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Integer partitions

A partition of an integer n is a nonincreasing sequence of positive
integers a1, a2, . . . , ak whose sum is n. Each ai is called a part.

For example, here are the 5 partitions of the integer 4:

4 = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

The partitions of n correspond to the set of solutions (k1, k2, . . . , kn) in
nonnegative integers to the Diophantine equation

1k1 + 2k2 + 3k3 + · · ·+ nkn = n
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Ferrers diagrams

A nice and useful way to visualize partitions:

15 = 6
+ 3

+ 3

+ 2

+ 1

p(n, k) : The number of partitions of n whose largest part is k is equal to
the number of partitions of n with k parts.

p(n): The number of (unrestricted) partitions of n, where the order is
not significant (p(n) = 0 for all n < 0 and p(0) = 1).

P(4) = {(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}, p(4) = 5.
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Euler’s partition function

Consider the product

(1 + x + x2 + x3 + · · · )(1 + x2 + x4 + x6 + · · · )(1 + x3 + x6 + · · · ) · · · (1)

What is the coefficient of xn in (1)?

Each contribution (of 1) to the coefficient of xn is of the form

x1k1 · x2k2 · x3k3 · · · = x1k1+2k2+3k3+···

Thus, the coefficient of xn is the number of ways of writing n as
1k1 + 2k2 + 3k3 + · · ·+ nkn, where ki ≥ 0. This is exactly p(n).

∞∑
n=0

p(n)xn =
1

1− x
· 1

1− x2
· 1

1− x3
· · · = E(x)
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Example 1

Let f (n) denote the number of partitions of n with no part 1.

∞∑
n=0

f (n)xn = x0 · 1

1− x2
· 1

1− x3
· · ·

=
1− x

1− x
· 1

1− x2
· 1

1− x3
· · ·

= (1− x)E(x)

This generating function yields the following result:

Lemma: f (n) = p(n)− p(n − 1).

Bijective proof: if a partition of n contains at least one part equal to 1,
then removing one of these yields a partition of n − 1.
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Example 2

q(n) is the number of partitions of n with disctinct parts.

∞∑
n=0

q(n)xn = (1 + x)(1 + x2)(1 + x3) · · ·

=
1− x2

1− x
· 1− x4

1− x2
· 1− x6

1− x3
· 1− x8

1− x4
· · ·

=
1

1− x
· 1

1− x3
· 1

1− x5
· · ·

Theorem: The number of partitions of n with distinct parts is equal to
the number of partitions with odd parts.

Bijective proof: uses the fact that each part can be written as a power of
2 times an odd number.
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More examples

• Partitions into primes (Goldbach conjecture)

• m-ary partitions: partitions as a sum of powers of m for a fixed
m ≥ 2. (e.g. binary partitions)

• Partitions with parts occurring at most thrice [A. Fink, R. Guy,
M. Krusemeyer 2008]

(1 + x + x2 + x3)(1 + x2 + x4 + x6)(1 + x3 + x6 + x12) · · ·

= Partitions with no part a multiple of 4
= Partitions with no even parts repeated

• Chain, umbrella partitions: partitions constrained by divisibility
conditions
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Chain partitions

A (strictly) chain partition is a partition of the form n = a1 + a2 + · · ·+ ak

into (distinct) positive integers such that ak |ak−1| . . . |a2|a1.

873 = 512 + 256 + 64 + 32 + 8 + 1

= 720 + 120 + 24 + 6 + 2 + 1

= 696 + 174 + 3

[Erdös-Loxton 1979]

• # partitions of this type: p(n) ≥ log2 n for n ≥ 6

• # partitions of this type whose smallest part is 1: p1(n) ≥ 1
2 log2 n

for n ≥ 27 and n − 1 not a prime

• P(x) =
∑

1≤n≤x p(n) ≈ cxρ, where c is an unknown constant and ρ
is the unique root of ζ(s)− 2, where ζ is the Riemann zeta function.

10/32



Strictly chained (p, q)-ary partition

Strictly chained (p, q)-ary partitions are chain partitions with distinct
parts of the form paqb, where p, q ≥ 2 and (p, q) = 1.

Notations:

• Ω(U): The set of all strictly chained (p, q)-ary partitions of U

• Ω∗(U): The subset of partitions ω ∈ Ω(U) with no part 1

• W (U) = #Ω(U)

• W ∗(U) = #Ω∗(U)

Special cases of interest:

• min(p, q) = 2

• (p, q) = (2, 3)
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Graphic representation and encoding

Example with (p, q) = (2, 3).

Ω(19) = {(16, 2, 1), (12, 4, 2, 1), (12, 6, 1), (18, 1)}

2a

3b

11003

2a

3b

1133

2a

3b

3013

2a

3b

3203

The couples of exponents (a, b) form a chain in N2. They can be
encoded with words in {0, 1, 2, 3}∗. (Conventions: words end with ’3’, we
go North before going East) If min(p, q) = 2, the binary amount of a
partition is equal to the sum of all its binary parts ( parts) or 0 if none.
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Complete generation, maps

We define embeddings from subsets Ω ⊂ Ω(U) to P, the set of all
unrestricted partitions (sequences of positive integers whose sum is finite)

Let ω = (a1, a2, . . . , ak) ∈ Ω.

• Mult. by p: ω 7−→ (pa1, pa2, . . . , pak) ∈ pΩ

• Mult. by q: ω 7−→ (qa1, qa2, . . . , qak) ∈ qΩ

• Add. 1: ω 7−→

(a1, . . . , ak , 1) if min(p, q) > 2

binary amount + 1 if min(p, q) = 2

In both cases, the resulting set of partitions is denoted 1Ω.

Remark: the number of parts never increases by more than 1 and
may be reduced due to carry propagation.
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Complete generation, maps’ properties

• pΩ(U) ⊂ Ω(pU)

• qΩ(U) ⊂ Ω(qU)

• 1Ω(U) 6⊂ Ω(U + 1) in general

If min(p, q) > 2, the part 1 may appear twice in 1Ω

The strictly chained (2, 3)-ary partition (6, 2, 1) is turned into
(6, 4) 6∈ Ω(10)

• If min(p, q) = 2, the set Ω(U) contains at least the binary partition
of U.

• By convention Ω(0) = {()}
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Some formulæ

Lemma: (+ denotes union of disjoint sets)

Ω(U) = Ω∗(U) + 1Ω∗(U − 1), Ω∗(U) = pΩ(U/p) ∪ qΩ(U/q)

Corollary:

Ω(pqU) = pΩ(qU) + q(Ω(pU) \ pΩ(U)),

Ω(pqU + 1) = 1pΩ(qU) + 1q(Ω(pU) \ pΩ(U))

and for 1 < r < pq

Ω(pqU + r) = Ω∗(pqU + r) + 1Ω∗(pqU + r − 1) (2)

Both sets Ω∗ in the rhs of (2) are non empty if and only if:
r = kp and r − 1 = `q, or r = `q and r − 1 = kp.

Let k0 = p−1 mod q and `0 = q−1 mod p. Then, (k0, p − `0) is the
unique positive solution to the equation kp − `q = 1. Therefore:

if r = k0p, Ω(pqU + r) = pΩ(qU + k0) + 1qΩ(pU + p − `0)
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Simpler relations

The complete formula:

Ω(pqU + r) =

8>>>>>>>>>>><>>>>>>>>>>>:

pΩ(qU + k0) + 1qΩ(pU + p − `0) if r = k0p
qΩ(pU + `0) + 1pΩ(qU + q − k0) if r = `0q
pΩ(qU + k) if r = kp, k 6= k0

1pΩ(qU + k) if r = kp + 1, k 6= q − k0

qΩ(pU + `) if r = `q, ` 6= `0

1qΩ(pU + `) if r = `q + 1, ` 6= p − `0

∅ otherwise.

The case (p, q) = (2, 3) allows for some simplifications:

Ω(3U) = 3Ω(U) + 1Ω(3U − 1)

Ω(6U − 1) = 12Ω(3U − 1)

Ω(6U + 1) = 13Ω(2U) + 11Ω(6U − 1)

Ω(6U + 2) = 2Ω(3U + 1)

Ω(6U + 4) = 13Ω(2U + 1) + 2Ω(3U + 2)

16/32



Examples

Ω(217) = {3000133, 30001003, 322033, 3220003,

3200013, 10011013, 1001333, 10013003}

Ω(95) = {1111103}
Ω(6143) = {1111111111103}

Ω(575) = {1111110003, 111111033}
Ω(959) = {1111110113, 1111110303}
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Transitions

• 1 + 2 = 3

3b

2a

←→

2a−1

• 2(2m − 1 + 2m+1) = 3(2m+1 − 1) + 1 (generalizes 4 = 3 + 1)

( )

2a

3b
←→ ( )

2c
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Random walk

The transition graph is symmetric and connected.

E.g: G (27) for (p, q) = (2, 3)

1333 2133 2213 2223

11013 13003 21003
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Computing W (U)

Let Wp(U) ∈ {0, 1} be the number of partitions of U with distinct parts
taken in {pn, n ∈ N}. In other words, can U be written in base p with
digits {0, 1} only?

W (U) = Wp(U) + W

(
U

q

)
+

blogp(
U

q+1 )c∑
c=0

δp,q(c ,U) W

(⌊
U

pcq

⌋)
,

δp,q(c ,U) =

{
1 if bU/pcc ≡ 1 (mod q) and Wp(U mod pc) = 1

0 otherwise

Sketch of proof: Order the partitions in Ω(U) w.r.t p-ary amount

W (U) = W (U/q) +
U∑

n=1

Wp(n) W

(
U − n

pcnq

)
.

and remark that many summands vanish.
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The sequence W

For any pair (p, q), the sequence W behaves rather irregularly.
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 0  100  200  300  400  500  600  700  800  900  1000

The sequence W
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Properties of W

• W takes infinitely often the value 0

• If min(p, q) = 2, then W takes infinitely often the value 1

• If (p, q) = (2, 3), we have W (U) = 1 iff either U ∈ {0, 1} of
U = 2a3− 1 for some a ∈ N. Also, W (U) = 2 iff either
U ∈ {3, 5, 6, 7} or U = 2a9− 1 or U = 2a15− 1 for some a ∈ N.

Conjecture: all values in N are taken

• Theorem: The sequence W is either {0, 1}-valued or unbounded.

Note: We are not aware of any pair (p, q) for which W is
{0, 1}-valued.
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Asymptotical behaviour of max W

Max value: Let β ∈ (0, 1) be the unique solution of 1/pβ + 1/qβ = 1.
Then W (U) ≤ Uβ for U ≥ 1. For (p, q) = (2, 3), we can (only) prove
W (U) ≤ U0.79, whereas our numerical experiment suggest U0.55.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

The sequence W
x0.79

x0.55
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Average value of W

Let S(x) =
∑

1≤U≤bxc W (U).

S(x) =

bxc∑
U=1

(W ∗(U) + W ∗(U − 1))

= W ∗(0)−W ∗(bxc) + 2

bxc∑
U=1

(W (U/p) + W (U/q)−W (U/pq))

Then, for all x ∈ R+ we have

S(x) = 2(S(x/p) + S(x/q)− S(x/pq)) + 1−W ∗(bxc)

Therefore, if S(x) ≈ xα, then α satisfies

1/pα + 1/qα − 1/(pq)α = 1/2

which also reads
(1− p−α)−1(1− q−α)−1 = 2
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Average value of W
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Applications

Fast exponentiation: given g ∈ G and e ≥ 0 compute g e

g217 = (((g2 × g)2
2 × g)2 × g)2

22

× g

cost: 4 mults, 7 squares

g217 = g222333

× g

cost: 1 mult, 3 squares, 3 cubes

2a

3b

Requires: fast cubing (e.g. elliptic curves, quadratic fields), and a fast
conversion algorithms into strictly chained (2, 3)-ary partitions.
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Conversion algorithms

• Right-to-left: divide by 3 and by 2 as much as possible; add or
subtract 1 to make the resulting value divisible by 3

• Left-to-right: find the closest number of the form 2a3b from e;
subtract and continue until reaching 0

• None of these algorithm give a chain of minimal length.

• Can we find a shortest partition, or at least, compute its length?

27/32



Shortest partitions

Let |w | the number of parts of a partition w ∈ Ω(U). We define
σ(U) = minw∈Ω(U) |w |, the length of a shortest partition in Ω(U).

Ω(pqU) = pΩ(qU) + q(Ω(pU) \ pΩ(U)),

Ω(pqU + 1) = 1pΩ(qU) + 1q(Ω(pU) \ pΩ(U))

The mappings pΩ and qΩ do not change the number of parts.

σ(pqU) = min(σ(qU), σ(pU))

σ(pqU + 1) = 1 + σ(pqU)

Similarly, the relations in (2) can be adapted for numbers of the form
pqU + r for 1 < r < pq.
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Computing shortest partitions

For (p, q) = (2, 3) the following Maple code can be used to compute the
first 500000 values of σ in approximately 1 second.

s := proc(U)
option remember;
local r;
if U <= 2 then 1 else
r := irem(U,6);
if r=0 then min(s(U/3), s(U/2))
elif r=1 then 1 + s(U-1)
elif r=2 then s(U/2)
elif r=3 then min(s(U/3), 1+s((U-1)/2))
elif r=4 then min(s(U/2), 1+s((U-1)/3))
elif r=5 then 1 + s((U-1)/2)
fi: fi: end:

Remark: numercal experiments suggest σ(U) ≈ (log2 U)/4 on average
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Open questions

• When computing g−1 in G is easy, one may want to consider signed
chained partitions, where the largest part in w is less than f (U) for
some function f (e.g f (U) = U + 1), while allowing the other parts
to be either added or subtracted.

Example: 314159 = . . .
Right-to-left: [1,9,6][-1,8,5][1,7,3][-1,5,2][-1,4,1][-1,0,0]
Left-to-right: [1,4,9][-1,0,6][-1,0,3][-1,0,2][-1,0,1][-1,0,0]

I Generating, random walk, etc?
I How many are there?
I Shortest signed partition?
I Optimal choice of f ?

• Many other questions related to numbers composed of small primes
(density of various sequences)
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Thanks!

http://www.lirmm.fr/∼imbert
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