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administrative authority of France's Ministry of Research.

A In September 2007, PIMS has become an Unite Mixte
’ l‘ Internationale of the CNRS. (There are only four UMIs in

! mathematics around the world: in Moscow, Rio, Santiago,
p1ms  and now PIMS.)

Under this agreement, French researchers can be sent for one year by the
CNRS to a PIMS university.

Call for applications 2010 — 2011 is open (deadline: Dec. 1st, 2009)

http://wuw.pims.math.ca/about-us/opportunities
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Integer partitions

A partition of an integer n is a nonincreasing sequence of positive
integers ai, ap, ..., ax whose sum is n. Each a; is called a part.

For example, here are the 5 partitions of the integer 4:
4 =4
=341
=242
=2+1+1
=14+1+1+1

The partitions of n correspond to the set of solutions (ki, k2, ..., k) in
nonnegative integers to the Diophantine equation

lki + 2k +3ks+---+ nk,=n
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Ferrers diagrams

A nice and useful way to visualize partitions:

15 = 6
+3
+3
+2
+1

p(n, k) : The number of partitions of n whose largest part is k is equal to
the number of partitions of n with k parts.

p(n): The number of (unrestricted) partitions of n, where the order is
not significant (p(n) =0 for all n < 0 and p(0) = 1).

P4) =1{(4),(3,1),(2,2),(2,1,1),(1,1,1,1)}, p(4) =5.
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Euler's partition function

Consider the product

(1—|—X—|—X2—|—X3+~-~)(1+X2—|—X4—|—X6—|—---)(1—|—X3+X6+---)-~-

What is the coefficient of x" in (1)?
Each contribution (of 1) to the coefficient of x" is of the form

1k 2k

% - x 3k3 R X1k1+2k2+3k3+~~~

- X

Thus, the coefficient of x" is the number of ways of writing n as
1ky + 2k + 3ks + - - - + nk,, where k; > 0. This is exactly p(n).

o
1 1 1
n
— . . =&
gp(n)x 1—x 1—x2 1—x83 (*)

(1)
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Example 1

Let f(n) denote the number of partitions of n with no part 1.

Z f(n)x™ = x° 1 1
n=0

1-x2 13

C1-x 1 1
C1—-x 1—x2 1—x3
— (1- e ()

This generating function yields the following result:

Lemma: f(n) = p(n) — p(n—1).

Bijective proof: if a partition of n contains at least one part equal to 1,
then removing one of these yields a partition of n — 1. O
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Example 2

q(n) is the number of partitions of n with disctinct parts.

o0
D a(nx" = (L+x)(1+ )1 +x°) -
n=0
_1—)(2 1—-x* 1—-x% 1-—x8
T l-ox 1-x2 1-x3 1—x%
1 1 1

1-x 1-x3 1-x5

Theorem: The number of partitions of n with distinct parts is equal to
the number of partitions with odd parts.

Bijective proof: uses the fact that each part can be written as a power of
2 times an odd number.
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More examples

e Partitions into primes (Goldbach conjecture)

e me-ary partitions: partitions as a sum of powers of m for a fixed
m > 2. (e.g. binary partitions)

e Partitions with parts occurring at most thrice [A. Fink, R. Guy,
M. Krusemeyer 2008]

A+x+x2+x)A+x°+x* +x)1+x3+x° +x12)...

= Partitions with no part a multiple of 4
= Partitions with no even parts repeated

e Chain, umbrella partitions: partitions constrained by divisibility
conditions
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Chain partitions

A (strictly) chain partition is a partition of the form n = a; +ax+-- -+ ax
into (distinct) positive integers such that ay|ax_1]|...|az|a1.

873 =512+256+64+32+8+1
=720+120+24+6+2+1
=696 + 174 + 3

[Erdos-Loxton 1979]

e # partitions of this type: p(n) > log, n for n > 6

e # partitions of this type whose smallest part is 1: p;(n) > %Iog2 n
for n > 27 and n — 1 not a prime

e P(x) =) 1<,<,p(n) = cx”, where c is an unknown constant and p
is the unique root of {(s) — 2, where ( is the Riemann zeta function.
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Strictly chained (p, g)-ary partition

Strictly chained (p, q)-ary partitions are chain partitions with distinct
parts of the form p?g®, where p,q > 2 and (p,q) = 1.

Notations:
e Q(U): The set of all strictly chained (p, g)-ary partitions of U
e Q*(U): The subset of partitions w € Q(U) with no part 1
. W(U) = £0(U)
o W*(U) = #Q*(V)

Special cases of interest:
e min(p,q) =2
° (pv q) = (2’3)
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Graphic representation and encoding

Example with (p, q) = (2,3).
Q(19) = {(16,2,1),(12,4,2,1),(12,6,1),(18,1)}

3b 3b 3b

. VO NI B »

11003 1133 3013 3203

3[7

The couples of exponents (a, b) form a chain in N?. They can be
encoded with words in {0, 1,2,3}*. (Conventions: words end with '3’, we
go North before going East) If min(p, q) = 2, the binary amount of a
partition is equal to the sum of all its binary parts (e parts) or 0 if none.
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Complete generation, maps
We define embeddings from subsets Q C Q(U) to P, the set of all
unrestricted partitions (sequences of positive integers whose sum is finite)

Let w = (a1, a2,...,ax) € Q.

e Mult. by p: w+— (pa1, paz, ..., pax) € PQ

e Mult. by ¢: w— (qa1,qaz,...,qax) € 9Q

(a1,...,ak,1) if min(p,q) > 2
e Add. 1: w+—
binary amount + 1 if min(p, q) =2
In both cases, the resulting set of partitions is denoted Q.

Remark: the number of parts never increases by more than 1 and
may be reduced due to carry propagation.
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Complete generation, maps’ properties

* PQ(U) c Q(pU)
) € Q(qV)
e 1Q(U) ¢ Q(U +1) in general
If min(p, q) > 2, the part 1 may appear twice in 1Q

° ((j

The strictly chained (2, 3)-ary partition (6,2, 1) is turned into
(6,4) ¢ Q(10)

e If min(p, q) = 2, the set Q(U) contains at least the binary partition
of U.

e By convention Q(0) = {()}
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Some formulae

Lemma:  (+ denotes union of disjoint sets)
QU) = (V) +1°(U—1),  Q(U) =PQU/p) LIQU/q)
Corollary:
Q(pqU) = 2(qU) + 9(Q(pU) \ V).
Q(pqU + 1) = 12Q(qU) + 19(Q(pU) \ PQ(U))
and for 1 < r < pq
Q(pqU + r) = Q*(pqU + r) +1Q*(pqU + r — 1) (2)

Both sets Q* in the rhs of (2) are non empty if and only if:
r=kpandr—1=14{q, orr=~F0qand r — 1 = kp.

Let ko = p~! mod g and o = g~ mod p. Then, (ko, p — £o) is the
unique positive solution to the equation kp — £q = 1. Therefore:

if r=kop, Q(pqU+r)="PQ(qU + ko) + 19Q(pU + p — £o)
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Simpler relations

The complete formula:

PQ(qU + ko) +19Q(pU + p — £o) if r = kop

I0(pU + £o) +PQ(qU + g — ko) if r = bog

PQ(qU + k) if r = kp, k # ko
Q(pqU + r) = { PQ(qU + k) ifr=kp+1, k+#qg—ko

IQ(pU + £) if r=2»q,¢# b

9Q(pU + 0) ifr=0qg+1,0+p—4

0 otherwise.

The case (p, q) = (2, 3) allows for some simplifications:
Q(3U) =3*Q(U) +'Q(3U - 1)
Q6U —1) ="Q3U —1)
Q(6U + 1) = ®Q(2U) 4+ "Q(6U — 1)
Q(6U +2) =2Q3U +1)
Q(6U +4) = ®Q(2U + 1) +°Q(3U + 2)
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Examples

Q(217) = {3000133, 30001003, 322033, 3220003,
3200013, 10011013, 1001333, 10013003}

Q(95) = {1111103}
Q(6143) = {1111111111103}

Q(575) = {1111110003, 111111033}
Q(959) = {1111110113, 1111110303}
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Transitions

e 1+2=3

|— —> ° |_
3b-|_: [} —I_I
22 2a—1
o 2(2m — 14 2mt1) =3(2m*+L 1) 41 (generalizes 4 =3 +1)

P
3"—|_| () . —|_;

23 2C
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Random walk

The transition graph is symmetric and connected.

E.g: G(27) for (p,q) = (2,3)

1333 2133 2213
11013 13003 —— 21003

2223
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Computing W(U)

Let W,(U) € {0,1} be the number of partitions of U with distinct parts
taken in {p", n € N}. In other words, can U be written in base p with
digits {0,1} only?

wor-wwsw (2«5 e (| L))

5, o(c, U) = { 1 if [U/p] =1 (mod q) and W,(U mod p°) =1

0 otherwise

Sketch of proof: Order the partitions in Q(U) w.r.t p-ary amount

U
W(U) = W(U/q) + Y Wp(n) W <U - ”) .

Cn
p— p="q

and remark that many summands vanish.
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The sequence W

For any pair (p, g), the sequence W behaves rather irregularly.

40 LThe seque‘nceW —_—
35
30
25 -
20
15 -
10 -
51
Il Il Il Il Il Il Il Il Il I
0 100 200 300 400 500 600 700 800 900 100C
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Properties of W

W takes infinitely often the value 0

If min(p, q) = 2, then W takes infinitely often the value 1

If (p,q) = (2,3), we have W(U) = 1 iff either U € {0,1} of
U =223 —1 for some a € N. Also, W(U) = 2 iff either
Ue€{3,5,6,7} or U=279 —1or U=2%15—1 for some a € N.

Conjecture: all values in N are taken

Theorem: The sequence W is either {0, 1}-valued or unbounded.

Note: We are not aware of any pair (p, q) for which W is
{0, 1}-valued.
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Asymptotical behaviour of max W

Max value: Let 8 € (0,1) be the unique solution of 1/p% 4+1/g” = 1.
Then W(U) < UP for U > 1. For (p,q) = (2,3), we can (only) prove
W (U) < U%7, whereas our numerical experiment suggest %%
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Average value of W

Let 5(x) = X 1<y<ix) W(U).
[x)
S(x) =Y (W*(U)+ W*(U -1))

U=1
[x)
= W*(0) - +2Z (U/p) + W(U/q) — W(U/pq))
Then, for all x € Rt we have
S(x) =2(S(x/p) + S(x/q) — S(x/pq)) + 1 — W*(|x])

Therefore, if S(x) ~ x®, then « satisfies

1/p* +1/9% =1/(pq)* = 1/2
which also reads
(1-p ) *1—qg ) t=2

24/32



lue of W

rage va

V
|
l

i

I |

|

T

" i Wm

0000000000
999999999




Applications

Fast exponentiation: given g € G and e > 0 compute g€

2 22
g2 =(((g2 xg)*" xg)* xg)? xg

cost: 4 mults, 7 squares

33
23
217 _ 22
g =8 X g

cost: 1 mult, 3 squares, 3 cubes

Requires: fast cubing (e.g. elliptic curves, quadratic fields), and a fast
conversion algorithms into strictly chained (2, 3)-ary partitions.
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Conversion algorithms

e Right-to-left: divide by 3 and by 2 as much as possible; add or
subtract 1 to make the resulting value divisible by 3

o Left-to-right: find the closest number of the form 223 from e;
subtract and continue until reaching 0

e None of these algorithm give a chain of minimal length.

e Can we find a shortest partition, or at least, compute its length?
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Shortest partitions
Let |w| the number of parts of a partition w € Q(U). We define

a(U) = min,cqquy |w|, the length of a shortest partition in Q(U).

Q(pqU) = PQ(qU) + 7 (Q2(pV) \ PQ(V)),
QpqU + 1) = PQ(qU) + 19(Q(pU) \ PQ(V))

The mappings PQ and 9Q do not change the number of parts.

o(pqU) = min(o(qU),a(pV))
o(pqU +1) =1+ a(pqU)

Similarly, the relations in (2) can be adapted for numbers of the form
pqU + r for 1 < r < pgq.
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Computing shortest partitions

For (p, q) = (2,3) the following Maple code can be used to compute the
first 500000 values of o in approximately 1 second.

s := proc(U)

option remember;

local r;

if U <= 2 then 1 else

r := irem(U,6);

if r=0 then min(s(U/3), s(U/2))

elif r=1 then 1 + s(U-1)

elif r=2 then s(U/2)

elif r=3 then min(s(U/3), 1+s((U-1)/2))
elif r=4 then min(s(U/2), 1+s((U-1)/3))
elif r=5 then 1 + s((U-1)/2)

fi: fi: end:

Remark: numercal experiments suggest o(U) = (log, U)/4 on average
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Open questions

e When computing g1 in G is easy, one may want to consider signed

chained partitions, where the largest part in w is less than f(U) for
some function f (e.g f(U) = U + 1), while allowing the other parts
to be either added or subtracted.

Example: 314159 = ...
Right-to-left: [1,9,6][-1,8,5][1,7,3][-1,5,2][-1,4,1][-1,0,0]
Left-to-right: [1,4,9][-1,0,6][-1,0,3][-1,0,2][-1,0,1][-1,0,0]

» Generating, random walk, etc?

» How many are there?

> Shortest signed partition?

» Optimal choice of f7

e Many other questions related to numbers composed of small primes
(density of various sequences)
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Thanks!

http://www.lirmm.fr/~imbert
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