdv A : σ (cf. Theorem 6.9).

• {pp (A) | A ∈ A(M)} is complete for M.

Example 3.9 Notice that, by the Approximation Theorem, we can derive the types given in
Example 3.7 for the approximants of Y for Y as well; for example:

f :ω→φ, x:ω ⊢ f : ω→φ
(ω)

f :ω→φ, x:ω ⊢ xx : ω
(→E)

f :ω→φ, x:ω ⊢ f (xx) : φ
(→I)

f :ω→φ ⊢ λx. f (xx) : ω→φ
(ω)

f :ω→φ ⊢ λx. f (xx) : ω
(→E)

f :ω→φ ⊢ (λx. f (xx))(λx. f (xx)) : φ
(→I)

⊢ λ f .(λx. f (xx))(λx. f (xx)) : (ω→φ)→φ

Take Γ = f :(ω→φ2)∩(φ2→φ1):

Γ, x:ω→φ2 ⊢ f : φ2→φ1

Γ, x:ω→φ2 ⊢ x : ω→φ2

(ω)
Γ, x:ω→φ2 ⊢ x : ω

(→E)
Γ, x:ω→φ2 ⊢ xx : φ2

..

.

(→E)
Γ, x:ω→φ2 ⊢ f (xx) : φ1

(→I)
Γ ⊢ λx. f (xx) : (ω→φ2)→φ1

Γ, x:ω ⊢ f : ω→φ2

(ω)
Γ, x:ω ⊢ xx : ω

(→E)
Γ, x:ω ⊢ f (xx) : φ2

(→I)
Γ ⊢ λx. f (xx) : ω→φ2

(→E)
Γ ⊢ (λx. f (xx))(λx. f (xx)) : φ1

(→I)
⊢ λ f .(λx. f (xx))(λx. f (xx)) : (ω→φ2)∩(φ2→φ1)→φ1

etc.

3.5 The Barendregt-Coppo-Dezani system

The type assignment system presented by Barendregt, Coppo and Dezani-Ciancaglini in [15]
(the BCD-system) is based on ‘⊢cdv’. It strengthened that system by treating ‘∩’ as a normal
type constructors like ‘→’, allowing intersections to occur at the right of arrow types. It also
introduces a partial order relation ‘≤’ on types, adds the type assignment rule (≤) to close
type assignment for this relation, and introduces a more general form of the rules concerning
intersection. The set of types derivable for a λ-term in the extended system is a filter, i.e. a
set closed under intersection and right-closed for ‘≤’. The interpretation of a λ-term M by
the set of types derivable for it – ⌈⌈M⌋⌋ξ – gives a filter λ-model Fbcd

8.
The main contribution of [15] was to show completeness of type assignment, for which the

type inclusion relation ‘≤’ and the type assignment rule (≤) were added. This is achieved
by showing the statement: Γ ⊢bcd M : σ ⇐⇒ ⌈⌈M⌋⌋ξΓ

∈ υ(σ) (the interpretation of the term
M is an element of the interpretation of the type σ, if and only if M is typeable with σ),
where υ : Tbcd → Fbcd is a simple type interpretation as defined in [38]. In order to prove
the ‘⇐’-part of this statement (completeness), the relation ‘≤’ is needed.

Definition 3.10 i) Tbcd, the set of types in [15] is defined by:

σ,τ ::= ϕ | ω | σ→τ | σ∩τ

ii) On Tbcd, the type inclusion relation ‘≤’ is defined as the smallest pre-order such that:

8 Called F in [15], but subscripted here to be able to distinguish it from other filter models.

ACM Computing Surveys, 43(3) article 20, April 2011 17

σ ≤ ω

σ∩τ ≤ σ,τ

ω ≤ ω→ω

(σ→τ)∩(σ→ρ) ≤ σ→τ∩ρ

σ≤τ & σ≤ρ ⇒ σ≤τ∩ρ

ρ≤σ & τ≤φ ⇒ σ→τ≤ρ→φ

iii) ‘∼’ is the equivalence relation induced by ‘≤’: σ∼τ ⇐⇒ σ≤τ≤σ.

iv) Contexts are defined as before, and Γ≤Γ′ if and only if for every x:σ′ ∈ Γ′ there is an
x:σ ∈ Γ such that σ≤σ′, and Γ∼Γ′⇐⇒ Γ≤Γ′≤Γ.

Tbcd may be considered modulo ‘∼’. Then ‘≤’ becomes a partial order; notice that, if Γ ⊆ Γ′,
then Γ′≤Γ.

Definition 3.11 (c.f. [15]) Type assignment is defined by the following sequent-style natural
deduction system.

(→I) :
Γ, x:σ ⊢ M : τ

Γ ⊢ λx.M : σ→τ
(→E) :

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

(∩I) :
Γ ⊢ M : σ Γ ⊢ M : τ

Γ ⊢ M : σ∩τ
(∩E) :

Γ ⊢ M : σ∩τ

Γ ⊢ M : σ

Γ ⊢ M : σ∩τ

Γ ⊢ M : τ

(≤) :
Γ ⊢ M : σ

(σ≤τ)
Γ ⊢ M : τ

(ω) :
Γ ⊢ M : ω

We will write Γ ⊢bcd M : σ for statements that are derived using these rules.

In ‘⊢bcd’, there are several ways to deduce a desired result, due to the presence of the
derivation rules (∩I), (∩E) and (≤), which allow superfluous steps in derivations; notice that
(∩E) is included in (≤). In the CDV-systems, as in ‘⊢s’ (Section 5) and ‘⊢e’ (Section 4), these
rules are not present and there is a one-to-one relationship between terms and skeletons of
derivations. In other words: those systems are syntax directed.

An advantage of the presentation in [15] is, clearly, a very easy type definition and easy
understandable derivation rules. But this advantage is superficial, since all difficulties now
show up while proving theorems; especially the complexity of ‘≤’ and ‘∼’ causes confusion.

Filters and the filter λ-model Fbcd are defined by:

Definition 3.12 i) A BCD-filter is a subset d ⊆ Tbcd such that:

a) ω ∈ d.

b) σ,τ ∈ d⇒ σ∩τ ∈ d.

c) σ≤τ & σ ∈ d⇒ τ ∈ d.

ii) Fbcd = {d | d is a BCD-filter}.

iii) For d1,d2 ∈ Fbcd, we define application on BCD-filters by: d1 · d2 = {τ ∈ Tbcd | ∃σ ∈
d2 [σ→τ ∈ d1]}.

In constructing a complete system, the semantics of types plays a crucial role: the goal is
to show that Γ ⊢e M : σ ⇐⇒ Γ s M : σ; the latter represents a relation between the semantic
interpretation of Γ, M and σ, so requires a type interpretation. As in [31, 49], and essentially
following [37], a distinction can be made between several notions of type interpretations and
semantic satisfiability. There are, roughly, three notions of type semantics that differ in the
meaning of an arrow type scheme: inference type interpretations, simple type interpretations
and F type interpretations. These different notions of type interpretations induce different
notions of semantic satisfiability.

ACM Computing Surveys, 43(3) article 20, April 2011 18

Definition 3.13 (Type interpretation) i) Let 〈D, ·, ε〉 be a continuous λ-model. A mapping
υ : T → ℘(D) = {X |X ⊆ D} is an inference type interpretation if and only if:

a) {ε · d | ∀ e ∈ υ(σ) [d · e ∈ υ(τ)]} ⊆ υ(σ→τ).

b) υ(σ→τ) ⊆ {d | ∀ e ∈ υ(σ) [d · e ∈ υ(τ)]}.

c) υ(σ∩τ) = υ(σ) ∩ υ(τ).

ii) Following [38], a type interpretation is simple if also:

υ(σ→τ) = {d | ∀ e ∈ υ(σ) [d · e ∈ υ(τ)]}.

iii) A type interpretation is called an F type interpretation if it satisfies:

υ(σ→τ) = {ε · d | ∀ e ∈ υ(σ) [d · e ∈ υ(τ)]}.

Notice that, in part (ii), the containment relation ⊆ of part (i.b)) is replaced by =, and that
in part (iii) the same is done with regard to part (i.a)).

These notions of type interpretation lead, naturally, to the following definitions for seman-
tic satisfiability (called inference-, simple- and F-semantics, respectively).

Definition 3.14 (Satisfiability) Let M = 〈D, ·,⌈⌈·⌋⌋
M
· 〉 be a λ-model and ξ a valuation of

term-variables in D, and υ a type interpretation. We define by;

i) M,ξ,υ M : σ⇐⇒ ⌈⌈M⌋⌋
M
ξ ∈ υ(σ).

ii) M,ξ,υ Γ⇐⇒ M,ξ,υ x:σ for every x:σ ∈ Γ.

iii) a) Γ M : σ ⇐⇒ ∀M,ξ,υ [M,ξ,υ Γ⇒M,ξ,υ M : σ] .

b) Γ s M : σ ⇐⇒ ∀M,ξ, simple type interpretations υ [M,ξ,υ Γ⇒M,ξ,υ M : σ].

c) Γ f M : σ ⇐⇒ ∀M,ξ,F type interpretations υ [M,ξ,υ Γ⇒M,ξ,υ M : σ].

If no confusion is possible, the superscript on ⌈⌈ · ⌋⌋ is omitted.
The following properties are proven in [15]:

• For all M ∈Λ, {σ | ∃Γ [Γ ⊢bcd M : σ]} ∈ Fbcd.

• Let ξ be a valuation of term-variables in Fbcd and Γξ = {x:σ | σ ∈ ξ (x)}. For M ∈ Λ,
define the interpretation of M in Fbcd via ⌈⌈M⌋⌋ξ = {σ | Γξ ⊢bcd M : σ}. Using the method
of [40] it is shown that 〈Fbcd, ·,⌈⌈ · ⌋⌋〉 is a λ-model.

The main result of [15] is obtained by proving:

Property 3.15 i) Soundness: Γ ⊢bcd M : σ⇒ Γ s M : σ.

ii) Completeness: Γ s M : σ⇒ Γ ⊢bcd M : σ.

The proof of completeness is obtained in a way very similar to that of Theorem 7.13. The
results of [15] in fact show that type assignment in ‘⊢bcd’ is complete with respect to simple
type semantics; this in contrast to ‘⊢s’ (presented in [3], see also Section 5), that is complete
with respect to the inference semantics.

As is shown by the results achieved for ‘⊢e’ in Section 7, allowing intersections on the
right of arrow types is, in fact, not needed to solve the problem of completeness of type
assignment (see Property 3.15): the mere introduction of a relation on normalised types with
contra-variance in the arrow would have done the trick.

A characterisation of strong normalisation is shown in [3], by proving that the set of all terms
typeable by means of the derivation rules (∩I), (∩E), (→I) and (→E) of ‘⊢bcd’ is exactly the
set of strongly normalisable terms. The proof for this property in that paper needs the rule
(≤) for the contra-variant ‘≤’-relation. In [10], an alternative proof of strong normalisation

ACM Computing Surveys, 43(3) article 20, April 2011 19

was given (much like that presented in Section 9 that appeared in [11]), but for the strict
type assignment system of [3] (see Section 5); this proof does not need a contra-variant
‘≤’-relation.

3.6 Principal pairs for ‘⊢bcd’

For ‘⊢bcd’, principal type schemes are defined by [55]. There three operations are provided
– substitution, expansion, and rise – that are sound and sufficient to generate all suitable
pairs for a term M from its principal pair. In that paper, all constructions and definitions are
made modulo the equivalence relation ∼. In fact, the complexity inserted in BCD-types, by
allowing for intersection types on the right of the arrow type constructor, disturbs greatly the
complexity of the definition of expansion, and, through that, the accessibility of that paper.

The first operation defined is substitution, that is defined without restriction: the type
that is to be substituted can be every element of Tbcd. Next, the operation of expansion is
defined, which is a generalisation of the notion of expansion defined in [21] in Section 3.4;
since intersections now also can appear on the right of an arrow, the construction of the set
of types affected by an expansion is more involved. Both substitution and expansions are in
the natural way extended to operations on contexts and pairs. The third operation defined
(on pairs) is the operation of rise: it consists of adding applications of the derivation rule (≤)
to a derivation. All defined operations are sound for approximants in the following sense:

• (Soundness) Assume Γ ⊢bcd A : σ, and let O be an operation of substitution, expansion or
rise, and O (〈Γ,σ〉) = 〈Γ′,σ′〉, then Γ′ ⊢bcd A : σ′.

Linear chains of operations are defined as sequences of operations that start with a number
of expansions, followed by a number of substitutions, and that end with one rise. Principal
pairs are defined for terms in λβ-normal form, in exactly the same way as in Definition 10.6.
To come to the proof of completeness of these operations, [55] first proves the approximation
theorem for ‘⊢bcd’:

Property 3.16 Γ ⊢bcd M : σ iff there exists A ∈ A(M) such that Γ ⊢bcd A : σ.

which is used in the proof of the principal type property, as in Theorem 10.30. The proof
is completed by proving first that, when A(M) is finite, then {pp (A) | A ∈ A(M)} has a
maximal element (see Theorem 10.28 and Definition 10.29). Then the following is proven:

Property 3.17 i) Let A ∈ A, then for any pair 〈Γ,σ〉 such that Γ ⊢bcd A : σ there exists a linear chain
Ch such that Ch(pp (A)) = 〈Γ,σ〉.

ii) Let Γ ⊢bcd M : σ.

a) A(M) is finite. Then {pp (A) | A ∈ A(M)} has a maximal element, say 〈Π,π〉. Then
there exists a linear chain Ch such that Ch(〈Π,π〉) = 〈Γ,σ〉.

b) A(M) is infinite. Then there exist a pair 〈Π,π〉 ∈ {pp (A) | A ∈ A(M)} and a linear
chain Ch, such that Ch(〈Π,π〉) = 〈Γ,σ〉.

4 Essential Intersection type assignment

In this section, we will present the essential intersection system, a notion of type assignment
system that is a restricted version of ‘⊢bcd’ as first presented in [7], together with some of
its properties. The major feature of this restricted system is, compared to ‘⊢bcd’, a restricted
version of the derivation rules and the use of strict types. It also forms a slight extension

ACM Computing Surveys, 43(3) article 20, April 2011 20

of the strict type assignment system ‘⊢s’ that was presented in [3] (see Section 5); the main
difference is that ‘⊢s’ is not closed for η-reduction, whereas ‘⊢e’ is.

Strict types are the types that are strictly needed to assign a type to a term that is non-
trivially typeable in ‘⊢bcd’. In the set of strict types, intersection type schemes and the type
constant ω play a limited role. In particular, intersection type schemes (so also ω) occur in
strict types only as subtype at the left-hand side of an arrow type scheme, as in the types of
[20, 21, 22]. Moreover, ω is taken to be the empty intersection: if n = 0, then φ1∩ · · ·∩φn ≡ ω,
so ω does not occur in an intersection subtype or on the right of an arrow9.

Definition 4.1 (Strict types) i) The set T of (essential) intersection types, that is ranged over
by σ,τ, . . ., and its subset Ts of strict types, ranged over by φ,ψ, . . ., are defined through
the grammar:

φ,ψ ::= ϕ | σ→ψ

σ,τ ::= φ1∩ · · ·∩φn (n ≥ 0)

with ϕ ranging over V , the set of type variables.

ii) We define ω as the empty intersection, so if σ = φ1∩ · · ·∩φn with n ≥ 0, then φi = ω for
all i ∈ n.

iii) The relation ‘≤’ is defined as the least pre-order on T such that:

φ1∩ · · ·∩φn ≤e φi, for all i ∈ n, n ≥ 1

τ≤e φi, for all i ∈ n ⇒ τ≤e φ1∩ · · ·∩φn, n ≥ 0

ρ≤e σ & φ≤e ψ ⇒ σ→φ≤e ρ→ψ

iv) On T , the relation ‘∼e’ is defined by: σ∼e τ ⇐⇒ σ≤e τ≤e σ.

v) The relations ‘≤e’ and ‘∼e’, are, as in Definition 3.10, extended to contexts.

Notice that, by the second clause of part (iii), σ≤e ω, for all σ.
Compared to types defined previously, the set of types as considered in [20] are ω-free

strict types (see Definition 8.1); that in [22] treats ω as a type constant rather than the empty
intersection (Definition 3.3), so strict types are a restriction of that set. Compared to Defini-
tion 3.4, normalising types is just the same as treating ω as an empty intersection, as well as
not allowing ω to appear on the right-hand side of an arrow. In fact, the set of normalised
types coincides with the set of strict types and normalised intersection types correspond to
strict intersection types.

Since it is easy to show that intersection is commutative (σ∩τ∼e τ∩σ) and associative
(σ∩(τ∩ρ)∼e(σ∩τ)∩ρ), we can arbitrarily swap the order of subtypes in an intersection, and
will write φ1∩ · · ·∩φn for the type φ1∩ · · ·∩φn, and ∩1φi = φ1.

Lemma 4.2 For the relation ‘≤e’, the following properties hold:

ϕ≤e φ ⇐⇒ φ ≡ ϕ.

ω≤e σ ⇐⇒ σ ≡ ω.

σ→φ≤e ρ ∈ Ts ⇐⇒ ρ ≡ µ→ψ & µ≤e σ & φ≤e ψ

φ1∩ · · ·∩φn≤e τ ∈ Ts ⇒ ∃ i ∈ n [φi≤e τ]

σ≤e τ ⇒ σ = φ1∩ · · ·∩φn & τ = τ1∩· · ·∩τm & ∀ j ∈ m ∃ i ∈ n [φi≤e ψj]

Proof: Easy.

9 It is worthwhile to notice that this definition of types would not be adequate in the setting of lazy evaluation,
where an abstraction should always have an arrow type, even if it does not return a result: this forces the
admission of σ→ω as a type.

ACM Computing Surveys, 43(3) article 20, April 2011 21

Definition 4.3 (Type assignment) i) Essential intersection type assignment and derivations are
defined by the following natural deduction system:

(Ax) : (σ≤e φ)
Γ, x:σ ⊢ x : φ (∩I) :

Γ ⊢ M : φ1 · · · Γ ⊢ M : φn
(n≥0)

Γ ⊢ M : φ1∩ · · ·∩φn

(→I) :
Γ, x:σ ⊢ M : φ

(σ ∈ T)
Γ ⊢ λx.M : σ→φ

(→E) :
Γ ⊢ M : σ→φ Γ ⊢ N : σ

Γ ⊢ MN : φ

ii) We write Γ ⊢e M : σ if this statement is derivable using an essential intersection derivation,
and D :: Γ ⊢e M : σ when this result was obtained through the derivation D.

The choice to treat ω as the empty intersection is motivated by the following observation.
If we define ⌈⌈σ⌋⌋ to be the set of terms that can be assigned the type σ, then, for all σ1, . . . ,σn:

⌈⌈φ1∩ · · ·∩φn⌋⌋ ⊆ ⌈⌈φ1∩ · · ·∩φn−1⌋⌋ ⊆ . . . ⊆ ⌈⌈φ1∩φ2⌋⌋ ⊆ ⌈⌈φ1⌋⌋.

It is natural to extend this sequence with ⌈⌈φ1⌋⌋ ⊆ ⌈⌈ ⌋⌋, and therefore to define that the se-
mantics of the empty intersection is the whole set of λ-terms; this is justified, since, via rule
(∩I), we have Γ ⊢e M : ω, for all Γ, M, exactly as in ‘⊢bcd’.

Lemma 4.4 For this notion of type assignment, the following properties hold:

Γ ⊢e x : σ & σ = ω ⇐⇒ ∃ ρ ∈ T [x:ρ ∈ Γ & ρ≤e σ]

Γ ⊢e MN : φ ⇐⇒ ∃ τ ∈ T [Γ ⊢e M : τ→φ & Γ ⊢e N : τ]

Γ ⊢e λx.M : ψ ⇐⇒ ∃ ρ ∈ T ,φ ∈ Ts [ψ = ρ→φ & Γ, x:ρ ⊢e M : φ]

Γ ⊢e M : σ & σ = ω ⇐⇒ ∃φ1, . . . ,φn [σ = φ1∩ · · ·∩φn & ∀ i ∈ n [Γ ⊢e M : φi]]

Γ ⊢e M : σ ⇒ {x:ρ | x:ρ ∈ Γ & x ∈ fv (M)} ⊢e M : σ

Proof: Easy.

The type assignment rules are generalised to terms containing ⊥ by allowing for the terms
to be elements of λ⊥. This implies that, because type assignment is almost syntax directed,
if ⊥ occurs in a term M and Γ ⊢e M : σ, then either σ = ω, or in the derivation for M : σ, ⊥
appears in the right-hand subterm of an application, and this right-hand term is typed with
ω. Moreover, the terms λx.⊥ and ⊥Mi are typeable by ω only.

4.1 Eta reduction

Although the rule (Ax) is defined only for term-variables, ‘⊢e’ is closed for ‘≤e’ and weak-
ening.

Lemma 4.5 If Γ ⊢e M : σ and Γ′≤e Γ,σ≤e τ, then Γ ⊢e M : τ, so the following is an admissible rule
in ‘⊢e’:

(≤e) :
Γ ⊢ M : σ

(Γ′≤e Γ,σ≤e τ)
Γ′ ⊢ M : τ

Proof: By induction on ‘⊢e’.

(Ax) : Then M≡ x, and there is x:ρ ∈ Γ such that ρ≤e σ. Since Γ′≤e Γ, there is x:µ ∈ Γ′ such
that µ≤e ρ. Notice that µ≤e ρ≤e σ≤e τ, so, by Lemma 4.4, Γ′ ⊢e x : τ.

(→I) : Then M ≡ λx.M′, and there are ρ,φ such that σ = ρ→φ and Γ, x:ρ ⊢e M′ : φ. By
Lemma 4.2 there are ρi,µ1, . . . ,µn such that τ = ∩n(ρi→φi), and for i ∈ n, ρi≤e ρ and
φ≤e φi. Since Γ′≤e Γ and ρi≤e ρ, also Γ′, x:ρi≤e Γ, x:ρ, and Γ′, x:ρi ⊢e M′ : φi by induction.
So, by (→I), for every i ∈ n, Γ′ ⊢e λx.M′ : ρi→φi, so, by (∩I), Γ′ ⊢e λx.M′ : τ.

ACM Computing Surveys, 43(3) article 20, April 2011 22

(→E) : Then M ≡ M1M2, σ = φ, and Γ ⊢e M1 : µ→φ and Γ ⊢e M2 : µ for some µ. Let τ =
τ1∩· · ·∩τn, then, for all i ∈ n, φ≤ψi, so also µ→φ≤e µ→ψi and, by induction, Γ′ ⊢e

M1 : µ→ψi. Then, by (→E), Γ′ ⊢e M1M2 : ψi for all i ∈ n, so Γ′ ⊢e M1M2 : τ by (∩I).

(∩I) : Then σ = φ1∩ · · ·∩φn, and, for every i ∈ n, Γ ⊢e M : φi. Let τ = τ1∩· · ·∩τm then, for every
j ∈ m, there is an i ∈ n such that φi≤e ψj. By induction, for every j ∈ m, Γ′ ⊢e M : ψj. But
then, by (∩I), Γ′ ⊢e M : τ.

Now it is easy to prove that essential type assignment in this system is closed under η-
reduction. The proof for this result is split in two parts, Lemma 4.6 and Theorem 4.7. The
lemma is also used in the proof of Lemma 6.2.

Lemma 4.6 If Γ, x:σ ⊢e Mx : φ and x ∈ fv (M) then Γ ⊢e M : σ→φ.

Proof: Γ, x:σ ⊢e Mx : φ & x ∈ fv (M) ⇒ (→E)

∃ τ [Γ, x:σ ⊢e M : τ→φ & Γ, x:σ ⊢e x : τ & x ∈ fv (M)] ⇒ (4.4)

∃ τ [Γ, x:σ ⊢e M : τ→φ & σ≤e τ & x ∈ fv (M)] ⇒ (4.4)

∃ τ [Γ ⊢e M : τ→φ & σ≤e τ] ⇒ (4.1(iii))

∃ τ [Γ ⊢e M : τ→φ & τ→φ≤e σ→φ] ⇒ (4.5)

Γ ⊢e M : σ→φ.

We can now show that ‘⊢e’ is closed for η-reduction.

Theorem 4.7 (‘⊢e’ closed for →η) Γ ⊢e M : σ & M→η N ⇒ Γ ⊢e N : σ.

Proof: By induction on the definition of ‘→η’, of which only the part λx.Mx→η M is shown,
where x does not occur free in M. The other parts are dealt with by straightforward induc-
tion.

(σ = ψ ∈ Ts) : Then: Γ ⊢e λx.Mx : ψ & x ∈ fv (M) ⇒ (→I)

∃ ρ,φ [ψ = ρ→φ & Γ, x:ρ ⊢e Mx : φ] ⇒ (4.6)

Γ ⊢e M : ψ.

(σ = φ1∩ · · ·∩φn) : Then, by (∩I), Γ ⊢e λx.Mx : φi for all i ∈ n, so, by the previous part, Γ ⊢e

M : φi, so, by (∩I), Γ ⊢e M : σ.

By the structure of this proof, below we will normally focus on strict types when proving
properties.

Types are not invariant under η-expansion; for example, we can derive ⊢e λx.x : φ→φ, but
not ⊢e λxy.xy : φ→φ.

Example 4.8 Notice that λxy.xy →η λx.x; we can easily derive ⊢e λxy.xy : (σ→φ)→σ∩ρ→φ

and ⊢e λx.x : (σ→φ)→σ∩ρ→φ:

x:σ→φ,y:σ∩ρ ⊢ x : σ→φ
(σ∩ρ≤e σ)

x:σ→φ,y:σ∩ρ ⊢ y : σ
(→E)

x:σ→φ,y:σ∩ρ ⊢ xy : φ
(→I)

x:σ→φ ⊢ λy.xy : σ∩ρ→φ
(→I)

⊢ λxy.xy : (σ→φ)→σ∩ρ→φ

(σ→φ≤e σ∩ρ→φ)
x:σ→φ ⊢ x : σ∩ρ→φ

(→I)
⊢ λx.x : (σ→φ)→σ∩ρ→φ

ACM Computing Surveys, 43(3) article 20, April 2011 23

4.2 Subject reduction and expansion

As in [21, 15], it is possible to prove that ‘⊢e’ system is closed under ‘=β’. In the latter paper
this result was obtained by building a filter λ-model; from the fact that every M is interpreted
by the set of its assignable types, and that set is a filter, the result is then immediate (see also
Corollary 7.12). We will here prove this result in the same way in Corollary 7.12, but first
show it directly, without using a model; in this way the precise role of the type constructor
‘∩’ and the type constant ω can be made apparent.

Suppose first that Γ ⊢e (λx.M)N : φ. By (→E), there exists τ such that

Γ ⊢e λx.M : τ→φ and Γ ⊢e N : τ.

Since (→I) should be the last step performed for the first result, also

Γ, x:τ ⊢e M : φ and Γ ⊢e N : τ.

Now there are (strict) types ψj (j ∈ m) such that, for every ψj, in the first derivation, there
exists a subderivation of the shape

(Ax)
Γ, x:τ ⊢ x : ψj

and these are all the applications of rule (Ax) that deal with x. Thus, for all j∈m, τ≤e ψj and,
by Lemma 4.5, Γ ⊢e N : ψj. Then a derivation for Γ ⊢e M[N/x] : φ can be obtained by replacing,
for every j ∈ m, in the derivation for Γ, x:τ ⊢e M : φ, the subderivation Γ, x:τ ⊢e x : ψj by the
(new) derivation for Γ ⊢e N : ψj. (The operation described here is at the basis of derivation
reduction as discussed in Section 9, and is formalised in Definition 9.4.)

The second problem to solve in a proof for closure under β-equality is that of β-expansion:

Γ ⊢e M[N/x] : ψ ⇒ Γ ⊢e (λx.M)N : ψ.

Assume that the term-variable x occurs in M and the term N is a subterm of M[N/x], so
N is typed in the derivation for D :: Γ ⊢e M[N/x] : ψ, probably with several different types
σ1, . . . ,σn. A derivation for Γ, x:φ1∩ · · ·∩φn ⊢e M : ψ can be obtained by replacing, in D, all
derivations for Γ ⊢e N : φi by the derivation for x:φ1∩ · · ·∩φn ⊢e x : φi. Then, using (→I), Γ ⊢e

λx.M : φ1∩ · · ·∩φn→ψ, and, using (∩I) on the collection of removed sub-derivations, Γ ⊢e

N : φ1∩ · · ·∩φn. Then, using (→E), the redex can be typed.
When the term-variable x does not occur in M, the term N is a not a subterm of M[N/x]

and Γ ⊢e M[N/x] : ψ stands for Γ ⊢e M : ψ. In this case, the type ω is used: since x does
not occur in M, by weakening x:ω can be assumed to appear in Γ, and rule (→I) gives
Γ ⊢e λx.M : ω→ψ. By (∩I), Γ ⊢e N : ω, so, using (→E), the redex can be typed.

To show this result formally, first a substitution lemma is proven. Notice that, unlike for
many other notions of type assignment (Curry’s system, [34]’s polymorphic type discipline,
ml [27]), the implication holds in both directions.

Lemma 4.9 (Substitution lemma) ∃ ρ [Γ, x:ρ ⊢e M : σ & Γ ⊢e N : ρ]⇐⇒ Γ ⊢e M[N/x] : σ.

Proof: By induction on M. Only the case σ = φ ∈ Ts is considered.

(M ≡ x) : (⇒) : ∃ ρ [Γ, x:ρ ⊢e x : φ & Γ ⊢e N : ρ] ⇒ (4.4)

∃ ρ [ρ≤e φ & Γ ⊢e N : ρ] ⇒ (4.5)

Γ ⊢e N : φ ⇒

Γ ⊢e x[N/x] : φ.

(⇐) : Γ ⊢e x[N/x] : φ⇒ Γ, x:φ ⊢e x : φ & Γ ⊢e N : φ.

(M ≡ y = x) : (⇒) : By Lemma 4.4, since y[N/x] ≡ y, and x ∈ fv (y).

(⇐) : Γ ⊢e y[N/x] : φ⇒ Γ ⊢e y : φ. Take ρ = ω; by Lemma 4.5, Γ, x:ω ⊢e y : φ.

ACM Computing Surveys, 43(3) article 20, April 2011 24

(M ≡ λy.M′) : (⇐⇒) : ∃ ρ [Γ, x:ρ ⊢e λy.M : φ & Γ ⊢e N : ρ] ⇐⇒ (→I)

∃ ρ,µ,ψ [Γ, x:ρ,y:µ ⊢e M : ψ & φ = µ→ψ & Γ ⊢e N : ρ] ⇐⇒ (IH)

∃µ,ψ [Γ,y:µ ⊢e M[N/x] : ψ & φ = µ→ψ] ⇐⇒ (→I)

Γ ⊢e λy.(M[N/x]) : φ ⇐⇒

Γ ⊢e (λy.M)[N/x] : φ.

(M ≡ M1M2) : (⇒) : ∃ ρ [Γ, x:ρ ⊢e M1M2 : φ & Γ ⊢e N : ρ] ⇒ (→E)

∃ ρ,τ [Γ, x:ρ ⊢e M1 : τ→φ & Γ, x:ρ ⊢e M2 : τ & Γ ⊢e N : ρ] ⇒ (IH)

∃ τ [Γ ⊢e M1[N/x] : τ→φ & Γ ⊢e M2[N/x] : τ] ⇒ (→E)

Γ ⊢e M1[N/x]M2[N/x] : φ ⇒ Γ ⊢e (M1M2)[N/x] : φ

(⇐) : Γ ⊢e (M1M2)[N/x] : φ ⇒

Γ ⊢e M1[N/x]M2[N/x] : φ ⇒ (→E)

∃ τ [Γ ⊢e M1[N/x] : τ→φ & Γ ⊢e M2[N/x] : τ] ⇒ (IH)

∃ ρ1,ρ2,τ [Γ, x:ρ1 ⊢e M1 : τ→φ & Γ ⊢e N : ρ1 & Γ, x:ρ2 ⊢e M2 : τ & Γ ⊢e N : ρ2]

⇒ (ρ = ρ1∩ρ2 & (∩I) & 4.5)

∃ ρ [Γ, x:ρ ⊢e M1M2 : φ & Γ ⊢e N : ρ].

Notice that ‘≤’ plays no role in this proof, other than its (∩E) behaviour, which means that
this is also a proof for this property in the strict system of the next section.

This result leads immediately to the following:

Theorem 4.10 (‘⊢e’ closed for ‘=β’) The following rules are admissible in ‘⊢e’:

(cut) :
Γ, x:ρ ⊢ M : σ Γ ⊢ N : ρ

Γ ⊢ M[N/x] : σ
(=β) :

Γ ⊢ M : σ
(M =β N)

Γ ⊢ N : σ

Proof: The first follows by the previous lemma; for the second, we reason by induction on
the definition of ‘=β’. We only show the part of a redex, in particular when typed with a
strict type: Γ ⊢e (λx.M)N : φ ⇐⇒ Γ ⊢e M[N/x] : φ; all other cases follow by straightforward
induction. To conclude, as argued above, if Γ ⊢e (λx.M)N : φ, then, by (→E) and (→I), there
exists a ρ such that Γ, x:ρ ⊢e M : φ and Γ ⊢e N : ρ; the converse of this result holds, obviously,
as well. The result then follows by applying Lemma 4.9.

5 The strict system

Another system (in fact, the first) that uses strict intersection types is the strict system of [3],
in which the normalisation properties and completeness are shown, and for which strong
normalisation of derivation reduction and characterisation results are proven with the same
technique as used in Section 9 as was first shown in [10]. It is defined as follows:

Definition 5.1 The strict type assignment is defined by the following natural deduction sys-
tem:

(∩E) : (n≥1, i ∈ n)
Γ, x:φ1∩ · · ·∩φn ⊢ x : φi

(→I) :
Γ, x:σ ⊢ M : φ

Γ ⊢ λx.M : σ→φ

(∩I) :
Γ ⊢ M : φ1 · · · Γ ⊢ M : φn

(n≥0)
Γ ⊢ M : φ1∩ · · ·∩φn

(→E) :
Γ ⊢ M : σ→φ Γ ⊢ N : σ

Γ ⊢ MN : φ

We write Γ ⊢s M : σ for statements derivable in this system.

We should emphasise the (only) difference between essential type assignment of Defini-
tion 4.3 and the strict one: instead of the rule (∩E) given above, it contains the rule (Ax),

ACM Computing Surveys, 43(3) article 20, April 2011 25

which uses a contra-variant type inclusion relation. Notice that rule (∩E) is a special case of
rule (Ax) in that φ1∩ · · ·∩φn≤e φi, for all i ∈ n.

[3] introduces a type inclusion relation ‘≤s’ for this system, as the least pre-order on T
such that:

φ1∩ · · ·∩φn ≤s φi, for all i ∈ n

τ≤s φi, for all i ∈ n ⇒ τ≤s φ1∩ · · ·∩φn

Notice that this relation expresses the just the commutative and associative behaviour of
intersection, and excludes the contra-variance. The following rule is admissible:

Γ ⊢ M : σ
(σ≤s τ)

Γ ⊢ M : τ

In fact, replacing rule (∩E) by the rule:

(≤s) : (σ≤s τ)
Γ, x:σ ⊢ x : τ

would give exactly the same system in terms of derivable judgements; notice that rule (≤s)
combines (∩E) and (∩I). As for the difference in derivable statements, it is possible to derive
⊢e λx.x : (α→φ)→(α∩γ)→φ, which is not possible in ‘⊢s’ (see Example 4.8).

[10] shows the approximation result

Γ ⊢s M : σ ⇐⇒ ∃A ∈ A(M) [Γ ⊢s A : σ],

with which, as in Section 6.2, the result

If Γ ⊢bcd M : σ, then there are Γ′,σ′ ∈ T such that Γ′ ⊢s M : σ′, σ′≤σ and Γ≤Γ′.

can be shown (cf. Theorem 6.13), with ‘≤’ the BCD-type inclusion relation.
Using the ‘≤s’, a strict filter model Fs is constructed which corresponds to [33]’s model

DA. Using this model, in [3] it is shown that, for all terms M, valuations ξ, ⌈⌈M⌋⌋ξ = {σ ∈ T |
Γξ ⊢s M : σ}; since Fs is a λ-model, this implies ‘⊢s’ is closed for β-equality. Then [3] shows
that strict type assignment is sound and complete with respect to inference type semantics:
Γ ⊢s M : σ⇐⇒ Γ M : σ (see also Section 7.3).

5.1 Principal pairs for ‘⊢s’

The proof of the principal type property for ‘⊢s’ as presented in [6] is achieved in a way
similar to, but significantly different from, the two techniques sketched above.

In that paper, three operations on pairs of context and types are defined: substitution,
expansion, and lifting. The operation of lifting resembles the operation of rise as defined
in [55], the operation of substitution is a modification of the one normally used, and the
operation of expansion is a limited version of the one given in [21, 55].

In order to prove that the operations defined are sufficient, three subsets of the set of all
pairs of context and type are defined, namely: principal pairs, ground pairs, and primitive
pairs. (The definition of ground pairs coincides with the one given in [21].) In that paper is
shown that these form a true hierarchy, that the set of ground pairs for a term is closed under
the operation of expansion, that the set of primitive pairs is closed under the operation of
lifting, and that the set of pairs is closed for substitution.

The main result of that paper is reached by showing that the three operations defined
are complete: if 〈Γ,σ〉 is a suitable pair for a term A in λ⊥-normal form, and 〈Π,π〉 is the
principal pair for A, then there are a sequence of operations of expansion Exi, an operation
of lifting L, and a substitution S, such that

〈Γ,σ〉 = S (L(Ex (〈Π,π〉))).

ACM Computing Surveys, 43(3) article 20, April 2011 26

This result is then generalised to arbitrary λ-terms.
Because of technical reasons, substitution is in [6] defined as the replacement of a type-

variable ϕ by a type α ∈ Ts∪{ω}, so it can also replace type-variables by the type constant
ω (this is not needed in Section 10, where we show the principal pair property for ‘⊢e’).
Although substitution is normally defined on types as the operation that replaces type-
variables by types, for strict types this definition would not be correct. For example, the
replacement of ϕ by ω would transform σ→ϕ (or σ∩ϕ) into σ→ω (σ∩ω), which is not a strict
type. Therefore, for strict types substitution is not defined as an operation that replaces type-
variables by types, but as a mapping from types to types, that, in a certain sense, ‘normalises
while substituting’.

The operation of expansion, as defined in [6], corresponds to the one given in [21] and is a
simplified version of the one defined in [55]. A difference is that in those definitions subtypes
are collected, whereas the definition of expansion in [6] (see Definition 10.12) collects type-
variables.

The operation of lifting as defined in [6] (see Definition 10.23) is based on the relation ‘≤e’,
in the same way as the operation of rise is based on ‘≤’. As shown there, that operation is
not sound on all pairs 〈Γ,σ〉, so the following does not hold:

Γ ⊢s M : σ & σ≤e τ ⇒ Γ ⊢s M : σ.

As a counter example, take x:σ→σ ⊢s x : σ→σ. Notice that σ→σ≤e σ∩τ→σ, but it is impossi-
ble to derive x:σ→σ ⊢s x : σ∩τ→σ. (In fact, as argued in [6], it is impossible to formulate an
operation that performs the desired lifting and is sound on all pairs.) The reason for this is
that introducing a derivation rule that uses the relation ‘≤e’, corresponds to an η-reduction
step (see Theorem 4.7), and ‘⊢s’ is not closed for η-reduction. Since strict type assignment is
not closed for ‘≤e’, and the operation of lifting implicitly applies ‘≤e’ to a derivation, it is
clear that a conflict arises.

However, in [6] it is shown that the operation defined there is sound on primitive pairs.
The definition for primitive pairs is based on the definition of ground pairs as given in [21].
The main difference between ground pairs and primitive pairs is that in a primitive pair a
predicate for a term-variable (bound or free) is not the smallest type needed, but can contain
some additional, irrelevant types. The problem mentioned above is then solved by allowing
liftings only on primitive pairs for terms.

The result of [6] follows from:

• Every principal pair is a ground pair.

• For every expansion Ex, if 〈Γ,σ〉 is a ground pair for A and Ex(〈Γ,σ〉) = 〈Γ′,σ′〉, then
〈Γ′,σ′〉 is a ground pair for A.

• Every ground pair is a primitive pair.

• Lifting is a sound operation on primitive pairs: for all A ∈ A, liftings L: if 〈Γ,σ〉 is a
primitive pair for A, then L(〈Γ,σ〉) is a primitive pair for A.

• Every primitive pair is a (normal) pair.

• Substitution is a sound operation: If Γ ⊢s A : σ, then for all substitutions S: if S (〈Γ,σ〉)
= 〈Γ′,σ′〉, then Γ′ ⊢s A : σ′.

Although lifting is not sound on all pairs, using the results mentioned above it is possible
to prove that the three operations defined in [6] are sufficient (complete): for every pair 〈Γ,σ〉
and A ∈ A, if Γ ⊢s A : σ, then there exists a number of expansions, at most one lifting, and
at most one substitution, such that 〈Γ,σ〉 can be obtained from pp (A) by performing these
operations in sequence. As in [55], this result is then generalised to arbitrary λ-terms (see
Property 3.17 and Theorem 10.26).

ACM Computing Surveys, 43(3) article 20, April 2011 27

6 Approximation and head-normalisation results

In this section, we will prove a number of results for ‘⊢e’. First we will prove the approxima-
tion theorem (cf. Property 3.16); from this result, the well-known characterisation of head-
normalisation and normalisation of λ-terms using intersection types follows easily, i.e., all
terms having a head-normal form are typeable in ‘⊢e’ (with a type not equivalent to ω), and
all terms having a normal form are typeable with a context and type that do not contain ω

at all.
In [55], the approximation result is obtained through a normalisation of derivations, where

all (→I)–(→E) pairs, that derive a type for a redex (λx.M)N, are replaced by one for its
reduct M[N/x], and all pairs of (∩I)–(∩E) are eliminated. (This technique is also used in
[21, 15]; it requires a rather difficult notion of length of a derivation to show that this process
terminates.) In this section, this result will be proven using the reducibility technique [57].

With this result, we will show that ‘⊢bcd’ is conservative over ‘⊢e’ presented here, and prove
that all terms having a head-normal form are typeable in ‘⊢e’ (with a type different from ω).

6.1 Approximation result

In this subsection, the approximation theorem ‘Γ ⊢e M : σ ⇐⇒ ∃A ∈ A(M) [Γ ⊢e A : σ]’ will
be proven. For reasons of readability, we will be abbreviate ∃A ∈ A(M) [Γ ⊢e A : σ] by
Appr (Γ, M,σ).

First we show that type assignment is upward closed for ‘⊑’ (see Definition 2.6).

Lemma 6.1 Γ ⊢e M : σ & M ⊑ M′⇒ Γ ⊢e M′ : σ.

Proof: By easy induction on the definition of ‘⊑’; the base case, ⊥ ⊑ M′, follows from the
fact that then σ = ω.

The following basic properties are needed further on.

Lemma 6.2 i) Appr (Γ, xM1· · ·Mn,σ→φ) & Appr (Γ, N,σ)⇒ Appr (Γ, xM1· · ·MnN,φ).

ii) Appr (Γ ∪ {z:σ}, Mz,φ) & z ∈ fv (M)⇒ Appr (Γ, M,σ→φ).

iii) Appr (Γ, M[N/x]P,σ)⇒ Appr (Γ, (λx.M)NP,σ).

Proof: i) A ∈ A(xM1· · ·Mn) & Γ ⊢e A : σ→φ & A′ ∈ A(N) & Γ ⊢e A′ : σ

⇒ (2.7(i) & (→E) & A = ⊥) AA′ ∈ A(xM1· · ·MnN) & Γ ⊢e AA′ : φ.

ii) A ∈ A(Mz) & Γ,z:σ ⊢e A : φ & z ∈ fv (M)⇒ (2.7(ii))

a) A ≡ A′z & z ∈ fv (A′) & A′ ∈ A(M) & Γ,z:σ ⊢e A′z : φ⇒ (4.6)

A′ ∈ A(M) & Γ ⊢e A′ : σ→φ.

b) λz.A ∈ A(M) & Γ,z:σ ⊢e A : φ⇒ λz.A ∈ A(M) & Γ ⊢e λz.A : σ→φ.

iii) Since M[N/x]P =β (λx.M)NP, the result follows by Lemma 2.7(iii).

In order to prove that, for each term typeable in ‘⊢e’, an approximant can be found that
can be assigned the same type, a notion of computability is introduced.

Definition 6.3 (Computability predicate) The predicate Comp (Γ, M,ρ) is inductively de-
fined by:

Comp (Γ, M, ϕ) ⇐⇒ Appr (Γ, M, ϕ)

Comp (Γ, M,σ→φ) ⇐⇒ (Comp (Γ′, N,σ)⇒ Comp (∩{Γ, Γ′}, MN,φ))

Comp (Γ, M,φ1∩ · · ·∩φn) ⇐⇒ ∀ i ∈ n [Comp (Γ, M,φi)]

ACM Computing Surveys, 43(3) article 20, April 2011 28

Notice that Comp (Γ, M,ω) holds as special case of the third part.
We will now show that the computability predicate is closed for ‘≤e’, for which we first

show:

Lemma 6.4 i) If Comp (Γ, M,σ), and Γ′≤e Γ, then Comp (Γ′, M,σ).

ii) If Comp (Γ, M,σ), and σ≤e τ, then Comp (Γ, M,τ).

Proof: By straightforward induction on the definition of ‘≤e’.

We will now show that the computability predicate is closed for β-expansion

Lemma 6.5 Comp (Γ, M[N/x]P,σ)⇒ Comp (Γ, (λx.M)NP,σ).

Proof: By induction on the definition of Comp.

(σ = ϕ) : Comp (Γ, M[N/x]P, ϕ)⇒ Appr (Γ, M[N/x]P, ϕ)⇒ (6.2(iii))

Appr (Γ, (λx.M)NP, ϕ)⇒ Comp (Γ, (λx.M)NP, ϕ).

(σ = τ→φ) : Comp (Γ, M[N/x]P,τ→φ) ⇒ (6.3)

(Comp (Γ′, Q,τ)⇒ Comp (∩{Γ, Γ′}, M[N/x]PQ,φ)) ⇒ (IH)

(Comp (Γ′, Q,τ)⇒ Comp (∩{Γ, Γ′}, (λx.M)NPQ,φ)) ⇒ (6.3)

Comp (Γ, (λx.M)NP,τ→φ).

(σ = φ1∩ · · ·∩φn) : By induction.

The following theorem essentially shows that all term-variables are computable of any
type, and that all terms computable of a certain type have an approximant with that same
type.

Theorem 6.6 i) Appr (Γ, xM1· · ·Mn,ρ)⇒ Comp (Γ, xM1· · ·Mn,ρ).

ii) Comp (Γ, M,ρ)⇒ Appr (Γ, M,ρ).

Proof: Simultaneously by induction on the structure of types. The only interesting case
is when ρ = σ→τ; when ρ is a type-variable, the result is immediate and when it is an
intersection type, it is dealt with by induction.

i) Appr (Γ, xM1· · ·Mn,σ→φ) ⇒ (IH(ii))

(Comp (Γ′, N,σ)⇒ Appr (Γ, xM1· · ·Mn,σ→φ) & Appr (Γ′, N,σ)) ⇒ (6.2(i))

(Comp (Γ′, N,σ)⇒ Appr (∩{Γ, Γ′}, xM1· · ·MnN,φ)) ⇒ (IH(i))

(Comp (Γ′, N,σ)⇒ Comp (∩{Γ, Γ′}, xM1· · ·MnN,φ)) ⇒ (6.3)

Comp (Γ, xM1· · ·Mn,σ→φ).

ii) Comp (Γ, M,σ→φ) & z ∈ fv (M) ⇒ (IH(i))

Comp (Γ, M,σ→φ) & Comp ({z:σ},z,σ) & z ∈ fv (M) ⇒ (6.3)

Comp (∩{Γ,{z:σ}}, Mz,φ) & z ∈ fv (M) ⇒ (IH(ii))

Appr (∩{Γ,{z:σ}}, Mz,φ) & z ∈ fv (M) ⇒ (6.2(ii))

Appr (Γ, M,σ→φ).

Notice that, as a corollary of the first of these two results, we get that term-variables are
computable for any type:

Corollary 6.7 Comp ({x:σ}, x,σ), for all x,σ.

We now come to the main result of this section, which states that a computable extension
of a typeable term yields a computable object.

Theorem 6.8 (Replacement Theorem) If {x1:µ1, . . . , xn:µn} ⊢e M : σ, and, for every i∈ n, Comp (Γi, Ni,µi),
then Comp (∩nΓi, M[Ni/xi],σ).

ACM Computing Surveys, 43(3) article 20, April 2011 29

Proof: By induction on the structure of derivations; let {x1:µ1, . . . , xn:µn}= Γ0, and Γ′ =∩nΓi.

(Ax) : Then M ≡ xj, for some j ∈ n, µj≤e σ, and M[Ni/xi] ≡ xj[Ni/xi] ≡ Nj.

Comp (Γj, Nj,µj) ⇒ (µj≤e σ & 6.4)

Comp (Γj, Nj,σ) ⇒ (Γ′≤e Γj & 6.4)

Comp (Γ′, Nj,σ).

(→I) : Then M ≡ λy.M′, σ = ρ→φ, and Γ0,y:ρ ⊢e M′ : φ.
∀ i ∈ n [Comp (Γi, Ni,µi)] & Γ0,y:ρ ⊢e M′ : φ ⇒ (IH & 6.4(i))

(Comp (Γ′, N,ρ)⇒ Comp (∩{Γ′, Γ′}, M′[Ni/xi, N/y],φ)) ⇒ (6.5)

(Comp (Γ′, N,ρ)⇒ Comp (∩{Γ′, Γ′}, (λy.M′[Ni/xi])N,φ)) ⇒ (6.3)

Comp (Γ′, (λy.M′)[Ni/xi],ρ→φ).

(→E) : Then M ≡ M1M2, Γ0 ⊢e M1 : ρ→σ, and Γ0 ⊢e M2 : ρ.
∀ i ∈ n [Comp (Γi, Ni,µi)] & Γ0 ⊢e M1 : ρ→σ & Γ0 ⊢e M2 : ρ ⇒ (IH)

Comp (Γ′, M1[Ni/xi],ρ→σ) & Comp (Γ′, M2[Ni/xi],ρ) ⇒ (6.3)

Comp (Γ′, (M1M2)[Ni/xi],σ).

(∩I) : Straightforward by induction.

We can now show the approximation result.

Theorem 6.9 (Approximation theorem) Γ ⊢e M : σ⇐⇒ ∃A ∈ A(M) [Γ ⊢e A : σ].

Proof: (⇒) : Γ ⊢e M : σ ⇒ (6.8 & 6.7)

Comp (Γ, M,σ) ⇒ (6.6(ii))

∃A ∈ A(M) [Γ ⊢e A : σ].

(⇐) : Let A ∈ A(M) be such that Γ ⊢e A : σ. Since A ∈ A(M), there is an M′ such that
M′ =β M and A ⊑ M′. Then, by Lemma 6.1, Γ ⊢e M′ : σ and, by Theorem 4.10, also
Γ ⊢e M : σ.

6.2 The relation between ‘⊢bcd’ and ‘⊢e’

We first show that ‘⊢e’ is the nucleus of ‘⊢bcd’ (see Section 3.5): we will show that, for any
derivation in ‘⊢bcd’, it is possible to find an equivalent derivation in ‘⊢e’.

The proof is based on the fact that for every σ ∈ Tbcd there is a σ∗ ∈ T (the normalised
version of σ) such that σ∼e σ∗, and the Approximation Theorem 6.9.

Definition 6.10 ((cf. [37])) i) For every σ ∈ Tbcd, σ∗ ∈ T is inductively defined as follows:

ϕ∗ = ϕ

(σ→τ)∗ = ∩n(σ∗→τi), if τ∗ = ∩nτi (n ≥ 0)

(∩nτi)
∗ = ∩mσi, where {σ1, . . . ,σm} = {τ∗i ∈ {τ∗1 , . . . ,τ∗n } | τ∗i = ω}

ii) ‘·∗’ is extended to contexts by: Γ∗ = {x:σ∗ | x:σ ∈ Γ}.

Notice that ω∗ = ω as special case of the third part, and that (σ→ω)∗ = ω, as special case of
the second. Since T is a proper subset of Tbcd, σ∗ is also defined for σ ∈ T .

Lemma 6.11 i) (c.f. [37]) For every σ ∈ Tbcd, σ∼σ∗.

ii) Tbcd/∼ is isomorphic to T /∼e.

iii) σ≤τ ⇒ σ∗≤e τ∗.

iv) σ ∈ T ⇒ σ = σ∗.

Proof: Easy.

ACM Computing Surveys, 43(3) article 20, April 2011 30

As in Section 10, the proof for the main theorem of this section is achieved by proving
first that, for every term in A typeable in ‘⊢bcd’, a derivation in ‘⊢e’ can be built for which
context and type in the conclusion are equivalent, and afterwards generalising this result to
arbitrary λ-terms. This depends on the approximation theorem for ‘⊢bcd’ (Property 3.16) and
Theorem 6.9.

We can directly link ‘⊢bcd’ and ‘⊢e’ on approximants via normalised types as follows:

Theorem 6.12 Γ ⊢bcd A : σ⇒ Γ∗ ⊢e A : σ∗.

Proof: By easy induction on the structure of terms in A, using Lemma 6.11(iii).

The relation between the two different notions of type assignment on normal terms can
now be formulated as follows:

Theorem 6.13 Γ ⊢bcd M : σ⇒ Γ∗ ⊢e M : σ∗.

Proof: Γ ⊢bcd M : σ ⇒ (3.16)

∃A ∈ A(M) [Γ ⊢bcd A : σ] ⇒ (6.12)

∃A ∈ A(M) [Γ∗ ⊢e A : σ∗] ⇒ (6.9)

Γ∗ ⊢e M : σ∗.

So, for every derivable judgement in ‘⊢bcd’ there exists an equivalent judgement in ‘⊢e’.
The last result allows us to show that ‘⊢bcd’ is a conservative extension of ‘⊢e’.

Theorem 6.14 (Conservativity) Let Γ just contain types in T , and σ ∈ T , then: if Γ ⊢bcd M : σ,
then Γ ⊢e M : σ.

Proof: Γ ⊢bcd M : σ⇒ (6.13) Γ∗ ⊢e M : σ∗⇒ (6.11(iv)) Γ ⊢e M : σ.

Obviously, since ‘⊢e’ is a subsystem of ‘⊢bcd’, the implication in the other direction also
holds: if Γ ⊢e M : σ, then Γ ⊢bcd M : σ.

6.3 Characterisation of (head) normalisation

Using the approximation result, the following head-normalisation result becomes easy to
show.

Theorem 6.15 (Head-normalisation) ∃Γ,φ [Γ ⊢e M : φ]⇐⇒ M has a head-normal form.

Proof: (⇒) : If Γ ⊢e M : φ, then, by Theorem 6.9, there exists A ∈ A(M) such that Γ ⊢e A : φ.
By Definition 2.5, there exists M′ =β M such that A ⊑ M. Since φ ∈ Ts, A ≡⊥, so A is
either λx.A1 or xA1· · ·An, with n ≥ 0. Since A ⊑ M′, M′ is either λx.M1, or xM1· · ·Mn.
Then M has a head-normal form.

(⇐) : If M has a head-normal form, then there exists M′ =β M such that M′ is either λx.M1

or xM1· · ·Mn, with Mi ∈Λ, for all i ∈ n. Then either:

a) M′ ≡ λx.M1. Since M1 is in head-normal form, by induction there are Γ,φ such that
Γ ⊢e M1 : φ. If x:τ ∈ Γ, then Γ\x ⊢e λx.M1 : τ→φ; otherwise Γ ⊢e λx.M1 : ω→φ.

b) M′ ≡ xM1· · ·Mn, (n ≥ 0). Then {x:ω→·· ·→ω→φ} ⊢e xM1· · ·Mn : φ.

So there exists Γ,φ such that Γ ⊢e M′ : φ, and, by Theorem 4.10, we get Γ ⊢e M : φ.

To prepare the characterisation of normalisability by assignable types, first we prove that
a term in λ⊥-normal form is typeable without ω, if and only if it does not contain ⊥. This
forms the basis for the result that all normalisable terms are typeable without ω.

Lemma 6.16 i) If Γ ⊢e A : σ and Γ,σ are ω-free, then A is ⊥-free.

ii) If A is ⊥-free, then there are ω-free Γ and σ, such that Γ ⊢e A : σ.

ACM Computing Surveys, 43(3) article 20, April 2011 31

Proof: By induction on A.

i) As before, only the part σ = φ ∈ Ts is shown.

(A ≡ ⊥) : Impossible, since ⊥ is only typeable by ω.

(A ≡ λx.A′) : Then φ = ρ→ψ, and Γ, x:ρ ⊢e A : ψ. Since Γ,φ are ω-free, so are Γ, x:ρ and ψ,
so, by induction, A′ is ⊥-free, so also λx.A′ is ⊥-free.

(A ≡ xA1· · ·An) : Then, by (→E) and (Ax), there are σi,τi (i ∈ n),ψ, such that Γ ⊢e Ai : φi

for all i ∈ n, x:τ1→·· ·→τn→ψ ∈ Γ, and τ1→·· ·→τn→ψ≤e σ1→·· ·→σn→ψ. So,
especially, for every i ∈ n, σi≤e τi. By Theorem 4.7, also Γ ⊢e Ai : τi, for every i ∈ n.
Since each τi occurs in Γ, all are ω-free, so by induction each Ai is ⊥-free. Then also
xA1· · ·An is ⊥-free.

ii) (A ≡ λx.A′) : By induction there are Γ,ψ such that Γ ⊢e A′ : ψ and Γ,ψ are ω-free. If x
does not occur in Γ, take an ω-free σ ∈ T . Otherwise, there exist x:τ ∈ Γ, and τ is
ω-free. In any case, Γ\x ⊢e λx.A′ : τ→ψ, and Γ\x and τ→ψ are ω-free.

(A≡ xA1· · ·An, with (n ≥ 0)) : By induction there are Γi,σi (i ∈ n) such that, for every i ∈ n,
Γi ⊢e Ai : σi, and Γi,σi are ω-free. Take any φ strict, such that ω does not occur in φ,
and Γ = ∩nΓi ∩ {x:σ1→·· ·→σn→φ}. Then Γ ⊢e xA1· · ·An : φ, and Γ and φ are ω-
free.

Notice that, by construction, in part (ii), the type constant ω is not used at all in the deriva-
tion, a fact we need in the proof for Lemma 8.3, in support of the strong normalisation result,
Theorem 8.7.

Now, as shown in [3] for ‘⊢s’ and in [15] for ‘⊢bcd’, it is possible to prove that we can
characterise normalisation.

Theorem 6.17 (Normalisation) ∃Γ,σ [Γ ⊢e M : σ & Γ,σ ω-free]⇐⇒ M has a normal form.

Proof: (⇒) : If Γ ⊢e M : σ, then, by Theorem 6.9, there exists A ∈ A(M) such that Γ ⊢e A : σ.
Then, by Lemma 6.16(i), this A is ⊥-free. By Definition 2.5, there exists M′ =β M such
that A ⊑ M′. Since A is ⊥-free, we have A ≡ M′, so M′ itself is in normal form, so,
especially, M has a normal form.

(⇐) : If M′ is the normal form of M, then it is a ⊥-free approximate normal form. Then,
by Lemma 6.16(ii), there are ω-free Γ,σ such that Γ ⊢e M′ : σ, and, by Theorem 4.10,
Γ ⊢e M : σ.

As for the fact that typeability per se does not guarantee termination, consider the follow-
ing.

Example 6.18 Take Θ = λxy.y(xxy), then ΘΘ (Turing’s fixed-point combinator) is typeable.
First we derive D1 (where Γ = {x:(α→β→γ)∩α,y:(γ→δ)∩β}):

Γ ⊢ y : γ→δ

Γ ⊢ x : α→β→γ Γ ⊢ x : α
(→E)

Γ ⊢ xx : β→γ Γ ⊢ y : β
(→E)

Γ ⊢ xxy : γ
(→E)

Γ ⊢ y(xxy) : δ
(→I)

B\y ⊢ λy.y(xxy) : ((γ→δ)∩β)→δ
(→I)

⊢Θ : ((α→β→γ)∩α)→((γ→δ)∩β)→δ

Let τ = ((α→β→γ)∩α)→((γ→δ)∩β)→δ (i.e. the type derived in D1), then we can derive
D2:

ACM Computing Surveys, 43(3) article 20, April 2011 32

x:τ,y:ω→φ ⊢ y : ω→φ
(∩I)

x:τ,y:ω→φ ⊢ xxy : ω
(→E)

x:τ,y:ω→φ ⊢ y(xxy) : φ
(→I)

x:τ ⊢ λy.y(xxy) : (ω→φ)→φ
(→I)

⊢Θ : τ→(ω→φ)→φ

Notice that, in fact, the type τ is irrelevant here; since x occurs only in a subterm that is
typed with ω, any type for x could be used here. By rule (→E) we can now construct:

D2

⊢Θ : τ→(ω→φ)→φ

D1

⊢Θ : τ
(→E)

⊢ΘΘ : (ω→φ)→φ

Notice that this term is not strongly normalisable, since

ΘΘ→β λy.(ΘΘy)→→β λy.(y(ΘΘy))→→β · · · .

so typeability does not enforce termination.

The problem is more subtle than that, however. One of the roles of ω in the proofs above
is to cover terms that will disappear during reduction. In view of the normalisation results
above, a natural thought is to assume that, when not allowing a redex to occur in a subterm
typed with ω, this would ensure termination. This is not the case.

Example 6.19 Notice that, in the derivation D :: ⊢e ΘΘ : (ω→φ)→φ constructed above, there
occurs only one redex in ΘΘ, and that this redex is not typed with ω. We can now type
λy.(ΘΘy) as follows:

D

y:ω→φ ⊢ΘΘ : (ω→φ)→φ y:ω→φ ⊢ y : ω→φ

y:ω→φ ⊢ΘΘy : φ

⊢ λy.(ΘΘy) : (ω→φ)→φ

Again, the redex is not covered with ω. We can even derive:

Γ ⊢ y : φ→ψ

D

Γ ⊢ΘΘ : (ω→φ)→φ Γ ⊢ y : ω→φ

Γ ⊢ΘΘy : φ

Γ ⊢ y(ΘΘy) : ψ

⊢ λy.(y(ΘΘy)) : (φ→ψ)∩(ω→φ)→ψ

(where Γ = y:(φ→ψ)∩(ω→φ)) and again, the redex is not covered with ω; we can repeat
this construction, in fact, for all the reducts of ΘΘ.

We will return to this example in Section 9.

7 Semantics and completeness for essential type assignment

As was shown in [15] for ‘⊢bcd’ (see Property 3.15), in this section we will show that ‘⊢e’ is
sound and complete with respect to the simple type semantics; a similar result was shown
in [3] for ‘⊢s’, albeit with respect to inference type semantics.

ACM Computing Surveys, 43(3) article 20, April 2011 33

7.1 The Essential Filter model

As in [15] (see Definition 3.12), a filter λ-model can be constructed, where terms will be inter-
preted by their assignable types. First we define filters as sets of types closed for intersection
and upward closed for ‘≤e’.

Definition 7.1 (Essential Filters) i) A subset d of T is an essential filter if and only if:

φi ∈ d (∀i ∈ n,n≥ 0) ⇒ φ1∩ · · ·∩φn ∈ d

τ ∈ d & τ≤e σ ⇒ σ ∈ d

ii) If V is a subset of T , then ↑
e
V, the essential filter generated by V, is the smallest essential

filter that contains V, and ↑
e
σ = ↑

e
{σ}.

iii) The domain Fe is defined by: Fe = {d ⊆ T | d is an essential filter}. Application on Fe

is defined by:

d · e = ↑
e
{φ | ∃σ ∈ e [σ→φ ∈ d]}.

Notice that this definition is much the same as Definition 3.12, with the exception of the last
part, where the above definition forces the creation of a filter. Contrary to the case for ‘⊢bcd’,
application must be forced to yield filters, since in each arrow type scheme σ→φ ∈ T , φ is
strict, and filters need to be closed for intersection.
〈Fe,⊆〉 is a cpo and henceforward it will be considered with the corresponding Scott

topology. Notice that, as a BCD filter, an essential filter is never empty since, for all d, ω ∈ d
by the first clause of Definition 7.1(i), and that an essential filter is a BCD filter, but not
vice-versa.

For essential filters the following properties hold:

Lemma 7.2 i) σ ∈ ↑
e
τ ⇐⇒ τ≤e σ.

ii) σ ∈ ↑
e
{φ | Γ ⊢e M : φ} ⇐⇒ Γ ⊢e M : σ.

Proof: Easy.

In particular, by part (ii), {σ | Γ ⊢e M : σ} ∈ Fe.

Definition 7.3 The domain constructors F :Fe→[Fe→Fe] and G : [Fe→Fe]→Fe are defined
by:

F d e = d · e

G f = ↑
e
{σ→φ | φ ∈ f (↑

e
σ)}

It is easy to check that F and G are continuous.

Theorem 7.4 (Filter model) 〈Fe, ·, F, G〉 is a λ-model.

Proof: By [14].5.4.1 it is sufficient to prove that F◦G = Id[Fe→Fe].

F◦G f d = F (G f) d = F (↑
e
{σ→φ | φ ∈ f (↑

e
σ)}) d =

↑
e
{ψ | ∃ ρ ∈ d [ρ→ψ ∈ ↑

e
{σ→φ | φ ∈ f (↑

e
σ)}]} = (7.2(i))

↑
e
{ψ | ∃ ρ ∈ d [ψ ∈ f (↑

e
ρ)]} = f (d).

Definition 7.5 (Term interpretation) i) LetM be a λ-model, and ξ be a valuation of term-

variables in M; ⌈⌈·⌋⌋ξ
M

, the interpretation of terms in M via ξ is inductively defined by:

⌈⌈x⌋⌋ξ
M = ξ(x)

⌈⌈MN⌋⌋ξ
M = F⌈⌈M⌋⌋ξ

M⌈⌈N⌋⌋ξ
M

⌈⌈λx.M⌋⌋ξ
M = G(λλ d ∈M.⌈⌈M⌋⌋Mξ(d/x))

ACM Computing Surveys, 43(3) article 20, April 2011 34

ii) Γξ = {x:σ | σ ∈ ξ(x)}.

Since Fe is the model studied here, ⌈⌈·⌋⌋ξ will stand for ⌈⌈·⌋⌋
FE

ξ . Notice that Γξ is not really a
context, since it can contain infinitely many statements with subject x; however, for all design
and purposes, it can be regarded as one, accepting the concept of an infinite intersection.

Theorem 7.6 For all M,ξ: ⌈⌈M⌋⌋ξ = {σ | Γξ ⊢e M : σ}.

Proof: By induction on the structure of λ-terms.

i) ⌈⌈x⌋⌋ξ = ξ(x). If σ ∈ ξ(x), then certainly Γξ ⊢e x : σ. Assume Γξ ⊢e x : σ; if x:ρ ∈ Γξ , then
ρ≤e σ, so σ ∈ ↑

e
ρ. Since ρ ∈ ξ(x), also ↑

e
ρ ⊆ ξ(x), so σ ∈ ξ(x).

ii) ⌈⌈MN⌋⌋ξ = F ⌈⌈M⌋⌋ξ ⌈⌈N⌋⌋ξ = ⌈⌈M⌋⌋ξ · ⌈⌈N⌋⌋ξ = (IH)

{ρ | Γξ ⊢e M : ρ} · {ρ | Γξ ⊢e N : ρ} = (7.1(iii))

↑
e
{φ | ∃σ ∈ {ρ | Γξ ⊢e N : ρ} [σ→φ ∈ {ρ | Γξ ⊢e M : ρ}]} =

↑
e
{φ | ∃σ [Γξ ⊢e N : σ & Γξ ⊢e M : σ→φ]} = (→E)

↑
e
{φ | Γξ ⊢e MN : φ} = (7.2(ii))

{σ | Γξ ⊢e MN : σ}

iii) ⌈⌈λx.M⌋⌋ξ = G(λλ d ∈ Fe.⌈⌈M⌋⌋ξ(d/x)) = (IH)

G(λλ d ∈ Fe.{ρ | Γξ(d/x) ⊢e M : ρ}) =

↑
e
{τ→φ | φ ∈ (λλ d ∈ Fe.{ρ | Γξ(d/x) ⊢e M : ρ})(↑

e
τ)} =

↑
e
{τ→φ | φ ∈ {ρ | Γξ(↑eτ/x) ⊢e M : ρ}} =

↑
e
{τ→φ | Γξ(↑eτ/x) ⊢e M : φ} =

↑
e
{τ→φ | Γξ\x∪{x:ψ | ψ ∈ ↑

e
τ} ⊢e M : φ} = (7.2(i) & 4.5)

↑
e
{τ→φ | Γξ\x, x:τ ⊢e M : φ} = (→I)

↑
e
{τ→φ | Γξ\x ⊢e λx.M : τ→φ} = (4.4)

↑
e
{τ→φ | Γξ ⊢e λx.M : τ→φ} = ((→I) & 7.2(ii))

{σ | Γξ ⊢e λx.M : σ}.

7.2 Soundness and completeness of essential type assignment

We will now come to the proof for completeness of type assignment, as was also shown for
‘⊢bcd’ in [15]. A completeness result was also shown in [3], but for ‘⊢s’, and with respect to
an inference type semantics; the completeness result we show here is, as in [15], achieved
with respect to a simple type semantics.

The method followed in [15] for the proof of completeness of type assignment is to define
a type interpretation υ that satisfies: for all types σ, υ(σ) = {d ∈ F∩ | σ ∈ d}. The approach
taken here is to define a function, and to show that it is a simple type interpretation.

Definition 7.7 i) ν0 is defined by: ν0 (σ) = {d ∈ Fe | σ ∈ d}.

ii) ξΓ(x) = {σ ∈ T | Γ ⊢e x : σ} = ↑
e
τ, where x:τ ∈ Γ.

Lemma 7.8 σ≤e τ implies ν0(σ) ⊆ ν0(τ).

Proof: Easy.

Theorem 7.9 The map ν0 is a simple type interpretation.

Proof: It is sufficient to check the conditions of Definition 3.13:

(ν0(σ→φ) = {d | ∀ e ∈ ν0(σ) [d · e ∈ ν0(φ)]}) :

ACM Computing Surveys, 43(3) article 20, April 2011 35

∀ e [e ∈ ν0 (σ)⇒ d · e ∈ ν0 (φ)] ⇐⇒ (7.1(iii))

∀ e [e ∈ ν0 (σ)⇒ ↑
e
{ψ | ∃ ρ ∈ e [ρ→ψ ∈ d]} ∈ ν0 (φ)] ⇐⇒

∀ e [σ ∈ e⇒ φ ∈ ↑
e
{ψ | ∃ ρ ∈ e [ρ→ψ ∈ d]}] ⇐⇒ (φ ∈ Ts)

∀ e [σ ∈ e⇒ ∃ ρ ∈ e [ρ→φ ∈ d]] ⇐⇒ (⇒: take e = ↑
e
σ)

σ→φ ∈ d ⇐⇒

d ∈ ν0(σ→φ)

(ν0(σ∩τ) = ν0(σ)∩ν0(τ)) : Easy.

We start by showing a soundness result.

Theorem 7.10 (Soundness) Γ ⊢e M : σ⇒ Γ s M : σ.

Proof: By Definition 3.14, for all M,ξ,υ, if M,ξ,υ s Γ then M,ξ,υ s M : σ. This then means

that, if M,ξ,υ x:ρ for every x:ρ ∈ Γ, then M,ξ,υ s M : σ; so, we need to show: if ⌈⌈x⌋⌋ξ
M ∈

υ(ρ) for every x:ρ ∈ Γ, then ⌈⌈M⌋⌋ξ
M ∈ υ(σ).

We prove the property for the model Fe, by induction on the structure of derivations.

(Ax) : Then Γ ⊢e x : φ, so there exists x:ρ ∈ Γ such that ρ≤e φ. Assume ⌈⌈x⌋⌋ξ ∈ υ(ρ), then, by
Lemma 7.8, ⌈⌈x⌋⌋ξ ∈ υ(φ).

(→I) : Then σ = α→φ, so Γ ⊢e λy.M′ : α→φ, and also Γ,y:α ⊢e M′ : φ. Let e ∈ υ(α).
∀ x:τ ∈ Γ∪{y:α} [⌈⌈x⌋⌋ξ(e/y) ∈ υ(φ)] & Γ,y:α ⊢e M′ : φ ⇒ (IH)
⌈⌈M′⌋⌋ξ(e/y) ∈ υ(φ) ⇒ (7.6)

{ψ | Γξ(e/y) ⊢e M′ : ψ} ∈ υ(φ) ⇒ (→I)

↑
e
{ψ | ∃γ ∈ e [Γξ ⊢e λy.M′ : γ→ψ]} ∈ υ(φ) ⇒

↑
e
{ψ | ∃γ ∈ e [γ→ψ ∈ {ρ | Γξ ⊢e λy.M′ : ρ}]} ∈ υ(φ) ⇒ (7.1(iii))

{ρ | Γξ ⊢e λy.M′ : ρ} · e ∈ υ(φ).
So, for all e ∈ υ(α), we have shown that {ρ | Γξ ⊢e λy.M′ : ρ} · e ∈ υ(φ), so, by Defini-

tion 3.13, we get {ρ | Γξ ⊢e λy.M′ : ρ} ∈ υ(α→φ).

(→E) : Then σ = φ, M ≡ PQ, and there exists τ such that Γ ⊢e P : τ→φ and Γ ⊢e Q : τ.
∀ x:τ ∈ Γ [⌈⌈x⌋⌋ξ ∈ υ(τ)] & Γ ⊢e P : τ→φ & Γ ⊢e Q : τ ⇒ (IH)
⌈⌈P⌋⌋ξ ∈ υ(τ→φ) & ⌈⌈Q⌋⌋ξ ∈ υ(τ) ⇒ (7.6)

{ρ | Γξ ⊢e P : ρ} ∈ υ(τ→φ) & {ρ | Γξ ⊢e Q : ρ} ∈ υ(τ) ⇒ (→I)

{ρ | Γξ ⊢e P : ρ} ∈ {d | ∀ e ∈ υ(τ) [d · e ∈ υ(φ)]} & {ρ | Γξ ⊢e Q : ρ} ∈ υ(τ)⇒

{ρ | Γξ ⊢e P : ρ} · {ρ | Γξ ⊢e Q : ρ} ∈ υ(φ) ⇒ (7.1(iii))

↑
e
{ψ | ∃µ ∈ {ρ | Γξ ⊢e Q : ρ} [µ→ψ ∈ {ρ | Γξ ⊢e P : ρ}]} ∈ υ(φ) ⇒

↑
e
{ψ | ∃µ [Γξ ⊢e Q : ν & Γξ ⊢e P : µ→ψ]} ∈ υ(φ) ⇒ (→E)

↑
e
{ψ | Γξ ⊢e PQ : ψ} ∈ υ(φ) ⇒

{ρ | Γξ ⊢e PQ : ρ} ∈ υ(φ).

(∩I) : Then σ = φ1∩ · · ·∩φn, and, for i ∈ n, Γ ⊢e M : φi.
Then: ∀ x:τ ∈ Γ [⌈⌈x⌋⌋ξ ∈ υ(τ)] & ∀i ∈ n [Γ ⊢e M : φi] ⇒ (IH)

∀ i ∈ n [{ρ | Γξ ⊢e M : ρ} ∈ υ(φi)] ⇒

{ρ | Γξ ⊢e M : ρ} ∈ υ(φ1) ∩ · · · ∩ υ(φn) ⇒ (3.13)

{ρ | Γξ ⊢e M : ρ} ∈ υ(φ1∩ · · ·∩φn).

We need the following lemma in the proof below.

Lemma 7.11 i) Γ ⊢e M : σ⇐⇒ ΓξΓ
⊢e M : σ.

ii) Fe,ξΓ,ν0 s Γ.

Proof: i) Because, for every x, ξΓ(x) is a filter.

ACM Computing Surveys, 43(3) article 20, April 2011 36

ii) x:σ ∈ Γ⇒ (i) σ ∈ {τ | ΓξΓ
⊢e x : τ} ⇒ σ ∈ ⌈⌈x⌋⌋ξΓ

.
So ⌈⌈x⌋⌋ξΓ

∈ {d ∈ Fe | σ ∈ d} = ν0 (σ).

Since the interpretation of terms by their derivable types gives a λ-model, the following
corollary is immediate and an alternative proof for Theorem 4.10.

Corollary 7.12 If M =β N and Γ ⊢e M : σ, then Γ ⊢e N : σ.

Proof: Since Fe is a λ-model, if M =β N, then ⌈⌈M⌋⌋ξ = ⌈⌈N⌋⌋ξ , for any ξ, and, so {σ | Γξ ⊢e

M : σ} = {σ | Γξ ⊢e N : σ}; then, by Lemma 7.11(i), {σ | Γ ⊢e M : σ} = {σ | Γ ⊢e N : σ}.

We can now show our completeness result.

Theorem 7.13 (Completeness) Γ s M : σ⇒ Γ ⊢e M : σ.

Proof: Γ s M : σ ⇒ (3.14,7.11(ii) & 7.9)

Fe,ξΓ,ν0 s M : σ ⇒ (3.14)
⌈⌈M⌋⌋ξΓ

∈ ν0 (σ) ⇒ (7.7)

σ ∈ ⌈⌈M⌋⌋ξΓ
⇒ (7.6)

ΓξB
⊢e M : σ ⇒ (7.11(i))

Γ ⊢e M : σ.

7.3 Completeness for ‘⊢s’

[3] also shows that strict type assignment is sound and complete with respect to inference
type semantics: Γ M : σ ⇐⇒ Γ ⊢s M : σ. In order to achieve that, we need to do a bit more
work than in Section 7.2.

First of all, strict filters are defined as BCD filter or essential filters, but using ‘≤s’ rather
than ‘≤’ or ‘≤e’; the strict filter model Fs is then defined as in Definition 7.1, but using ‘↑

s
’,

the strict filter generator, to define application on strict filters and the domain constructor G.
The construction then follows the lines of Section 7.1 and 7.2, but for the part where the type
interpretation plays a role.

Notice that the filter λ-models Fs and Fe are not isomorphic as complete lattices, since,
for example, in Fe the filter ↑(σ∩τ)→σ is contained in ↑σ→σ, but in Fs the filter ↑

s
(σ∩τ)→σ

is not contained in ↑
s
σ→σ. Moreover, they are not isomorphic as λ-models since in Fe the

meaning of (λxy.xy) is contained in the meaning of (λx.x), while this does not hold in Fs.

Example 7.14 Notice that

⌈⌈λxy.xy⌋⌋
Fs = ↑

s
{ρ→α→φ | ∃σ′ [ρ≤s σ′→φ & σ≤s σ′]}

⌈⌈λx.x⌋⌋
Fs = ↑

s
{σ→ψ | σ≤s ψ}

and that (α→β)→β∩γ→β ∈ ⌈⌈λxy.xy⌋⌋
Fs , but (α→β)→β∩γ→β ∈ ⌈⌈λx.x⌋⌋

Fs .

Another difference is that, while the analogue of G in Fe chooses the minimal representative
of functions, this is not the case in Fs. Moreover, it is straightforward to show that Fs is
equivalent to Engeler’s model DA.

In [3], first it is shown that the map ν0 (Definition 7.7) is an inference type interpretation.

Theorem 7.15 The map ν0(σ) = {d ∈ Fs | σ ∈ d} is an inference type interpretation.

Proof: Observe that the neutral element ε in Fs is ⌈⌈λxy.xy⌋⌋
Fs . We check the conditions of

3.13.

ACM Computing Surveys, 43(3) article 20, April 2011 37

i) ∀ e [e ∈ ν0(σ)⇒ d · e ∈ ν0(φ)] ⇒

∀ e [e ∈ ν0(σ)⇒ ε · d · e ∈ ν0(φ)] ⇒ (take e = ↑
e
σ)

φ ∈ ε · d · ↑
s
σ ⇒

∃ρ ∈ ↑
s
σ,α ∈ d, β [α≤s β→φ & ρ≤s β] ⇒

∃α ∈ d, β [α≤s β→φ & σ≤s β] ⇒

σ→φ ∈ ↑
s
{ρ→ψ | ∃α ∈ d, β [α≤s β→ψ & ρ≤s β]} ⇒

σ→φ ∈ ↑
s
{β | ∃α ∈ d [α→β ∈ ε]} ⇒

ε · d ∈ ν0(σ→φ).

ii) Easy.

iii) Trivial.

Notice that although ν0(σ∩τ) = ν0(τ∩σ), the sets ν0((σ∩τ)→σ) and ν0((τ∩σ)→σ) are in-
compatible. We can only show that both contain

{ǫ · d | ∀e [e ∈ ν0(σ)∩ν0(τ)⇒ d · e ∈ ν0(σ)]}

and are both contained in

{d | ∀e [e ∈ ν0(σ)∩ν0(τ)⇒ d · e ∈ ν0(σ)]}.

However, it is not difficult to prove that ε · ↑(σ∩τ)→σ = ε · ↑(τ∩σ)→σ, so the filters
↑(σ∩τ)→σ and ↑(τ∩σ)→σ represent the same function.

Using the fact that ν0 is an inference type interpretation, in a way similar to that of the
previous section, [3] shows Γ ⊢s M : σ ⇐⇒ Γ M : σ (remark that the double turnstile is not
subscripted).

8 Strong normalisation result for the system without ω

The other well-know result ‘Γ ⊢e M : σ without using ω⇐⇒M is strongly normalisable’ also holds
for ‘⊢e’, but needs a separate proof in that it is not a consequence of the Approximation The-
orem 6.9. The proof for this property in [3] for ‘⊢bcd’ follows very much the structure of the
proof of Theorem 6.9; the proof we give here is new, but still uses a notion of computability;
an alternative proof appeared in [11] which will be presented in Section 9.4. Alternatively,
see [10] for a proof of this property set within ‘⊢s’, where it is a direct consequence of the
result that cut-elimination is strongly normalisable; it is this technique that will be extended
to ‘⊢e’ in Section 9.

8.1 Intersection Type Assignment without ω

We will prove that the set of all terms typeable by the system without ω is the set of all
strongly normalisable terms. We start by defining that notion of type assignment formally.

Definition 8.1 i) The set of strict ω-free intersection types, ranged over by σ, τ, . . . and its
subset of strict (intersection) ω-free types ranged over by φ,ψ, . . ., are defined through the
grammar:

φ,ψ ::= ϕ | σ→ψ

σ,τ ::= φ1∩ · · ·∩φn (n ≥ 1)

We will use T−ω− for the set of all ω-free types. (Notice that the only difference between
this definition and Definition 4.1 is that n≥1 in φ1∩ · · ·∩φn rather than n≥0.)

ACM Computing Surveys, 43(3) article 20, April 2011 38

ii) On T−ω− the relation ‘≤e’ is as defined in Definition 4.1, except for the second alternative.

∀ i ∈ n [φ1∩ · · ·∩φn ≤e φi] (n≥1)

∀ i ∈ n [σ≤e φi] ⇒ σ≤e φ1∩ · · ·∩φn (n≥1)

ρ≤e σ & φ≤e ψ ⇒ σ→φ≤e ρ→ψ

and the relation ‘∼e’ is the equivalence relation generated by ‘≤e’; the relations ‘≤e’ and
‘∼e’ are extended to contexts as before.

iii) We write Γ ⊢−ω− M : σ if this statement is derivable from Γ, using only ω-free types and
the derivation rules of ‘⊢e’ (so, for rule (∩I), n ≥ 1).

For the ω-free system, the following properties hold:

Lemma 8.2 Γ ⊢−ω− x : σ ⇐⇒ ∃ ρ ∈ T [x:ρ ∈ Γ & ρ≤e σ]

Γ ⊢−ω− MN : φ ⇐⇒ ∃ τ [Γ ⊢−ω− M : τ→φ & Γ ⊢−ω− N : τ]

Γ ⊢−ω− λx.M : φ ⇐⇒ ∃ ρ,ψ [φ = ρ→ψ & Γ, x:ρ ⊢−ω− M : ψ]

Γ ⊢−ω− M : σ & Γ′≤e Γ & Γ′ ω-free ⇒ Γ′ ⊢−ω− M : σ

D :: Γ ⊢−ω− M : σ ⇒ D :: Γ ⊢e M : σ

Proof: Easy.

The following lemma is needed in the proof of Theorem 8.7.

Lemma 8.3 If A is ⊥-free, then there are Γ, and φ, such that Γ ⊢−ω− A : φ.

Proof: By Lemma 6.16, and the observation made after the proof of that lemma.

8.2 Strong Normalisation implies Typeability

The following lemma shows a subject expansion result for the ω-free system.

Lemma 8.4 If Γ ⊢−ω− M[N/x] : σ and Γ ⊢−ω− N : ρ, then Γ ⊢−ω− (λx.M)N : σ.

Proof: As usual, we focus on the case that σ = φ ∈ Ts, the case that σ is an intersection is just
a generalisation. We can assume that x does not occur in Γ, and proceed by induction on the
structure of M.

(M ≡ x) : Γ ⊢−ω− N : φ⇒ Γ ⊢−ω− (λx.x)N : φ

(M ≡ y = x) : Γ ⊢−ω− y : φ & Γ ⊢−ω− N : ρ ⇒ (8.2 & (→I))

Γ ⊢−ω− λx.y : ρ→φ & Γ ⊢−ω− N : ρ ⇒ (→E)

Γ ⊢−ω− (λx.y)N : φ.

(M ≡ λy.M′) : Then (λy.M′)[N/x] ≡ λy.(M′[N/x]), and φ = δ→ψ.
Γ ⊢−ω− λy.(M′[N/x]) : δ→ψ & Γ ⊢−ω− N : ρ ⇒ (→I)

Γ,y:δ ⊢−ω− M′[N/x] : ψ & Γ ⊢−ω− N : ρ ⇒ (IH)

Γ,y:δ ⊢−ω− (λx.M′)N : ψ ⇒ (→E)

∃ τ [Γ,y:δ ⊢−ω− λx.M′ : τ→ψ & Γ,y:δ ⊢−ω− N : τ] ⇒ ((→I) & y ∈ fv (N))

∃ τ [Γ,y:δ, x:τ ⊢−ω− M′ : ψ & Γ ⊢−ω− N : τ] ⇒ (→I)

∃ τ [Γ ⊢−ω− λxy.M′ : τ→δ→ψ & Γ ⊢−ω− N : τ] ⇒ (→E)

Γ ⊢−ω− (λxy.M′)N : δ→ψ

(M ≡ M1M2) : Then (M1M2)[N/x] ≡ M1[N/x]M2[N/x].

ACM Computing Surveys, 43(3) article 20, April 2011 39

Γ ⊢−ω− M1[N/x]M2[N/x] : φ & Γ ⊢−ω− N : ρ ⇒ (→E)

∃ τ [Γ ⊢−ω− M1[N/x] : τ→φ & Γ ⊢−ω− M2[N/x] : τ] & Γ ⊢−ω− N : ρ ⇒ (IH)

∃ τ [Γ ⊢−ω− (λx.M1)N : τ→σ & Γ ⊢−ω− (λx.M2)N : τ] ⇒ ((→E) & (→I))

∃ ρ1,ρ2,τ [Γ, x:ρ1 ⊢−ω− M1 : τ→φ & Γ ⊢−ω− N : ρ1 & Γ, x:ρ2 ⊢−ω− M2 : τ & Γ ⊢−ω− N : ρ2]

⇒ ((∩I) & 8.2)

∃ ρ1,ρ2 [Γ, x:ρ1∩ρ2 ⊢−ω− M1M2 : φ & Γ ⊢−ω− N : ρ1∩ρ2] ⇒ (→I)

∃ ρ1,ρ2 [Γ ⊢−ω− λx.(M1M2) : ρ1∩ρ2→φ & Γ ⊢−ω− N : ρ1∩ρ2] ⇒ (→E)

Γ ⊢−ω− (λx.(M1M2))N : φ].

Notice that the condition Γ ⊢−ω− N : ρ in the formulation of the lemma is essential and is used
in part M ≡ y = x. As a counter example, take the two λ-terms λyz.(λb.z)(yz) and λyz.z.
Notice that the first strongly reduces to the latter. We know that

z:σ,y:τ ⊢−ω− z : σ

but it is impossible to give a derivation for (λb.z)(yz) : σ from the same context without using
ω. This is caused by the fact that we can only type (λb.z)(yz) in the system without ω from
a context in which the predicate for y is an arrow type. We can, for example, derive

y:σ→τ,z:σ,b:τ ⊢ z : σ
(→I)

y:σ→τ,z:σ ⊢ λb.z : τ→σ

y:σ→τ,z:σ ⊢ y : σ→τ y:σ→τ,z:σ ⊢ z : σ
(→E)

y:σ→τ,z:σ ⊢ yz : τ
(→E)

y:σ→τ,z:σ ⊢ (λb.z)(yz) : σ

We can therefore only state that we can derive ⊢−ω− λyz.(λb.z)(yz) : (σ→τ)→σ→σ and ⊢−ω−
λyz.z : τ→σ→σ, but we are not able to give a derivation without ω for the statement ⊢−ω−
λyz.(λb.z)(yz) : τ→σ→σ. So the type assignment without ω is not closed for β-equality.
Notice that in ‘⊢e’ we can derive:

y:τ,z:σ,b:ω ⊢ z : σ
(→I)

y:τ,z:σ ⊢ λb.z : ω→σ
(∩I)

y:τ,z:σ ⊢ yz : ω
(→E)

y:τ,z:σ ⊢ (λb.z)(yz) : σ
(→I)

y:τ ⊢ λz.(λb.z)(yz) : σ→σ
(→I)

⊢ λyz.(λb.z)(yz) : τ→σ→σ

We will now show that all strongly normalisable terms are typeable in ‘⊢−ω−’. The proof
of the crucial lemma for this result as presented below (Lemma 8.6) is due to Betti Venneri,
adapted to ‘≤e’, and goes by induction on the left-most outer-most reduction path.

Definition 8.5 An occurrence of a redex R = (λx.P)Q in a term M is called the left-most
outer-most redex of M (lor(M)), if and only if:

i) there is no redex R′ in M such that R′ = C[R] (outer-most);

ii) there is no redex R′ in M such that M = C0 [C1 [R
′]C2 [R]] (left-most).

M→lor N is used to indicate that M reduces to N by contracting lor(M).

The following lemma formulates a subject expansion result for ‘⊢−ω−’ with respect to left-
most outer-most reduction. A proof for this property in the context of ‘⊢s’ appeared in [10].

Lemma 8.6 Let M→lor N, lor(M) = (λx.P)Q, Γ ⊢−ω− N : σ, and Γ′ ⊢−ω− Q : τ, then there exists Γ1,ρ
such that σ≤e ρ, and Γ1 ⊢−ω− M : ρ.

ACM Computing Surveys, 43(3) article 20, April 2011 40

Proof: By induction on the structure of types, of which only the part σ ∈ Ts will be shown.
This part follows by induction on the structure of terms.

Note that M ≡ λx1 · · · xk.VP1 · · ·Pn (k,n≥0), where either

i) V is a redex (λy.P)Q, so lor(M) = V and N ≡ λx1 · · · xk.(P[Q/y])P1 · · ·Pn, or

ii) V ≡ y, so there is an j ∈ n such that lor(M) = lor(Pj), and Pj→lor P′, and
N ≡ λx1 · · · xk.yP1 · · ·P′ · · ·Pn

In either case, we have, by Lemma 8.2, that there are αi (i ∈ k), γj (j ∈ n), and φ such that

σ = α1→·· ·→αk→φ, Γ0 ⊢−ω− V ′ : γ1→·· ·→γn→φ, and Γ0 ⊢−ω− Pi : γi (i ∈ n),

where Γ0 = Γ, x1:α1, . . . , xk:αk, and V ′ is either P[Q/y] or y. So:

i) V ′ ≡ P[Q/y]. Let Γ1 = Γ′, then, by Lemma 8.4,

∩{Γ0, Γ1} ⊢−ω− (λy.P)Q : γ1→·· ·→γn→φ.

ii) V ′ ≡ y. Then, by induction, there are Γ′,ρ such that γj≤e ρ, and Γ′ ⊢−ω− Pj : ρ. Take Γ1 =
Γ′,y:γ1→·· · ρ · · ·→γn→φ, then

∩{Γ0, Γ1} ⊢−ω− y : γ1→·· · ρ · · ·→γn→φ.

In either case, ∩{Γ0, Γ1} ⊢−ω− VP1 · · ·Pn : φ. Let, for i ∈ k, xi:βi ∈ ∩{Γ0, Γ1} then

∩{Γ0, Γ1}\x1, . . . , xk ⊢−ω− λx1 · · · xk.yP1 · · ·Pn : β1→·· ·→βk→φ,

and, in particular, since βi≤e αi for i ∈ n, α1→·· ·→αk→φ≤e β1→·· ·→βk→φ.

We can now show that all strongly normalisable terms are typeable in ‘⊢−ω−’.

Theorem 8.7 If M is strongly normalisable, then Γ ⊢−ω− M : σ for some Γ,σ.

Proof: By induction on the maximum of the lengths of reduction sequences for a strongly
normalisable term to its normal form (denoted by #(M)).

i) If #(M) = 0, then M is in normal form, and by Lemma 8.3, there exist Γ and φ such that
Γ ⊢−ω− M : φ.

ii) If #(M)≥1, so M contains a redex, then let M→lor N by contracting (λx.P)Q. Then
#(N) < #(M), and #(Q) < #(M) (since Q is a proper subterm of a redex in M), so by
induction Γ ⊢−ω− N : σ and Γ′ ⊢−ω− Q : τ, for some Γ, Γ′,σ, and τ. Then, by Lemma 8.6, there
exist Γ1, ρ such that Γ1 ⊢−ω− M : ρ.

8.3 Strong normalisation

We shall prove that, when ω is removed from the system, every typeable term is strongly
normalisable. This will be done using Tait’s method. We use SN (M) to express that M is
strongly normalisable, and SN = {M | SN (M)}.

In the sequel, we will accept the following without proof:

Fact 8.8 i) If SN (xMi) and SN(N), then SN(xMiN).

ii) If SN (M[N/x]P) and SN(N), then SN((λx.M)NP).

Definition 8.9 We define the set Red (ρ) inductively over types by:

Red(ϕ) = SN

Red (σ→φ) = {M | ∀N [N ∈ Red (σ)⇒ MN ∈ Red(φ)]}

Red (φ1∩ · · ·∩φn) =
⋂

1≤i≤n Red (φi).

ACM Computing Surveys, 43(3) article 20, April 2011 41

Notice that this notion of computability is not defined in terms of typeability at all; this is
the main difference between the structure of the proof here and that presented in [3].

We now show that reducibility implies strongly normalisability, and that all term-variables
are reducible. For the latter, we need to show that all typeable strongly normalisable terms
that start with a term-variable are reducible. The result then follows from the fact that each
term-variable is trivially strongly normalisable and that we can type any term-variable with
any type.

Lemma 8.10 For all ρ,

i) Red (ρ) ⊆ SN .

ii) SN(xN)⇒ xN ∈ Red (ρ).

Proof: By simultaneous induction on the structure of types, using Definition 8.9.

i) (ϕ) : Immediate.

(σ→φ) : M ∈ Red (σ→φ) ⇒ (IH(ii))

x ∈ Red(σ) & M ∈ Red (σ→φ) ⇒ (8.9)

Mx ∈ Red (φ) ⇒ (IH(i))

Mx ∈ SN ⇒

M ∈ SN .

(φ1∩ · · ·∩φn) : M ∈ Red (φ1∩ · · ·∩φn)⇒ (8.9) M ∈ Red (φi)⇒ (IH(i)) M ∈ SN .

ii) (ϕ) : SN(xN)⇒ (8.9) xN ∈ Red(ϕ).

(σ→φ) : SN(xN) ⇒ (8.9 & IH(i))

P ∈ Red (σ)⇒ SN (xN) & SN (P) ⇒ (8.8(i))

P ∈ Red (σ)⇒ SN (xNP) ⇒ (IH(ii))

P ∈ Red (σ)⇒ xNP ∈ Red(φ) ⇒ (8.9)

xN ∈ Red(σ→φ)

(φ1∩ · · ·∩φn) : SN(xN) ⇒ (IH(ii))

∀ i ∈ n [xN ∈ Red(φi)] ⇒

xN ∈ ∩nRed(φi) ⇒ (8.9)

xN ∈ Red(φ1∩ · · ·∩φn).

The following result, stating that all term-variables are reducible of any type, follows
immediately from part (ii):

Corollary 8.11 For all x, ρ: x ∈ Red(ρ).

We will now show that the reducibility predicate is closed for ‘≤e’.

Lemma 8.12 Take σ and τ such that σ≤e τ. Then Red (σ) ⊆ Red(τ).

Proof: By straightforward induction on the definition of ‘≤e’.

(φ1∩ · · ·∩φn≤e φi (i ∈ n)) : Red (φ1∩ · · ·∩φn) = (8.9)
⋂

i∈n Red (φi) ⊆ Red(φi).

(τ≤e φi (∀i ∈ n)⇒ τ≤e φ1∩ · · ·∩φn) : M ∈ Red(τ)⇒ (IH)

M ∈ Red(φi) (∀ i ∈ n)⇒ M ∈
⋂

i∈n Red (φi)⇒ (8.9) M ∈ Red (φ1∩ · · ·∩φn)

ACM Computing Surveys, 43(3) article 20, April 2011 42

(ρ≤e σ & φ≤e ψ⇒ σ→φ≤e ρ→ψ) : M ∈ Redσ→φ ⇒ (8.9)

(N ∈ Red(σ)⇒ MN ∈ Red(φ)) ⇒

(N ∈ Red(ρ)⇒ (IH) N ∈ Red (σ)⇒

MN ∈ Red (φ)⇒ (IH) MN ∈ Red (ψ)) ⇒

(N ∈ Red(ρ)⇒ MN ∈ Red(ψ)) ⇒ (8.9)

M ∈ Red (ρ→ψ).

We will now show that the reducibility predicate is closed for subject expansion.

Lemma 8.13 M[N/x]P ∈ Red(σ) & N ∈ Red (ρ)⇒ (λx.M)NP ∈ Red(σ).

Proof: By induction on the structure of types.

(ϕ) : M[N/x]P ∈ Red(ϕ) & N ∈ Red(ρ) ⇒ (8.9)

SN(M[N/x]P) & SN(N) ⇒ (8.8(ii) & 8.10(i))

SN((λx.M)NP) ⇒ (8.9)

(λx.M)NP ∈ Red (ϕ)

(σ→φ) : M[N/x]P ∈ Red(σ→φ) & N ∈ Red(ρ) ⇒ (8.9)

Q ∈ Red(σ)⇒ M[N/x]PQ ∈ Red (φ) & N ∈ Red (ρ) ⇒ (IH)

Q ∈ Red(σ)⇒ (λx.M)NPQ ∈ Red(φ) ⇒ (8.9)

(λx.M)NP ∈ Red (σ→φ)

(φ1∩ · · ·∩φn) : Directly by induction and Definition 8.9.

We shall now prove our strong normalisation result by showing that every typeable term
is reducible. For this, we need to prove a stronger property: we will now show that if we
replace term-variables by reducible terms in a typeable term, then we obtain a reducible
term.

Theorem 8.14 (Replacement property) Let Γ = {x1:µ1, . . . , xn:µn}. If, for all i ∈ n, Ni ∈
Red (µi), and Γ ⊢−ω− M : σ, then M[Ni/xi] ∈ Red (σ).

Proof: By induction on the structure of derivations.

(Ax) : Then M ≡ xj, for some j ∈ n, µj≤e σ, and M[Ni/xi] ≡ xj[Ni/xi] ≡ Nj. From Nj ∈
Red (µj), by Lemma 8.12, also Nj ∈ Red (σ).

(→I) : Then M ≡ λy.M′, σ = ρ→φ, and Γ,y:ρ ⊢−ω− M′ : φ.

∀ i ∈ n [Ni ∈ Red (µi)] & Γ,y:ρ ⊢−ω− M′ : φ ⇒ (IH)

N ∈ Red (ρ)⇒ M′[Ni/xi, N/y] ∈ Red (φ) ⇒ (8.13)

N ∈ Red (ρ)⇒ (λy.M′[Ni/xi])N ∈ Red (φ) ⇒ (8.9)

(λy.M′)[Ni/xi] ∈ Red(ρ→φ).

(→E), (∩I) : Straightforward by induction and Definition 8.9.

We can now prove the main result.

Theorem 8.15 (Strong Normalisation) Any term typeable in ‘⊢−ω−’ is strongly normalisable.

Proof: Let Γ = {x1:µ1, . . . , xn:µn} such that Γ ⊢−ω− M : σ. By Corollary 8.11, for all i ∈ n, xi ∈
Red (µi). Then, by 8.14, M[xi/xi] ∈ Red(σ), so M itself is reducible of type σ. Strong normal-
isation for M then follows from Lemma 8.10(i).

This property can be shown also for the ω-free version of ‘⊢s’, in a way similar to the proof
above, but using ‘≤s’ rather than ‘≤e’.

ACM Computing Surveys, 43(3) article 20, April 2011 43

9 Strong normalisation for Derivation Reduction

In this section, we will define a notion of reduction on derivations of the essential type
assignment system, and show this notion to be strongly normalisable, as well as that all
other characterisation results are a consequence of this. The technique used is based on the
notion of cut-elimination developed in collaboration with Fernàndez for Term Rewriting [12],
which was later used for Combinator Systems in [13], and was also used for ‘⊢s’ in [10].

Strong normalisation of cut-elimination is a well established property in the area of logic
and has been studied profoundly in the past. In the area of type assignment for the λ-
calculus, the corresponding property is that of strong normalisation of derivation reduction
(also called cut-elimination in, for example, [15]), which mimics the normal reduction on
terms to which the types are assigned, and also this area has been well studied.

For intersection type assignment systems, proofs of strong normalisation of derivation
reduction have at best been indirect, i.e. obtained through a mapping from the derivations
into a logic by [50], where the property has been established before. Since in those logics
the type-constant ω cannot be adequately mapped, the intersection systems studied in that
way are ω-free. (There exists a logic that deals adequately with intersection and ω [32],
but strong normalisation of cut-elimination has not yet been shown for it.) This section will
present a proof for the property directly in the system itself. We will then show that all
characterisation results are direct consequences.

The added complexity of intersection types implies that, unlike for ordinary systems of
type assignment, there is a significant difference between derivation reduction and ordinary
reduction (see the beginning of Section 9.2); not only because of the presence of the type-
constant ω, unlike normal typed- or type assignment system, not every term-redex occurs
with types in a derivation.

For the general idea, we will be contracting derivations structured like

D1

Γ, x:ρ ⊢ P : φ
(→I)

Γ, x:ρ ⊢ λx.P : ρ→φ

D2

Γ ⊢ Q : ρ
(→E)

Γ ⊢ (λx.P)Q : φ

which will contract to

D2

Γ ⊢ Q : ρ

D1

Γ ⊢ P[Q/x] : φ

However, as we will illustrate below, this picture is incomplete.
As for the proof of this property in ‘⊢s’ in [10], it is very similar to what follows, with the

exception of the dealings with the contra-variant ‘≤e’ relation (Definition 9.2, and Lemma
9.3 and 9.12).

9.1 Partial order on derivations

We will use the following short-hand notation for derivations.

Definition 9.1 i) D = 〈Ax〉 :: Γ ⊢e x : φ if D consists of nothing but an application of rule
(Ax).

ii) D = 〈D1, . . . ,Dn,∩I〉, if and only if there are σ1, . . . ,σn such that Di :: Γ ⊢e M : φi for i ∈ n,
and D :: Γ ⊢e M : φ1∩ · · ·∩φn is obtained from D1, . . . ,Dn by applying rule (∩I).

ACM Computing Surveys, 43(3) article 20, April 2011 44

iii) D = 〈D′,→I〉, if and only if there are M′,σ,φ such that D′ :: Γ, x:σ ⊢e M′ : φ, and D :: Γ ⊢e

λx.M′ : σ→φ is obtained from D′ by applying rule (→I).

iv) D = 〈D1,D2,→E〉, if and only if there are P, Q, and σ,φ such that D2 :: Γ ⊢e Q : σ and
D1 :: Γ ⊢e P : σ→φ, and D :: Γ ⊢e PQ : φ is obtained from D1 and D2 by applying rule
(→E).

We will identify derivations that have the same structure in that they have the same rules
applied in the same order (so are, apart from sub-terms typed with ω, derivations involving
the same term); the types derived need not be the same.

We now extend the relation ‘≤e’ on types to derivations in ‘⊢e’; this notion is pivotal
for the proof of strong normalisation of derivation reduction, when we need to show that
computability is closed for ‘≤e’.

Definition 9.2 i) 〈Ax〉 :: Γ ⊢e x : σ � 〈Ax〉 :: Γ′ ⊢e x : σ′ for all Γ′, s′ with Γ′≤e Γ, and σ≤e σ′.

ii) 〈D1, . . . ,Dn,∩I〉 :: Γ ⊢e M : φ1∩ · · ·∩φn � 〈D′1, . . . ,D′m,∩I〉 :: Γ′ ⊢e M :∩mφ′j, if and only if for

every j ∈ m there exists an i ∈ n such that Di � D
′
j.

iii) 〈D :: Γ, x:σ ⊢e M : φ,→I〉 :: Γ ⊢e λx.M : σ→φ �

〈D′ :: Γ′, x:σ′ ⊢e M : φ′,→I〉 :: Γ′ ⊢e λx.M′ : σ′→φ
′

if and only if D � D′.

iv) Let D = 〈D1 :: Γ ⊢e P : σ→φ,D2 :: Γ ⊢e Q : σ,→E〉 :: Γ ⊢e PQ : φ. Then, for σ′≤e σ,φ′≥e φ,
D′1 � D1, D′2 � D2 such that D′1 :: Γ′ ⊢e P : σ′→φ′ and D′2 :: Γ′ ⊢e Q : σ′:

D � 〈D′1 :: Γ′ ⊢e P : σ′→φ′,D′2 :: Γ′ ⊢e Q : σ′,→E〉 :: Γ′ ⊢e PQ : φ′.

Notice that ‘�’ is contra-variant in (→E).

The following is easy to show, generalises Lemma 4.5, and establishes the relation between
‘≤e’ on types and ‘�’ on derivations:

Lemma 9.3 i) If D :: Γ ⊢e M : σ and Γ′≤e Γ, σ≤e σ′, then there exists D′ � D such that D′ :: Γ′ ⊢e

M′ : σ′.

ii) If D :: Γ ⊢e M : σ � D′ :: Γ′ ⊢e M′ : σ′, then Γ′≤e Γ, and σ≤e σ′.

Proof: i) We separate two cases: We separate two cases: We separate two cases: We separate
two cases: We separate two cases: We separate two cases: We separate two cases: We
separate two cases:

(σ′ = φ ∈ Ts) : By induction on the structure of derivations. By induction on the structure
of derivations. By induction on the structure of derivations. By induction on the
structure of derivations.

(Ax) : Then D = 〈Ax〉 :: Γ, x:ρ ⊢e x : σ, with ρ≤e σ. Since Γ′≤e Γ, x:ρ, there exists x:ρ′ ∈
Γ′ such that ρ′≤e ρ≤e σ≤e σ′. Take D′ = 〈Ax〉 :: Γ′ ⊢e x : σ′, then D � D′.

(∩I) : By induction.

(→I) : Then σ = ρ→ψ, and D = 〈D1 :: Γ, x:ρ ⊢e M′ : ψ,→I〉 :: Γ ⊢e λx.M′ : ρ→ψ. Since
σ′ ∈ Ts, σ′ = ρ′→ψ′ such that ρ′≤e ρ and ψ≤e ψ′. Then Γ′, x:ρ′≤e Γ, x:ρ, and by
induction, there exists D′1 � D1 such that D′1 :: Γ′, x:ρ′ ⊢e M′ : ψ′. Now take D′ =
〈D′1 :: Γ′, x:ρ′ ⊢e M′ : ψ′,→I〉 :: Γ′ ⊢e λx.M′ : ρ′→ψ′, then D � D′.

(→E) : Then D = 〈D1 :: Γ ⊢e M1 : γ→φ,D2 :: Γ ⊢e M2 : γ,→E〉 :: Γ ⊢e M1M2 : φ, so σ = φ;
without loss of generality, let σ′ = φ′. Since γ→φ≤e γ→φ′, we have D′1 :: Γ′ ⊢e

M′
1 : γ→φ′, by induction, such that D′1 � D1; notice that D2 � D2. Take D′ =

〈D′1,D2,→E〉, then D � D′.

(σ′ = σ′1∩· · ·∩σ′n) : By Lemma 4.2, for i ∈ n, σ≤e φ′i ∈ Ts; by part (i), there exists D′i � Di

such that D′i :: Γ′ ⊢e M : φ′i. Take D′ = 〈D′i , . . . ,D′n,∩I〉, then D � D′.

ACM Computing Surveys, 43(3) article 20, April 2011 45

ii) Easy, from Definition 9.2.

Notice that the first part of this proof is constructive, and that, therefore, we can even
define a mapping that produces one particular larger derivation.

We should perhaps point out that the contra-variance of ‘�’ on derivations is not used in
this lemma: in step (→E), the derivation for M2 is not changed at all. However, this is not
the issue: we only need to show that there exists a larger derivation that derives the required
judgement. The contra-variance of the relation ‘�’ is needed in the proof of Lemma 9.12.

9.2 Derivation reduction

In this section, we will define a notion of reduction on derivations D :: Γ ⊢e M : σ. This will
follow ordinary reduction, by contracting typed redexes that occur in D, i.e. redexes for
sub-terms of M of the shape (λx.P)Q, for which we have a subderivation like:

D1

Γ, x:σ ⊢ P : φ
(→I)

Γ ⊢ λx.P : σ→φ

D2

Γ ⊢ Q : σ
(→E)

Γ ⊢ (λx.P)Q : φ

The effect of this reduction will be that the derivation for the redex (λx.P)Q will be re-
placed by a derivation for the contractum; this can be regarded as a generalisation of cut-
elimination, but has, because the system at hand uses intersection types together with the
relation ‘≤e’, to be defined with care. Contracting a derivation for a redex

(σ≤e ψ)
Γ, x:σ ⊢ x : ψ

D1

Γ, x:σ ⊢ P : φ
(→I)

Γ ⊢ λx.P : σ→φ

D2

Γ ⊢ Q : σ
(→E)

Γ ⊢ (λx.P)Q : φ

naively gives

D2

Γ ⊢ Q : σ
(σ≤e ψ)

Γ ⊢ Q : ψ

D1

Γ ⊢ P[Q/x] : φ

but this is not a correct derivation. The (≤e)-step ‘to be applied at the end of D2’ has to be
‘pushed upwards’, resulting in:

D′2

Γ ⊢ Q : ψ

D1

Γ ⊢ P[Q/x] : φ

(this is possible since D′2 exists because of Lemma 9.3, and that then D2 � D′2). This, in
general, changes the structure of the derivation, making an inductive reasoning more com-
plicated.

Reduction on derivations is formally defined by first defining substitution on derivations:

Definition 9.4 (Derivation substitution) For the derivations D0 :: Γ ⊢e N : σ

and D :: Γ, x:σ ⊢e M : τ, the derivation

D [D0/x:σ] :: Γ ⊢e M[N/x] : τ,

the result of substituting D0 for x:σ in D, is inductively defined by:

i) D = 〈Ax〉 :: Γ, x:σ ⊢e x : ψ, with σ≤e ψ. Let D′0 be such that D0 � D′0 :: Γ ⊢e N : ψ, then
D [D0/x:σ] = D′0.

ACM Computing Surveys, 43(3) article 20, April 2011 46

ii) D = 〈Ax〉 :: Γ, x:σ ⊢e y : ψ; then D [D0/x:σ] = 〈Ax〉 :: Γ ⊢e y : ψ.

iii) D = 〈D1, . . . ,Dn,∩I〉 :: Γ, x:σ ⊢e M : τ1∩· · ·∩τn, so for i ∈ n, Di :: Γ, x:σ ⊢e M : ψi. Let

D′i = Di [D0/x:σ] :: Γ ⊢e M[N/x] : ψi,

then D [D0/x:σ] = 〈D′1, . . . , D′
n,∩I〉 :: Γ ⊢e M[N/x] : τ1∩· · ·∩τn.

iv) D = 〈D1 :: Γ, x:σ,y:ρ ⊢e M1 : ψ,→I〉 :: Γ, x:σ ⊢e λy.M1 : ρ→ψ. Let

D′1 = D1 [D0/x:σ] :: Γ,y:ρ ⊢e M1[N/x] : ψ

Then D [D0/x:σ] = 〈D′1,→I〉 :: Γ ⊢e (λy.M1)[N/x] : ρ→ψ.

v) D = 〈D1 :: Γ, x:σ ⊢e P : ρ→ψ,D2 :: Γ, x:σ ⊢e Q : ρ,→E〉 :: Γ, x:σ ⊢e PQ : ψ. Let

D′1 = D1 [D0/x:σ] :: Γ ⊢e P[N/x] : ρ→ψ, and

D′2 = D2 [D0/x:σ] :: Γ ⊢e Q[N/x] : ρ,

then D [D0/x:σ] = 〈D′1,D′2,→E〉 :: Γ ⊢e (PQ)[N/x] : ψ.

Notice that, in part (Ax), we do not specify which D′0 to take. Lemma 9.3 guarantees its
existence, not its uniqueness; however, by the remark following that lemma, we can assume
D′0 to be unique. Moreover, by part (iii),

(〈∩I〉 :: Γ, x:σ ⊢e M : ω) [D0/x:σ] = 〈∩I〉 :: Γ ⊢e M[N/x] : ω.

Before coming to the definition of derivation-reduction, we need to define the concept of
‘position of a subderivation in a derivation.’

Definition 9.5 Let D be a derivation, and D′ be a subderivation of D. The position p of D′

in D is defined by:

i) If D′ = D, then p = ε.

ii) If the position of D′ in D1 is q, and D = 〈D1,→I〉, or D = 〈D1,D2,→E〉, then p = 1q.

iii) If the position of D′ in D2 is q, and D = 〈D1,D2,→E〉, then p = 2q.

iv) If the position of D′ in Di (i ∈ n) is q, and D = 〈D1, . . . ,Dn,∩I〉, then p = q.

We now can give a clear definition of reductions on derivations; notice that this reduction
corresponds to contracting a redex (λx.M)N in the term involved only if that redex appears
in the derivation in a subderivation with type different from ω.

Definition 9.6 We define the notion D :: Γ ⊢e M : σ reduces to D′ :: Γ ⊢e M′ : σ at position p with
redex R by:

i) σ = φ ∈ Ts.

a) D = 〈〈D1,→I〉,D2,→E〉 :: Γ ⊢e (λx.M)N : φ. Then D is shaped like:

D1

Γ, x:τ ⊢ M : φ

Γ ⊢ λx.M : τ→φ

D2

Γ ⊢ N : τ

Γ ⊢ (λx.M)N : φ

Then D reduces to D1 [D2/x:τ] :: Γ ⊢e M[N/x] : φ at position ε with redex (λx.M)N.

b) If D1 reduces to D′1 at position p with redex R, then

1) D = 〈D1,→I〉 :: Γ ⊢e λx.P : ρ→φ reduces at position 1p with redex R to D′ =
〈D′1,→I〉 :: Γ ⊢e λx.P′ : ρ→φ.

2) D = 〈D1,D2,→E〉 :: Γ ⊢e PQ : φ reduces to D′ = 〈D′1,D2,→E〉 :: Γ ⊢e P′Q : φ at po-
sition 1p with redex R.

ACM Computing Surveys, 43(3) article 20, April 2011 47

3) D = 〈D2,D1,→E〉 :: Γ ⊢e PQ : φ reduces to D′ = 〈D2,D′1,→E〉 :: Γ ⊢e PQ′ : φ at po-
sition 2p with redex R.

ii) σ = φ1∩ · · ·∩φn. If D :: Γ ⊢e M : φ1∩ · · ·∩φn, then, for every i ∈ n, there is a Di, such that
Di :: Γ ⊢e M : φi, and D = 〈D1, . . . ,Dn,∩I〉. If there is an i ∈ n such that Di reduces to D′i at
position p with redex R = (λx.P)Q (a subterm of M), then, for all 1≤ j = i≤n, either:

a) there is no redex at position p in Dj because there is no subderivation at that position
because the position is surrounded by a subterm that is typed with ω, and D′j =Dj,

with P[Q/x] instead of (λx.P)Q, or

b) there exists D′j such that Dj reduces to D′j at position p with redex R.

Then D reduces to 〈D′1, . . . ,D′n,∩I〉 at position p with redex R.

iii) We write D →D D
′ if there exists a position p and redex R such that D reduces to D′ at

position p with redex R. If D1 →D D2 →D D3, then D1 →D D3.

We abbreviate ‘D is strongly normalisable with respect to →D’ by ‘SN (D)’, and use SN for
the set of strongly normalisable derivations: SN = {D | SN (D)}.

Notice that the transformation needed as suggested in the beginning of this section is
performed by the substitution operation on derivations, in part (i.a)). Also, for example,

〈∩I〉 :: Γ, x:σ ⊢e (λx.M)N : ω →D 〈∩I〉 :: Γ ⊢e M[N/x] : ω.

at position ε with redex (λx.M)N. Also, remark that, if Γ ⊢e (λx.M)N : φ, then neither λx.M
nor M are typed with ω, so part (ii) is well defined.

The following lemma states the relation between derivation reduction and β-reduction.

Lemma 9.7 Let D :: Γ ⊢e M : σ, and D→D D
′ :: Γ ⊢e N : σ, then M→→β N.

Proof: Implied by the above definition.

The following states some standard properties of strong normalisation.

Lemma 9.8 i) SN (〈D1,D2,→E〉)⇒ SN(D1) & SN(D2).

ii) SN(D1 :: Γ ⊢e xM1· · ·Mn : σ→φ) & SN (D2 :: Γ ⊢e N : σ)⇒ SN (〈D1,D2,→E〉).

iii) SN(〈D1∩ · · ·∩Dn,∩I〉) if and only if, for all i ∈ n, SN (Di :: Γ ⊢e M : φi).

iv) If SN(D1 :: Γ ⊢e C[M[N/x]] : σ), and SN(D2 :: Γ ⊢e N : ρ), then there exists a derivation D3

such that SN (D3 :: Γ ⊢e C[(λy.M)N] : σ).

Proof: Standard, using Definition 9.6.

Example 9.9 Let

D1 :: ⊢e Θ : ((α→β→γ)∩α)→((γ→δ)∩β)→δ,

D2 :: ⊢e Θ : τ→(ω→φ)→φ, and

D :: ⊢e ΘΘ : (ω→φ)→φ

be the derivations from Example 6.18, and let D′2 be the subderivation

x:τ,y:ω→φ ⊢ y : ω→φ
(∩I)

x:τ,y:ω→φ ⊢ xxy : ω
(→E)

x:τ,y:ω→φ ⊢ y(xxy) : φ
(→I)

x:τ ⊢ λy.y(xxy) : (ω→φ)→φ

that occurs in D2. Contracting D gives D′2[D1/x:τ], i.e.:

ACM Computing Surveys, 43(3) article 20, April 2011 48

y:ω→ρ ⊢ y : ω→φ
(∩I)

y:ω→ρ ⊢ (ΘΘy) : ω
(→E)

y:ω→ρ ⊢ y(ΘΘy) : φ
(→I)

⊢ λy.y(ΘΘy) : (ω→φ)→φ

Notice that this last derivation is in normal form, although the term λy.y(ΘΘy) is not.

The following lemma is needed in the proof of Theorem 9.17.

Lemma 9.10 If D :: Γ ⊢e M : σ, with D in normal form, then there exists A ∈ A such that A ⊑ M
and D :: Γ ⊢e A : σ.

Proof: By induction on the structure of derivations.

(D = 〈Ax〉) : Immediate.

(D = 〈D1, . . . ,Dn,∩I〉) : Then σ = φ1∩ · · ·∩φn and, for every i ∈ n, Di :: Γ ⊢e M : φi, and, by
induction there exists Ai ∈A such that Ai⊑M andDi :: Γ ⊢e Ai : φi. Notice that then these
Ai are compatible, so ⊔n Ai exists; since each Aj ⊑⊔n Ai, by Lemma 6.1 also Dj :: Γ ⊢e

⊔n Ai : φj for all j ∈ n. Then, by rule (∩I), also Γ ⊢e ⊔n Ai : φ1∩ · · ·∩φn. Notice that, by
Lemma 2.10, ⊔n Ai ⊑ M.

(D = 〈D1,→I〉) : Then M ≡ λx.M′, and σ = ρ→φ, and Γ, x:ρ ⊢e M′ : φ. So, by induction,
there exists A′ ∈ A such that A′ ⊑ M′ and Γ, x:ρ ⊢e A′ : φ. Then, by rule (→I) we obtain
Γ ⊢e λx.A′ : ρ→φ. Notice that λx.A′ ⊑ λx.M′; since φ is strict, A′ is not ⊥, so λx.A′ ∈ A.

(D = 〈D1,D2,→E〉) : Then M≡ M1M2, σ = φ, and there is a τ such that both Γ ⊢e M1 : τ→φ,
and Γ ⊢e M2 : τ. Then, by induction, there are A1, A2 ∈ A such that A1 ⊑ M1, A2 ⊑ M2,
Γ ⊢e A1 : τ→φ, and Γ ⊢e A2 : τ. Then, by (→E), Γ ⊢e A1A2 : φ. Notice that A1A2 ⊑ M1M2.
Since D is in normal form, D1 does not finish with (→I), so A1 is not an abstraction.
Since τ→φ is strict, neither can it be ⊥; then A1A2 ∈ A.

Notice that the case σ = ω is present in the case (∩I) of the proof. Then n = 0, and ⊔n Ai =⊥.
Moreover, since A need not be the same as M, the constructed derivation for it is not exactly
the same, since it deals with a different term; however, it has the same structure in terms of
applied derivation rules, which we defined above as being equal.

9.3 Strong normalisation result

In this section, we will come to the proof of a strong normalisation result for derivation
reduction. In line with the other results shown above, in order to show that each derivation
is strongly normalisable with respect to ‘→D’, a notion of computable derivations is intro-
duced. We will show that all computable derivations are strongly normalisable with respect
to derivation reduction, and then that all derivations in ‘⊢e’ are computable.

Definition 9.11 The Computability Predicate Comp (D) is defined inductively on types by:

Comp (D :: Γ ⊢e M : ϕ) ⇐⇒ SN(D)

Comp (D1 :: Γ ⊢e M : σ→φ) ⇐⇒

(Comp (D2 :: Γ ⊢e N : σ)⇒ Comp (〈D1,D2,→E〉 :: Γ ⊢e MN : φ))

Comp (〈D1, . . . ,Dn,∩I〉 :: Γ ⊢e M : φ1∩ · · ·∩φn) ⇐⇒ ∀i ∈ n [Comp (Di :: Γ ⊢e M : φi)]

Notice that, as a special case for the third rule, we get Comp (〈∩I〉 :: Γ ⊢e M : ω).

The following lemma formulates the relation between the computability predicate and the
relation ‘�’ on derivations, and is crucial for the proof of Theorem 9.15. The main difference
between the solution of [10] and the one presented here lies in the fact that here we need to

ACM Computing Surveys, 43(3) article 20, April 2011 49

prove this lemma, whereas in [10] – where rule (≤s) corresponds to (∩E) which behaviour
is already captured in the definition of Comp – it is not needed at all (see Section 9.5).

Lemma 9.12 If Comp (D :: Γ ⊢e M : σ), and D � D′, then Comp (D′).

Proof: By induction on the structure of types. Notice that, by Lemma 9.3, D′ = Γ′ ⊢e M : σ′,
with Γ′≤e Γ, σ≤e σ′. We distinguish two cases:

(σ′ = ψ ∈ Ts) : (σ = ϕ) : Since ϕ≤e ψ, also ψ = ϕ, and the result is immediate.

(σ = ρ→φ) : Then ψ = ρ′→φ′, with ρ′≤e ρ,φ≤e φ′, and let D′ :: Γ ⊢e M : ρ′→φ′, which ex-
ists by Lemma 4.5. To show Comp (D′), following Definition 9.11, we assume
Comp (D′0 :: Γ ⊢e N : ρ′), and use this to show that 〈D′,D′0,→E〉 :: Γ ⊢e MN : φ′. Let
D0 be such that D′0 � D0 :: Γ ⊢e N : ρ (which, again, exists by Lemma 4.5), we get
Comp (D0) by induction from Comp (D′0). Assuming Comp (D :: Γ ⊢e M : ρ→φ), by
Definition 9.11, Comp (〈D,D0,→E〉 :: Γ ⊢e MN : φ). Since

〈D,D0,→E〉 � 〈D′,D′0,→E〉 :: Γ ⊢e MN : φ′,

we get, by induction Comp (〈D′,D′0,→E〉). So Comp (D′) by Definition 9.11.

(σ = φ1∩ · · ·∩φn) : If Comp (D :: Γ ⊢e M : φ1∩ · · ·∩φn), then D = 〈D1, . . . ,Dn,∩I〉, by Defini-
tion 9.11, and Comp (Di :: Γ ⊢e M : φi) for i ∈ n. Since φ1∩ · · ·∩φn≤e ψ, by Lemma 4.2,
there exists i ∈ n such that φi≤e ψ. Then D � Di :: Γ ⊢e M : ψ and, by induction,
Comp (Di).

(σ′ = σ′1∩· · ·∩σ′n) : Since σ≤e σ′1∩· · ·∩σ′n, by Lemma 4.2, σ = σ1∩· · ·∩σm, and for all i ∈ n there
exists j ∈ m such that φj≤e φ′i . If Comp (D :: Γ ⊢e M : σ1∩· · ·∩σm), then, by Definition 9.11,
for every j ∈ m there exist Dj such that Comp (Dj :: Γ ⊢e M : φj), and D = 〈D1, . . . ,Dm,∩I〉.
Let D′ = 〈D′1, . . . ,D′n,∩I〉; since D � D′, for every i ∈ n there exists j ∈ m such that
Dj � D

′
i :: Γ ⊢e M : φ′i ; then, by induction, Comp (D′i) for all i ∈ n, and, by Definition 9.11,

Comp (D′ :: Γ ⊢e M :∩nφ′i) follows.

Notice that the contra-variance of the relation ‘�’ on derivations plays a role in the second
part of this proof.

We will now prove that Comp satisfies the standard properties of computability predicates,
being that computability implies strong normalisation, and that, for the so-called neutral
objects, also the converse holds.

Lemma 9.13 i) Comp (D :: Γ ⊢e M : σ)⇒ SN(D).

ii) SN(D :: Γ ⊢e xM1· · ·Mm : σ)⇒ Comp (D).

Proof: By simultaneous induction on the structure of types.

(σ = ϕ) : Directly by Definition 9.11.

(σ = ρ→φ) : i) Let x be a variable not appearing in M, and let D′ :: x:ρ ⊢e x : ρ, then, by
induction (ii), Comp (D′). Assume, without loss of generality, that x:ρ ∈ Γ. From as-
suming Comp (D :: Γ ⊢e M : ρ→φ), Comp (〈D,D′,→E〉 :: Γ ⊢e Mx : φ) follows by Defi-
nition 9.11. Then, by induction (i), SN(〈D,D′,→E〉), so also SN (D).

ii) Comp (D′ :: Γ ⊢e N : ρ) gives, by induction (i), SN(D′), and, by Lemma 9.8(ii), SN (〈D,D′,→E〉 :: Γ ⊢e

xM1· · ·MmN : φ). Then Comp (〈D,D′,→E〉) by induction (ii), so by Definition 9.11,
Comp (D).

(σ = φ1∩ · · ·∩φn) : Easy, using Definition 9.11, Lemma 9.8(iii), and induction.

The following theorem (9.15) shows that, if the instances of rule (Ax) are to be replaced
by computable derivations, then the result itself will be computable. Before coming to this

ACM Computing Surveys, 43(3) article 20, April 2011 50

result, an auxiliary lemma is proven, showing that the computability predicate is closed for
subject-expansion.

Lemma 9.14 If Comp (D[D′/y:µ] :: Γ ⊢e M[Q/y]P : σ) and Comp (D′ :: Γ ⊢e Q : µ), then there ex-
ists a derivation D′′ such that Comp (D′′ :: Γ ⊢e (λy.M)QP : σ).

Proof: By induction on the structure of types.

(σ = ϕ) : Comp (D[D′/y:µ] :: Γ ⊢e M[Q/y]P : ϕ) & Comp (D′ :: Γ ⊢e Q : µ) ⇒ (9.13(i))

SN(D[D′/y:µ]) & SN(D′) ⇒ (9.8(iv))

∃D′′ [SN (D′′ :: Γ ⊢e (λy.M)QP : ϕ)] ⇒ (9.11)

∃D′′ [Comp (D′′ :: Γ ⊢e (λy.M)QP : ϕ)].

(σ = ρ→φ) : Comp (D[D′/y:µ] :: Γ ⊢e M[Q/y]P : ρ→φ) &

Comp (D1 :: Γ ⊢e N : ρ) & Comp (D′ :: Γ ⊢e Q : µ) ⇒ (9.11)

Comp (〈D[D′/y:µ],D1,→E〉 :: Γ ⊢e M[Q/y]PN : φ) & Comp (D′ :: Γ ⊢e Q : µ) ⇒ (IH)

∃D′′ [Comp (〈D′′,D1,→E〉 :: Γ ⊢e (λy.M)QPN : φ)] ⇒ (9.11)

∃D′′ [Comp (D′′ :: Γ ⊢e (λy.M)QP : ρ→φ)]

(σ = φ1∩ · · ·∩φn) : By induction and Definition 9.11.

We now come to the Replacement Theorem.

Theorem 9.15 Let Γ = x1:µ1, . . . , xn:µn, D :: Γ ⊢e M : σ, and, for every i ∈ n, there are Di, Ni such
that Comp (Di :: Γ′ ⊢e Ni : µi). Then

Comp (D[Di/xi:µi] :: Γ′ ⊢e M[Ni/xi] : σ).

Proof: By induction on the structure of derivations.

(Ax) : Then M ≡ xi, for some i ∈ n, with µi≤e σ. By Lemma 4.5, D′ :: Γ′ ⊢e Ni : σ exists, and,
by Lemma 9.3, Di � D′, so, from Comp (Di), by Lemma 9.12, Comp (D′). Notice that
D′ = (〈Ax〉 :: Γ ⊢e x : σ)[Di/xi:µi].

(∩I) : Then σ = σ1∩· · ·∩σm, and, for j ∈ m, there exists Dj, such that Dj :: Γ ⊢e M : φj and D =

〈D1, . . . ,Dm,∩I〉. Let, for j ∈ m, D′j = Dj[D
i/xi:µi] :: Γ ⊢e M[Ni/xi] : φj, then, by induction,

Comp (D′j). Let D′ = 〈D′1, . . . ,D′m,∩I〉, then, by Definition 9.11,

Comp (D′ :: Γ ⊢e M[Ni/xi] : σ1∩· · ·∩σm),

and D′ = D[Di/xi:µi].

(→I) : Then σ = ρ→ψ, and D = 〈D′ :: Γ,y:ρ ⊢e M′ : ψ,→I〉 :: Γ ⊢e λy.M′ : ρ→ψ.

∀i ∈ n [Comp (Di :: Γ′ ⊢e Ni : µi)] & Comp (D2 :: Γ′ ⊢e P : ρ)

& D′ :: Γ,y:ρ ⊢e M′ : ψ ⇒ (IH)

Comp (D′[Di/xi:µi,D2/y:ρ] :: Γ′ ⊢e M′[Ni/xi, P/y] : ψ) ⇒ (9.14)

Comp (〈〈D′[Di/xi:µi],→I〉,D2,→E〉 :: Γ′ ⊢e (λy.M′[Ni/xi])P : ψ) ⇒ (9.11)

Comp (〈D′[Di/xi:µi],→I〉 :: Γ′ ⊢e λy.M′[Ni/xi] : ρ→ψ).

and D′ = 〈D′[Di/xi:µi],→I〉 = D[Di/xi:µi].

(→E) : Then M ≡ M1M2, there are D1,D2, and τ such that D = 〈D1,D2,→E〉, D1 :: Γ ⊢e

M1 : τ→φ, and D2 :: Γ ⊢e M2 : τ. Let

D′1 = D1[Di/xi:µi] :: Γ′ ⊢e M1[Ni/xi] : τ→φ, and

D′2 = D2[Di/xi:µi] :: Γ′ ⊢e M2[Ni/xi] : τ,

then, by induction, Comp (D′1), and Comp (D′2), and by Definition 9.11,

ACM Computing Surveys, 43(3) article 20, April 2011 51

Comp (〈D′1,D′2,→E〉 :: Γ′ ⊢e (M1M2)[Ni/xi] : φ),

Notice that 〈D1,D2,→E〉[Di/xi:µi] = 〈D
′
1,D′2,→E〉.

Using this last result, we are now able to prove a strong normalisation result for derivation
reduction in ‘⊢e’.

Theorem 9.16 If D :: Γ ⊢e M : σ, then SN(D).

Proof: For every xi:τi ∈ Γ, there exists Dxi
:: xi:τi ⊢e xi : τi and, by Lemma 9.13(ii), Comp (Dxi

).
Then Comp (D[Dxi

/xi:τi] :: Γ ⊢e M[xi/xi] : σ), by Theorem 9.15. Notice that M[xi/xi] = M and
D[Dxi

/xi:τi] = D, and by Theorem 9.13(i), SN(D).

9.4 New proofs of Approximation and Strong Normalisation

We will now show that the approximation result is a direct consequence of the strong nor-
malisation result proven in Section 9.3 for derivation reduction.

Using Theorem 9.16, the approximation theorem is proven as follows:

Theorem 9.17 Γ ⊢e M : σ⇐⇒ ∃A ∈ A(M) [Γ ⊢e A : σ].

Proof: (⇒) : Let D :: Γ ⊢e M : σ, then, by Theorem 9.16, SN(D). Let the normal form of D
with respect to ‘→D’ beD0 :: Γ ⊢e N : σ, then by Lemma 9.7, M→→β N, and by Lemma 9.10,
there is A ∈ A such that D0 :: Γ ⊢e A : σ, and A ⊑ N.

(⇐) : As in Theorem 6.9.

Of course the proof of the characterisation of (head-)normalisation (Section 6.3) does not
change, since it depends only on the approximation result.

We will now show a new proof for the result that all terms typeable in the system without
ω are strongly normalisable. This result is also obtained via the strong normalisation result
proven above for derivation reduction.

Theorem 9.18 ∃Γ,σ [Γ ⊢−ω− M : σ]⇐⇒ M is strongly normalisable with respect to ‘→β’.

Proof: (⇒) : If D :: Γ ⊢−ω− M : σ, then by Lemma 8.2, also D :: Γ ⊢e M : σ. By Theorem 9.16, D
is strongly normalisable with respect to ‘→D’. Since D contains no ω, all redexes in M
correspond to redexes in D. Since derivation reduction does not introduce ω, also M is
strongly normalisable with respect to ‘→β’.

(⇐) : As in Theorem 8.15.

9.5 Derivation reduction in other type assignment systems

The results shown above hold of course also when restricted to either ‘⊢s’, or the relevant
system ‘⊢r’ (see Section 10.1, which corresponds to the restricted system of Definition 3.6),
since these are proper subsystems of ‘⊢e’. However, we can also show these results directly
in those other systems; we will illustrate the result of Section 9.3 by looking briefly at those
systems and see that there the result comes more easily.

It is worthwhile to remark that, in fact, it is the presence of the contra-variant relation
‘≤e’ on types, and, especially, the derivation rule (Ax), that greatly complicates the possible
solution to the main problem dealt with above. Restricting the setting to the relevant system
‘⊢r’ gives a rather straightforward solution.

We will not discuss the proof for the result in detail here, since it would be very similar to
the proof that was given above, or to that in [10]. The main difference lies in the fact that a
relevant system is not closed for ‘≤e’, so in particular no variant of Lemma 9.12 needs to be

ACM Computing Surveys, 43(3) article 20, April 2011 52

proven. That lemma is essential to prove part (Ax) of the proof of Theorem 9.15; for ‘⊢r’ this
part would be trivial, since then the context would consist of a single statement x:µ:

(Ax) : Then n = 1, x:µ = Γ′. By assumption, Comp (D :: Γ ⊢r N : µ), which immediately gives
Comp (D :: Γ ⊢r x[N/x] : µ).

A direct proof that derivation reduction is strongly normalisable was given for ‘⊢s’ in [10].
Again we will omit almost all the proof for that result here, since it would be very similar to
the proof that was given above. The difference between ‘⊢s’ and the one considered in this
section, rule (∩E) versus (Ax), makes the first part of the Replacement Lemma become:

(∩E) : Then µi = σ1∩· · ·∩σm so xi:σ1∩· · ·∩σm ∈ Γ′, and σ = φk for some k ∈m. By assumption,
Comp (Di :: Γ ⊢s Ni : σ1∩· · ·∩σm), and, since σ1∩· · ·∩σm is an intersection type, by definition

of computability this implies D
j
i :: Γ ⊢s Ni : φi, where D

j
i is a subderivation of Di. Now

D0 [Di/xi:µi] = D
i
j, so computable.

From these results, as above, the characterisation of normalisation, head-normalisation,
and strong normalisation can be shown.

The technique used in [3] – which required Comp (Γ, M,σ) to imply Γ ⊢ M : σ – for the
strong normalisation result would not work for ‘⊢s’, since it needs a contra-variant type
inclusion relation, or, equivalently, needs the notion of type assignment to be closed for η-
reduction; the same is true for the proof of the approximation result in [7] (Section 6.1); in
particular, it is needed for Lemma 6.2(ii). Notice that this is not the case with the technique
used in this section, which gives these results directly for ‘⊢s’, and does not need extension-
ality.

10 Principal pairs for ‘⊢
e
’

As discussed above, there exist four intersection systems for which the principal pair prop-
erty is proven: a CDV-system in [21], ‘⊢bcd’ in [55], ‘⊢s’ in [6], and ‘⊢e’ in [7], the proof of
which we will repeat here.

As already discussed above, a proof for the principal pair property normally follows the
following structure. First, for each term, a specific pair (of context and type) is identified,
called the principal pair, that is shown to be a valid pair in terms of typeability for this term
(soundness). Then a collection of operations is identified that is proven to be sound in the
sense that they, when applied to a valid pair, return a valid pair; then it is shown that, for
every term, any valid pair can be obtained by applying a specific sequence of operations to
the principal pair.

In this section we will follow this scheme when giving the proof for the principal pair
property of ‘⊢e’ will be given. For each λ-term the principal pair (of context and type) will be
defined. Four operations on pairs of context and types will be defined, namely substitution,
expansion, covering, and lifting, that are correct and sufficient to generate all derivable pairs
for λ-terms in ‘⊢e’.

The proof will start by proving the principal pair property for the relevant type assignment
system ‘⊢r’ by showing that, if Γ ⊢r M : σ and 〈Π,π〉 is the principal pair for M, then there
exists a chain Ch of operations, consisting of a number of expansions, at most one covering,
and at most one substitution, such that Ch(〈Π,π〉) = 〈Γ,σ〉. Using this result, the principal
pair property for ‘⊢e’ will be proven, adding a single lifting to the chain.

In [6] (see Section 5.1), the main problem to solve was to find an operation of lifting that
was able to take the special role of the rule (∩E) into account. As mentioned in Section 5.1,
there this operation is defined using, in fact, the contra-variant relation ‘≤e’, which is not
sound on all pairs, but is sound on primitive pairs. Since ‘⊢e’ is more liberal than ‘⊢s’, in

ACM Computing Surveys, 43(3) article 20, April 2011 53

the sense that ‘⊢e’ is closed for the relation ‘≤e’, the operation of lifting as defined in [6] is
a sound operation for ‘⊢e’ (see Theorem 10.24), i.e. is correct for all pairs. It is then easy to
show that, with just the operations as defined in [6], the principal pair property holds for
‘⊢e’.

However, in this section a different proof will be presented that follows a slightly different
approach. The most significant difference between proofs for the principal pair property
made in other papers and the one presented here, is that, in a certain sense, the operations
presented in this section are more elegant, or ‘orthogonal’. In [55], there is an overlap
between operations; for example, intersections can be introduced by expansions as well as
by substitutions and rise. Also, in [6] the step from the pair 〈Γ,σ〉 to 〈Γ,ω〉 can be made
using a lifting as well as a substitution. The operations of expansion, covering, substitution,
and lifting as defined in this section are orthogonal in that sense; no kind of operation can
be mimicked by another kind of operation or sequence of operations.

The difference between the operations specified in [6] and this section lie in the fact that
here the operation of substitution has been changed, in a subtle, natural, but drastic way:
since ω is not considered a type constant, a substitution can no longer replace a type-variable
by ω. In the papers discussed above that possibility existed and, especially in [21] and [6],
caused inconvenience, since there a ‘normalisation-after-substitution’ was called for, explic-
itly defined in [21], and part of the definition of substitution in [6]. The approach of this
paper will be to allow of only substitutions of strict types for type variables, and to intro-
duce a separate operation of covering, that deals with the assignment of ω to sub-terms.

10.1 The relevant system

The notion of relevant intersection type assignment is used in [29, 7, 1], and expresses that a
context can only contain those types that are actually used in a derivation, i.e. uses only types
that are relevant to reach the judgement in the conclusion. Apart from having a separate rule
that deals with ω, it corresponds to the restricted system of [22] (see Definition 3.6); for
convenience in proofs, we present it here as a restricted version of ‘⊢e’.

Definition 10.1 Relevant intersection type assignment and relevant intersection derivations are
defined by the following natural deduction system:

(Ax) : x:φ ⊢ x : φ (→I) :
Γ, x:σ ⊢ M : φ

Γ ⊢ λx.M : σ→φ

Γ ⊢ M : φ
(x not in Γ)

Γ ⊢ λx.M : ω→τ

(→E) :
Γ1 ⊢ M : σ→φ Γ2 ⊢ N : σ

∩{Γ1, Γ2} ⊢ MN : φ
(∩I) :

Γ1 ⊢ M : φ1 · · · Γn ⊢ M : φn
(n≥0)

∩nΓi ⊢ M : φ1∩ · · ·∩φn

Since the derivable statements are exactly the same to those derivable in ‘⊢r’, we write Γ ⊢r

M : σ also for judgements derivable in this system.

Notice that, by rule (∩I), ∅ ⊢r M : ω, for all terms M. Notice moreover, that this system is
indeed truly relevant in the sense of [29]: contexts contain no more type information than that
actually used in the derivation, and, therefore, in the (→I)-rule, only those types actually used
in the derivation can be abstracted. This implies that, for example, for the λ-term (λab.a)
types like ψ→φ→ψ cannot be derived, only types like ψ→ω→ψ. Likewise, for λx.x types
like (φ∩ψ)→φ cannot be derived, only types like φ→φ can.

Notice that, essentially, the difference between ‘⊢r’ and ‘⊢s’ lies in going from derivation
rule (Ax) to (∩E). In fact, derivation rule (∩E) is implicitly present in ‘⊢r’, since there the
intersection of types occurring in contexts is produced using the ∩-operator on contexts.
The strict system does not use this operator; instead, it allows for the selection of types from

ACM Computing Surveys, 43(3) article 20, April 2011 54

an intersection type occurring in a context, regardless of the fact if all components of that
intersection type are useful for the full derivation. In this sense, ‘⊢s’ is not relevant. Both ‘⊢s’
and ‘⊢e’ are conservative extensions of ‘⊢r’, in the sense that, if Γ ⊢r M : σ, then also Γ ⊢s M : σ

and Γ ⊢e M : σ.
In much the same way as Lemma 4.9, we can show:

Lemma 10.2 ∃ ρ [Γ1, x:ρ ⊢r M : σ & Γ2 ⊢r N : ρ]⇐⇒ ∩{Γ1, Γ2} ⊢r M[N/x] : σ.

Notice that ρ = ω, and then Γ2 = ∅ whenever x ∈ fv (M).
As for ‘⊢bcd’ (Theorem 6.12), the relation between ‘⊢e’ and ‘⊢r’ is formulated for terms in A

by:

Lemma 10.3 For all A ∈ A: if Γ ⊢e A : σ, then there are Γ′,σ′ such that Γ ⊢r A : σ, σ′≤e σ and
Γ≤e Γ′.

Using the same technique as in Section 6.1, the following theorem can be proven.

Theorem 10.4 Γ ⊢r M : σ⇐⇒ ∃A ∈ A(M) [Γ ⊢r A : σ].

Using this approximation result for ‘⊢r’, the following becomes easy.

Theorem 10.5 If Γ ⊢e M : σ, then there are Γ′≥e Γ, σ′≤e σ such that Γ′ ⊢r M : σ.

Proof: If Γ ⊢e M : σ then, by Theorem 6.9, there is an A ∈ A(M) such that Γ ⊢e A : σ. By
Lemma 10.3, there are Γ′,σ′ such that Γ′ ⊢r M : σ′, σ′≤e σ and Γ≤e Γ′. Then, by Theorem
10.4, Γ′ ⊢r M : σ′.

10.2 Principal Pairs

Principal pairs for both ‘⊢r’ and ‘⊢e’ are defined by:

Definition 10.6 (Principal Pairs) i) For A ∈ A, we define pp (A), the principal pair of A, by:

a) pp (⊥) = 〈∅,ω〉.

b) pp (x) = 〈{x:ϕ}, ϕ〉.

c) If A = ⊥, and pp (A) = 〈Π,π〉, then:

1) If x occurs free in A, and x:σ ∈Π, then pp (λx.A) = 〈Π\x,σ→π〉.

2) Otherwise pp (λx.A) = 〈Π,ω→π〉.

d) If for i ∈ n, pp (Ai) = 〈Πi,πi〉 (disjoint in pairs), then

pp (xA1 · · ·An) = 〈∩nΠi ∩ {x:π1→·· ·→πn→ϕ}, ϕ〉,

where ϕ is a type-variable that does not occur in pp (Ai), for i ∈ n.

ii) P = {〈Π,π〉 | ∃A ∈ A [pp (A) = 〈Π,π〉] }.

The principal pairs in the systems as presented in [21], ‘⊢bcd’ in [55], and ‘⊢s’ in [6] are
exactly as above. Since the essential type assignment system is a subsystem of ‘⊢bcd’, and it
is a super-system ‘⊢s’, which, in turn, is a super-system of ‘⊢r’, this is not surprising.

The following result is almost immediate:

Lemma 10.7 If pp (A) = 〈Π,π〉, then Π ⊢r A : π.

Proof: Easy.

The notion of principal pairs for terms in A will be generalised to arbitrary λ-terms in
Definition 10.29.

ACM Computing Surveys, 43(3) article 20, April 2011 55

10.3 Substitution

Substitution is normally defined on types as the operation that replaces type-variables by
types, without restriction. The notion of substitution defined here replaces type-variables by
strict types only. Although this is a severe restriction with regard to the approach of [55],
this kind of operation will proven to be sufficient.

Definition 10.8 i) The substitution (ϕ �→ψ) : T → T , where ϕ is a type-variable and ψ ∈ Ts,
is defined by:

(ϕ �→ψ)ϕ = ψ

(ϕ �→ψ)ϕ′ = ϕ′, if ϕ ≡ ϕ′

(ϕ �→ψ)σ→φ = (ϕ �→ψ)σ→ (ϕ �→ψ)φ

(ϕ �→ψ)φ1∩ · · ·∩φn = (ϕ �→ψ)φ1∩ · · ·∩ (ϕ �→ψ)φn

ii) If S1 and S2 are substitutions, then so is S1◦S2, where S1◦S2 (σ) = S1 (S2 (σ)).

iii) S (Γ) = {x:S (α) | x:α ∈ Γ}.

iv) S (〈Γ,σ〉) = 〈S (Γ),S (σ)〉.

The operation of substitution is sound for ‘⊢r’.

Theorem 10.9 If Γ ⊢r A : σ, then for every substitution S: if S (〈Γ,σ〉) = 〈Γ′,σ′〉, then Γ ⊢r A : σ.

Proof: By straightforward induction on the definition of ‘⊢r’.

The following is needed in the proof of Theorem 10.27.

Lemma 10.10 Let τ ∈ Ts and S be a substitution such that S (φ) = φ′. Then:

i) If S (Γ, x:σ) = Γ′, x:σ′, then S (〈Γ,σ→φ〉) = 〈Γ′,σ′→φ′〉.

ii) If for every i ∈ n, S (〈Γi,σi〉) = 〈Γ
′
i ,σ′i 〉, then

S (〈∩nΓi ∩ {x:σ1→·· ·→σn→φ},φ〉) = 〈∩nΓ′i ∩ {x:σ′1→·· ·→σ′n→φ′},φ′〉.

Proof: Immediately by Definition 10.8.

10.4 Expansion

The operation of expansion on types defined here corresponds to the notion of expansion as
defined for ‘⊢bcd’ in [55] and for ‘⊢s’ in [6]. A difference between the notions of expansion as
defined in [21] and [55] is that in those papers a set of types involved in the expansion is created.
Here just type-variables are collected which gives a less complicated definition of expansion.

Definition 10.11 i) If Γ is a context and σ ∈ T , then Ts〈Γ,σ〉 is the set of all strict subtypes
occurring in the pair 〈Γ,σ〉.

ii) The last type-variable of a strict type σ, last-tv (σ), is defined by:

last-tv (ϕ) = ϕ

last-tv (σ→φ) = last-tv (φ)

An expansion is essentially an operation on derivations characterised by the quadruple
〈φ,n, Γ,σ〉, where φ triggers the expansion, n is the number of copies required, and 〈Γ,σ〉 is
the context and type of the conclusion of the derivation involved.

Definition 10.12 For every φ, n≥2, context Γ, and σ, the quadruple 〈φ,n, Γ,σ〉 determines
an expansion Exp〈φ,n,Γ,σ〉 : T → T , that is constructed as follows.

ACM Computing Surveys, 43(3) article 20, April 2011 56

i) The set of type-variables Vφ〈Γ,σ〉 affected by Exp〈φ,n,Γ,σ〉 is constructed by:

a) If ϕ occurs in φ, then ϕ ∈ Vφ〈Γ,σ〉.

b) If ψ ∈ Ts〈Γ,σ〉, and last-tv (ψ) ∈ Vφ〈Γ,σ〉, then for all type-variables ϕ that occur in
ψ: ϕ ∈ Vφ〈Γ,σ〉.

ii) Suppose Vφ〈Γ,σ〉 = {ϕ1, . . . , ϕm}. Choose m× n different type-variables ϕ1
1, . . . , ϕ1

n, . . . ,

ϕm
1 , . . . , ϕm

n , such that each ϕ
j
i does not occur in 〈Γ,σ〉, for i ∈ n and j ∈ m. Let, for i ∈ n,

Si be the substitution such that Si (ϕj) = ϕ
j
i, for j ∈ m.

iii) Exp〈φ,n,Γ,σ〉 (τ) is obtained by traversing τ top-down and replacing every subtype φ by

S1 (φ)∩ · · ·∩Sn(φ), if last-tv (φ) ∈ Vφ〈Γ,σ〉, i.e. (where Ex = Exp〈φ,n,Γ,σ〉):

Ex(τ1∩· · ·∩τn) = ∩n(Ex(ψi))

Ex(ψ) = ∩n(Si (ψ)) if last-tv (ψ) ∈ Vφ〈Γ,σ〉

Ex(ρ→ψ) = Ex (ρ) → Ex(ψ) if last-tv (ψ) ∈ Vφ〈Γ,σ〉

Ex(ϕ) = ϕ if ϕ ∈ Vφ〈Γ,σ〉

iv) Ex(Γ′) = {x:Ex(ρ) | x:ρ ∈ Γ′}.

v) Ex(〈Γ′,σ′〉) = 〈Ex(Γ′),Ex(σ′)〉.

Instead of Exp〈φ,n,Γ,σ〉, we will write 〈φ,n, Γ,σ〉.

Example 10.13 Let φ be the type (ϕ1→ϕ2)→(ϕ3→ϕ1)→ϕ3→ϕ2, and Ex be the expansion
〈ϕ1, 2,∅,φ〉. Then Vϕ1

〈∅,φ〉 = {ϕ1, ϕ3}, and

Ex (φ) = ((ϕ4∩ϕ5)→ϕ2)→(ϕ6→ϕ4)∩(ϕ7→ϕ5)→ϕ6∩ϕ7→ϕ2.

For an operation of expansion the following property holds:

Lemma 10.14 Let Ex = 〈φ,n, Γ,σ〉 be an expansion, then Ex (τ) = ∩nτi with for every i ∈ n, τi is a
trivial variant of τ, or Ex (τ) ∈ Ts.

Proof: Immediately by Definition 10.12.

The following lemmas are needed in the proofs of the following theorems. The first states
that if the last type-variable of the type in a pair is affected by an expansion, then all type-
variables in that pair are affected.

Lemma 10.15 Let Γ′ ⊢r A : ψ, and 〈φ,n, Γ,σ〉 be such that Ts〈Γ′,ψ〉 ⊆ Ts〈Γ,σ〉. If last-tv (ψ) ∈
Vφ〈Γ,σ〉, then ϕ′ ∈ Vφ〈Γ,σ〉 for every type-variable ϕ′ that occurs in 〈Γ′,ψ〉.

Proof: By induction on the structure of elements of A.

i) A ≡ x, then Γ′ = {x:ψ}. Since last-tv (ψ) ∈ Vφ〈Γ,σ〉, and ψ ∈ Ts〈{x:ψ},ψ〉 ⊆ Ts〈Γ,σ〉, all
type-variables that occur in ψ are in Vφ〈Γ,σ〉.

ii) A≡ λx.A′, then ψ = ρ→φ, and Γ′, x:ρ ⊢r A′ : φ (if ρ=ω, then Γ′, x:ρ= Γ′). Since last-tv (ρ→φ) =
last-tv (φ), and also Ts〈Γ′ ∪ {x:ρ},φ〉 ⊆ Ts〈Γ′,ρ→φ〉 ⊆ Ts〈Γ,σ〉, we get, by induction, that
all type-variables in 〈Γ′∪{x:ρ},φ〉 are in Vφ〈Γ,σ〉. So all type-variables in 〈Γ′,ρ→φ〉 are
in Vφ〈Γ,σ〉.

iii) A ≡ xA1 · · ·Am. Then there are τj, Γj (j ∈ m), such that Γj ⊢r Aj : τj for every j ∈ m, and
Γ′ = ∩mΓi ∩ {x:τ1→·· ·→τm→ψ}. Since last-tv (ψ) ∈ Vφ〈Γ,σ〉, and

τ1→·· ·→τm→ψ ∈ Ts〈∩mΓi ∩ {x:τ1→·· ·→τm→ψ},ψ〉 ⊆ Ts〈Γ,σ〉,

every type-variable in τ1→·· ·→τm→ψ is in Vφ〈Γ,σ〉. If, for j ∈ m, τj = ∩i∈k j
τi

j , then, for

every l ∈ kj, last-tv (τl
j) ∈ Vφ〈Γ,σ〉, and

ACM Computing Surveys, 43(3) article 20, April 2011 57

Ts〈Γj,τ
l
j 〉 ⊆ Ts〈∩mΓi ∩ {x:τ1→·· ·→τm→ψ},ψ〉 ⊆ Ts〈Γ,σ〉,

so all type-variables in 〈Γj,τ
l
j 〉 are in Vφ〈Γ,σ〉, for j ∈ m, l ∈ kj. So all type-variables in

〈∩mΓi ∩ {x:τ1→·· ·→τm→ψ},ψ〉 are in Vφ〈Γ,σ〉.

The next lemma shows that an expansion is either complete, i.e. affects all type-variables,
or maps a strict type in a pair to a strict type.

Lemma 10.16 Let Γ′ ⊢r A : ψ, and Ex = 〈φ,n, Γ,σ〉 be such that Ts〈Γ′,ψ〉 ⊆ Ts〈Γ,σ〉. Then either
there are ψi, Γi (i ∈ n), such that Ex (〈Γ′,ψ〉) = 〈∩nΓi,τ1∩· · ·∩τn〉 and, for every i ∈ n, 〈Γi,ψi〉 is a
trivial variant of 〈Γ′,ψ〉, or Ex (〈Γ′,ψ〉) = 〈Γ′′,ψ′〉, with ψ′ ∈ Ts.

Proof: By Lemmas 10.14, and 10.15.

Notice that, in particular, this lemma holds for the case that 〈Γ′,ψ〉 = 〈Γ,σ〉.
The following property is needed for the proofs that expansion is sound (Theorem 10.18),

and for completeness of chains of operations (Theorem 10.27).

Property 10.17 Let Ex be an expansion, φ such that last-tv (φ) is not affected by Ex, and Ex (φ) = φ′.
Then:

i) Ex (〈Γ∪{x:τ},φ〉) = 〈Γ′∪{x:τ′},φ′〉, iff Ex (〈Γ,τ→φ〉) = 〈Γ′,τ′→φ′〉.

ii) Let Ex (〈Γi,σi〉) = 〈Γ
′
i ,σ′i 〉, for every i ∈ n. Then

Ex (〈∩nΓi ∩ {x:σ1→·· ·→σn→φ},φ〉) = 〈∩nΓ′i ∩ {x:σ′1→·· ·→σ′n→φ′},φ′〉.

Proof: Easy.

The following theorem states that expansion is sound for relevant type assignment.

Theorem 10.18 If Γ ⊢r A : σ and let Ex be such that Ex(〈Γ,σ〉) = 〈Γ′,σ′〉, then Γ ⊢r A : σ.

Proof: Without loss if generality, assume σ = ψ ∈ Ts. By Lemma 10.16, we have two cases:

i) σ′ = ∩mψ′i , Γ′ = ∩mΓi, and each 〈Γi,ψi〉 is a trivial variant of 〈Γ,ψ〉 and, therefore, Γi ⊢r

A : ψi. So, by rule (∩I), Γ ⊢r A : σ.

ii) σ′ = ψ′ ∈ Ts. This part is proven by induction on the structure of elements of A. Notice
that the case A ≡ ⊥ need not be considered.

(A≡ λx.A′) : Then ψ = ρ→φ, and Γ, x:ρ ⊢r A′ : φ. Let ψ′ = ρ′→φ′. (Notice that, if ρ =
ω, by Definition 10.12, also ρ′ = ω). By Lemma 10.17(i), Ex(〈Γ∪{x:ρ},φ〉) =
〈Γ′∪{x:ρ′},φ′〉, and, by induction, Γ′, x:ρ′ ⊢r A′ : φ′, so Γ′ ⊢r λx.A′ : ρ′→φ′.

(A≡ xA1 · · ·An, with n ≥ 0) : Then Γ = ∩nΓi ∩ {x:σ1→·· ·→σn→φ}, and, for i ∈ n, Γi ⊢r

Ai : σi. Let, for i ∈ n, Ex(〈Γi,σi〉) = 〈Γ
′
i ,σ′i 〉, then Γ′i ⊢r Aj : σ′i by induction. Then,

by Lemma 10.17(ii),

Ex(〈∩nΓi ∩ {x:σ1→·· ·→σn→φ},φ〉) = 〈∩nΓ′i ∩ {x:σ′1→·· ·→σ′n→φ′},φ′〉.

Then ∩nΓ′i ∩ {x:σ′1→·· ·→σ′n→φ′} ⊢r xA1 · · ·Am : φ′.

10.5 Covering

The third operation on pairs defined in this section is the operation of covering. It is, un-
like the definition of lifting and rise, not defined on types, but directly on pairs, using the
relation ‘≺≺’ defined on pairs. This relation is inspired by the relation ‘⊑’ on terms in A,
and the relation between the principal pairs of two terms that are in that relation (see also
Theorem 10.28).

Definition 10.19 The relation on pairs ‘≺≺’ is defined by:

ACM Computing Surveys, 43(3) article 20, April 2011 58

〈Γ,σ〉 ≺≺ 〈∅,ω〉

〈∩nΓi,φ1∩ · · ·∩φn〉 ≺≺ 〈∩nΓ′i ,σ′1∩· · ·∩σ′n〉 iff ∀ i ∈ n (n ≥ 2) [〈Γi,φi〉 ≺≺ 〈Γ
′
i ,φ′i〉]

〈Γ,ρ→ψ〉 ≺≺ 〈Γ′,ρ′→ψ′〉 iff 〈Γ∪{x:ρ},ψ〉 ≺≺ 〈Γ′∪{x:ρ′},ψ′〉

〈∩nΓi ∩ {x:σ1→·· ·→σn→σ},σ〉 ≺≺ 〈∩nΓ′i ∩ {x:σ′1→·· ·→σ′n→σ},σ〉

iff ∀ i ∈ n [〈Γi,σi〉 ≺≺ 〈Γ
′
i ,σ′i 〉]

Definition 10.20 A covering Cov is an operation denoted by a pair of pairs
≺〈Γ0,τ0〉, 〈Γ1,τ1〉≻ such that 〈Γ0,τ0〉 ≺≺ 〈Γ1,τ1〉, and is defined by:

Cov(〈Γ,σ〉) = 〈Γ1,τ1〉, if 〈Γ,σ〉 = 〈Γ0,τ0〉,

= 〈Γ,σ〉, otherwise.

The operation of covering is not sound as a general operation for ‘⊢e’.

Example 10.21 It is easy to check that 〈{x:α∩(α→α)},α〉 ≺≺ 〈{x:ω→α},α〉. Notice that the
first pair is legal for x since x:α∩(α→α) ⊢e x : α is derivable, but we cannot derive x:ω→α ⊢e

x : α.

The operation of covering is, however, sound for ‘⊢r’.

Theorem 10.22 For every covering Cov, if Cov(〈Γ,σ〉) = 〈Γ′,σ′〉, and Γ ⊢r A : σ, then Γ ⊢r A : σ.

Proof: By induction on the structure of types.

i) σ′ = ω, Γ′ = ∅. Trivial.

ii) σ′ = σ′1∩· · ·∩σ′n, n≥ 2. Then Γ = ∩nΓi, σ = φ1∩ · · ·∩φn, and, for every i ∈ n, Γi ⊢r A : φi. By
Definition 10.19, Γ′ = ∩nΓ′i , and, for every i ∈ n, ≺〈Γi,φi〉, 〈Γ

′
i ,φ′i〉≻ is a covering. Then,

by induction, Γ′i ⊢r A : φ′i , so also Γ′ ⊢r A : σ′1∩· · ·∩σ′n.

iii) σ′ ∈ Ts. By induction on A.

(A≡ λx.A′) : If Γ ⊢r λx.A′ : σ, σ = ρ→φ, Γ, x:ρ ⊢r A′ : φ, and σ′ = ρ′→φ′. Since we know
that ≺〈Γ,ρ→φ〉, 〈Γ′,ρ′→φ′〉≻ is a covering, also ≺〈Γ∪{x:ρ},φ〉, 〈Γ′∪{x:ρ′},φ′〉≻ is
a covering, so, by induction, Γ′, x:ρ′ ⊢r A′ : φ′, so Γ′ ⊢r λx.A′ : ρ′→φ′.

(A≡ yA1 · · ·An, with n ≥ 0) : Since Γ ⊢r yA1 · · ·An : σ, there are σi, Γi (i ∈ n), such that Γ =
∩nΓi ∩ {x:σ1→·· ·→σn→σ}, and Γi ⊢r Ai : σi, for every i ∈ n. By Definition 10.19,
there are σ′i , Γ′i (i ∈ n), such that ≺〈Γi,σi〉, 〈Γ

′
i ,σ′i 〉≻ is a covering for every i ∈ n, and

Γ′ = ∩nΓ′i ∩ {x:σ′1→·· ·→σ′n→σ′}. Then by induction, for i ∈ n, Γ′i ⊢r Ai : σ′i , so also,
by (→E), ∩nΓ′i ∩ {x:σ′1→·· ·→σ′n→φ′} ⊢r yA1 · · ·An : σ′.

10.6 Lifting

The last operation needed in this section is that of lifting:

Definition 10.23 A lifting L is denoted by a pair of pairs 〈〈Γ0,τ0〉, 〈Γ1,τ1〉〉 such that τ0≤e τ1

and Γ1≤e Γ0, and is defined by:

i) L (σ) = τ1, if σ = τ0; otherwise, L(σ) = σ.

ii) L (Γ) = Γ1, if Γ = Γ0; otherwise, L (Γ) = Γ.

iii) L (〈Γ,σ〉) = 〈L (Γ),L (σ)〉.

The operation of lifting is clearly not sound for ‘⊢r’, since we can derive ⊢r λx.x : φ→φ, and
φ→φ≤e φ∩ψ→φ, but we cannot derive ⊢r λx.x : φ∩ψ→φ.

The operation of lifting is sound for ‘⊢e’.

Theorem 10.24 If Γ ⊢e M : σ and 〈〈Γ,σ〉, 〈Γ′,σ′〉〉 is a lifting, then Γ′ ⊢e M : σ′.

ACM Computing Surveys, 43(3) article 20, April 2011 59

Proof: By Definition 10.23, Γ′≤e Γ, and σ≤e σ′. The proof follows from Lemma 4.4.

10.7 Completeness of operations

We will now show completeness of the above specified operations, both for ‘⊢r’ as for ‘⊢e’.
First the notion of chain of operations is introduced.

Definition 10.25 i) A chain of operations is an object [O1, . . . ,On], where each Oi is an expan-
sion, covering, substitution, or lifting, and

[O1, . . . ,On] (〈Γ,σ〉) = On (· · · (O1 (〈Γ,σ〉)) · · ·).

ii) On chains the operation of concatenation is denoted by ∗, and

[O1, . . . ,Oi] ∗ [Oi+1, . . . ,On] = [O1, . . . ,On].

iii) A relevant chain is a chain of expansions, concatenated with a chain consisting of at most
one substitution, and at most one covering, in that order: Exi ∗ [S,Cov].

iv) An essential chain is a relevant chain, right-concatenated with at most one lifting.

The next theorem shows that for every suitable pair for a term A, there exists a chain such
that the result of the application of this chain to the principal pair of A produces the desired
pair. Part (i) of the Lemmas 10.10, and 10.17 are needed for the inductive step in case of an
abstraction term, part (ii) of those lemmas are needed for the inductive step in case of an
application term. Notice that, by construction, all operations mentioned in that part satisfy
the conditions required by these lemmas.

Theorem 10.26 (Completeness) If Γ ⊢r A : σ and pp (A) = 〈Π,π〉, then there exists a relevant
chain Ch such that Ch(〈Π,π〉) = 〈Γ,σ〉.

Proof: By induction on the definition of types

(σ = ω) : Take Cov =≺〈Π,π〉, 〈∅,ω〉≻, which, by Definition 10.20, is a covering. Take Ch =
[Cov].

(σ = φ1∩ · · ·∩φn) : Then Γ = ∩nΓi, for some Γi (i ∈ n), and Γi ⊢r A : φi, for i ∈ n. Let Ex =
〈π,n,Π,π〉, then Ex (〈Π,π〉) = 〈∩nΠi,∩nπi〉, with pp (A) = 〈Πi,πi〉. By induction, there
exist relevant chains Ch1, . . . ,Chn such that for i ∈ n, Chi (〈Πi,πi〉) = 〈Γi,φi〉. Let, for
i ∈ n, Chi = Exi ∗ [Si] ∗ [Covi], and Γ′i ,φ′i be such that Exi ∗ [Si] (〈Πi,πi〉) = 〈Γ

′
i ,φ′i〉, and

Covi = ≺〈Γ
′
i ,φ′i〉, 〈Γi,φi〉≻. Then, by Definition 10.19,

Cov = ≺〈∩nΓ′i ,τ′1∩· · ·∩τ′n〉, 〈∩nΓi,∩nφi〉≻

is a covering. Take Ch = [Ex] ∗ Ex1 ∗ · · · ∗ Exn ∗ [S1 ◦ · · · ◦ Sn] ∗ [Cov].

(σ ∈ Ts) : This part is proven by induction on the structure of elements of A. Notice that the
case that A ≡ ⊥ need not be considered.

(A≡ x) : Then Γ = {x:σ}, Π = {x:ϕ}, and π = ϕ. Take Ch = [(ϕ �→σ)].

(A≡ λx.A′) : 1) x ∈ FV(A′). Then σ = α→φ, Γ, x:α ⊢r A′ : φ, and pp (λx.A′) = 〈Π,µ→π〉,
where pp (A′) = 〈Π∪{x:µ},π〉. By induction there exists a relevant chain Ch′ =
Ex ∗ [S] ∗ [Cov′] such that Ch′ (〈Π∪{x:µ},π〉) = 〈Γ∪{x:α},φ〉. Let α′,φ′, Γ′ be
such that Ex ∗ [S] (〈Π∪{x:µ},π〉) = 〈Γ′∪{x:α′},φ′〉, and

Cov′ = ≺〈Γ′∪{x:α′},φ′〉, 〈Γ∪{x:α},φ〉≻.

Since φ ∈ Ts, by construction also φ′ ∈ Ts and, by Lemmas 10.17(i) and 10.10(i),
Ex ∗ [S] (〈Π,µ→π〉) = 〈Γ′,α′→φ′〉. Take Cov = ≺〈Γ′,α′→φ′〉, 〈Γ,α→φ〉≻, which,
by Definition 10.19, is a covering. Take Ch = Ex ∗ [S] ∗ [Cov].

ACM Computing Surveys, 43(3) article 20, April 2011 60

2) x ∈ FV(A′). Then there σ = ω→φ, Γ ⊢r A′ : φ, and pp (λx.A′) = 〈Π,ω→π〉, where
pp (A′) = 〈Π,π〉. By induction there exists a relevant chain Ch′ = Ex ∗ [S] ∗ [Cov′]
such that Ch′ (〈Π,π〉) = 〈Γ,φ〉. Let Γ′,φ′ be such that Ex ∗ [S] (〈Π,π〉) = 〈Γ′,φ′〉,
and Cov′ = ≺〈Γ′,φ′〉, 〈Γ,φ〉≻. Since φ ∈ Ts, by construction also φ′ ∈ Ts and, by
Lemma 10.17(i), and 10.10(i), Ex ∗ [S] (〈Π,ω→π〉) = 〈Γ′,ω→φ′〉. Take

Cov = ≺〈Γ′,ω→φ′〉, 〈Γ,ω→φ〉≻,

which, by Definition 10.19, is a covering. Take Ch = Ex ∗ [S] ∗ [Cov].

(A≡ xA1 · · ·Am) : Then there are σi, Γi (i ∈ m), such that Γj ⊢r Aj : σj, for every j ∈ m, Γ =
∩mΓj ∩ {x:σ1→·· ·→σm→σ}, and Π = ∩mΠj ∩ {x:π1→·· ·→πm→ϕ}, π = ϕ, with
for every j ∈ m, pp (Aj) = 〈Πj,πj〉, in which ϕ does not occur. By induction, there
are relevant chains Ch1, . . . ,Chm such that, for j ∈ m, Chj (〈Πj,πj〉) = 〈Γj,σj〉. Let, for
j ∈m, Ch (j) = Exj ∗ [Sj] ∗ [Covj], and Γ′j ,σ′j be such that Exj ∗ [Sj] (〈Πj,πj〉) = 〈Γ

′
j ,σ′j 〉,

and Covj =≺〈Γ
′
j ,σ′j 〉, 〈Γj,σj〉≻. Let Ex= Ex1 ∗ · · · ∗ Exm, and S= S1◦ · · · ◦Sm◦(ϕ �→σ),

then, because of Lemmas 10.17(ii) and 10.10(ii):

Ex ∗ [S] (〈∩mΠj ∩ {x:π1→·· ·→πm→ϕ}, ϕ〉)

= 〈∩mΓ′j ∩ {x:σ′1→·· ·→σ′m→σ},σ〉.

Then, by Definition 10.19,

Cov = ≺〈∩mΓ′j ∩ {x:σ′1→·· ·→σ′m→σ},σ〉, 〈∩mΓi ∩ {x:φ1→·· ·→φm→σ},σ〉≻,

is a covering. Take Ch = Ex ∗ [S] ∗ [Cov].

Notice that, in the proof above, we needed to separate the empty intersection. Should we
treat ω as the empty intersection, then, following the structure of the proof, ω would be
(implicitly) dealt with by the second case (σ = φ1∩ · · ·∩φn); then the chains that follow from
induction do not exist, so no chain is produced, and the principal type of A is not changed,
and the type ω will not be created.

We can now show a completeness result for ‘⊢e’:

Theorem 10.27 If Γ ⊢e A : σ and pp (A) = 〈Π,π〉, then there exists an essential chain Ch such that
Ch(〈Π,π〉) = 〈Γ,σ〉.

Proof: By Lemma 10.3 there are Γ′,σ′ such that Γ′ ⊢r A : σ, σ′≤e σ, and Γ≤e Γ′. By Theo-
rem 10.26, there exists a relevant chain Ch such that such that Ch(〈Π,π〉) = 〈Γ′,σ′〉. Since
〈〈Γ′,σ′〉, 〈Γ,σ〉〉 is a lifting, by Definition 10.25(iv), there exists an essential chain such that
Ch(〈Π,π〉) = 〈Γ,σ〉.

Like in [22, 55, 6], we can prove that there exists a precise relation between terms in A and
principal pairs, both equipped with an appropriate ordering. This relation is in [55] defined
using substitution of type-variables by the type constant ω. Using the notion of substitution
defined here, this approach cannot be taken; instead, the relation ≺≺ on pairs as given in
Definition 10.19 is used.

Theorem 10.28 〈P ,≻≻〉 is a meet semi-lattice isomorphic to 〈A,⊑〉.

Proof: pp is, as function from A to P , by Definition 10.6(ii), surjective. It is injective because
of Theorems 7.4, 7.6, and 10.27. That pp respects the order, i.e. if A ⊑ A′, then pp (A′) ≺≺
pp (A), follows by straightforward induction.

Definition 10.29 i) Let M be a term. Let P(M) be the set of all principal pairs for all
approximants of M: P(M) = {pp (A) | A ∈ A(M)}.

ii) P(M) is an ideal in P , and therefore:

ACM Computing Surveys, 43(3) article 20, April 2011 61

a) If P(M) is finite, then there exists a pair 〈Π,π〉 =
⊔

π(M), where 〈Π,π〉 ∈ P . This
pair is then called the principal pair of M.

b) If P(M) is infinite,
⊔

π(M) does not exist in P . The principal pair of M is then the
infinite set of pairs P(M).

Since by Lemma 6.1, type assignment is closed for ‘⊑’, for A⊑ A′, the principal type for A
can be generated (by covering) from the principal pair of A′. So, for a term with a finite set
of approximants, the principal pair for the most ‘detailed’ approximant (the largest) suffices,
but for a term with infinite approximants, this will not work.

The proof of the principal pair property for ‘⊢e’ is completed by the following:

Theorem 10.30 Let Γ and σ be such that Γ ⊢e M : σ.

i) A(M) is finite. Let 〈Π,π〉 be the principal pair of M. Then there exists an essential chain Ch
such that Ch (〈Π,π〉) = 〈Γ,σ〉.

ii) A(M) is infinite. Then there exist a pair 〈Π,π〉 ∈ P(M) and an essential chain Ch such that
Ch(〈Π,π〉) = 〈Γ,σ〉.

Proof: From Γ ⊢e M : σ and Theorem 6.9 follows that there A ∈ A(M) such that Γ ⊢e A : σ.
Then, by Definition 10.29, either

i) there exists AM ∈ A(M) such that pp (M) = pp (AM) = 〈Π,π〉. Since pp (AM) is minimal
in P , so pp (AM) ≺≺ pp (A), by Theorem 10.28, AM is maximal in A(M), so A ⊑ AM.
Then, by Lemma 6.1, also Γ ⊢e AM : σ.

ii) or 〈Π,π〉 = pp (A) ∈ P(M).

In any case, by Theorem 10.27, there exists an essential chain such that Ch(〈Π,π〉) =
〈Γ,σ〉.

The same result, using relevant chains rather than essential chains, can be formulated for
‘⊢r’.

This last result shows that terms with a finite set of approximants (a finite Böhm-tree)
have a single principal pair, and that terms with an infinite set of approximants (a infinite
Böhm-tree) have a infinitely many principal pairs, one for each approximant.

11 Concluding remarks

Intersection type assignment system comes in many shapes and forms. Originally set up by
Coppo and Dezani in ’78 to characterise normalisation, the concept quickly evolved into the
well-know system defined by Barendregt, Coppo and Dezani of ’83. This was shown to have
many strong properties, including giving rise to a filter semantics and completeness, and
characterising head-normalisation and normalisation. Other important elementary proper-
ties, like the approximation result and the principal pairs property were later shown by
Ronchi della Rocca and Venneri in ’84.

A few years later, in ’88 I myself discovered not only the strength of intersection types,
but also their beauty, especially when proving the strong normalisation result for the BCD-
system. However, I also started to question the superfluousness of certain points, like BCD’s
approach of treating intersection as a generic type constructor, or ω as a type constant, and
subsequently defined the subset of strict intersection types, in order to come to a more syntax
directed system without losing any of the main properties.

The strict intersection system, the first system I defined – which turned out to be very
close to a system already considered before by Coppo, Dezani, and Venneri in ’80 and ’81–
proved to be as expressive as the BCD-system, in that in ’88 I showed that it types the same

ACM Computing Surveys, 43(3) article 20, April 2011 62

terms (with equivalent types). However, it differs in that it is not closed for η-reduction, and
the corresponding strict filter model, which is essentially Engeler’s model, does not express
extensionality. I showed that this strict system has the principal pair property in ’91, where
the lack of extensionality of the system created complications in the proofs.

In ’92 I noticed that, by adding contra-variance to the type-inclusion relation, extension-
ality could be achieved without resorting to the full BCD-system: this lead to the definition
of the essential intersection system, for which I managed to show all major characterisation
and termination results, as well as the principal pair property. In ’95, in order to show the
characterisation of head-normalisation, and normalisation, I first showed the approximation
result.

After having proven a number of characterisation and termination result using Tait’s tech-
nique, I could not but observe that these proofs had much structure in common, and looked
for a common factor; this turned out to be the strong normalisation of derivation reduction.
In ’01 I showed this for the strict system, and showed that all characterisation results follow
from this main result; in ’05 I found the solution for the essential system in the definition of
the ≤-relation on derivations as defined here.

I have put all these results in order and in context in this survey, thus not only putting the
strength of strict types (within the essential system) into evidence, but also their elegance.

References

[1] F. Alessi, F. Barbanera, and M. Dezani-Ciancaglini. Intersection Types and Computational Rules.
Electronic Notes in Theoretical Computer Science, 84, 2003.

[2] S. van Bakel. Derivations in Type Assignment Systems. Master’s thesis, University of Nijmegen,
1988.

[3] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer
Science, 102(1):135–163, 1992.

[4] S. van Bakel. Essential Intersection Type Assignment. In R.K. Shyamasunda, editor, Proceedings of
FST&TCS’93. 13th Conference on Foundations of Software Technology and Theoretical Computer Science,
Bombay, India, volume 761 of Lecture Notes in Computer Science, pages 13–23. Springer-Verlag,
1993.

[5] S. van Bakel. Intersection Type Disciplines in Lambda Calculus and Applicative Term Rewriting Systems.
PhD thesis, Department of Computer Science, University of Nijmegen, 1993.

[6] S. van Bakel. Principal type schemes for the Strict Type Assignment System. Journal of Logic and
Computation, 3(6):643–670, 1993.

[7] S. van Bakel. Intersection Type Assignment Systems. Theoretical Computer Science, 151(2):385–435,
1995.

[8] S. van Bakel. Rank 2 Intersection Type Assignment in Term Rewriting Systems. Fundamenta
Informaticae, 2(26):141–166, 1996.

[9] S. van Bakel. Rank 2 Types for Term Graph Rewriting (Extended Abstract). In Electronic Proceed-
ings of International Workshop Types in Programming (TIP’02), Dagstuhl, Germany, volume 75 of
Electronic Notes in Theoretical Computer Science, 2002.

[10] S. van Bakel. Cut-Elimination in the Strict Intersection Type Assignment System is Strongly
Normalising. Notre Dame journal of Formal Logic, 45(1):35–63, 2004.

[11] S. van Bakel. The Heart of Intersection Type Assignment; Normalisation proofs revisited. Theo-
retical Computer Science, 398:82–94, 2008.

[12] S. van Bakel and M. Fernández. Normalization Results for Typeable Rewrite Systems. Information
and Computation, 2(133):73–116, 1997.

[13] S. van Bakel and M. Fernández. Normalisation, Approximation, and Semantics for Combinator
Systems. Theoretical Computer Science, 290:975–1019, 2003.

ACM Computing Surveys, 43(3) article 20, April 2011 63

[14] H. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[15] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the complete-
ness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.

[16] P. N. Benton. Strictness Analysis of Lazy Functional Programs. PhD thesis, Computing Lab, Univer-
sity of Cambridge, 1993. Technical Report 309.

[17] Luca Cardelli. Basic polymorphic typechecking. Science of Computer Programming, 8(2):147–172,
1987.

[18] A. Church. A note on the entscheidungsproblem. Journal of Symbolic Logic, 1(1):40–41, 1936.

[19] M. Coppo, M. Dezani, and P. Sallé. Functional characterization of some semantic Equalities
inside λ-calculus. In H.A. Maurer, editor, Proceedings of ICALP’79. 6th International Colloquium on
Automata, Languages and Programming, Graz, Austria, number 71 in Lecture Notes in Computer
Science, pages 133–146. Springer-Verlag, 1979.

[20] M. Coppo and M. Dezani-Ciancaglini. An Extension of the Basic Functionality Theory for the
λ-Calculus. Notre Dame journal of Formal Logic, 21(4):685–693, 1980.

[21] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and λ-calculus se-
mantics. In J.R. Hindley and J.P. Seldin, editors, To H.B. Curry, Essays in combinatory logic, lambda-
calculus and formalism, pages 535–560. Academic press, New York, 1980.

[22] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.

[23] M. Coppo, M. Dezani-Ciancaglini, and M. Zacchi. Type Theories, Normal Forms and D∞-
Lambda-Models. Information and Computation, 72(2):85–116, 1987.

[24] M. Coppo and A. Ferrari. Type inference, abstract interpretation and strictness analysis. In
M. Dezani-Ciancaglini, S. Ronchi Della Rocca, and M. Venturini Zilli, editors, A Collection of
contributions on honour of Corrado Böhm, pages 113–145. Elsevier, 1993.

[25] H.B. Curry. Functionality in Combinatory Logic. In Proc. Nat. Acad. Sci. U.S.A., volume 20, pages
584–590, 1934.

[26] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, Amsterdam, 1958.

[27] L. Damas and R. Milner. Principal type-schemes for functional programs. In Proceedings 9th ACM
Symposium on Principles of Programming Languages, pages 207–212, 1982.

[28] F. Damiani. Typing Local Definitions and Conditional Expressions with Rank 2 Intersection.
In Proceedings of FOSSACS’00, volume 1784 of Lecture Notes in Computer Science, pages 82–97.
Springer-Verlag, 2000.

[29] F. Damiani and P. Giannini. A Decidable Intersection Type System based on Relevance. In
M. Hagiya and J.C. Mitchell, editors, Proceedings of TACS’94. International Symposium on Theoretical
Aspects of Computer Software, Sendai, Japan, volume 789 of Lecture Notes in Computer Science, pages
707–725. Springer-Verlag, 1994.

[30] Ferruccio Damiani. Rank 2 intersection types for local definitions and conditional expressions.
ACM Transactions on Programming Languages and Systems (TOPLAS), 25(4):401–451, 2003.

[31] M. Dezani-Ciancaglini and I. Margaria. A characterisation of F-complete type assignments. The-
oretical Computer Science, 45:121–157, 1986.

[32] M. Dezani-Ciancaglini, R.K. Meyer, and Y. Motohama. The semantics of entailment omega. Notre
Dame journal of Formal Logic, 43(3):129–145, 2002.

[33] E. Engeler. Algebras and combinators. Algebra universalis, 13(3):389–392, 1981.

[34] J.Y. Girard. The System F of Variable Types, Fifteen years later. Theoretical Computer Science,
45:159–192, 1986.

[35] C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 633–674. North-Holland, 1990.

[36] J.R. Hindley. The principal type scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, 146:29–60, 1969.

ACM Computing Surveys, 43(3) article 20, April 2011 64

[37] J.R. Hindley. The simple semantics for Coppo-Dezani-Sallé type assignment. In M. Dezani and
U. Montanari, editors, International symposium on programming, volume 137 of Lecture Notes in
Computer Science, pages 212–226. Springer-Verlag, 1982.

[38] J.R. Hindley. The Completeness Theorem for Typing λ-terms. Theoretical Computer Science,
22(1):1–17, 1983.

[39] J.R. Hindley. Basic Simple Type Theory. Cambridge University Press, 1997.

[40] R. Hindley and G. Longo. Lambda calculus models and extensionality. Zeitschrift für Mathema-
tische Logik und Grundlagen der Mathematik, 26:289–310, 1980.

[41] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, K. Hammond, J. Hughes,
T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J. Peterson. Report on the Programming
Language Haskell. ACM SIGPLAN Notices, 27(5):1–64, 1992.

[42] T. Jensen. Abstract Interpretation in Logical Form. PhD thesis, Imperial College, University of
London, November 1992.

[43] Thomas P. Jensen. Conjunctive type systems and abstract interpretation of higher-order func-
tional programs. Journal of Logic and Computation, 5(4):397–421, 1995.

[44] T. Jim. What Are Principal Typings and What Are They Good For? In Proceedings of the 23rd
ACM symposium on Principles of Programming Languages (POPL ’96), pages 42–53, 1996.

[45] A. Kfoury and J. Wells. Principality and decidable type inference for finite-rank intersection
types. In Proceedings of the 26th ACM Symposium on the Principles of Programming Languages (POPL
’99), pages 161–174, 1999.

[46] A.J. Kfoury, H.G. Mairson, F.A. Turbak, and J.B. Wells. Relating Typability and Expressibility
in Finite-Rank Intersection Type Systems. In Proceedings of ICFP’99, International Conference on
Functional Programming, pages 90–101, 1999.

[47] D. Leivant. Polymorphic Type Inference. In Proceedings 10th ACM Symposium on Principles of
Programming Languages, pages 88–98, Austin Texas, 1983.

[48] R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System
Sciences, 17:348–375, 1978.

[49] J.C. Mitchell. Polymorphic Type Inference and Containment. Information and Computation, 76:211–
249, 1988.

[50] C. Retoré. A note on intersection types. INRIA Rapport de recherche 2431, INRIA, France, 1994.

[51] J. C. Reynolds. The essence of Algol. In J.W. de Bakker and J.C. van Vliet, editors, Algorithmic
languages, pages 345–372. North-Holland, 1981.

[52] J. C. Reynolds. Preliminary design of the programming language Forsythe. Technical Report
CMU-CS-88-159, Carnegie Mellon University, Pitssburgh, 1988.

[53] J. A. Robinson. A Machine-Oriented Logic Based on Resolution Principle. Journal of the ACM,
12(1):23–41, 1965.

[54] S. Ronchi Della Rocca. Principal type scheme and unification for intersection type discipline.
Theoretical Computer Science, 59:181–209, 1988.

[55] S. Ronchi Della Rocca and B. Venneri. Principal type schemes for an extended type theory.
Theoretical Computer Science, 28:151–169, 1984.

[56] P. Sallé. Une extension de la théorie des types. In G. Ausiello and C. Böhm, editors, Automata,
languages and programming. Fifth Colloquium, Udine, Italy, volume 62 of Lecture Notes in Computer
Science, pages 398–410. Springer-Verlag, 1978.

[57] W.W. Tait. Intensional interpretation of functionals of finite type I. Journal of Symbolic Logic,
32(2):198–223, 1967.

[58] Tachio Terauchi and Alex Aiken. On typability for rank-2 intersection types with polymorphic
recursion. In LICS, pages 111–122, 2006.

[59] C.P. Wadsworth. The relation between computational and denotational properties for Scott’s
D∞-models of the lambda-calculus. SIAM J. Comput., 5:488–521, 1976.

[60] J.B. Wells. The essence of principal typings. In Proceedings of ICALP’92. 29th International Collo-
quium on Automata, Languages and Programming, volume 2380 of Lecture Notes in Computer Science,
pages 913–925. Springer-Verlag, 2002.

