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ABSTRACT.    Strictly regular elements play a role in the structure theory of
Freudenthal triple systems analogous to that played by idempotents in nonassocia-
tive algebras with identity.   In this paper we study the coordinatization of reduced
triple systems relative to a connected pair of strictly regular elements and use the
explicit form of strictly regular elements in terms of the coordinatization to prove
uniqueness of the coordinatizing Jordan algebra, as well as several generalizations
of known results regarding groups of transformations related to triple systems.
Finally, we classify forms of a particularly important triple system (the representa-
tion module for the Lie algebra  EA over finite, p-adic or real fields.

Following Freudenthal  [7], Meyberg  [9] and Brown  [l ] have introduced an

axiomatic approach to the study of the ternary algebraic structure of the minimal

dimensional module for the Lie algebra  E..   In particular, this module is one of a

class of ternary algebras we refer to as Fteudenthal Triple Systems (FTS).   In

this paper we analyze furthet the internal structure of such algebras using as a

basic tool the Peirce decomposition relative to a pair of supplementary strictly

tegular elements.   Using this decomposition we obtain, in a manner similar to  [l ],

a coordinatization theorem—every simple, reduced FTS is isomorphic to  3J!(3),  3

a member of a small class of Jordan algebras specified in   §1.   In   §6  we analyze

the forms of strictly regular elements in 5fl¡(3) and use the results to show

1(3) = SK®) if and only if   3 and  S are norm equivalent.   In  §7 the action of the

group of  g,-similarities on the strictly tegular elements is studied, yielding con-

jugacy theorems generalizing a result of Brown   Ll], as well as information regard-

ing ratios of similitudes generalizing results of Faulkner  [4] and Seligman

(unpublished).   Results of this section are useful also in the classification problem

for Lie algebras of type  Ey.   In the final section we classify completely all forms

of 3J1(3)> 3 exceptional central simple, for finite,  p-adic, or real fields.
In   [5], symplectic algebras (an asymmetric version of FTS's) are studied,

yielding different proofs of several results obtained in this paper.
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We assume throughout that all algebras are finite dimensional and all fields

are of characteristic  / 2, 3.

1.   Construction of a class of FTS's.   A Freudenthal Triple System is a vector

space  SOI with trilinear product  (x, y, z) —> xyz and skew bilinear form  (x, y) —.

(x, y) such that
Al.   xyz is symmetric in all arguments;

A2.   q(x, y, z, w) = (x, yzw) is a nonzero symmetric 4-linear form;

A3,   (xxx)xy = (y, x)xxx + (y, xxx)x for x, y £ 1.

A2 is equivalent to

A2\   (x, yLz_z)=- (xLzz, y), (x, xL%x) 4 0 where  Lxy:z^xyz.

Linearizing A3 completely yields

(xuv)yz + (zuv)xy + (xuz)vy + (xvz)uy

(I) = (y, u)xvz + (y, v)xuz + (y, z)xuv + (y, x)uvz

-f- (y, xvz)u + (y, xuz)v + (y, uvx)z + (y, uvz)x.

The prototype FTS is constructed as follows:   Let   %.N, 1 ) be the quadratic

Jordan algebra of an admissible cubic form N with basepoint  1,  T(a, b) the

associated trace form,  a —> a    the associated quadratic mapping and  a x b =

(a + b)   —a   —b.   By   [10], assuming  T(a, b) nondegenerate, we have  a     =

Nia)a,  (V(l) = l,  Tiaxb, c) = 6Nia, b, c).  Define 1(3) = \(av a..,, ay a2)\ a. eF,
a. e 3! and define on 1(3) the forms

(x. y) = aj/32 - a2ßx + T(av b2) - T(a2, b^.

q(x)   = 12(4a1/V(«1) + 4a2N(a2) - 4T(a\, a^) + (T(av a2) - a^^2)

where  x = (ap a2, ap «2), y = (/3j, /32, èj, b2).
We let  </(x, y, z, w) denote the linearized form of  qix) and define  xyz by

q(w, x, y, z) = (w, xyz)     fot all  z/z*£'l(3).

Since ( , ) is clearly nondegenerate, the product is well defined.   One easily

sees that Al  and A2 are satisfied.   That A3 is valid follows directly from the

arguments of Brown  [l, Lemmas 9 and 10(d)].

Since the proof of A3 depends only on the fact a      = N(a)a, we can construct

a degenerate case  1(3) as follows.   Let  3(0« c) be the Jordan algebra of the qua-

dratic form Q with basepoint c  [lO], T(a, b) = Q(a, b*), and define  a" = N(a) = 0

for all a £ 3-   1(3) is once again a FTS with nondegenerate form ( , )  if Q is

nondegenerate.   The algebra obtained in this manner can also be realized in terms

of a skew bilinear form on a vector space  1 (see  [9]).

For later use we establish
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1.1   Lemma.   // 30 = 3(0. c)  iS the Jordan algebra of a nondegenerate

quadratic form, there is a quadratic Jordan algebra  30V, 1) such that 1(30) ¿s

isomorphic to a subalgebra of 1(3).

Proof.   Let  ft = 3o © 30z be a sum of copies of 30.  3n = Fu + ^"   Define a

quadratic form  Q0 on   30 by  80(a" + a + bt) = a  - Qia  , b).   QQ is a nondegen-

erate quadratic form and the Jordan algebra   J = Fe ©3n wi£h cubic form  N as in

[10, p. 506] and basepoint e is the algebra of an admissible form.   Moreover, it

is easy to check that <b: (a, /3, a, b) —> (a, ß, a, bt), a, b £ 30,  is a linear

transformation of  l(3n) int0  1(3) which preserves both   (-, -) and  o( - ), hence

is an isomorphism.

2.   Ideals in Freudenthal triple systems.   A subspace  ft of a FTS 1 is an

inner ideal if ftlft C ft, an ideal if Iftl Ç ft .   Clearly ideals are inner, but the
converse can be shown to be false.   1 is simple if there are no proper ideals in 1.

Simple FTS's are characterized by

2.1   Theorem.   1 z's simple iff   (-, -) z's nondegenerate.

Proof.   If x £ ft = radical of   (-, -), 0 = (x, yLz J = - (xLg w. y) for all
y £ 1 by A2 , thus  ft is an ideal.   Conversely, assume ft^ ¡0) is a proper ideal

of 1.   For y £ 1 with q(y) / 0, (1 )   with  u = v = y = z yields  3xL2    =
2(y. *)yyy + 2(x, yyy)y + a(y)x.   Writing  1 = Fy © Fyyy © iFy © Fyyy)X and
considering the action of   L       on summands yields

(2) L      is nonsingular if qiy) ¿ 0.

An immediate consequence is that   ft contains no element with  qiy) / 0.   Furthet,

if  qiy) /= 0 we have  yyy /= 0.   For  x £ ft we consider  w = iyyy)yx = (x, y)yyy +

{x, yyy)y £ ft and note that wLy   = (x, y)q(y)y + (x, yyy)yyy £ ft also.   Since

(1) implies

(3) qiyyy) = 9a(y)3

we have yyy 4 ft.   If either (x, y) or (x, yyy) is nonzero, we must thus have

wL      = kxw,  k   = (x, yyy)(x, y)~  .   Equating coefficients then yields  qiy) = k2

fot any x with (x, y) / 0.   Since  k y + yyy £ ft, previous remarks imply

0 = ?(A y + yyy), but direct computation of ?(^xy + yyy) yields   4qiy)^ ¿ 0, a

contradiction.   Thus for all y e 1 with </(y) /0 we have  (%, y) = 0.   A density

argument then implies x £ ft so  ft C ft.

2.2 Corollary (to proof),   ft  is the unique maximal ideal in 1 and 1/ft z's

simple.

2.3 Corollary.   The systems 1(3) of §1  are simple.
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While simple FTS's may contain inner ideals, we have the following restriction

on their structure.

2.4 Theorem.   Let 1  be a simple FTS, 31 C 1  an inner ideal,  x, y e 5c.   Then
(x, y) = 0 = xxx.

Proof.   By (2), qiz) = 0 for all z e 51   so by linearization  (w, zzz) = 0 for all

w, z e 5t.   If S?0 denotes the radical of   (-, -)|t,, for x e 3?n,  zz el,   (xxx, u) =

(xxu, x) = 0 so xxx e S = Í0Ï.   If x 4 3in, t^ e ST: with (x, «/) / 0, (xxx)xz^ =

(w, x)xxx by A3 and the above remark.   Now for any  zz £ 1,  (w, x)(u, xxx) =

(u, ixxx)xw) = — (uxw, xxx) - 0 so xxx £ 3? = \0\ and the triviality of the product

is established.
Assume now there are x, y £ 51  with  (x, y) 4 0.   Then uL      L       =J \  ' s r * x,x    y,x

(y, x)uL        + (y, uLx    )x for all  « el by (1).   Since the product in 31  is trivial

uL      L       =0 and (y, uL      ) = 0.   Thus (y, x)uL        = 0 so  L       = 0.x,x    y.x XJ x ,x' s*'     '      x,x x,x
From (1) with z = x we have for all  u, v, y £ ïi,

(4) (xuv)xy = (y, x)xuv + (y, xuv)x

so, for   zz, z e 1  with  (z, x) = («, x) = 0 we have  (y, x)(z, xuu) = (z, 1xuu)xy) =

(ixzy)xu, u) = 0. the last equality following from expansion of (xzy)xzz via (4).

Again assuming  (x, y) / 0 we have  (xL      , z) = 0 for all z, u e (Ex)    and,

since  ( , ) is nondegenerate  xL       = a x, a    e E.   From (4) with v = u,  0 -\   )    / o u,u u   '       u K   '

1a,ky> x)x so a   = 0.   Now for anyi/el, (irL     , x) = 0 so IL      C (Ex)"1" for all u e

(Ex)    and (Ex)    is an inner ideal.   Moreover, for all z, w e 1, (xL x) = (xxz, w)=0

since   L        = 0  so   Exil Ç (Ex)1. For    y el  with   qiy) 4 0 this implies   (x, y)4 0,
(x, yyy) / 0 and iyyy)yx = (x, y)yyy + (x, yyy)y £ iFx)1.   Taking inner products

with x yields   0 = 2(x, y)(x, yyy), a contradiction.   Thus we have for all x, y e ÏÎ,

(x, y) = 0 as desired.

2.5 Corollary (to proof).   Lei 1  be a simple FTS,   x el  such that  L       = 0.
Then x = 0.

We remark that for symplectic algebras, the analogue of Theorem 2.1 has been

proved in [2].
Henceforth we restrict attention to simple FTS's.

3. Strictly regular elements in simple FTS's. « el is strictly regular if

IL C Ezz. Such elements play a role in the structure theory of FTS's analogous

to that of idempotents in nonassociative algebras with identities. If u is strictly

regular, (2) implies qiu) = 0, so 0 = qiu)u = uL^ u = ß^u where uux = ß^u. Thus

ß = 0. Now taking x = u = z in (1) we obtain ßvßyu = 2(y, u)ßvu and since, by

Corollary 2.5 there is  v £ 1  with ß   4 0 we have
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yLu, u =2(y'  ")"'

qiu. u. x, y) = 2(y, u)(x, u)     for all  x. y £ Si.

In determining explicit forms of strictly regular elements for Corollary 6.3 we

shall need

3.1 Lemma,  u £ Si  z's strictly regular if and only if uuu = 0 and u £

Range Lb        u,u

Proof.   Clearly   strictly regular elements  have  the desired properties.

Conversely, if v el with vuu = u, (1) implies for all y el, yL       = 2(y, u)u,  so

u is strictly regular.

We have the useful

3.2 Corollary.   // Si.   z's a simple subsystem of the simple system 1,  u e Si

z's strictly regular in 1.   if and only if it is strictly regular in Si.

Proof. The lemma clearly implies if u is regular in ™. it is regular in 1.

Conversely, if it is regular in Si, either u el.zvzz or l.zzzz. = 0, the latter being

impossible by Corollary 2.5.
We call 1 reduced if 1 contains a strictly regular element u.   In such a

system one can show by straightforward calculation, using (5) and (1) repeatedly,

that for w £ Si  with  (w, u) / 0,  v = 3uL + 6(u, w)w + (u, w)~   (u, www)u is a

strictly regular element in Si  satisfying (u, v) = 3(u, uL       ) + 6(u, w)    =

12(zz, w)    / 0.   A pair of strictly regular elements are supplementary if (u, v) = 1.

After replacing  v  in the above argument by a suitable scalar multiple we have

proved

3.3 Theorem.   Let Si  be a simple FTS.    Then 1  is reduced if and only if Si
contains a pair of supplementary, strictly regular elements.

3.4 Corollary.   Si   z's reduced if and only if Si  contains an element x with
qix)= \2ß2, ß £F*.

Proof.   If u, v ate supplementary, strictly regular elements,  qiu + v) = 12.

Conversely, if a(x) = 12/32,  direct computation using (1) shows   iß~ l/\2)ixxx) +

Y2x = u, i - ß~ Vl2)(xxx) + Y2x = v are strictly regular with  (u, v) = - ß.   After

suitable scaling, we see that Si    contains   a pair of supplementary strictly

regular elements.

3.5 Corollary.   // F  is algebraically closed, every simple FTS over F  is
reduced.

In studying the groups related to Si  in  §7, we need
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3.6 Lemma.   // x e M satisfies qix) = 12/8 ,  x  is uniquely expressible as

the sum of two (nonorthogonal) strictly regular elements.

Proof.   The elements  u, v of the proof of Corollary 3.4 give one pair of such

summands.   If x = u  + v    is another such expression,  (u , v )= a, direct

computation yields  zz' = V2x - (a- Vl2)(xxx), v' = V2x + (a~  /12)(xxx) and thus

a= iß, which yields the uniqueness.

In the case   F not algebraically closed we have

3.7 Corollary.   Let x £ 1,  ¿/(x) / 0,  1   = Ex + E(xxx).   Then 1    contains

either zero or two elements iprojectively) with www = 0.   // such elements exist

they are strictly regular and span the space 1 .

Proof.   Let 0 be an algebraic closure of  E.   In Sq we have x = u + v, u, v

supplementary strictly regular elements spanning  (1 ),..   Moreover,  qiau + ßv) /0

if   aß 4 0, hence  iau + ßv)iau + ßv)iau + ßv) / 0 unless   a or ß = 0.   Thus at

most two such w exist and they are strictly regular.   Moreover, if x + axxx £ 1

is strictly regular,   a = ± ß~  /6 where  qix) = 12/3    (in fi), hence ß e F and
x - axxx el    as desired.

We note that if one considers the FTS  1 obtained from the system of

Freudenthal  [7] by symmetrizing the ternary product, the strictly regular elements

turn out to be precisely the elements of the manifold related to the group E_.

Also, it is a consequence of Corollary 6.2 that the rank one elements of the

symplectic algebra used in the study of an  E_ geometry  [3] are precisely the

strictly regular elements of the symmetrized algebra.

4.  The Peirce decomposition of a simple, reduced FTS.   If u., u_ ,  are

supplementary, strictly regular elements of  1,  (1) and (5) imply

(6) xL2u     u    = - 3(x, "j)«_, + 3(x, u_x)ux + x.

Thus on  (Ezzj ©Ezz_1)i we have L2    u   = Id, so  lFux © Fu_ X)L = lj © 1_ ,,
where   1, is the eieenspace for the eigenvector  c of  L .   Moreover, since

( -, -) is nondegenerate and its restriction to Ezzj © Ezz_ j  is nondegenerate,

we have

1= Ful®Fu_l® 11©1_1 =!2©1_2© 11©1_1

since (5) implies   Fu   is the eigenspace for  L with eigenvalue  - 2c.

A2    and the fact that (-, -) is skew imply that all Peirce spaces are totally

isotropic.   The nondegeneracy of (-, -)L.     ,„.       then implies dim 1. = dim 1,.
«Ufl   tp JJ(_ 1 *■ *

For e = ±1  we have

4.1   Lemma,   (i)   Tt(M2Jk_2fCMf;
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(ii)   lel2í!2í = l_el2íl2f = ÍO|;
(iii)   lflfl2í^Í0i;
(iv) ifafa.2fçi.é;
(v) lfl el2eçl2f;

(vi)   lfleleÇl2f;
(vii)   111   (Cl.

Proof,   (i) is direct from the definition while (ii) follows from the definitions

and the orthogonality relations among the Peirce spaces.   For (iii) we expand

x(yfu   f using  e(x u.u_A = x   and (1) to obtain 4e xu_x   = 0.   Since (1) also

yields   ixAcMM(u_f = - i^x(xeue^ we have (iv).   (v) now follows directly from A2 ,

the preceding results and the orthogonality relations,   (vi) again follows from an

expansion of x(x£x( using ex( = x(uyu_v (1), the orthogonality relations and

previous results,   (vii) is then a direct consequence of the orthogonality relations.

From (v) we obtain immediately, by taking inner products with  u   and using

A2',

W V-ia-f =_ <Vy-e>B-e''

For the coordinatization theorem of §5 we need a means of identifying the

spaces  1.  and  1_,   in a manner consistent with the forms  q( -), (-, -).   We

define   /: 1} —»  1_ ,  as follows: if, for all y £ lj,  (a , yyy) = 0,   let  flj, • • • , a
be a basis for Ij,  ciy • • • , a    a dual basis for 1,  relative to    (-, -) and

define  t by  at = 2ar, if there is y e Sij  with  («,, yyy) = X ̂  0, define  / by
at = - lAayul + VaX~  (uy yya)yyuy   We then have

4.2 Lemma.    For all a, b eSi.,
(i)   (a, bt) = - (at, b);

(ii)   (u_y atatat) = (l/12)A(aj, aaa);
(iii)   t  is nonsingular.

Proof,   (i) is immediate from A2    in the latter case and from the definition

in the former.

In the case y exists with (aj, yyy)= X /= 0 one can use A2    to obtain

((ajyaXajyaXa^a), u_x) =(uy ((u1ya)(ulya)u_l)ya) and then expand

((a.ya)(a,ya)a_, )ya using (1), A2 , (7) and the orthogonality relations to obtain

(u]ya)(uxya)(u]ya) =(-6(yaa, ux)(yya, u^) + (2/3)(yyy, u^(aaa, "1))a_1

for all a eSl..   Linearizing yields

(a1ya)(a1ya)(a1yè)

(8) = (- 4(yatz, u^(yya, ux) - 2(yaa, u^) (yyb, ux)

+ (2/3)(yyy, ux)(aab, ux))u_x.
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(ii) then follows by direct computation with repeated use of (8).   In this case also

we derive from (1), Lemma 4.1, and the orthogonality relations    3(yyx)u¡y =

2("i» yyy)x for all x 6 !..   Thus   L is surjective, hence bijective from 1,

to   !_,.   Since  yt 4 0 for  y as above, we thus see that   t is also bijective.

As a consequence of (ii) and (iii) in the case  (yyy, u.) 4 0,  we have

(u_ y bbb) = 0 for all  b £ 1_ j  if (yyy, zzj) = 0.   Thus (ii) and (iii) follow trivially
in this case.

4.3   Corollary.   For t as above,  x, z el      ixtzt u_ .)/ = (- À/12 )(xzzz.).

Proof.   In case (u., yyy) s 0 on  !., the nondegeneracy of   (-, -) and the

fact that 1,, 1,  are dual relative to the form imply both sides are zero.   In the

remaining case, it suffices to compute inner products with all  w £ !.,  but by the

lemma

(w, (xtztu^At) = - (wt, xtztu   .)=-(u     , xtztwt)

= (- A/12)(«j, xzw) = (- X/I2)(w, xzu  )    as desired.

We note finally that (1), Lemma 4.1 and the orthogonality relations yield

(9) (xxu)u_(xxuA = -(l6/3)(u.,xxx)x    for all x £ !j

and

(10) xxy = 2{y,x)x-V11xxul)uly    for x e 1,, y e !_,.

5.   Coordinatization of simple reduced FTS's.   Using the results of  §4 we

prove, in a manner analogous to that in   [l],

5.1   Theorem.    Let 1  be a reduced, simple FTS over F.   Then 1 S 3.Q)
(see §1 ) where  3 is

(i)   the quadratic Jordan algebra of an admissible cubic form with basepoint,

or

(ii)   the quadratic Jordan algebra of a nondegenerate quadratic form.

For proof, we show that the Peirce space  1.   can be endowed with the

structure of a Jordan algebra of one of the above types in such a way that the

map cf>: aux + ßu_x + a + bt —> (a, ß, a, b), t as in  §4,  is an isomorphism of

triple systems.   In particular, it will suffice to show cf> is an isometry relative to

both the skew bilinear forms and the quartic forms (see Lemma 6.6).   As in  §4

we begin with a pair  (uy u_A of supplementary, strictly regular elements and

distinguish cases:  (i)  («j, xxx) = 0  on  lj,  (ii)   (z/j, xxx) 4 0 on  !,.   In case

(ii) we pick  y e lj  with  (zzj, yyy) = 12À / 0 and in case (i) we set  À = 1.   Using

t as in   §4 we define   T(a, b) = A_1(a, bt) and  N(a) = U_1/12)<«1, aaa)  on  lj.
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The nonsingularity of   t and nondegeneracy of   (-, -) imply   T( -, -) is nondegen-

erate and Lemma 4.2(i) implies it is symmetric.   We can thus define a commutative

product on 1, by  Tia x b, c) = 6/V(a, b, c).   Lemma 4.2 and the nondegeneracy of

Tia, b) yields   a x b = - (A- l/2)iatbtu_ {).   Together with Corollary 4-3 this
implies  (a x a) x (a x a) = 8/V(a)a.

Defining a" = Y2a x a we thus have  a     = Nia)a.   Moreover, in case (ii) a

straightforward calculation using the form of / yields  Tia, b) = - dJ5b log N\   .

Since by definition  Niy) = 1,  1,(/V, y) is a quadratic Jordan algebra of the cubic

form  N, basepoint y [10].

In the first case we consider  1 as Jordan algebra of a quadratic form  Q with

basepoint  a.  where   Q is defined as follows:  let   * denote the mapping   a a. +

£..., a.a . —> a,a, - £.., cl .a . and set Qia) = V2Tia, a  ).   The Jordan trace form is!>1      Z    Z 11 Z>1      Z     Z *■ J

then just  Tia, b).   In this case we clearly have  Nia) = a   = 0 for all a £ Sij.

An inspection of the known orthogonality relations, (10), Lemma 4.1 and the

definitions yields, for x{ = a.ux + ßu _ x + a. + bt, (Xy xA = a,/32 - /3,a2 +

A(T(ap b2)-T(bv a2)),

qixx) = 12(- 4X2Tia\, b\) + 4Aa1/V(a1) + 4X2ßlN(b]) + iXTia yh A - aß A2).

Replacing the pair  (a., a_j) by  (A-   ux, Xu_x) (which again are supplement-

ary, strictly regular elements) we may assume  A = 1  so a comparison with the

forms of  §1 yields the result.

6.  Uniqueness of the coordinate algebra.   An element  x £ Si is rank one if

Lx      has one dimensional image.   Among the rank one elements are the strictly

regular elements.   In this section we determine the form of all rank one elements

in   1(3)>  3= 3(^i 1 )? and use the result to study the coordinate algebra in an
arbitrary reduced simple FTS.

The results of Springer  [11], [12] show that if dim 3> 3,  3= 30V, D is
either central simple of degree 3 or of form  <A)= Fe + 3q, % the Jordan algebra of

a quadratic form Q0 [10].  We need the following facts about these algebras.

(11) If an = b" = 0, there is  c £ 3 with  cu = 0 such that  ia x c) x b / 0.
(12) If  0/a £% dim a x 3>1.
For algebras   Fe + JQ,  (11) and (12) are consequences of elementary com-

putations using the explicit form of a    (given e.g. in  [10, p. 506]).   For central

simple algebras, (12) follows from 1.1(a) of [4].   For (11), since  a / 0,  a" = 0,

3 must be reduced, hence spanned by elements  c with c" = 0.   It thus suffices

to show (a x 3) x b / 0.   For this we can clearly use a field extension argument

to assume  F algebraically closed, hence   3 split.   The transitivity of the norm

preserving group on  \c £ 3|c   = 0!, together with the easily established fact that

ie x x 3) x b / 0 for 0 / b £ 3,  <?,  denoting the first diagonal idempotent in a
coordinatization of   3>  gives the result.
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We can now establish

6.1   Lemma.    Let  3 = 3(N, 1)  be as above,  dim 3 > 3.   x e 1(3)  is rank one

if and only if x = (a     a_j, «j, a_j),  a.    e F,  a( £ 3 where either

(i)   for some e,  a( 4 0 ötW zïf = a~xa*f,  a      = a~2N(a_ ) or

(ii)   aj = a_j = 0,  an( = 0 and if a_£ 4 0,  a( = (fl_fx z_f ), sorrze  z_   e 3.

Proof.   The results of  §5 imply  zzj = (1, 0, 0, 0), u_x = (0, 1, 0, 0) are
supplementary, strictly regular elements in 1(3) and the related Peirce spaces

are  S»2f = Ea_e, lj = (0, 0, % 0), l_j = (0, 0, 0, 3).   Using the results of  §4
to evaluate products we obtain

(13) »_f** = (/81,j8.i,*1. b_x)

where

ß_( =4ea(a_( -2cT(ax, a_{),      ß( =-2eaf2,

b ^e =~2eaea-c' be =2eia€a( -2a"_(),

c(xx = 1ßx, ß_x, bx, b_x)(14)

where

ß-t =-2ca_J(a_(,c() + l2eN(c£,a(,a(),       ß( = 2e af T(cf , a_f ),

hc  = 2e(afa_tce -T^a.e. cfK -na_f,af)cf +2(af xcf)xfl_f),

è_f =2f(2af(ae x cf) + Tic(, a_( )a_( -2ia*_( x c( )),      cf e!f.

Assume now  L        has 1-dimensional image.

Case 1.   a.jO._j / 0.   Then  zz_fxx = tz 4 0, hence  cfxx = pv, p £ F.

Equating the components from 3B_   then yields - ipa( + E(cf, «_f))ß_f =

c   x (2a a   - 2a_   ).   (12) then implies   afae - a_, = 0,  one of the desired

conditions.   Moreover, we have «, = 0 if and only if a_    = 0 and since x =

a.u, + a   ,u    ,   clearly does not satisfy the condition on   L     ,  zz^/0,  e = ±1.11-1-1 ' ' x,x f '
The above equation also yields  p = - a~   T(c  , a_  ) so, equating coefficients

of u_£ in (13) and (14) we have, for all c(, c £%  2ea" lTic(, a_()Tia(, a_() -

4fa_fT(cf, a_() = - 2ea_(T(a_(, c() + 4cTic(, a*).   The nondegeneracy of  T( -, -)
and  ant = a_(a_( imply 3a_(a_( = a~lTia(, a_()a_( = a'1 a^Tia^ a")a_( =

3a~f a~  /V(af)a_f which completes the proof that x is of type (i).

Case 2.   a.   4 0,   cx_   = 0.   Analyzing the Peirce components of  u^xx gives

immediately  u(xx = 0, hence   T(zzf, a_() = 0,  an( = 0.

The argument from Case 1 also yields   a a   - a_ .   Since in this case

Ai(a_ ) = (l/3)a.£T(a_f, a() = 0,  x is again of type (i).
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Case 3.   a   = 0,  e = ±1.   Clearly rank x = 1  implies either  u(xx = O or

a     xx = 0 so  Tia,, a   A = 0.   If att . ¡¿ 0,  Im Lv     = F(0, 0, a"      0), but then
— t 1— X — 1 X, X — 1

analysis of c^xx yields N(c_j, a_j, a_,) = 0 for all c e % hence  a_j =0,

a contradiction.   Arguing similarly we obtain «j = 0.   Equating Peirce coordinates

of c±(xx thus yields pTic(, a_()a_( = Tia(, c_()a_( - 2ia_( x c_) x a(.   (11)

then implies that for suitably selected c with c   = 0, a_( = af x (a_f x c_) =

a   x z   as desired.   If a   , = 0, the conditions are satisfied by z( = 0.

Conversely, if x has the form (i) or (ii), a straightforward calculation using

(13), (14) and well-known identities ''e.g. [4, 1.1—1.6]) relating T( -, -), N( -)
and x yields in each case yxx = 2(y, x)x for all y e 1(3) so x is rank 1.

6.2 Corollary.   // 3= 3(/V, 1), dim 3 > 3, x £ 1  z's strictly regular if and
only if it is rank one.

Proof.   We have already observed that strictly regular elements are rank one

and the final observation of the proof of the lemma, together with the lemma,

implies every rank one x satisfies yxx = 2(y, x)x, hence x is strictly regular.

Corollary 6.2 is false if  3 is the Jordan algebra of a nondegenerate quadratic

form, as  x = ax + b_x, Tia, b) = 0, is easily seen from (13) and (14) to be rank
one but not strictly regular.

6.3 Corollary.   // Si  is reduced, simple,  1  z's spanned by strictly regular
elements.

Proof.   It suffices to assume  1 = 1(3)-   If 3 = 3(^> T), a density argument

shows   3 is spanned by elements  a with Nia) / 0.   1(3) is then clearly spanned

by  ¡aj, a_j! U ia^ f |A £ F\ where  «x ( is as in Lemma 6.Ni) with  a   = A,

a      = a.   If dim 3 > 3,  a.     is strictly regular by Lemma 6.1.   If dim 3 = 1 °t 2,
3 is isomorphic to a subalgebra of an algebra  3(zV, c ), 3 of dimension 3.

Corollary 3.2 then implies  a^     is strictly regular in  1(3)-   If  3 is Jordan

algebra of a quadratic form,  flj, ■ ■ • , a    a basis for  3>   1(3) is spanned by

\uy "_!> (0, 0, a., 0), (0, 0, 0, a.)|  where the latter elements are seen to be
strictly regular in  1(3) by imbedding  1(3) in  1(3),  3 = 3(N, T) by Lemma 1.1
and applying Lemma 6.1 and Corollary 3-2.

6.4 Corollary.   // 1 zs simple,  x, y e 1 strictly regular, there are strictly
regular elements x = xQ, x{, . . . , x    = y such that (x , x    A ¿ 0.

Proof.   By recoordinatizing we may assume  x = «,, y = (a     a    , a     a   A.

If   a_j¡¿0, „ = i  suffices.   If  a{ /, 0, 72 = 2, xx = u_x suffices.   Thus we
assume   cXj = <x_ j = 0.   If a_ j / 0, pick b £ 3 such that  Tib, a_ x) ¿ 0.   For
suitable choice of A, bx _x = x x, n = 2 suffices.   Finally, if a _x - 0, a   ¿ 0 there is

c £ 3 such that  Tic, a{) = 0.   Taking *n_j = cy x yields  Un_,. *n) / 0 and
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by the above arguments x.,   i <« — 1, exist satisfying the conditions.

Suppose now 1 is reduced, simple, uy u_x a pair of supplementary strictly

regular elements. The Jordan algebra structure coordinatizing 1 (§5) is largely

determined by the trilinear form Nu u (a, b, c) = (uy abc) on the Peirce space

!..   As a step in proving uniqueness of the coordinate algebra we have

6.5 Lemma.    Let  (zz,, u_A,  (v y v_A be supplementary pairs of strictly

regular elements in 1.   Then N is equivalent to a scalar multiple of

v\ , v—1

Proof.   We consider first the case  ux = vy   For this, we note that the

results of  §4 imply that  (FuA)L = Fux © lj © l_j, lf in the Peirce decompo-

sition relative to (ux, u_x).   The cubic form  A/(x) = (uy xxx) on  (Fux)x has

radical  ( = iy| N(y, x,x)= 0 Vx e (EzzjH) Fux + l_j   by Lemma 4.1.   The form
N (a, b, c) on  1.   is thus clearly equivalent to the form induced on

U 1 ,U- 1 ^ »V.
(EzZjH/Rad ¿V by  N.   Since this latter form is independent of the strictly regular

element  u   ,  it follows that  N is equivalent to N .We denote the
-i «l,u_l » U\ ,l>_ i

form thus by  N     .By definition of  N       it is clear that  N        = aN       fot
'       u\ ' u\ a.u\ u\

a e F  .   Also, if  (zzj, ti_x) are a supplementary pair of strictly regular elements,

Lemma 4.2(a) implies  N is equivalent to a multiple of N    .   Now if  zz,  / f,,

Corollary 6.4 implies there exist strictly regular  zz, = x,, x2, • • • , x   = v,   such

that  (x ., x.  ,) 4 0.   The above remarks then imply there exist  a     . . . , a    in

F    such that  N      is equivalent to   ex.    N   .    , which gives the desired result.

We need also

6.6 Lemma.   Let !.,   z = 1, 2,  be simple FTS's,   cp: 1, —* !?  z's an
isomorphism if and only if qAxcß) = q.(x) and (xcp, ycp)2 - (x, y).   for all

x, y elj.

Proof.   Since  1   are simple,   (-, -). are nondegenerate by Theorem 2.1,

hence A2  implies that the product is completely determined by the forms and one

direction is clear.   If ç6 is an isomorphism, applying  cp to A3, considering A3

for  x = x<jj, y = yçS and comparing when  x = y yields   qAxcpA = qAx).   If x / y,

we obtain, upon subtracting the two resulting equations, ((y, x)  -(yep', xcf>)2)xcpxcpxcp

= 0 tot all x, y.   In particular, if y is fixed and x satisfies  xcpxcßxcf) 4 0,

(y, x) - (ycf>, xçS).   A density argument then implies this result is valid for all x, y.

We let Aut 1 denote the group of automorphisms of the simple system 1,

G0(l) = \cp £ Horn (1, 1) | z7(xc¿) = q(x) Vx e 1¡ and

20(!) = \cf> £ Horn (1, 1) | (xcP, ycP)= (x,y) Vx, y £ 1|.
Then we have
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6.7 Corollary.   Aut 1 = G0(ffl) n Q0(l).

We can now prove

6.8 Theorem.   1(3) = 1(E)  otz/y ¿/ /¿ere is  q: ^ ~> Ë a linear isomorphism

such that NAarj) = pNAa) for all a e 3, sozrze p £ F*.

Proof.   Let a/3) = (1, 0, 0, 0), a_ ,(3) = (0, 1, 0, 0).   Then  af(3) are
supplementary strictly regular elements in  1(3).   If  4>- 1(3) ~* 1(E) is an

isomorphism,  epiu (3)) = v( are supplementary, strictly regular in  1(E) by Lemma

3.1.   It is easily seen, for example from (14), that N    (r.. = 12/Vj,  N     ,.. =

12/Vjf, N    as in Lemma 6.5.   Since  (f> must preserve Peirce spaces, it must map

l(3)i   onto the Peirce 1-space for the pair ivx, iz_j).   Lemma 6.6, together with

the definition of N    thus implies  N     ,.,   is equivalent to N    ,„,.   Lemma 6.5u r zzi(3) ^ vi(St)
then yields the desired result.

The converse of this theorem is proved in   §7.

6.9 Corollary.   // 3  *s Jordan algebra of an admissible cubic form N with

basepoint c and 1(3) = 1(E),  3 an<^ ® are isotopic.

Proof.   By the theorem there exists   77: 3 —» E such that  NAarf) = pNAa)

for all a e 3-   In particular, this implies  Ng /¡ 0, hence  E is algebra of a

nondegenerate cubic form.   The results of  [lO] (Theorem 2 and final remarks of

§4) imply that  rj is an isomorphism from  3 to  E((cT) '      '.

7.   Groups related to reduced simple FTS's.   In this section we study the

action of the group G(l) = \r¡ £ Horn (1, 1)| qixq) = pqix) Mx £ 1,  some  p £ F*\

on the triple system  1.   We call  p the ratio of  77.   In the case  1 = 1(3).  3

exceptional simple, this is an algebraic group of type  E-. [l].   In an auxiliary

manner the group 2(1) = i7? £ Horn (1, 1)| (xq, yr¡) = 8(x, y) for all x, y el,

some   8 £ F   \ also arises.

We note first, as a consequence of the results of  §6

7.1 Lemma.   // x £ 1  is rank one,  q(x, x, y, y) = 2a    for all y el,   soTrze
a    e F.

y

Proof.   Since x is rank one and since strictly regular elements span  1 by-

Corollary 6.3, for all y e 1,  yLx x = p(y)u where  p is a linear functional on 1
and  a = zL%     fot some fixed, strictly regular z el,   If w 1 a,   (wL      , y) =

- (w, yLxx) = 0 for all y e 1, hence p(w) = 0.   This implies p(y) = ß(y, u)

tot all y e 1, some  ß £ F  , and  p(z) = 1   implies  ß = (z, a)"1.   Now

q(x, x, y, y) = (y, yLxJ = (z, u)~ \y, u)2 and  (z, u) = (z, zLx x) = q(z, z, x, x) =

(x, xLz z) = 2(x, z)2 give the result.

7.2 Corollary.   // 77 e-G(l), 77 ¿as ratio in (F*)2.
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2

Proof.   Let  uy u_x  be supplementary strictly regular elements in  1 so

q(ux, zz., zz_,, zz_ . ) = 2(zz_ ,, ux)    =2.   Since "rank one" is definable entirely in

terms of  q (q(u, u, x, y) = 0 fot all y el,  all x e 1',  1'   some  n - 1 dimen-

sional subspace) zz.r/ is rank one.   By the lemma,  q(uxr], u.r¡, u_xr¡, u_xrf) = 2a

for some   a.   Thus ratio  r¡ = a    as desired.

If every rank one element in  ! is strictly regular we obtain a further result.

7.3  Lemma.   // rank one implies strictly regular in 1,  G(l) C g(l), and if

r¡ has ratio p in Q(l),  it has ratio p    in G(l).

Proof.   Let  rj £ G(l)be of ratio p .   By the argument of the preceding

corollary,   u strictly regular in  1 implies   ur¡ rank one, hence strictly regular.

Thus  2(u, y)2 = q(u, u, y,y) = p~ q(ur\, UT¡,yq,yr¡) = 2p~2(ut),yrf)2 so (ur\,yn) =

± p(u, y) fot all ye!.   Since for any y;.,   z' = 1, 2,  (urj, (yx +y2)ry)= ±p(u, y, +y2)

= + p(u, yx ) ± p(u, y2),  the sign is dependent only on  u.   We can thus partition

the set of strictly regular elements into classes  X , f = ±1, depending on the

sign of p occurring.   If (u, v) / 0,   u, v strictly regular,  c (u, v) - (ur¡, vrj) =

-(vrj, UT]) = — t (v, u)= c (u, v)  so c   = c    and  u, v are in the same class.   In

particular,  uy zz,   (for some given coordinatization) are in the same class, say

X,.   Moreover, the classes  Xj and  X,  are orthogonal, hence every element of

X_,   is of form (ii) of Lemma 6.1.   For such an element  (0, 0, ay a_ A we must

have also (0, 0, ay 0), (0, 0, 0, a_1) in  X_x by an additive argument as above,

but the same argument implies  ux + (0, 0, 0, a _ A e X_,, hence  zz,  e X_,,  or

u_x + (0, 0, ö,, 0) eX_j,  hence  u_x £X_X, both of which are impossible.   It

follows that  fl_j = z2j = 0  and  X_ x = \0\.   Thus the sign of  p is constant for all

strictly regular u, all y £ 1.   Since the strictly regular elements span  1 the

result follows.
In particular, Corollary 6.2 implies that the result of the lemma holds for

! = 1(3), 3 the Jordan algebra of an admissible cubic form, a result analogous

to that in   [3, Lemma l]. The result is false, however, when   3 is Jordan algebra

of a quadratic form since in this case  q(x) = 12ß(x)    where  ß(x) is a quadratic

form.   It is easy to show that there is   T eHom(!, !) such that  B(xT) = \B(x)

for all x e 1 but (xT, yT) 4 ± A(x, y).
It is clear that the results 6.6, 6.7, 7.2 and 7.3 remain valid when the trans-

formations in question are replaced by their semilinear analogues.   The same will

be seen to be true of Lemma 7.5, though for brevity we restrict our attention to

rhe linear case.

We define now a particularly simple type of transformation from  l(3i) to

1(32) which preserves forms up to scalar multiples.   Let  3¡> 3o he Jordan

algebras as in  §1,  /V,, AL  rhe associated cubic forms and  rj eHom(3j, 3t)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] FREUDENTHAL TRIPLE SYSTEMS 327

such that N2iar)) = pNxia) fot all a € 3,, some p £ F  , -q bijective.   Let 77 be a
permutation on  |l,-l| and  A e F*.   Define  77* eHom(32, 3,) by  T2ia, b-q) =
Txiaq*, b), T¿( -, -) denoting the trace form on  %..   Clearly  T2(ar7*     , ¿77) =

Txia. b) for ail a, b £ 3r   We have also  iaqf2 = paHr¡*~ ', («77*" ' )*2 = p-ia"lji
and  N Aarj*     ) = p~  NAa) since these are trivial if 3. are algebras of quadratic

forms and are 1.21 and 1.22 of  [4] if  3   are algebras of cubic forms.

One can verify easily that the linear mapping defined by

^«1— A"V~Sr7> *-l-AV(-l)77'
*!— Xiar,)X7T,       a_x-^iar,*-x)(_x)n,       X £ F*,

satisfies  q2ixqx) = A2Oj(x), (xrjx, yr¡x)2 = (1tt)X(x, y)x  for all x, y e 1(3,)-

This gives immediately the converse to Theorem ^.8.

7.4 Theorem.   If there is bijective  77 e Horn (3, E) such that N^iaq) =

pNrA\a) for all a £ %  some p e F*, then 1(3) St 1(E).

Proof.   Take   ■q¡  and use Lemma 6.6.

We also have half of the characterization of a class of elements' of G(l(3)),

namely

7.5 Lemma.   Let a , e= ±1,  be the usual supplementary, strictly regular

elements in 1(3).   4> e G(l) leaves invariant Fa. + Fa,   if and only if there is

77 e Horn (3, 3) suck that Niarj) = p/V(a) for all a £%  a permutation tt of

{1, - 11 and X £ F    such that q> = 77*.

Proof.   Clearly  77* is of the desired type.   Suppose <p £ G(l) leaves

Faj + Fa_j  invariant.   q> is nonsingular since otherwise  o(x, y, z, w) = (x, yzw)

= 0 for some x, all y, z, w £ 1, which implies  (Fx)1 is an ideal in the simple

algebra  1.   From Corollary 3-7 we have, since  q> £ G(l),  a <f> = Pfuf7T, n a

permutation of  [1, - 1 i-   Replacing  r/> by  q>. = q>il )~     we may assume   a </i, =

p(u(.   This implies  qix<px) = ip xp _ x)2qix), (xef>x, ycf>x) = pxp_ x(x, y).   For
A = PiP_j  we have   t/>2 = q>xilx)~     is an automorphism by Corollary 6.7.   Thus

4>2  maps Peirce spaces onto themselves.   Denoting by  a     (resp.  a_A the

element  (0, 0, a, 0) (resp. (0, 0, 0, a)), a e % we define  77^ e Horn (3, 3) by

afc?S2 -(f¡r¡^(. Again writing   u(cf>2 = pfai and noting  PiP_i = 1 we have p_j = p~   .

Applying  02 to ux + ax and evaluating qi - ) yields  Nia) = pM(aqA and

similarly  Nia) = p_ {N(ar}_ x).   Since  (axcp2, b_ xq>2) = (av b_ x) we have

Tiar)x, br¡_x) = Tia, b), hence  ç_j = ify " .   It follows immediately that <p2 = 17^
where  77 =r/j, hence  0 = t/j/?/^ = 77* as desired.

We now have

7.6 Theorem.   Lez"  (a,, a,),  (zv,, v_ A be supplementary pairs of strictly
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regular elements in 1,   1 simple.   Then there is  cf> £ Aut 1 such that  u cp =

Pe"f, PeeF*.

Proof.   Replacing the pairs   (u(), (v() by suitable scalar multiples   (u£),

(v() we can coordinatize  1 to obtain ! SS 1(3), 1 Sä 1(S) where  3, ® ate

Jordan algebras with cubic forms   (1/12)^   <v (1/12)N^   ^       respectively.
1 6 u\'u—\ fi,f_ i r '

By Lemma 6.5 there is  r\: 3 —» ® such that Ngiarj) = pN^ia) fot all zz e 3, some

p £ F   .   The mapping  <p = 7?f   is thus an automorphism with the desired properties.

7.7 Corollary.   Aut ! acts transitively on the set of strictly regular elements

(taken projectively).

Proof.   The result follows immediately from the fact that every strictly

regular element can be embedded in a supplementary pair (see proof of Theorem

3.3).

7.8 Corollary.   G(l) acts transitively on the set of strictly regular elements.

Proof,   Immediate from Corollary 7.7 and the fact that  cp £ Aut 1,  p £ F

implies   pcf> £ G(l).
We denote by   RC\S) the subgroup of  E    of all  p such that there is   rj £

Horn (3, 3) with  N(arj) = pN(a) for all  a £ %   We then have

7.9 Corollary.   The number of conjugacy classes of supplementary pairs of

strictly regular elements in  1(3)  under the action of Aut 1(3)  Is the index of

R(3)   in F*.

Proof.   If  tiy u_.   ate the canonical strictly regular elements in   1(3),

Theorem 7.6 implies that any supplementary pair is conjugate to a pair

(Àzzj, À-   "_,)•   It thus suffices to determine the number of conjugacy classes

among these pairs.   Suppose   cp £ Aut 1(3),  u(<fc = P,tt .   Lemma 7.5 implies

cp = r¡¡ and the fact that ratio  cp = 1   (Corollary 6.7) implies   A = 1,  hence

p,  £ RCA/).   If  u(cp = peu(,  uxcpl~x  _ n =• p_yvx   so  p_,  £ R(3).   Since  p,  =

Pip P\  e Mo)«   Thus   (AjiZp A"   "_]) is conjugate to  (o^ux, 8 _xu_x) if and
only if  \x8] '   £ R(3).

Since the results of  §3  show that elements  x with  qix) = 12 are uniquely

expressible as sums of supplementary pairs of strictly regular elements, Corollary

7.9 could also be phrased in terms of conjugacy classes of elements with

qix) = 12.   In the particular case  1 = 1(3), 3    reduced, exceptional simple, the

fact that  R(3) = F   gives as a special case the result of Brown  [l].

7.10 Theorem.   // 3  IS reduced, exceptional simple,  Aut 1(3) acts

transitively on the set of x £ 1(3) with q(x) - 12.
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8.  Simple FTS's over special fields.   In this section we apply the techniques

of Galois descent to show that, over special fields, the FTS forms of 1(3), 3

exceptional central simple Jordan, are always reduced.

Using the usual terminology of Galois descent, if P C K ate fields and 1 is

a FTS over   K,  and   F-form of  1 is an   F-subspace of  1,  closed under the product

of 1,  such that  KM = 1, dimp 1 = dimK 1.   If  K is finite Galois over F with
group G it is well known  [8] that the  F-forms of  K ate in one-one correspondence

with the homomofphisms   77: G —» Saut 1,  Saut 1 the group of semilinear auto-

morphisms, where   77(5) is   s-semilinear.   The correspondence is given simply by

77 «->!    = Sx el| xr¡(s) = x    Vs £G\.
If 1 is an  F-form of 1, x £ 1,  A3 with  x = y yields   (xxx)xx = q(x)x,  hence

q(x) £ F fot all x el,   This implies (y, xxx) £ F for all y e 1 and that  q
induces a nontrivial quartic form on  1.   If  qix) / 0,  x and xxx are linearly

independent in 1, hence in  1, so A3 implies (y, x) £ F for all y e 1.   A density

argument then shows    (- ,    ) induces a skew form on  1 and  1 is a FTS.

Let  1 be an arbitrary FTS over  F such that  Ijj is simple,  0 an algebraic

closure of F.   Suppose  ß £ F*\F*    and  xel with  q(x) = ß.   Then  1K is

reduced, simple for   K - F(ß), ß     (ß/12)'2, by Corollary 3-4.   In fact, Lemma
3.6 shows that in  1„,  x is uniquely expressible as a sum of strictly regular

elements   a,, Uy   By the results of  §5, for suitable  8. £ K  , we can coordina-

tize   1K as   1(3) relative to the pair  u.      ?>\u\> "'._ 1 = ^2U-V   ^e Galois

descent characterization of forms of  1„  shows that  1 is the fixed point set of

some semiautomorphism   cS of period two on   1„.   Since  x<f> = x,   u ó --- p u ±    so,

by the semilinear analogue to Lemma 7.5,   ci>     77* for some permutation   77 of

(1, •   1 i, some  A e K  , and some semilinear map  77: 3 —» 3 such that  N(ar¡) =

pN(a)s fot all  a e 3, s denoting the nontrivial  F-automotphism of  K.   Since  <f>

is a semiautomorphism we must also have   A      177 by Corollary 6.7  and, since

4>        I we have either  77       I if  n     I ot  rj   = - 77 if  77 - (1, -• 1 ).

If n I, a'jcS plu] so <f> -I implies pxpsx 1 and thus p( = y"lys for

some y e K . <f> thus fixes ys"u j which is strictly regular, hence 1 contains a

strictly regular element and is reduced.

If  77 /  / we have for  1K      1(3)

8.1   Lemma.   1  is reduced if and only if there is a £ 3,   Nia) / 0  and
8 £ K* such that arj    8a".

Prool.   If  1 is reduced,  1 is spanned by strictly regular elements by

Corollary 6.3.   Thus there is strictly regular y = (a, ß, a, b) e 1(3) with   a. /■ 0

such that yep - y.   Since  qo interchanges  «',  and  a'   ,  this implies  ß / 0 and

Lemma 6.1 thus implies   b        8cttí,   Nia) / 0 which establishes the necessity of
the condition.
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Conversely if arj = 8an  (note that this immediately implies   3 is not the
algebra of a quadratic form), i8s)~la = a^-1 = - anr¡*~x = - p~l(ar¡)n =

-p~182ali   =- p~182N(a)a (using conditions relating  77 and  # preceding (15),

§7).   Thus  p = - 8s82N(a) and it is easy to verify that cp fixes the strictly

regular element y = (p8~s, 8~   , - a, 8a  ) since  r¡   = - 77 implies  ps = - p.

An immediate consequence of the lemma is that, for suitably selected fields

E, there exist nonreduced, simple FTS's.   The simplest example involves

K = F(yjp), a quadratic extension of  E with nontrivial automorphism   o.   Let  3

be Jordan algebra of a quadratic form over  E and let  rj = y'p(I © a) act on  3je

The semilinear map cp = 77,,  _.., À = - 1, p = \Jp, is a semiautomorphism of

!(3K) of order 2 which fixes a simple  F-form  1 which cannot be reduced since

77 is nonsingular and  a   = 0 for all a £ ^       A less trivial example occurs if  E

is taken to be the rational function field Q(xx, x2, x , x^), K = E(y-l).   The

semilinear map C(s) given in  [6] acts on a split exceptional algebra 3 over  K

and has property aC(s) 4 8(a x a) fot all a £ 3,  Nia) 4 0.   Thus the semiauto-

morphism   7//.  _!„ A = - 1,   77 = v-lC(s)  defines a nonreduced  E-form of  1(3).
We have finally

8.2  Theorem.   Let 1 be an F-form of a FTS 1(3), 3 exceptional simple.

Then 1  z's reduced if F  is finite, real, p-adic, or algebraically closed.

Proof.   The algebraically closed case is just Corollary 3.5.   In the remain-

ing cases pick x e 1 with  qix) = ß 4 0.   If /3/12 is a square,  1 is reduced by

Corollary 3.4.   We thus assume   K = E(/3),  ß = (/3/12)   , is a quadratic extension

of  F such that 1K = 1(3), 3 an exceptional Jordan algebra, and such that

x = ux + u_x,  u( the canonical strictly regular elements (see above remarks).

1 is thus the fixed point set of a semiautomorphism   77* as above.   If  n is the

identity,   1 is reduced.   Thus we assume   77 = (1, - 1), À = — 1,   77   = - 77.   It

suffices to show that, for the given fields, such an   77 always satisfied the con-

ditions of Lemma 8.1.   For this we replace  77 by j8r/ = 77 to obtain  77   = 77 and
observe that precisely this result is proved in  [6, Lemma 3 and preceding

statements and proof of Theorem 5].

Note.   The theorem is also true if F is an algebraic number field.   A proof

of this fact will be incorporated in a forthcoming paper by the author on class-

ification of Lie algebras of type  E_.
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