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Strictly and non-strictly positive definite
functions on spheres
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Isotropic positive definite functions on spheres play important roles in spatial statistics, where they occur as
the correlation functions of homogeneous random fields and star-shaped random particles. In approximation
theory, strictly positive definite functions serve as radial basis functions for interpolating scattered data on
spherical domains. We review characterizations of positive definite functions on spheres in terms of Gegen-
bauer expansions and apply them to dimension walks, where monotonicity properties of the Gegenbauer
coefficients guarantee positive definiteness in higher dimensions. Subject to a natural support condition,
isotropic positive definite functions on the Euclidean space R

3, such as Askey’s and Wendland’s functions,
allow for the direct substitution of the Euclidean distance by the great circle distance on a one-, two- or
three-dimensional sphere, as opposed to the traditional approach, where the distances are transformed into
each other. Completely monotone functions are positive definite on spheres of any dimension and provide
rich parametric classes of such functions, including members of the powered exponential, Matérn, gener-
alized Cauchy and Dagum families. The sine power family permits a continuous parameterization of the
roughness of the sample paths of a Gaussian process. A collection of research problems provides challenges
for future work in mathematical analysis, probability theory and spatial statistics.

Keywords: completely monotone; covariance localization; fractal index; interpolation of scattered data;
isotropic; locally supported; multiquadric; Pólya criterion; radial basis function; Schoenberg coefficients

1. Introduction

Recently, there has been renewed interest in the study of positive definite functions on spheres,
motivated in part by applications in spatial statistics, where these functions play crucial roles
as the correlation functions of random fields on spheres (Banerjee, 2005; Huang, Zhang and
Robeson, 2011), including the case of star-shaped random particles (Hansen, Thorarinsdottir
and Gneiting, 2011). In a related development in approximation theory, strictly positive definite
functions arise as radial basis functions for interpolating scattered data on spherical domains
(Fasshauer and Schumaker, 1998; Cavoretto and De Rossi, 2010; Le Gia, Sloan and Wendland,
2010).

Specifically, let k ≥ 2 be an integer, and let S
k−1 = {x ∈ R

k : ‖x‖ = 1} denote the unit sphere
in the Euclidean space R

k , where we write ‖x‖ for the Euclidean norm of x ∈ R
k . A function

h : S
d × S

d → R is positive definite if

n∑
i=1

n∑
j=1

cicjh(xi, xj ) ≥ 0 (1)
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for all finite systems of pairwise distinct points x1, . . . , xn ∈ S
d and constants c1, . . . , cn ∈ R.

A positive definite function h is strictly positive definite if the inequality in (1) is strict, unless
c1 = · · · = cn = 0, and is non-strictly positive definite otherwise. The function h : S

d × S
d → R

is isotropic if there exists a function ψ : [0,π] → R such that

h(x, y) = ψ
(
θ(x, y)

)
for all x, y ∈ S

d , (2)

where θ(x, y) = arccos(〈x, y〉) is the great circle, spherical or geodesic distance on S
d , and 〈·, ·〉

denotes the scalar or inner product in R
d+1. Thus, an isotropic function on a sphere depends on

its arguments via the great circle distance θ(x, y) or, equivalently, via the inner product 〈x, y〉
only.

For d = 1,2, . . . , we write �d for the class of the continuous functions ψ : [0,π] → R with
ψ(0) = 1 which are such that the associated isotropic function h in (2) is positive definite. Hence,
we may identify the class �d with the correlation functions of the mean-square continuous,
stationary and isotropic random fields on the sphere S

d (Jones, 1963). We write �+
d for the class

of the continuous functions ψ : [0,π] → R with ψ(0) = 1 such that the isotropic function h in
(2) is strictly positive definite.

We study the classes �d and �+
d with particular attention to the practically most relevant case

of a two-dimensional sphere, such as planet Earth. Applications abound, with atmospheric data
assimilation and the reconstruction of the global temperature and green house gas concentration
records being key examples. Section 2 summarizes related results for isotropic positive definite
functions on Euclidean spaces and studies their restrictions to spheres. In Section 3, we review
characterizations of strictly and non-strictly positive definite functions on spheres in terms of
expansions in ultraspherical or Gegenbauer polynomials. Monotonicity properties of the Gegen-
bauer coefficients in any given dimension guarantee positive definiteness in higher dimensions.

The core of the paper is Section 4, where we supply easily applicable conditions for mem-
bership in the classes �d and �+

d , and use them to derive rich parametric families of correlation
functions and radial basis functions on spheres. In particular, compactly supported, isotropic pos-
itive definite functions on the Euclidean space R

3 remain positive definite with the great circle
distance on a one-, two- or three-dimensional sphere as argument. Consequently, compactly sup-
ported radial basis functions on R

3, such as Askey’s and Wendland’s functions, translate directly
into locally supported radial basis functions on the sphere. Criteria of Pólya type guarantee mem-
bership in the classes �+

d , and we supplement recent results of Beatson, zu Castell and Xu (2011)
in the case of spheres of dimension d ≤ 7. Completely monotone functions are strictly positive
definite on spheres of any dimension, and include members of the powered exponential, Matérn,
generalized Cauchy and Dagum families. Some of the key results in the cases of one-, two- and
three-dimensional spheres are summarized in Table 1.

The paper ends in Section 5, where we refer to a collection of research problems in mathe-
matical analysis, probability theory and statistics that offer challenges of diverse difficulty and
scope, with details given in a supplemental article (Gneiting, 2013).

2. Isotropic positive definite functions on Euclidean spaces

In this expository section, we review basic results about isotropic positive definite functions on
Euclidean spaces and study their restrictions to spheres.
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Table 1. Parametric families of correlation functions and radial basis functions on one-, two- and three-
dimensional spheres in terms of the great circle distance, θ ∈ [0,π ]. Here c is a scale or support parameter,
δ and τ are shape parameters, α or ν is a smoothness parameter, and we write t+ = max(t,0) for t ∈ R. The
parameter range indicated guarantees membership in the classes �+

d
, where d = 1,2 and 3. For details, see

Section 4

Family Analytic expression Parameter range

Powered exponential ψ(θ) = exp(−( θ
c )α) c > 0;α ∈ (0,1]

Matérn ψ(θ) = 2ν−1


(ν)
( θ
c )νKν( θ

c ) c > 0;ν ∈ (0, 1
2 ]

Generalized Cauchy ψ(θ) = (1 + ( θ
c )α)−τ/α c > 0; τ > 0;α ∈ (0,1]

Dagum ψ(θ) = 1 − (( θ
c )τ /(1 + θ

c )τ )α/τ c > 0; τ ∈ (0,1];α ∈ (0, τ )

Multiquadric ψ(θ) = (1 − δ)2τ /(1 + δ2 − 2δ cos θ)τ τ > 0; δ ∈ (0,1)

Sine power ψ(θ) = 1 − (sin θ
2 )α α ∈ (0,2)

Spherical ψ(θ) = (1 + 1
2

θ
c )(1 − θ

c )2+ c > 0

Askey ψ(θ) = (1 − θ
c )τ+ c > 0; τ ≥ 2

C2-Wendland ψ(θ) = (1 + τ θ
c )(1 − θ

c )τ+ c ∈ (0,π ]; τ ≥ 4

C4-Wendland ψ(t) = (1 + τ θ
c + τ 2−1

3
θ2

c2 )(1 − θ
c )τ+ c ∈ (0,π ]; τ ≥ 6

Recall that a function h : R
d × R

d → R is positive definite if the inequality (1) holds for
all finite systems of pairwise distinct points x1, . . . , xn ∈ R

d and constants c1, . . . , cn ∈ R. It is
strictly positive definite if the inequality is strict unless c1 = · · · = cn = 0. The function h : R

d ×
R

d → R is radial, spherically symmetric or isotropic if there exists a function ϕ : [0,∞) → R

such that

h(x, y) = ϕ
(‖x − y‖) for all x, y ∈ R

d . (3)

For an integer d ≥ 1, we denote by �d the class of the continuous functions ϕ : [0,∞) → R with
ϕ(0) = 1 such that the function h in (3) is positive definite. Thus, we may identify the members of
the class �d with the characteristic functions of spherically symmetric probability distributions,
or with the correlation functions of mean-square continuous, stationary and isotropic random
fields on R

d .
Schoenberg (1938) showed that a function ϕ : [0,∞) → R belongs to the class �d if, and only

if, it is of the form

ϕ(t) =
∫

[0,∞)

d(rt)dF(r) for t ≥ 0, (4)

where F is a uniquely determined probability measure on [0,∞) and

d(t) = 
(d/2)

(
2

t

)(d−2)/2

J(d−2)/2(t),
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with J being a Bessel function (Digital Library of Mathematical Functions, 2011, Section 10.2).
The classes �d are nonincreasing in d ,

�1 ⊃ �2 ⊃ · · · ⊃ �∞ =
∞⋂

d=1

�d,

with the inclusions being strict. If d ≥ 2, any nonconstant member ϕ of the class �d corresponds
to a strictly positive definite function on R

d (Sun, 1993, Theorem 3.8) and thus it belongs to the
class �+

d . Finally, as shown by Schoenberg (1938), the class �∞ consists of the functions ϕ of
the form

ϕ(t) =
∫

[0,∞)

exp
(−r2t2)dF(r) for t ≥ 0, (5)

where F is a uniquely determined probability measure on [0,∞).
From the point of view of isotropic random fields, the asymptotic decay of the function ϕ

at the origin determines the smoothness of the associated Gaussian sample path (Adler, 2009).
Specifically, if

ϕ(0) − ϕ(t) = O
(
tα

)
as t ↓ 0 (6)

for some α ∈ (0,2], which we refer to as the fractal index, the graph of a Gaussian sample
path has fractal or Hausdorff dimension D = d + 1 − α

2 almost surely. If α = 2, the sample
path is smooth and differentiable and its Hausdorff dimension, D, equals its topological dimen-
sion, d . If α ∈ (0,2), the sample path is non-differentiable. Table 2 shows some well known para-
metric families within the class �∞, namely the powered exponential family (Yaglom, 1987),
the Matérn class (Guttorp and Gneiting, 2006), the generalized Cauchy family (Gneiting and
Schlather, 2004), and the Dagum class (Berg, Mateu and Porcu, 2008), along with the corre-
sponding fractal indices. Table 3 shows compactly supported families within the class �3 that
have been introduced and studied by Wendland (1995) and Gneiting (1999a, 2002).

Table 2. Parametric families of members of the class �∞. Here Kν denotes the modified Bessel function
of the second kind of order ν (Digital Library of Mathematical Functions, 2011, Section 10.2), c is a scale
parameter, α and ν are smoothness parameters, and τ is a shape parameter, respectively

Family Analytic expression Parameter range Fractal index

Powered
exponential

ϕ(t) = exp(−( t
c )α) c > 0;α ∈ (0,2] α ∈ (0,2]

Matérn ϕ(t) = 2ν−1


(ν)
( t
c )νKν( t

c ) c > 0;ν > 0 min(2ν,2) ∈ (0,2]
Generalized
Cauchy

ϕ(t) = (1 + ( t
c )α)−τ/α c > 0;α ∈ (0,2]; τ > 0 α ∈ (0,2]

Dagum ϕ(t) = 1 − (( t
c )τ /(1 + t

c )τ )α/τ c > 0; τ ∈ (0,2];α ∈ (0, τ ) α ∈ (0, τ )
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Table 3. Parametric families of compactly supported members of the class �3 with support
parameter c and shape parameter τ

Family Analytic expression Parameter range Fractal index

Spherical ϕ(t) = (1 + 1
2

t
c )(1 − t

c )2+ c > 0 1

Askey ϕ(t) = (1 − t
c )τ+ c > 0; τ ≥ 2 1

C2-Wendland ϕ(t) = (1 + τ t
c )(1 − t

c )τ+ c > 0; τ ≥ 4 2

C4-Wendland ϕ(t) = (1 + τ t
c + τ 2−1

3
t2

c2 )(1 − t
c )τ+ c > 0; τ ≥ 6 2

Yadrenko (1983) pointed out that if ϕ is a member of the class �k for some integer k ≥ 2, then
the function defined by

ψ(θ) = ϕ

(
2 sin

θ

2

)
for θ ∈ [0,π] (7)

corresponds to the restriction of the isotropic function h(xi, xj ) = ϕ(‖xi − xj‖) from R
k × R

k

to S
k−1 × S

k−1, with the chordal or Euclidean distance expressed in terms of the great circle
distance, θ , on the sphere S

k−1. Thus, given any nonconstant member ϕ of the class �k , the
function ψ defined by (7) belongs to the class �+

k−1.
Various authors have argued in favor of this construction, including Fasshauer and Schumaker

(1998), Gneiting (1999a), Narcowich and Ward (2002) and Banerjee (2005), as it readily gen-
erates parametric families of isotropic, strictly positive definite functions on spheres and retains
the interpretation of scale, support, shape and smoothness parameters. In particular, the mapping
(7) from ϕ ∈ �k to ψ ∈ �k−1 preserves the fractal index, in the sense that

ψ(0) − ψ(θ) = O
(
θα

)
as θ ↓ 0 (8)

if ϕ has fractal index α ∈ (0,2], as defined in (6). Nevertheless, the approach is of limited flexi-
bility. For example, if ϕ ∈ �3 it is readily seen from (4) that the function ψ defined in (7) does
not admit values less than inft>0 t−1 sin t = −0.2127 . . . . Furthermore, the mapping θ �→ 2 sin θ

2
in the argument of ϕ in (7), while being essentially linear for small θ , is counter to spherical ge-
ometry for larger values of the great circle distance, and thus may result in physically unrealistic
distortions. In this light, we now turn to characterizations and constructions of positive definite
functions that operate directly on a sphere.

3. Isotropic positive definite functions on spheres

Let d ≥ 1 be an integer. As defined in Section 1, the classes �d and �+
d consist of the functions

ψ : [0,π] → R with ψ(0) = 1 which are such that the isotropic function h in (2) is positive
definite or strictly positive definite, respectively. Furthermore, we consider the class �−

d = �d \
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�+
d of the non-strictly positive definite functions, and we define

�∞ =
∞⋂

d=1

�d, �+∞ =
∞⋂

d=1

�+
d and �−∞ =

∞⋂
d=1

�−
d .

Schoenberg (1942) noted that the classes �d and �∞ are convex, closed under products, and
closed under limits, provided the limit function is continuous. The classes �+

d and �+∞ are con-
vex and closed under products, but not under limits.

We proceed to review characterizations in terms of ultraspherical or Gegenbauer expansions,
for which we require classical results on orthogonal polynomials (Digital Library of Mathemat-
ical Functions, 2011, Section 18.3). Given λ > 0 and an integer n ≥ 0, the function Cλ

n(cos θ) is
defined by the expansion

1

(1 + r2 − 2r cos θ)λ
=

∞∑
n=0

rnCλ
n(cos θ) for θ ∈ [0,π], (9)

where r ∈ (−1,1), and Cλ
n is the ultraspherical or Gegenbauer polynomial of degree n, which

is even if n is even and odd if n is odd. For reference later on, we note that Cλ
n(1) = 
(n +

2λ)/(n!
(2λ)). If λ = 0, we follow Schoenberg (1942) and set

C0
n(cos θ) = cos(nθ) for θ ∈ [0,π].

By equation (3.42) of Askey and Fitch (1969),

Cλ
n(cos θ) = 
(ν)


(λ)
(λ − ν)

[n/2]∑
k=0

(n − 2k + ν)
(k + λ − ν)
(n − k + λ)

k!
(n − k + ν + 1)
Cν

n−2k(cos θ) (10)

whenever λ > ν ≥ 0 and θ ∈ [0,π], where the coefficients on the right-hand side are strictly
positive. This classical result of Gegenbauer will be used repeatedly in the sequel.

The following theorem summarizes Schoenberg’s (1942) classical characterization of the
classes �d and �∞, along with more recent results of Menegatto (1994), Chen, Menegatto and
Sun (2003) and Menegatto, Oliveira and Peron (2006) for the classes �+

d and �+∞.

Theorem 1. Let d ≥ 1 be an integer.

(a) The class �d consists of the functions of the form

ψ(θ) =
∞∑

n=0

bn,d

C
(d−1)/2
n (cos θ)

C
(d−1)/2
n (1)

for θ ∈ [0,π], (11)

with nonnegative, uniquely determined coefficients bn,d such that
∑∞

n=0 bn,d = 1. If d ≥ 2,
the class �+

d consists of the functions in �d with the coefficients bn,d being strictly positive
for infinitely many even and infinitely many odd integers n. The class �+

1 consists of the
functions in �1 which are such that, given any two integers 0 ≤ j < n, there exists an
integer k ≥ 0 with the coefficient bj+kn,1 being strictly positive.
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(b) The class �∞ consists of the functions of the form

ψ(θ) =
∞∑

n=0

bn(cos θ)n for θ ∈ [0,π], (12)

with nonnegative, uniquely determined coefficients bn such that
∑∞

n=0 bn = 1. The class
�+∞ consists of the functions in �∞ with the coefficients bn being strictly positive for
infinitely many even and infinitely many odd integers n.

If d = 1, Schoenberg’s representation (11) reduces to the general form,

ψ(θ) =
∞∑

n=0

bn,1 cos(nθ) for θ ∈ [0,π], (13)

of a member of the class �1, that is, a standardized, continuous positive definite function on the
circle. By basic Fourier calculus,

b0,1 = 1

π

∫ π

0
ψ(θ)dθ and bn,1 = 2

π

∫ π

0
cos(nθ)ψ(θ)dθ (14)

for integers n ≥ 1. If d = 2, the representation (11) yields the general form,

ψ(θ) =
∞∑

n=0

bn,2

n + 1
Pn(cos θ) for θ ∈ [0,π], (15)

of a member of the class �2 in terms of the Legendre polynomial Pn of integer order n ≥ 0.
As Bingham (1973) noted, the classes considered here are convex, and so (11), (12), (13) and
(15) can be interpreted as Choquet representations in terms of extremal members, which are
non-strictly positive definite.

The general form (12) of the members of the class �∞ can be viewed as a power series in the
variable cos θ with nonnegative coefficients. To give an example, a standard Taylor expansion
shows that the function defined by

ψ(θ) = (1 − δ)2τ

(1 + δ2 − 2δ cos θ)τ
for θ ∈ [0,π] (16)

admits such a representation if τ > 0 and δ ∈ (0,1); furthermore, the coefficients are strictly
positive, whence ψ belongs to the class �+∞. When d = 2, the special cases in (16) with the
parameter τ fixed at 1

2 and 3
2 have been known as the inverse multiquadric and the Poisson spline,

respectively (Cavoretto and De Rossi, 2010). In this light, we refer to (16) as the multiquadric
family.

The sine power function of Soubeyrand, Enjalbert and Sache (2008),

ψ(θ) = 1 −
(

sin
θ

2

)α

for θ ∈ [0,π], (17)
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also admits the representation (12) if α ∈ (0,2]. Moreover, the coefficients are strictly positive if
α ∈ (0,2), whence ψ belongs to the class �+∞. The parameter α corresponds to the fractal index
in the relationship (8) and thus parameterizes the roughness of the sample paths of the associated
Gaussian process.

The classes �d are nonincreasing in d ≥ 1, with the following result revealing details about
their structure. The statement in part (a) might be surprising, in that a function that is non-strictly
positive definite on the sphere S

d cannot be strictly positive definite on a lower-dimensional
sphere, including the case S

1 of the circle.

Corollary 1.

(a) If ψ ∈ �+
d ∩ �d ′ for positive integers d and d ′, then ψ ∈ �+

d ′ . Similarly, if ψ ∈ �−
d ∩ �d ′

for positive integers d and d ′, then ψ ∈ �−
d ′ . In particular,

�∞ = �+∞ ∪ �−∞, (18)

where the union is disjoint.
(b) The classes �+

d are nonincreasing in d ,

�+
1 ⊃ �+

2 ⊃ · · · ⊃ �+∞ =
⋂
d≥1

�+
d ,

with the inclusions being strict.
(c) The classes �−

d are nonincreasing in d ,

�−
1 ⊃ �−

2 ⊃ · · · ⊃ �−∞ =
⋂
d≥1

�−
d ,

with the inclusions being strict.

Proof. In part (a) we use an argument of Narcowich (1995), and our key tool in proving that the
inclusions in parts (b) and (c) are strict is Gegenbauer’s relationship (10).

(a) If d ≥ d ′, it is trivially true that ψ ∈ �+
d implies ψ ∈ �+

d ′ . If d < d ′, suppose, for a contra-
diction, that ψ ∈ �+

d ∩ �−
d ′ . By part (a) of Theorem 1 applied in dimension d ′ ≥ 2, ψ is

either an even function plus an odd polynomial in cos θ , or an odd function plus an even
polynomial in cos θ . By Theorem 2.2 of Menegatto (1995), we conclude that ψ ∈ �−

1 , for
the desired contradiction to the assumption that ψ ∈ �+

d . The proof of the second claim is
analogous, and the statement in (18) then is immediate.

(b) The inclusion �+
d+1 ⊆ �+

d is trivially true. To see that the inclusion is strict, note that by
part (a) of Theorem 1 and the relationship (10) any ψ ∈ �+

d+1 admits the representation
(11) with bn,d being strictly positive for all n ≥ 0. However, there are members of the
class �+

d with bn,d = 0 for at least one integer n ≥ 0, which thus do not belong to the
class �+

d+1.
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(c) The inclusion �−
d+1 ⊆ �−

d is immediate from part (a). To demonstrate that the inclusion is

strict, we show that if n ≥ 2 then the function ψ(θ) = C
(d−1)/2
n (cos θ) belongs to �−

d but
not to �−

d+1. For a contradiction, suppose that ψ ∈ �d+1. Then by the relationship (10),
ψ is of the form (11) with at least two distinct coefficients bn,d being strictly positive,
contrary to the uniqueness of the Gegenbauer coefficients. �

The following classical result is a consequence of Schoenberg’s (1942) representation (11) and
the orthogonality properties of the ultraspherical or Gegenbauer polynomials.

Corollary 2. Let d ≥ 2 be an integer. A continuous function ψ : [0,π] → R with ψ(0) = 1
belongs to the class �d if and only if

bn,d = 2n + d − 1

23−dπ

(
(d−1
2 ))2


(d − 1)

∫ π

0
C

(d−1)/2
n (cos θ)(sin θ)d−1ψ(θ)dθ ≥ 0 (19)

for all integers n ≥ 0. Furthermore, the coefficient bn,d in the Gegenbauer expansion (11) of a
function ψ ∈ �d equals the above value.

Interesting related results include Theorem 4.1 of Narcowich and Ward (2002), which ex-
presses the Gegenbauer coefficient bn,d of a function ψ of Yadrenko’s form (7), where k = d +1,
in terms of the Fourier transform of the respective member ϕ of the class �d+1, Theorem 6.2
of Le Gia, Sloan and Wendland (2010), which deduces asymptotic estimates, and the recent
findings of Ziegel (2013) on convolution roots and smoothness properties of isotropic positive
definite functions on spheres.

Adopting terminology introduced by Daley and Porcu (2013) and Ziegel (2013), we refer to
the Gegenbauer coefficient bn,d as a d-Schoenberg coefficient and to the sequence (bn,d)n=0,1,2,...

as a d-Schoenberg sequence. We now provide formulas that express the d-Schoenberg coefficient
bn,d+2 in terms of bn,d and bn+2,d . In special cases, closely related results were used by Beatson,
zu Castell and Xu (2011).

Corollary 3. Consider the d-Schoenberg coefficients bn,d in the Gegenbauer expansion (11) of
the members of the class �d .

(a) It is true that

b0,3 = b0,1 − 1
2b2,1 (20)

and

bn,3 = 1
2 (n + 1)(bn,1 − bn+2,1) (21)

for all integers n ≥ 1.
(b) If d ≥ 2, then

bn,d+2 = (n + d − 1)(n + d)

d(2n + d − 1)
bn,d − (n + 1)(n + 2)

d(2n + d + 3)
bn+2,d (22)

for all integers n ≥ 0.
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Proof. We take advantage of well known recurrence relations for trigonometric functions and
Gegenbauer polynomials.

(a) The identity in (20) holds true because 2(sin θ)2 = 1 − cos(2θ) for θ ∈ [0,π], so that

b0,3 = 2

π

∫ π

0
(sin θ)2ψ(θ)dθ = 1

π

∫ π

0

(
1 − cos(2θ)

)
ψ(θ)dθ = b0,1 − 1

2
b2,1.

To establish (21), we note that

C1
n(cos θ)(sin θ)2 = sin θ sin

(
(n + 1)θ

) = 1
2

(
cos(nθ) − cos

(
(n + 2)θ

))
for θ ∈ [0,π]. In view of the formulas (19) and (14) for the Gegenbauer coefficients bn,3
and the Fourier cosine coefficients bn,1, respectively, the claim follows easily if we inte-
grate the above equality over θ ∈ [0,π].

(b) By equation (18.9.8) of Digital Library of Mathematical Functions (2011),

C
(d+1)/2
n (cos θ)(sin θ)2 = (n + d − 1)(n + d)

(d − 1)(2n + d + 1)
C

(d−1)/2
n (cos θ)

− (n + 1)(n + 2)

(d − 1)(2n + d + 1)
C

(d−1)/2
n+2 (cos θ).

In view of the formula (19) for the d-Schoenberg coefficients bn,d , we establish (22) by
integrating the above equality over θ ∈ [0,π] and consolidating coefficients. �

If k ≥ 1 is an integer, so that d = 2k + 1 is odd, the recursion (22) allows us to express the d-
Schoenberg coefficient bn,d in terms of the Fourier cosine coefficients bn,1, bn+2,1, . . . , bn+2k,1.
For instance,

bn,5 = (n + 2)(n + 3)

3 · 4

(
b∗
n,1 − 2

n + 2

n + 3
bn+2,1 + n + 1

n + 3
bn+4,1

)
(23)

for all integers n ≥ 0, where b∗
0,1 = 2b0,1 and b∗

n,1 = bn,1 for n ≥ 1. Similarly, if d = 2k + 2
is even, we can express the d-Schoenberg coefficient bn,d in terms of the Legendre coefficients
bn,2, bn+2,2, . . . , bn+2k,2. Furthermore, it is possible to relate the Legendre coefficients to the
Fourier cosine coefficients, in that, subject to weak regularity conditions,

bn,2 =
∞∑

k=0

cn
k

(
b∗
n+2k,1 − bn+2k+2,1

)
, (24)

where

cn
k = 22n(n!)2

(2n)!
1 · 3 · · · (2k − 1)

k!
(n + 1) · (n + 2) · · · (n + k)

(2n + 3) · (2n + 5) · · · (2n + 2k + 1)

for integers n ≥ 0 and k ≥ 0, as used by Huang, Zhang and Robeson (2011).
The recursions in Corollary 3 allow for dimension walks, where monotonicity properties of

the d-Schoenberg coefficients guarantee positive definiteness in higher dimensions, as follows.
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Corollary 4. Suppose that the function ψ : [0,π] → R is continuous with ψ(0) = 1. For integers
d ≥ 1 and n ≥ 0, let bn,d denote the Fourier cosine and Gegenbauer coefficients (14) and (19)
of ψ , respectively.

(a) The function ψ belongs to the class �3 if, and only if, b2,1 ≤ 2b0,1 and bn+2,1 ≤ bn,1 for
all integers n ≥ 1. It belongs to the class �+

3 if, and only if, furthermore, the inequality is
strict for infinitely many even and infinitely many odd integers.

(b) If d ≥ 2, the function ψ belongs to the class �d+2 if, and only if,

bn+2,d ≤ 2n + d + 3

2n + d − 1

(n + d − 1)(n + d)

(n + 1)(n + 2)
bn,d (25)

for all integers n ≥ 0. It belongs to the class �+
d+2 if, and only if, furthermore, the inequal-

ity is strict for infinitely many even and infinitely many odd integers.
(c) If d ≥ 2, the function ψ belongs to the class �+

d+2 if bn+2,d ≤ bn,d for all integers n ≥ 0.

4. Criteria for positive definiteness and applications

In this section, we provide easily applicable tests for membership in the classes �d and �+
d

and apply them to construct rich parametric families of correlation functions and radial basis
functions on spheres.

4.1. Locally supported strictly positive definite functions on two- and
three-dimensional spheres

There are huge computational savings in the interpolation of scattered data on spheres if the
strictly positive definite function used as the correlation or radial basis function admits a sim-
ple closed form, and is supported on a spherical cap. Thus, various authors have sought such
functions (Schreiner, 1997, Fasshauer and Schumaker, 1998, Narcowich and Ward, 2002), with
particular emphasis on the practically most relevant case of the two-dimensional sphere.

The following result of Lévy (1961) constructs a positive definite function on the circle from
a positive definite function on the real line, in the form of a compactly supported member of the
class �1. Here and in the following, we write ϕ[0,π] for the restriction of a function ϕ : [0,∞) →
R to the interval [0,π]. For essentially identical results, see Exercise 1.10.25 of Sasvári (1994)
and Wood (1995).

Theorem 2. Suppose that the function ϕ ∈ �1 is such that ϕ(t) = 0 for t ≥ π . Then the restric-
tion ψ = ϕ[0,π] belongs to the class �1.

On the two-dimensional sphere, a particularly simple way of constructing a locally supported
member of the corresponding class �+

2 is to take a compactly supported member of the class
�3, such as any of the functions in Table 3, and apply Yadrenko’s recipe (7). If ϕ ∈ �3 is such
that ϕ(t) = 0 for t ≥ a, where a ∈ (0,π), then the function ψ in (7) belongs to the class �+

2



1338 T. Gneiting

and satisfies ψ(θ) = 0 for θ ≥ 2 arcsin a
2 . However, the approach is subject to the problems

described in Section 2, in that the use of the chordal distance may result in physically unrealistic
representations.

Perhaps surprisingly, the following result shows that compactly supported, isotropic positive
definite functions on the Euclidean space R

3 remain positive definite with the great circle distance
on a one-, two- or three-dimensional sphere as argument. Thus, they can be used either with the
chordal distance or with the great circle distance as argument.

Theorem 3. Suppose that the function ϕ ∈ �3 is such that ϕ(t) = 0 for t ≥ π . Then the restric-
tion ψ = ϕ[0,π] belongs to the class �+

3 .

Proof. If the function ϕ ∈ �3 is such that ϕ(t) = 0 for t ≥ π , the Fourier cosine coefficient (14)
of its restriction ψ = ϕ[0,π] can be written as

bn,1 = 2

π

∫ π

0
cos(nθ)ψ(θ)dθ = 1

π

∫
R

cos(nt)φ(t)dt = 2φ̂(n)

for all integers n ≥ 1. Here, the function φ : R → R is defined by φ(t) = ϕ(|t |) for t ∈ R, and
φ̂(u) = 1

2π

∫
R

cos(ut)φ(t)dt denotes the inverse Fourier transform of φ evaluated at u ∈ R. Sim-

ilarly, b0,1 = φ̂(0). By equation (36) of Gneiting (1998a) in concert with the Paley–Wiener the-
orem (Paley and Wiener, 1934), the function φ̂(u) is strictly decreasing in u ≥ 0. Thus, the
sequence bn,1 is strictly decreasing in n ≥ 1; furthermore, b2,1 = 2φ̂(2) < 2φ̂(0) = 2b0,1. By
part (a) of Corollary 4, we conclude that ψ ∈ �+

3 . �

Theorem 3 permits us to use any of the functions in Table 3 with support parameter c ≤ π as
a correlation function or radial basis function with the spherical or great circle distance on the
sphere S

d as argument, where d ≤ 3. This gives rise to flexible parametric families of locally
supported members of the class �+

d , where d ≤ 3, that admit particularly simple closed form
expressions. A first example is the spherical family,

ψ(θ) =
(

1 + 1

2

θ

c

)(
1 − θ

c

)2

+
for θ ∈ [0,π], (26)

which derives from a popular correlation model in geostatistics.
Using families of compactly supported members of the class �3 described by Wendland

(1995) and Gneiting (1999a), Theorem 3 confirms that Askey’s (1973) truncated power func-
tion

ψ(θ) =
(

1 − θ

c

)τ

+
for θ ∈ [0,π] (27)

belongs to the class �+
3 if τ ≥ 2 and c ∈ (0,π], as shown by Beatson, zu Castell and Xu (2011).

If smoother functions are desired, the C2-Wendland function

ψ(θ) =
(

1 + τ
θ

c

)(
1 − θ

c

)τ

+
for θ ∈ [0,π] (28)
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s in �+
3 if τ ≥ 4 and c ∈ (0,π]; similarly, the C4-Wendland function defined by

ψ(t) =
(

1 + τ
θ

c
+ τ 2 − 1

3

θ2

c2

)(
1 − θ

c

)τ

+
for θ ∈ [0,π] (29)

belongs to the class �+
3 if τ ≥ 6 and c ∈ (0,π].

In atmospheric data assimilation, locally supported positive definite functions are used for the
distance-dependent filtering of spatial covariance estimates on planet Earth (Hamill, Whitaker
and Snyder, 2001). The traditional construction relies on the Gaspari and Cohn (1999) function,

ϕGC(t) =

⎧⎪⎨
⎪⎩

1 − 20
3 t2 + 5t3 + 8t4 − 8t5, 0 ≤ t ≤ 1

2 ,
1
3 t−1

(
8t2 + 8t − 1

)
(1 − t)4, 1

2 ≤ t ≤ 1,

0, t ≥ 1,

which belongs to the class �3, along with all functions of the form ϕ(t) = ϕGC(t/c), where c > 0
is a constant. If c ∈ (0,π], Yadrenko’s construction (7) yields the localization function

ψ1(θ) = ϕGC

(
sin θ

2

sin c
2

)
for θ ∈ [0,π], (30)

which is a member of the class �+
2 with support [0, c]. Theorem 3 suggests a natural alternative,

in that, for every c ∈ (0,π], the function defined by

ψ2(θ) = ϕGC

(
θ

c

)
for θ ∈ [0,π] (31)

is also a member of the class �+
2 with support [0, c]. Clearly, ψ2(θ) > ψ1(θ) for θ ∈ (0, c), as

illustrated in Figure 1, where c = π
2 . This suggests that ψ2 might be a more effective localization

function than the traditional choice, ψ1. Similar comments apply to covariance tapers in spatial
statistics, as proposed by Furrer, Genton and Nychka (2006).

4.2. Criteria of Pólya type

Criteria of Pólya type provide simple sufficient conditions for positive definiteness, by imposing
convexity conditions on a candidate function and/or its higher derivatives. Gneiting (2001) re-
views and develops Pólya criteria on Euclidean spaces. In what follows, we are concerned with
analogues on spheres that complement the recent work of Beatson, zu Castell and Xu (2011).

The following theorem summarizes results of Wood (1995), Gneiting (1998b) and Beatson,
zu Castell and Xu (2011) in the case of the circle S

1.

Theorem 4. Suppose that the function ψ : [0,π] → R is continuous, nonincreasing and convex
with ψ(0) = 1 and

∫ π

0 ψ(θ)dθ ≥ 0. Then ψ belongs to the class �1. It belongs to the class �+
1

if it is not piecewise linear.
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Figure 1. The Gaspari and Cohn (1999) localization function with Euclidean or chordal distance (ψ1;
eq. (30)), and with spherical or great circle distance (ψ2; eq. (31)), as argument.

Our next result is a Pólya criterion that applies on spheres S
d of dimension d ≤ 3. Its proof

relies on the subsequent lemmas, the first of which is well known.

Theorem 5. Suppose that ϕ : [0,∞) → R is a continuous function with ϕ(0) = 1,
limt→∞ ϕ(t) = 0 and a continuous derivative ϕ′ such that −ϕ′(t1/2) is convex for t > 0. Then
the restriction ψ = ϕ[0,π] belongs to the class �+

3 .

To give an example, we may conclude from Theorem 5 that the truncated power function (27)
with shape parameter τ ≥ 2 belongs to the class �+

3 for all values of the support parameter c > 0,
including the case c > π , in which it is supported globally.

Lemma 1. Let d ≥ 1 be an integer. Suppose that C is a subset of a Euclidean space, and let P

be a Borel probability measure on C. If ψc belongs to the class �d for every c ∈ C, then the
function ψ defined by

ψ(θ) =
∫

C

ψc(θ)dP(c) for θ ∈ [0,π]

belongs to the class �d , too. If furthermore ψc belongs to �+
d for every c in a set of positive

P -measure, then ψ belongs to the class �+
d .

Lemma 2. For all c > 0, the function defined by

ψc(θ) =
(

1 + 1

2

θ

c

)(
1 − θ

c

)2

+
for θ ∈ [0,π] (32)
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belongs to the class �+
3 .

Proof. By Theorem 3, the function ψc belongs to the class �+
3 if c ≤ π . If c ≥ π , the formulas

in (14) yield the Fourier cosine coefficients

b0,1 = 1

8c3

(
8c3 − 6πc2 + π3) and b2k,1 = 3π

4c3

1

k2

for all integers k ≥ 1. Similarly, we find that

b2k+1,1 = 3

πc3

(
2c2 − π2

(2k + 1)2
+ 4

(2k + 1)4

)

for all integers k ≥ 0 and conclude from part (a) of Corollary 4 that ψc belongs to �+
3 . �

Proof of Theorem 5. By Theorem 3.1 of Gneiting (1999b), the function ϕ admits a representa-
tion of the form

ϕ(t) =
∫

(0,∞)

ϕc(t)dF(c) for t ≥ 0,

where ϕc is defined by

ϕc(t) =
(

1 + 1

2

t

c

)(
1 − t

c

)2

+
for t ≥ 0, (33)

and F is a probability measure on (0,∞). Therefore, the restriction ψ = ϕ[0,π] is of the form

ψ(θ) =
∫

(0,∞)

ψc(θ)dF(c) for θ ∈ [0,π],

where ψc is defined by (32). By Lemma 2, the function ψc belongs to the class �+
3 for all c > 0,

and so we conclude from Lemma 1 that ψ is in �+
3 . �

Our next theorem is a slight generalization of the key result in Beatson, zu Castell and Xu
(2011). In analogy to the corresponding results on Euclidean spaces (Gneiting, 1999b), the case
n = 1 yields a more concise, but less general, criterion than Theorem 5.

Theorem 6. Let n ≤ 3 be a positive integer. Suppose that ϕ : [0,∞) → R is a continuous func-
tion with ϕ(0) = 1, limt→∞ ϕ(t) = 0 and a derivative ϕ(n) of order n such that (−1)nϕ(n)(t) is
convex for t > 0. Then the restriction ψ = ϕ[0,π] belongs to �+

2n+1.

In a recent tour de force, Beatson, zu Castell and Xu (2011) demonstrate the following re-
markable result, which is the key to proving Theorem 6.
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Lemma 3. Let n ≤ 3 be a positive integer, and suppose that c ∈ (0,π]. Then the function defined
by

ψc,n(θ) =
(

1 − θ

c

)n+1

+
for θ ∈ [0,π] (34)

belongs to the class �+
2n+1.

The next lemma concerns the case c > π , in which the truncated power function (34) is sup-
ported globally.

Lemma 4. For all integers n ≥ 1 and all real numbers c ≥ π , the function ψc,n in (34) belongs
to the class �+∞.

Proof. By a convolution argument due to Fuglede (Hjorth et al., 1998, p. 272), the function
ψπ,0(θ) = 1 − θ

π
belongs to the class �∞. As the class �∞ is convex and closed under products,

we see that if n ≥ 0 is an integer and c ≥ π then

ψc,n(θ) =
((

1 − π

c

)
+ π

c
ψπ,0(θ)

)n+1

for θ ∈ [0,π],

whence ψc,n is in the class �∞, too. By a straightforward direct calculation, the Fourier cosine
coefficients of ψc,1 and ψc,2 are strictly positive for all c ≥ π . Therefore, by Theorem 1 of Xu
and Cheney (1992) and the fact that the class �+

1 is closed under products, the function ψc,n is
in the class �+

1 for all integers n ≥ 1 and all c ≥ π . Using part (a) of Corollary 1, we conclude
that ψc,n ∈ �+∞ for all integers n ≥ 1 and all c ≥ π . �

Proof of Theorem 6. By Theorem 3.1 of Gneiting (1999b), the function ϕ admits a representa-
tion of the form

ϕ(t) =
∫

(0,∞)

ϕc,n(t)dF(c) for t ≥ 0,

where the function ϕc,n : [0,∞) → R is defined by ϕc,n(t) = (1 − θ
c
)n+1 for t ≥ 0 and F is a

probability measure on (0,∞). Therefore, the restriction ψ = ϕ[0,π] is of the form

ψ(θ) =
∫

(0,∞)

ψc,n(θ)dF(c) for θ ∈ [0,π],

where ψc,n is given by (34). By Lemmas 3 and 4, the function ψc,n belongs to the class �+
2n+1

for all c > 0. Therefore, we conclude from Lemma 1 that ψ is in �+
2n+1, too. �

Beatson, zu Castell and Xu (2011) conjectured that the statement of Lemma 3 holds for all
integers n ≥ 1. In view of Lemma 4, if their conjecture is true, the statement of Theorem 6 holds
for all integers n ≥ 1, too, with the proof being unchanged.
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It is interesting to observe that Theorem 6 is a stronger result than Theorem 1.3 in Beatson,
zu Castell and Xu (2011), in that it does not impose any support conditions on the candidate
function ψ . In contrast, the latter criterion requires ψ to be locally supported. Such an assumption
also needs to made in the spherical analogue of Theorem 1.1 in Gneiting (2001), which we state
and prove in Appendix A in the supplemental article (Gneiting, 2013).

4.3. Completely monotone functions

A function ϕ : [0,∞) → R is completely monotone if it possesses derivatives ϕ(k) of all or-
ders with (−1)kϕ(k)(t) ≥ 0 for all integers k ≥ 0 and all t > 0. Our next result shows that the
restrictions of completely monotone functions belong to the class �+∞.

Theorem 7. Suppose that the function ϕ : [0,∞) → R is completely monotone with ϕ(0) = 1
and not constant. Then the restriction ψ = ϕ[0,π] belongs to the class �+∞.

Proof. Let a > 0 and consider the truncated power function (34). By Lemma 4, ψn/a,n belongs
to the class �+∞ for all sufficiently large integers n. Hence, the function ψa defined by

ψa(θ) = e−aθ = lim
n→∞ψn/a,n(θ) for θ ∈ [0,π]

belongs to the class �∞, too. By Theorem 5, ψa ∈ �+
3 , which in view of part (a) of Corollary 1

implies that ψa ∈ �+∞. Now suppose that the function ϕ : [0,∞) → R satisfies the conditions of
the theorem. Invoking Bernstein’s Theorem, we see that ϕ admits a representation of the form

ϕ(t) =
∫

[0,∞)

e−at dF(a) for t ≥ 0,

where F is a probability measure on [0,∞). Therefore, the restriction ψ = ϕ[0,π] is of the form

ψ(θ) =
∫

[0,∞)

e−aθ dF(a) =
∫

[0,∞)

ψa(θ)dF(a) for θ ∈ [0,π].

Since ϕ is not constant, F has mass away from the origin. As ψa is in the class �+∞ for all a > 0,
we conclude from Lemma 1 that ψ belongs to the class �+∞. �

Miller and Samko (2001) present a wealth of examples of completely monotone functions,
which thus can serve as correlation functions or radial basis functions on spheres of any dimen-
sion.

4.4. Necessary conditions

The next result states conditions that prohibit membership in the class �1, and therefore in any
of the classes �d . Heuristically, the common motif can be paraphrased as follows:
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If a positive definite function admits a certain degree of smoothness at the origin, it admits the same degree of
smoothness everywhere.

The conditions in parts (a) through (d) of the following theorem can be interpreted as formal
descriptions of circumstances under which this overarching principle is violated. Part (a) corre-
sponds to a well-known result in the theory of characteristic functions, parts (b) and (c) are due
to Wood (1995) and Gneiting (1998b), respectively, and part (d) rests on a result in Devinatz
(1959).

Theorem 8. Suppose that the function ψ : [0,π] → R can be represented as the restriction
ψ = φ[0,π] of an even and continuous function φ : R → R that satisfies any of the following
conditions.

(a) For some integer k ≥ 1 the derivative φ(2k)(0) exists, but φ fails to be 2k times differen-
tiable on (0,π).

(b) For some integer k ≥ 1, the function φ is 2k − 1 times continuously differentiable on
[−π,π] with φ(2k−1)(π) �= 0 and |φ(2k−1)(t)| ≤ b1|t |β1 for some b1 > 0 and β1 > 0, and
is 2k+1 times continuously differentiable on [−π,0)∪ (0,π] with |φ(2k+1)(t)| ≤ b2|t |−β2

for some b2 > 0 and β2 ∈ (1,2).
(c) For some integer k ≥ 1, the function φ is 2k times differentiable on [−π,π] with φ(j)(π) �=

0 for some odd integer j , where 1 ≤ j ≤ 2k − 1.
(d) The function φ is analytic and not of period 2π .

Then ψ does not belong to the class �1.

An important caveat is the possibly surprising fact that, given some function ϕ : [0,∞) → R,
the mapping ψc : [0,π] → R defined by

ψc(θ) = ϕ

(
θ

c

)
for θ ∈ [0,π]

may belong to the class �d for some specific values of the scale parameter c > 0 only, rather than
for all c > 0. For example, the C2- and C4-Wendland functions in Table 1 allow for c ∈ (0,π]
only, with part (c) of Theorem 8 excluding the case c > π .

A notable exception occurs when ϕ is completely monotone with ϕ(0) = 1 and not constant.
Then the mapping t �→ ϕ(t/c) is completely monotone for all c > 0, and we conclude from
Theorem 7 that ψc ∈ �+∞ for all values of the scale parameter c > 0. The first four entries in
Table 1 are of this type and will be discussed below.

4.5. Examples

We now apply the criteria of Sections 4.3 and 4.4 to study parametric families of globally sup-
ported correlation functions and radial basis functions on spheres. In doing so, we think of c > 0
as a scale or support parameter, α > 0 or ν > 0 as a smoothness parameter and τ > 0 as a shape
parameter.
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We consider the families in Table 2, namely the powered exponential, Matérn, generalized
Cauchy and Dagum classes. For the parameter values stated in Table 2 these families serve as
isotropic correlation functions on Euclidean spaces, where the argument is the Euclidean dis-
tance. Investigating whether they can serve as isotropic correlation functions with spherical or
great circle distance on S

d as argument, we supplement and complete results of Huang, Zhang
and Robeson (2011) in the case d = 2, as summarized in the first four entries of Table 1. In
Examples 1 and 2, the results and proofs do not depend on the scale parameter c > 0, and so we
only discuss the smoothness parameter α or ν, respectively.

Example 1 (Powered exponential family). The members of the powered exponential family are
of the form

ψ(θ) = exp

(
−

(
θ

c

)α)
for θ ∈ [0,π]. (35)

If α ∈ (0,1], a straightforward application of Theorem 7 shows that ψ ∈ �+∞. If α > 1, we see
from parts (b) and (c) of Theorem 8 that ψ does not belong to the class �1, where part (b) applies
when α ∈ (1,2), and part (c) when α ≥ 2, both using k = 1. Therefore, if α > 1 then ψ does not
belong to any of the classes �d .

Example 2 (Matérn family). The members of the Matérn family can be written as

ψ(θ) = 2ν−1


(ν)

(
θ

c

)ν

Kν

(
θ

c

)
for θ ∈ [0,π], (36)

where Kν denotes the modified Bessel function of the second kind of order ν. If ν = n + 1
2 ,

where n ≥ 0 is an integer, then ψ equals the product of exp(−θ/c) and a polynomial of degree n

in θ (Guttorp and Gneiting, 2006).
If ν ∈ (0, 1

2 ], then ψ belongs to the class �+∞. Indeed, by Theorem 5 of Miller and Samko
(2001) the function φ1(t) = exp(t)tνKν(t) is completely monotone if ν ≤ 1

2 . By Theorem 1 of
Miller and Samko (2001) the function φ0(t) = exp(−t)φ1(t) = tνKν(t) is completely monotone,
too. In view of Theorem 7, this proves our claim.

If ν > 1
2 , then ψ does not belong to the class �1, and thus neither to any of the classes �d . If

ν ∈ ( 1
2 ,1), this follows from an application of the estimates in Section 10.31 of Digital Library

of Mathematical Functions (2011) to part (b) of Theorem 8, where k = 1, β1 = 2ν − 1 and
β2 = 2ν − 3. If ν ≥ 1, we apply part (c) of Theorem 8, where k = 1.

In our next example, the results do not depend on the scale parameter c > 0 and the shape
parameter τ > 0, and so we discuss the smoothness parameter α only.

Example 3 (Generalized Cauchy family). The members of the generalized Cauchy family are
of the form

ψ(θ) =
(

1 +
(

θ

c

)α)−τ/α

for θ ∈ [0,π]. (37)
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If α ∈ (0,1], a straightforward application of Theorem 7 shows that ψ is a member of the
class �+∞. However, if α > 1 the function ψ in (37) does not belong to the class �1. If α ∈ (1,2),
this is evident from part (b) of Theorem 8, where k = 1, β1 = α − 1 and β2 = α − 3. If α ≥ 2 we
apply part (c) of Theorem 8, where k = 1.

Example 4 (Dagum family). The members of the Dagum family are of the form

ψ(θ) = 1 −
((

θ

c

)τ/(
1 + θ

c

)τ)α/τ

for θ ∈ [0,π]. (38)

Using a comment by Berg, Mateu and Porcu (2008, p. 1146) along with Theorem 7, we see that
if c > 0, τ ∈ (0,1] and α ∈ (0, τ ) then ψ is a member of the class �+∞.

Another example that involves oscillating trigonometric and Bessel functions is given in Ap-
pendix B in the supplemental article (Gneiting, 2013).

In the context of isotropic random fields and random particles, the smoothness properties of
the associated random surface are governed by the behavior of the correlation function at the
origin. Specifically, if a function ψ ∈ �2 admits the relationship (8) for some α ∈ (0,2], the
corresponding Gaussian sample paths on the two-dimensional sphere have fractal or Hausdorff
dimension 3 − α

2 almost surely (Hansen, Thorarinsdottir and Gneiting, 2011). In this sense, the
results in the above examples are restrictive, in that the smoothness parameter needs to satisfy
α ≤ 1 or ν ≤ 1

2 , respectively. Parametric families of correlation functions that admit the full range
of viable Hausdorff dimensions include the sine power family (17) and the convolution construc-
tion in Section 4.3 of Hansen, Thorarinsdottir and Gneiting (2011). Alternatively, Yadrenko’s
construction (7) can be applied to any of the parametric families in Table 2.

5. Challenges for future work

In this paper, we have reviewed and developed characterizations and constructions of isotropic
positive definite functions on spheres, and we have applied them to provide rich parametric
classes of such functions. Some of the key results in the practically most relevant cases of one-,
two- and three-dimensional spheres are summarized in Table 1. Whenever required, the closure
properties of the classes of the positive definite or strictly positive definite functions offer addi-
tional flexibility. For example, while all entries in Table 1 yield nonnegative correlations only,
we can easily model negative correlations, by using convex sums or products of an entry in the
table with a suitable Gegenbauer function, such as ψ(θ) = cos θ , which belongs to the class �−∞.

Despite substantial advances in the study of positive definite functions on spheres, many in-
teresting and important questions remain open. Therefore, Appendix C in the supplemental ar-
ticle (Gneiting, 2013) describes 18 research problems that aim to stimulate future research in
mathematical analysis, probability theory and spatial statistics. The problems vary in scope and
difficulty, range from harmonic analysis to statistical methodology, and include what appear to
be tedious but routine questions, such as Problem 1, along with well known major challenges,
such as Problems 14 through 16, which have been under scrutiny for decades. The first eight
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problems are of an analytic character and concern the characterization and breadth of the classes
�d and �+

d . Then we state open questions about the parameter spaces for various types of cor-
relation models, relate to the fractal index and the sample path properties of Gaussian random
fields, and turn to challenges in spatial and spatio-temporal statistics.
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Supplementary Material

Supplement to “Strictly and non-strictly positive definite functions on spheres” (DOI:
10.3150/12-BEJSP06SUPP; .pdf). Appendix A states and proves further criteria of Pólya type,
thereby complementing Section 4.2. Appendix B studies an example that involves oscillating
trigonometric and Bessel functions, as hinted at in Section 4.5. Appendix C describes open prob-
lems that aim to stimulate future research in areas ranging from harmonic analysis to spatial
statistics.
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