
Strictness of the Collapsible Pushdown
Hierarchy?

Alexander Kartzow1 and Pawe l Parys2

1 Universität Leipzig
Johannisgasse 26, 04103 Leipzig, Germany
kartzow@informatik.uni-leipzig.de

2 University of Warsaw
ul. Banacha 2, 02-097 Warszawa, Poland

parys@mimuw.edu.pl

Abstract. We present a pumping lemma for each level of the collapsible
pushdown graph hierarchy in analogy to the second author’s pumping
lemma for higher-order pushdown graphs (without collapse). Using this
lemma, we give the first known examples that separate the levels of the
collapsible pushdown graph hierarchy and of the collapsible pushdown
tree hierarchy, i.e., the hierarchy of trees generated by higher-order re-
cursion schemes. This confirms the open conjecture that higher orders
allow to generate more graphs and more trees.

1 Introduction

Already in the 70’s, Maslov ([11,12]) generalised the concept of a pushdown
systems to higher-order pushdown systems and studied such devices as acceptors
of string languages. In the last decade, renewed interest in these systems has
arisen. They are now studied as generators of graphs and trees. Knapik et al.
[10] showed that the class of trees generated by deterministic level n pushdown
systems coincides with the class of trees generated by safe level n recursion
schemes,3 and Caucal [5] gave another characterisation: trees on level n + 1
are obtained from trees on level n by an MSO-interpretation followed by an
unfolding. Carayol and Wöhrle [4] studied the ε-contractions of configuration
graphs of level n pushdown systems and proved that these are exactly the graphs
in the n-th level of the Caucal hierarchy.

Driven by the question whether safety implies a semantical restriction to re-
cursion schemes, Hague et al. [7] extended the model of higher-order pushdown
systems by introducing a new stack operation called collapse. They showed that
the trees generated by the resulting collapsible pushdown systems coincide ex-
actly with the class of trees generated by all higher-order recursion schemes and

? The first author is supported by the DFG project “GELO”. The second author is
partially supported by the Polish Ministry of Science grant nr N N206 567840. The
collaboration of the authors is supported by the ESF project “Games for Design and
Verification”.

3 Safety is a syntactic restriction on the recursion scheme.

this correspondence is level-by-level. Recently, Parys ([13,14]) proved the safety
conjecture, i.e., he showed that higher-order recursion schemes generate more
trees than safe higher-order recursion schemes, which implies that the class of
collapsible pushdown trees is a proper extension of the class of higher-order
pushdown trees. Similarly, due to their different behaviour with respect to MSO
model checking, we know that the class of collapsible pushdown graphs forms a
proper extension of the class of higher-order pushdown graphs.

Several questions concerning the relationship of these classes have been left
open so far. Up to now it was not known whether collapsible pushdown graphs
form a strict hierarchy in the sense that for each n ∈ N the class of level n
collapsible pushdown graphs is strictly contained in the class of level (n + 1)
collapsible pushdown graphs. The same question was open for the hierarchy of
trees generated by collapsible pushdown systems (i.e. by recursion schemes).
Extending the pumping arguments of Parys for higher-order pushdown systems
[15] to the collapsible pushdown setting, we answer both questions affirmative.

Our main technical contribution is the following pumping lemma for col-
lapsible pushdown systems. It subsumes the known pumping lemmas for level
2 collapsible pushdown systems [9] and for higher-order pushdown systems [15].
Set exp0(i) = i and expk+1(i) = 2expk(i).

Theorem 1.1. Let S be a collapsible pushdown system of level n. Let G be the
ε-contraction of the configuration graph of S. Assume that it is finitely branch-
ing and that there is a path of length m from the initial configuration to some
configuration c. For CS a constant only depending on S, if there is a path p in G
of length at least expn−1((m+ 1) ·CS) which starts in c, then there are infinitely
many paths in G which start in c and end in configurations having the same state
as the last configuration of p.

Corollary 1.2. Let G be the successor tree induced by {1i0expn(i) | i ∈ N}.
G is the ε-contraction of the configuration graph of a pushdown system of

level n+ 1 but not the ε-contraction of the configuration graph of any collapsible
pushdown system of level n. Moreover, G is generated by a safe level (n + 1)
recursion scheme but not by any level n recursion scheme.

G is not in the n-th level because application of the pumping lemma to the
node 12·CS0 yields a contradiction. The proof that G is in level n + 1 follows
from [2]. Beside this main result, our techniques allow us to decide the following
problems.4

Lemma 1.3. Given a collapsible pushdown system, it is decidable

1. whether the ε-contraction of its configuration graph is finitely branching,
2. whether the ε-contraction of its configuration graph is finite, and
3. whether the unfolding of the ε-contraction of its configuration graph is finite.

4 We thank several anonymous referees of our LICS submissions for pointing our in-
terest towards these problems.

2

1.1 Related Work

Hayashi [8] and Gilman [6] proved a pumping and a shrinking lemma for indexed
languages. It is shown in [1] that indexed languages are exactly the string lan-
guages accepted by level 2 collapsible pushdown systems. For higher levels, no
shrinking techniques are known so far. Since our pumping lemma can be used
only for finitely branching systems, it cannot be used to show that certain string
languages do not occur on certain levels of the (collapsible) higher-order push-
down hierarchy. Note that we do not know whether the string languages accepted
by nondeterministic level n pushdown systems and by nondeterministic level n
collapsible pushdown systems coincide for n > 2. Thus, it is an interesting open
question whether there is a stronger pumping lemma for runs of higher-order
systems that could be used to separate these classes of string languages.

2 Collapsible Pushdown Graphs

Collapsible pushdown systems of level n (from now on n ∈ N is fixed) are an
extension of pushdown systems where we replace the stack by an n-fold nested
stack structure. This higher-order stack is manipulated using a a push, a pop
and a collapse operation for each stack level 1 ≤ i ≤ n. When a new symbol
is pushed onto the stack, we attach a copy of a certain level k substack of the
current stack to this symbol (for some 1 ≤ k ≤ n) and at some later point the
collapse operation may replace the topmost level k stack with the level k stack
stored in the topmost symbol of the stack (we also talk about the linked k-stack
of the topmost symbol). In some weak sense the collapse operation allows to
jump back to the (level k) stack where the current topmost symbol was created
for the first time.

Definition 2.1. Given a number n (the level of the system) and stack alphabet
Γ , we define the set of stacks as the smallest set satisfying the following.

– If s1, s2, . . . , sm are (k − 1)-stacks, where 1 ≤ k ≤ n, then the sequence
[s1, s2, . . . , sm] is a k-stack. This includes the empty sequence (m = 0).

– If sk is a k-stack, where 1 ≤ k ≤ n, and γ ∈ Γ , then (γ, k, sk) is a 0-stack.

For a 0-stack s0 = (γ, k, tk) we call γ the symbol of s0 and for some k-stack
tk the topmost symbol is the symbol of its topmost 0-stack.

For a k-stack sk and a (k − 1)-stack sk−1 we write sk : sk−1 to denote the
k-stack obtained by appending sk−1 on top of sk. We write s2 : s1 : s0 for
s2 : (s1 : s0).

Let us remark that in the original definition stacks are defined differently:
they are not nested, a 0-stack does not store the linked k-stack but the number
of pop-operations a collapse is equivalent to. This is only a syntactical differ-
ence as discussed in Appendix A. Independently, Broadbent et al. recently also
introduced our definition of stack under the name annotated stacks in [3].

3

Definition 2.2. We define the set of stack operations OP as follows. We de-
compose a stack s of level n into its topmost stacks sn : sn−1 : · · · : s0. We have
popi(s) := sn : · · · : si+1 : si for all 1 ≤ i ≤ n. The result is undefined if si is
empty. For 2 ≤ i ≤ n we have pushi(s) := sn : · · · : si+1 : (si : · · · : s0) : si−1 :
· · · : s0. The level 1 push is push1γ,k for γ ∈ Γ , 1 ≤ k ≤ n which is defined by

push1γ,k(s) := sn : · · · : s2 : (s1 : s0) : (γ, k, sk).5 The collapse operation coli

(where 1 ≤ i ≤ n) is defined if the topmost 0-stack is (γ, i, ti), and ti is not
empty. Then it is coli(s) := sn : · · · : si+1 : ti. Otherwise the collapse operation
is undefined.

Definition 2.3. The initial 0-stack ⊥0 is (⊥, n, []) for a special symbol ⊥ ∈ Γ ,
i.e., a 0-stack only containing the symbol ⊥ with link to the empty stack. The
initial (k+1)-stack is [⊥k]. Some n-stack s is a pushdown store (or pds), if there
is a finite sequence of stack operations that create s from ⊥n.

Remark 2.4. If s is a pds and if colj(s) is defined, then there is a k ≥ 1 such
that colj(s) is the stack obtained from s by applying popj k times.

Definition 2.5. A collapsible pushdown system of level n (an n-CPS) is a tuple
S = (Γ,A,Q, qI ,⊥, ∆) where Γ is a finite stack alphabet containing the special
symbol ⊥, A is a finite input alphabet, Q is a finite set of states, qI ∈ Q is an
initial state, and ∆ ⊆ Q× Γ × (A ∪ {ε})×Q×OP is a transition relation.
A configuration is a pair (q, s) with q ∈ Q and s a pds. The initial configuration
of S is (qI ,⊥n).

Definition 2.6. We define a run of a CPS S. For 0 ≤ i ≤ m, let ci = (qi, si)
be a configuration of S and let γi denote the topmost stack symbol of si. A run
R of length m from c0 to cm is a sequence c0 `a1 c1 `a2 · · · `am cm such that,
for 1 ≤ i ≤ m, there is a transition (qi−1, γi−1, ai, qi, op) where si = op(si−1).
We set R(i) := ci and call |R| := m the length of R. The subrun R�i,j is
ci `ai+1 ci+1 `ai+2 · · · `aj cj . For runs R,S with R(|R|) = S(0), we write R ◦ S
for the composition of R and S which is defined as expected.

Definition 2.7. Let S be a collapsible pushdown system. The (collapsible push-
down) graph6 of S = (Γ,A,Q, qI ,⊥, ∆) is G := (G, (Ea)a∈A∪{ε}) where G con-
sists of all configurations reachable from (q0,⊥n) and there is an a-labelled edge
from a configuration c to a configuration d if there is a run c `a d. The ε-
contraction of G is the graph (G′, (E′a)a∈A) where G′ := {c ∈ G : ∃d ∈ G d `a c
for some a ∈ A} and two configurations c, d are connected by E′a if there is a
run c `ε c1 `ε · · · `ε cn `a d for some n ∈ N.

3 Proof Structure

The proof of the pumping lemma consists of three parts. In the first part we in-
troduce a special kind of context free grammars (called well-formed grammars)

5 In the following, we write push1 whenever we mean some push1γ,k operation where
the values of γ and k do not matter for the argument.

6 In fact it is an edge-labelled graph; sets Ea need not to be disjoint.

4

for runs of a collapsible pushdown system S. In such a grammar, each nontermi-
nal represents a set of runs and each terminal is one of the transitions of S. Let X
and X1, . . . , Xm be sets of runs and δ some transition. A rule X ⊇ δX1X2 . . . Xm

describes a run R if R = S ◦ T1 ◦ T2 ◦ · · · ◦ Tn such that S performs only the
transition δ and Ti ∈ Xi. A grammar describes a family X if the rules for each
X ∈ X describe exactly the runs in X. Well-formed grammars are syntactically
restricted in order to obtain the following result. If X is a finite family described
by a well-formed grammar, we can define

1. a function ctypeX from configurations of S to a finite partial order (TS ,v)
(of types of configurations), and

2. for each X ∈ X a level lev(X) ∈ {0, 1, . . . , n}

such that the following transfer property of runs holds.

Theorem 3.1. Let X be a family of sets of runs described by a well-formed
grammar, R ∈ X ∈ X , and c be a configuration with ctypeX (R(0)) v ctypeX (c).

1. There is a run S ∈ X starting in c which has the same final state as R and
2. if lev(X) = 0, then ctypeX (R(|R|)) v ctypeX (S(|S|)).

The idea behind the definition of ctypeX is that we assign a type not only
to the whole configuration, but also to every k-stack (for every k). This type
summarises possible behaviours of the k-stack in dependence on the type of the
n-stack below this k-stack. This makes types compositive: the type of a stack
sk+1 : sk is determined by the type of sk+1 and of sk. The above theorem
generalises results of [15] in two ways: first, it works for collapsible systems;
second, it works for arbitrary well-formed grammars instead of a fixed family of
set of runs. The corresponding part of the proof from [15] is not transferable to
collapsible systems at all. For collapsible systems we even need a new definition
of types (see Appendix B). We stress that new definition of types rely on the
different form of representing links in stacks: our k-stack already contains all
linked stacks, so we can summarise it using a type from a finite set. On the
other hand the original k-stack has arbitrarily many numbers pointing to stacks
“outside”, and we could not define a type from a finite set because the behaviour
of a k-stack would depend on this unbounded context “outside”.

In the second part of the proof (cf. Section 5), we introduce a well-formed
grammar for a certain family X . As a main feature, X contains the sets of so-
called pumping runs P. In the grammar describing X , the level of P is 0 whence
the strong version of Theorem 3.1 applies. If a pumping run R starts and ends in
configurations of the same type, this theorem then allows to pump this run, i.e.,
basically we can append a copy of this run to its end and iterating this process
we obtain infinitely many pumping runs.

The last part of the proof uses Theorem 3.1 for the above family X to deduce
the pumping lemma. This part follows closely the analogous proof for the non-
collapsible pushdown systems in [15] (see Appendices F–H): we prove that a long
run contains a pumping run such that the application of Theorem 3.1 yields a

5

configuration c on this path such that either the graph is infinitely branching at
c or the pumped runs yield longer and longer paths in the ε-contraction of the
pushdown graph.

4 Run Grammars

Let X be a finite family whose elements are sets of runs of S. We want to describe
this family using a kind of context free grammar. In this grammar the members
of X appear as nonterminals and the transitions of S play the role of terminals.

We assume that there is a partition X =
⋃n
i=0 Xi into pairwise distinct

families of sets of runs. For each set X ∈ X , we define its level to be lev(X) := i
if X ∈ Xi. We only consider well-formed grammars that satisfy the restriction
that all rules of the grammar have to be well-formed.

Definition 4.1. A well-formed rule over X (wf-rule for short) is of the form

1. X ⊇ where X ∈ X , or
2. X ⊇ δ where δ ∈ ∆, X ∈ X and if the operation in δ is popk or colk then
k ≤ lev(X), or

3. X ⊇ δY where δ ∈ ∆, X,Y ∈ X , lev(Y) ≤ lev(X) and if the operation in δ
is popk or colk then k ≤ lev(Y), or

4. X ⊇ δY Z where δ ∈ ∆, X,Y, Z ∈ X , lev(Z) ≤ lev(X), if the operation in
δ is popk or colk then k ≤ lev(Y), and whenever R is a composition of a
one-step run performing transition δ with a run from Y , then the topmost
lev(Y)-stacks of R(0) and R(|R|) coincide.

Definition 4.2. We say that a run R is described by a wf-rule X ⊇ δX1 . . . Xm,
m ∈ {0, 1, 2} if there is a decomposition R = R0 ◦R1 ◦ · · · ◦Rm such that R0 has
length 1 and performs δ and Ri ∈ Xi for each 1 ≤ i ≤ m; a run R is described by
X ⊇ if |R| = 0. We say that a family X is described by a well-formed grammar
RX if for each X ∈ X , a run R is in X if and only if it is described by some rule
X ⊇ δX1 . . . Xm ∈ RX .

Example 4.3. Let Q be the set of all runs. Setting lev(Q) = n, the one-element
family {Q} is described by the wf-rules Q ⊇ δQ for each transition δ, and Q ⊇ .

Indeed, for every run R either |R| = 0 or R consists of a first transition fol-
lowed by some run. Note that we cannot choose lev(Q) different from n whenever
S contains a transition δ0 performing coln or popn. If we set lev(Q) < n, then
Q ⊇ δ0Q would not be a wf-rule.

Next we prove that the class of families described by well-formed grammars
is closed under addition of unions and compositions. This is crucial for the de-
cidability results mentioned in Lemma 1.3. If X and Y are sets of runs, we set
X ◦ Y := {R ◦ S : R ∈ X,S ∈ Y }.

Lemma 4.4. Let X be a family described by a well-formed grammar. For X,Y ∈
X the family X ∪ {X ∪ Y } is described by a well-formed grammar. Moreover,
there is a family Y ⊇ X ∪ {X ◦ Y } that is described by a well-formed grammar.
In these grammars, we have lev(X ∪ Y) = lev(X ◦ Y) = max(lev(X), lev(Y)).

6

Proof. For each rule Z ⊇ δZ1 . . . Zm with Z ∈ {X,Y } adding the rule (X ∪ Y) ⊇
δZ1 . . . Zm settles the case of unions.

For the composition, we add a set Z ◦ Y for each Z ∈ X , and a new set Y i

for 0 ≤ i ≤ n. Y i contains exactly the same runs as Y , but we set lev(Y i) :=
max(lev(Y), i). Wf-rules describing Y i are clearly obtained from the rules for
Y by replacing the left-hand side by Y i. Note that increasing the level of the
left-hand size turns well-formed rules into well-formed rules. Rules for each of
the Z ◦ Y are easily obtained from rules for Z as follows.

– If there is a rule Z ⊇ , for each rule having Y on the left side we add the
same rule with Z ◦ Y on the left side,

– for each rule Z ⊇ δ we add a rule (Z ◦ Y) ⊇ δY lev(Z),
– for each rule Z ⊇ δX1 we add a rule (Z ◦ Y) ⊇ δ(X1 ◦ Y),
– for each rule Z ⊇ δX1X2 we add a rule (Z ◦ Y) ⊇ δX1(X2 ◦ Y).

It is straightforward to check that this is a well-formed grammar describing the
family Y := X ∪ {Z ◦ Y : Z ∈ X} ∪ {Y i : 0 ≤ i ≤ n}. ut

5 A Family of Runs

We now define a family X described by a well-formed grammar. We first name the
sets of runs that we define in the following. Some of our classes have subscripts
from ε, 6ε, =, and <. Subscript ε marks a set if all runs in the set only perform
ε-transitions, while 6ε marks a set if each run in the set performs at least one
non-ε-transitions. Subscript < marks sets (of pumping runs) where each run
starts in a smaller stack than it ends, while = marks sets where no run starts in
a smaller stack than it ends (it follows that each such pumping run ends in the
same stack as it starts). X consists of the following sets.

– Q of all runs,
– Nk of topk-non-erasing runs,
– P of pumping runs which is the disjoint union of the sets Px,y for x ∈ {<,=},
y ∈ {ε, 6ε}. Additionally, we set P6 ε = P<,6 ε ∪ P=,6 ε and Pε = P<,ε ∪ P=,ε.

– Rk,j of k-returns of change level j ≥ k which is the disjoint union of the sets
Rk,j,y for y ∈ {ε, 6ε}, and

– Ck,j of k-colreturns of change level j ≥ k which is the disjoint union of the
sets Ck,j,y for y ∈ {ε, 6ε}.

In order to easily distinguish between ε-runs and 6ε-runs in the rules, we
partition the transition relation ∆ = ∆ε ∪∆6 ε such that ∆ε contains exactly the
ε-labelled transitions. Before we can give rules for the family we need to define the
levels of its sets. We set lev(Q) = n, lev(Rk,j,y) = k, lev(Ck,j,y) = k, lev(Nk) = n
and lev(Px,y) = 0.

Now we give rules for these sets and we describe the main properties of runs
in each of the sets. In Appendix E we prove that these descriptions are correct.

Recall that we have described Q by well-formed rules in Example 4.3. The
sets of returns and colreturns are auxiliary sets. Returns occur in the wf-rules
for Nk and Px,y while colreturns are necessary to give wf-rules for returns.

7

Nk contains all runs R where the topmost k-stack of R(0) is never removed
during the run. First, we give an idea how the set N0 plays an important role in
our pumping lemma. Recall that we want to apply Theorem 3.1 to pumping runs
in order to obtain arbitrary many runs starting in a given configuration. Our
final goal is to construct infinitely many different paths in the ε-contraction of
the graph of a given collapsible pushdown system that all end in a specific state
q. But in general, the pumping runs we construct end in a different state. Thus,
the type of the stack reached by each of the pumping runs should determine
that we can reach a configuration with state q from this position. This could be
done using the set Q but it is not enough: if the pumping runs induce ε-labelled
paths then we could append runs from Q that all lead to the same configuration.
In this case, we construct longer and longer runs but all these runs encode the
same edge in the ε-contraction. This is prohibited by the use of runs from N0:
we can prove that the longer pumping runs we construct end in larger stacks.
Appending a run from N0 to such a run ensures that the resulting run also ends
in a large stack. From this observation we will obtain infinitely many runs that
end in different configurations with state q. Thus, they induce infinitely many
paths in the ε-contraction.

The rules for Nk are

– Nk ⊇ ,
– Nk ⊇ δNk for each δ ∈ ∆ performing an operation of level at most k,
– Nk ⊇ δjNj−1 for each δj ∈ ∆ performing a pushj and j ≥ k + 1,
– Nk ⊇ δjRj,jNk for each δj ∈ ∆ performing a pushj .

Our analysis of returns reveals that δj followed by a run fromRj,j starts and ends
in the same stack. Thus, the last rule satisfies the requirement that the topmost
j-stacks of these stacks coincide. Moreover, such a run never changes the topmost
j-stack of the initial configuration. Using this fact it is straightforward to see
that every run described by these rules does not remove the topmost k-stack.
The other direction, i.e., the proof that every run preserving the existence of the
topmost k-stack is described by one of these rules, can be found in the appendix.

Some run R is a pumping run, i.e., R ∈ P, if its final stack is created com-
pletely on top of its initial stack in the following sense: the topmost 1-stack of
R(|R|) is obtained as a (possibly modified) copy of the topmost 1-stack of R(0),
and in this copy the topmost 0-stack of R(0) was never removed. Another view
on this definition is as follows: for each k, the run R may look into a copy of the
topmost k-stack of R(0) only if this copy is not directly involved in the creation
of the topmost k-stack of R(|R|). In Appendix D we define a history function
that makes the notion of being involved in the creation of some stack precise:
for each i < |R| and for each k-stack sk of R(|R|) we can identify a k-stack tk

in R(i) which is the maximal k-stack involved in the creation of this stack.
In the rest of this section y, y0, y1, y2 are variables in {ε, 6ε} where we assume

that either all are ε or y = 6ε and one of the yi occurring in the rule is 6ε. The
rules for P are

– P=,ε ⊇ ,

8

– P<,y ⊇ δy0Px,y1 for each δy0 ∈ ∆y0 performing pushj and x ∈ {=, <},
– Px,y ⊇ δjy0Rj,j,y1Px,y for each δjy0 ∈ ∆y0 performing pushj and x ∈ {=, <},
– P<,y ⊇ δjy0Rj,j′,y1Px,y2 for each δjy0 ∈ ∆y0 performing pushj , j′ > j and
x ∈ {=, <}.

Proving the correctness of this set of rules with respect to our intended meaning
of the sets Px,y requires a very detailed study of returns which is done in Ap-
pendix E. In order to see that the rules of the last two kinds are well-formed we
need the property that for every run R which first performs a pushj operation
followed by a j-return, the topmost j-stack of R(0) and R(|R|) is the same.

Example 5.1. A run of length 1 performing a push1 operation is a pumping
run. Also a run of length 2 performing a push1 operation followed by a pop1

operation is a pumping run. However a run of length 2 performing first a pop1

operation and then a push1 operation is not a pumping run. This shows that in
the definition of a pumping run we do not only care about the initial and final
configuration, but about the way the final configuration is created by the run: a
pumping run R may never remove the topmost 0-stack of R(0). Next consider a
run R of length 3 performing the sequence of operations

push2, pop1, pop2.

It is also a pumping run. Notice that this run “looks” into a copy of the topmost
1-stack of R(0), i.e., it removes its topmost 0-stack whence it depends on symbols
of R(0) other than the topmost one. One can see that in any 2-CPS, whenever a
pumping run R looks into a copy of the topmost 1-stack of R(0), then this copy is
completely removed from the stack at some later point in the run. However this
is not true for higher levels, as shows the next pumping run R which performs
the sequence

push2, pop1, push3, pop2.

Next we define returns. A run R is a k-return (where 1 ≤ k ≤ n) if

– the topmost (k − 1)-stack of R(|R|) is obtained as a copy of the second
topmost (k − 1)-stack of R(0) (in particular we require that there are at
least two (k − 1)-stacks in the topmost k-stack of R(0)), and

– while tracing this copy of the second topmost (k − 1)-stack of R(0) which
finally becomes the topmost (k − 1)-stack of R(|R|), it is never the topmost
(k − 1)-stack of R(i) for all i < |R|.

Additionally, for a k-return R its change level is the maximal j such that the
topmost j-stack of the initial and of the final stack of R differ in size (i.e. in the
number of (j − 1)-stacks they contain).7 One can see that the topmost k-stack
of R(0) is always greater by one than the topmost k-stack of R(|R|), so we have
j ≥ k. Recall that Rk,j is the set of k-returns of change level j.

7 One can see that it is the same as saying that the initial and of the final stack of R
differ. However a definition using size is more convenient.

9

Let us just give some intuition about returns before we state their exact
characterisation using wf-rules. The easiest sets of returns are those where k = j.
A run R ∈ Rk,k starts in some stack s, ends in the stack popk(s), and never visits
popk(s) (or any smaller stack) before the final configuration. Notice also that
there is a minor restriction on the use of collapse operations: R is not allowed
to use links of level k stored in s in order to reach popk(s). Indeed, if such link
would be used, then the topmost (k− 1)-stack of R(|R|) would not be a copy of
the second topmost (k− 1)-stack of R(0), but a copy of the (k− 1)-stack stored
in the link used. Note that this distinction is due to our special representation
of links, yet it is useful for the understanding of the definitions.

In the case that j > k things are more complicated but similar. This time
R ∈ Rk,j makes a number of copies of the (possibly modified) topmost (j − 1)-
stack of the initial stack s whence the topmost j-stack of the final stack s′ is of
bigger size than the topmost j-stack of s. But again the topmost k-stack of s′ is
the same as the topmost k-stack of popk(s), and is in fact created as a modified
copy of the topmost k-stack of s. Furthermore, while tracing the history of this
copy along the configurations of the run, the size of this copy is always greater
than its size in R(|R|). Notice however that we may also create some other
copies of the topmost k-stack of s, in which we can remove arbitrarily many
(k − 1)-stacks. Finally, there is again a minor restriction on the use of collapse
links stored in the initial stack s. This restriction implies that the stack obtained
via application of the stack operations of the return to s is independent of the
linked stacks, i.e., if we replace one of the links of the stack s such that the stack
operations of R are still applicable to the resulting stack s′, then this sequence
of stack operations applied to s′ results in the same stack (as when applied to s).
In Example 5.4 we discuss the conditions under which we may use a link stored
in the initial stack of some return.

Example 5.2. Consider a run R of length 6 (of a collapsible pushdown system of
level 2) which performs the following sequence of operations:

push2, pop1, pop2, pop1, push1, pop1.

Below we use the notation that symbols taken in square brackets are in one
1-stack (we omit the collapse links). Assume we start from a stack [aa][aa]. The
stacks of the following configurations of R are:

[aa][aa][aa], [aa][aa][a], [aa][aa], [aa][a], [aa][aa], [aa][a].

We have R�0,2 ∈ R1,2, R�0,4, R�1,2, R�3,4, R�5,6 ∈ R1,1 and R�1,3, R�2,3 ∈ R2,2.
These are the only subruns of R being returns, in particular R is not a 1-return
because it visits its final stack before its final configuration.

Example 5.3. The run R of length 5 performing the following sequence of oper-
ations

push2, pop1, push3, pop2, pop1

is a 1-return of change level 3. Notice that the final stack contains a copy of the
topmost 1-stack of R(0) with its topmost 0-stack removed.

10

The rules for returns are as follows:

– Rk,k,y ⊇ δy0 for each δy0 ∈ ∆y0 performing popk,
– Rk,j,y ⊇ δy0Rk,j,y1 for each δy0 ∈ ∆y0 performing an operation of level < k,
– Rk,j,y ⊇ δj0y0Rk,j1,y1 for each δj0y0 ∈ ∆y0 performing a pushj0 such that j0 > k

and max{j0, j1} = j,
– Rk,j,y ⊇ δj0y0Rj0,j0,y1Rk,j,y2 for each δj0y0 ∈ ∆y0 performing a push of level j0,

– Rk,j,y ⊇ δj0y0Rj0,j1,y1Rk,j2,y2 for each δj0y0 ∈ ∆y0 performing a pushj0 such
that j1 > j0 and max{j1, j2} = j, and

– Rk,j,y ⊇ δy0Ck,j,y1 for each δy0 ∈ ∆y0 performing a push1a,k.

A k-colreturn is a run R that performs in the last step a colk on a copy of the
topmost symbol of its initial stack. The change level of k-colreturns is (again)
defined as the maximal j such that the topmost j-stack of the initial and of the
final stack of the colreturn R differ in size.

Note that k-colreturns appear in the rules for returns after a push of level 1.
The simplest example of a return described by the third rule is a run R starting
in a stack s and performing push1a,k and then colk. Note that such a sequence has

the same effect as applying popk to s. Note that R�1,2 in this example is a run

from the stack s′ := push1a,k(s) to popk(s′) (for k ≥ 2). Nevertheless we exclude
it from the definition of a k-return of change level k because this effect is not
transferable to arbitrary other stacks: of course, we can apply the transition of
R�1,2 to the stack pushk(s′) and obtain a run R′ from pushk(s′) to popk(s′). But

apparently this is not a run from some stack s′′ to a stack popk(s′′), so it is not
a k-return. For this reason our definition of returns disallows the application of
certain stored collapse links. The colreturns take care of such situations where
we use the links stored in the stack. Notice that k-colreturns occur in the rules
defining the other sets of runs only at those points where we performed a push of
level 1 whence we can be sure that the effect of the collapse operation coincides
with the application of exactly one popk operation to the initial stack.

Example 5.4. Consider a run R of length 4 performing

push2, col1, pop2, pop1.

It is a 1-return of change level 1. Notice that it performs a collapse operation
using a (copy of a) link already stored in R(0). But R�1,3 is a 2-return (of
change level 2) which covers this collapse operation, i.e., whenever this sequence
is applicable to some stack s it ends in the stack pop1(s). As a general rule, we
allow the use of a colk from a (copy) of a link stored in the initial stack of some
return R if it occurs within some subrun R′ that is a k′-return or k′-colreturn
of higher level(i.e., k′ > k). In such cases the resulting stack does not depend on
the stack stored in the link (as long as the whole sequence of operations of the
return is applicable). Hence, the following sequence of operations also induces a
1-return of change level 1: push3, col2, pop3, pop1.

Finally, let us state the rules for k-colreturns.

11

– Ck,k,y ⊇ δy0 for each δy0 ∈ ∆y0 performing a colk,
– Ck,j,y ⊇ δj0y0Ck,j1,y1 for each δj0y0 ∈ ∆y0 performing a pushj0 such that j0 ≥ 2

and max{j0, j1} = j,
– Ck,j,y ⊇ δj0y0Rj0,j0,y1Ck,j,y2 for each δj0y0 ∈ ∆y0 performing a pushj0 , and

– Ck,j,y ⊇ δj0y0Rj0,j1,y1Ck,j2,y2 for each δj0y0 ∈ ∆y0 performing a pushj0 such that
j1 > j0 and max{j1, j2} = j.

This completes the presentation of the well-formed grammar describing X .

References

1. K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level
2 for string languages. In V. Sassone, editor, FoSSaCS, volume 3441 of Lecture
Notes in Computer Science, pages 490–504. Springer, 2005.

2. A. Blumensath. On the structure of graphs in the caucal hierarchy. Theor. Comput.
Sci., 400(1-3):19–45, 2008.

3. C. Broadbent, A. Carayol, M. Hague, and O. Serre. A Saturation Method for
Collapsible Pushdown Systems. In to appear in ICALP, 2012.

4. A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In P. K. Pandya and J. Radhakrishnan,
editors, FSTTCS, volume 2914 of Lecture Notes in Computer Science, pages 112–
123. Springer, 2003.

5. D. Caucal. On infinite terms having a decidable monadic theory. In K. Diks and
W. Rytter, editors, MFCS, volume 2420 of Lecture Notes in Computer Science,
pages 165–176. Springer, 2002.

6. R. H. Gilman. A shrinking lemma for indexed languages. Theor. Comput. Sci.,
163(1&2):277–281, 1996.

7. M. Hague, A. S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible pushdown
automata and recursion schemes. In LICS, pages 452–461. IEEE Computer Society,
2008.

8. T. Hayashi. On derivation trees of indexed grammars. Publ. RIMS, Kyoto Univ.,
9:61–92, 1973.

9. A. Kartzow. A pumping lemma for collapsible pushdown graphs of level 2. In
M. Bezem, editor, CSL, volume 12 of LIPIcs, pages 322–336. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2011.

10. T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy.
In M. Nielsen and U. Engberg, editors, FoSSaCS, volume 2303 of Lecture Notes in
Computer Science, pages 205–222. Springer, 2002.

11. A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet
Math. Dokl., 15:1170–1174, 1974.

12. A. N. Maslov. Multilevel stack automata. Problems of Information Transmission,
12:38–43, 1976.

13. P. Parys. Collapse operation increases expressive power of deterministic higher or-
der pushdown automata. In T. Schwentick and C. Dürr, editors, STACS, volume 9
of LIPIcs, pages 603–614. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2011.

14. P. Parys. On the significance of the collapse operation. Accepted to LICS, 2012.
15. P. Parys. A pumping lemma for pushdown graphs of any level. In C. Dürr and

T. Wilke, editors, STACS, volume 14 of LIPIcs, pages 54–65. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012.

12

A Deviations from Standard Definitions

Our definition of a collapsible pushdown system of level n deviates from the
original one from [7] in several respects.

1. Instead of storing links which control the collapse operation, we store the
content of the stack where the link points to. Note that this is only a syn-
tactical difference.

2. Instead of having one collapse operation whose level is controlled by the
topmost element of the stack, we have one collapse operation for each stack
level. Note that we can simulate a collapse transition in the original sense
by using n collapse transitions (one for each level).

3. Finally, for reasons of uniformity, the definition of the push1a,1 operation
differs from the original one. If we apply this operation to a stack s we do
not create a link to the topmost 1-stack s1 of s but to pop1(s1). Thus, the
effect of using a collapse of level 1 in the original definition is always equal
to the effect of applying pop1 while in our definition it is always equal to the
effect of applying pop1 twice. Nevertheless, we can simulate every system
of the original definition by simulating collapse of level one with a pop1

operation directly.8

Due to these observations, it should be clear that every “original” collapsible
pushdown system of level n and size s is simulated by a collapsible pushdown
system of level n and size at most n · s. Moreover, with respect to ε-contractions
of the configuration graphs both definitions are equal (from our systems to the
original ones, we need one ε-transition in order to simulate each col1 operation
by two pop1 operations; all other transitions are translated one-to-one).

B Types of Stacks and Configurations—Definitions

Before we start defining types, let us introduce one more restriction for a set of
wf-rules.

Definition B.1. A set RX of well-formed rules over X is called well-formed
if for each rule (X ⊇ δY Z) ∈ RX there is also the rule (XδY ⊇ δY) ∈ RX
for a new nonterminal XδY such that lev(XδY) = lev(Y), and for each rule
(X ⊇ δX) ∈ RX or (X ⊇ δXY) ∈ RX there is also the rule (Xδ ⊇ δ) ∈ RX for
a new nonterminal Xδ.

Remark B.2. Note that each set of well-formed rules over some family X can
be turned into a well-formed set of well-formed rules by adding the necessary
symbols Xδ and XδY to X , the corresponding rules to the set of rules, and by
setting lev(Xδ) = n and lev(XδY) = lev(Y).

8 Notice however that col1 can be performed only if the topmost 0-stack stores a
1-stack. The same should be true for the new transition performing pop1. To ensure
this, it is enough to extend the stack alphabet so that the stack symbol stores also
the level of the stack stored in the 0-stack.

13

For the rest of this section we fix some finite family X described by a well-
formed set RX of wf-rules. The aim of this section is to assign to any k-stack sk

a type typeX (sk) that determines the possible runs from any of the sets X ∈ X
starting in a stack with topmost k-stack sk. The type of sk is a set of run
descriptors which come from a set T k that are defined inductively from k = n
to k = 0. A typical element of T k has the form

σ = (Σn, Σn−1, . . . , Σk+1, p, σ̂) with σ̂ = (X,Ωn, Ωn−1, . . . , Ωlev(X)+1, q),

where X ∈ X is one of the sets of runs we are interested in, Σi and Ωi are types
of i-stacks, and p, q ∈ Q are states of the CPS S. Let us explain the intended
meaning of such a tuple. We want to have σ ∈ typeX (sk) if and only if for all
stacks tn, tn−1, . . . , tk+1 where Σi ⊆ typeX (ti) there is a run R ∈ X such that
R(0) = (p, tn : tn−1 : · · · : tk+1 : sk) and R(|R|) = (q, un : un−1 : · · · : u0) such
that Ωj ⊆ typeX (uj) for all lev(X) + 1 ≤ j ≤ n. In other words, if we put σ into
typeX (sk) we claim the following. If for each k+ 1 ≤ i ≤ n we take an i-stack ti

that satisfies the claims of Σi, then there is a run in X that starts in state p and
the stack obtained by putting sk on top of the n-stack tn : · · · : tk+1, ends in
state q, and the final stack decomposes into a sequence of stacks such that the
j-th element satisfies all claims of Ωj .

Recall that a 0-stack contains the whole stack to which it links. Thus the
type of a 0-stack depends not only on its symbol, but also on the whole stack it
contains in the link. In order to deal with this fact we define the type of a stack
by induction on its level and by induction on the nesting depth of its links.

We first introduce the set T k of possible run descriptors of level k (the pos-
sible types of k-stacks are the elements of P(T k)).9

Definition B.3. Let 0 ≤ k ≤ n. Assume we have already defined sets T i for
k + 1 ≤ i ≤ n. We take

T k = {ne} ∪
(
P(T n)× P(T n−1)× · · · × P(T k+1)×Q×Dk

)
,

Dk =
⋃
{DX : X ∈ X , lev(X) ≥ k}, where

DX = {X} × P(T n)× P(T n−1)× · · · × P(T lev(X)+1)×Q.

Note that beside the run descriptors of the typical form, we also have ne ∈ T k:
ne will appear in the type of some stack if and only if this stack is non-empty.
In order to easily talk about the intended meaning of types and run descriptors
we introduce the following definition.

Definition B.4. Let σ̂ = (X,Ωn, Ωn−1, . . . , Ωlev(X)+1, q) ∈ DX for some X ∈
X . We say that a run R agrees with σ̂ if R ∈ X, and R ends in a configuration
(q, tn : tn−1 : · · · : t0) such that Ωi ⊆ type(ti) for lev(X) + 1 ≤ i ≤ n.

Now we can reformulate the intended meaning of a run descriptors and types.

9 We write P(X) for the power set of X.

14

Lemma B.5. Let σ̂ ∈ DX for some X ∈ X , and let 0 ≤ l ≤ lev(X). Let
c = (p, sn : sn−1 : · · · : sl) be a configuration. Then there is a run from c which
agrees with σ̂ if and only if there is a tuple (Ψn, Ψn−1, . . . , Ψ l+1, p, σ̂) ∈ type(sl)
such that Ψ i ⊆ type(si) for l + 1 ≤ i ≤ n.

We postpone the definition of types of stacks to the end of this section. The
proof of Lemma B.5 can be found in Appendix C. Assuming that we already
knew what the type of a stack is, it is easy to define ctypeX , the function mapping
configurations to their types. After giving the definition, we then already can
prove part 1 of Theorem 3.1.

Definition B.6. Let c = (q, s) be a configuration with s = sn : · · · : s0. Set

ctypeX (c) := (typeX (sn), . . . , typeX (s0), q).

We define a partial order on the types of configurations as follows: (Φn, . . . , Φ0, p) v
(Ψn, . . . , Ψ0, q) if and only if p = q and Φi ⊆ Ψ i for 0 ≤ i ≤ n.

Proof (of part 1 of Theorem 3.1). Let R start in state p and end in state q. Let
the pds of R(0) be sn : sn−1 : · · · : s0, let the pds of R(|R|) be tn : tn−1 : · · · : t0,
and let the pds of c be un : un−1 : · · · : u0. The assumptions say that R agrees
with

σ̂ = (X, type(tn), type(tn−1), . . . , type(tlev(X)+1), q).

Due to Lemma B.5, there are Ψ i ⊆ type(si) for each 1 ≤ i ≤ n such that
run descriptor σ = (Ψn, Ψn−1, . . . , Ψ1, p, σ̂) ∈ type(s0). Since the types of si are
included in the types of ui, we also have σ ∈ type(u0), and Ψ i ⊆ type(ui) for
1 ≤ i ≤ n. Using again Lemma B.5 there is a run S from c which agrees with σ̂.
By definition this implies that S ∈ X and S ends in state q.

Moreover, decomposing the final stack of S as vn : vn−1 : · · · : v0, we obtain

type(ti) ⊆ type(vi) for each lev(X) + 1 ≤ i ≤ n. (1)

�
The proof of part 2 requires a more detailed knowledge about the types.

Thus, we postpone it to the end of this section.
Next we prepare the definition of types. We first define composers. The in-

tention is that a composer gives us the type of a k-stack sk from the types of its
decomposition as sk = tk : tk−1 : · · · : tl.

Definition B.7. Let 0 ≤ l ≤ k ≤ n, and let Ψ i ⊆ T i for each l ≤ i ≤ k. Their
composer comp(Ψk, Ψk−1, . . . , Ψ l) is the a subset of T k containing all tuples
(Σn, Σn−1, . . . , Σk+1, q, σ̂) such that there is a (Σn, Σn−1, . . . , Σl+1, q, σ̂) ∈ Ψ l
such that Σi ⊆ Ψ i for l + 1 ≤ i ≤ k and σ̂ ∈ Dk; additionally the composer
contains ne if l < k or if ne ∈ Ψk.

Remark B.8. Note that comp(Ψk) = Ψk. Furthermore, note that the defini-
tions concerning ne are compatible with our intended meaning: a k-stack sk

is nonempty if it is composed as sk = tk : tk−1 : · · · : tl for l < k. All ti may be

15

empty stacks, but the resulting k-stack contains a list of (k − 1)-stacks whose
topmost element is the possibly empty (k − 1)-stack tk−1 : · · · : tl. Even if all
elements of a list are empty stacks, it is not empty itself as long as it contains
at least one element.

Note that the following properties of comp follow directly from the definition.

Lemma B.9. Let 1 ≤ k ≤ n, and for each 0 ≤ i ≤ k let Ψ i ⊆ Φi ∈ P(T i).
Then comp(Ψk, Ψk−1, . . . , Ψ0) ⊆ comp(Φk, Φk−1, . . . , Φ0).

Lemma B.10. Let 0 ≤ l < j < k ≤ n, and let Ψ i ∈ P(T i) for all l ≤ i ≤ k.
Then comp(Ψk, Ψk−1, . . . , Ψ l) = comp(Ψk, Ψk−1, . . . , Ψ j+1, comp(Ψ j , Ψ j−1, . . . , Ψ l)).

In the set RX of rules we distinguish a subset R>0
X of those rules which are

not of the form X ⊇ (i.e., they describe runs of positive lengths). In the next
step towards the definition of types, to each rule r = (X ⊇ δX1 . . . Xm) ∈ R>0

X ,
where the operation in δ is op, we assign two numbers L(op) and M(r) as follows.

L(op) =

{
k if op = popk or op = colk,

0 otherwise,

M(r) =

{
lev(X) if m = 0,

lev(X1) otherwise.

Note that the inequality 0 ≤ L(op) ≤ M(r) ≤ n follows from the definition of
wf-rules. Then, to each rule r = (X ⊇ δX1 . . . Xm) ∈ R>0

X we assign a set

T (r) ⊆
(
P(T n)× P(T n−1)× · · · × P(T 0)

)
×

×
(
P(T n)× P(T n−1)× · · · × P(T M(r))

)
×DX .

The intuitive meaning of this set is as follows. Consider a run R described by
a wf-rule r. The first part of a tuple describes the types of the stack of R(0)
(decomposed as sn : · · · : s0), the second part describes the types of the stack
of R(1) (decomposed as tn : · · · : tM(r)) and the last part is an element with
which this run agrees. In fact, in T (r) we do not care whether δ can connect two
stacks of the described types for R(0) and R(1). We define it in such a way that
under the assumption that δ may connect two stacks of the corresponding type,
the third part of the tuple in T (r) in fact permits a run that agrees with this
description and starts in the stack whose types are described by the first part of
the tuple. The question whether δ can transform a stack of a certain type into
a stack of another type is later dealt with when defining another function U .

Definition B.11. Let r = (X ⊇ δX1 . . . Xm) ∈ R>0
X and δ = (q0, a, l, q1, op).

We distinguish the following cases.

16

1. Assume that r = (X ⊇ δ). The set T (r) contains all tuples

((Ψn, Ψn−1, . . . , Ψ0), (Φn, Φn−1, . . . , Φlev(X)), σ̂)

for σ̂ = (X,Ωn, Ωn−1, . . . , Ωlev(X)+1, q1)

such that Ωi ⊆ Φi for lev(X) + 1 ≤ i ≤ n (recall that q1 is the state reached
after application of δ).

2. Assume that r = (X ⊇ δX1). The set T (r) contains all tuples

((Ψn, Ψn−1, . . . , Ψ0), (Φn, Φn−1, . . . , Φlev(X1)), σ̂)

for σ̂ = (X,Ωn, Ωn−1, . . . , Ωlev(X)+1, q′)

such that in Φlev(X1) we have a tuple

(Φn, Φn−1, . . . , Φlev(X1)+1, q1, τ̂)

where τ̂ = (X1, Ω
n, Ωn−1, . . . , Ωlev(X1)+1, q′).

3. Assume that r = (X ⊇ δX1X2). The set T (r) contains all tuples

((Ψn, Ψn−1, . . . , Ψ0), (Φn, Φn−1, . . . , Φlev(X1)), σ̂)

for σ̂ = (X,Ωn, Ωn−1, . . . , Ωlev(X)+1, q′)

such that in Φlev(X1) we have a tuple

(Φn, Φn−1, . . . , Φlev(X1)+1, q1, τ̂)

for τ̂ = (X1, Σ
n, Σn−1, . . . , Σ lev(X1)+1, q2)

and in Ψ0 we have a tuple

(Σn, Σn−1, . . . , Σ lev(X1)+1, Ψ lev(X1), . . . , Ψ1, q2, ρ̂)

where ρ̂ = (X2, Ω
n, Ωn−1, . . . , Ωlev(X2)+1, q′).

Remark B.12. Recall that for each rule of the form X ⊇ δX1X2 the definition
of well-formed rules requires that any run of the form δX1 starts and ends with
the same topmost level k stack for k = lev(X1). Thus, for each run performing
δX1 such that the X1-part agrees with τ̂ the type of the stack is completely
determined: if the final stack decomposes as sn : sn−1 : · · · : s1 : s0, the type
of sk for k > lev(X1) is determined by τ̂ and the type of sk for k ≤ lev(X1) is
determined by the type of the initial stack, i.e., it is Ψk.

Using the function T we define a function U and a function stype which as-
signs types to 0-stacks. In fact, U and stype are defined as simultaneous fixpoints
of sequences (Uz)z∈N and (stypez)z∈N. For each z ∈ N, each operation op, each
number 1 ≤ K ≤ n and each ΣK ⊆ T K we define the set

Uz(op,K,Σ
K) ⊆

(
P(T n)× P(T n−1)× · · · × P(T 0)

)
×

×
(
P(T n)× P(T n−1)× · · · × P(T L(op))

)
.

17

The intention is that Uz(op,K,Σ
K) contains a tuple

((Ψn, Ψn−1, . . . , Ψ0), (Πn, Πn−1, . . . ,ΠL(op)))

if for a stack s = sn : sn−1 : · · · : s0 such that Ψ i is contained in the type of
si and s0 carries a link of level K to a stack of type ΣK , we can decompose
op(s) = tn : tn−1 : · · · : tL(op) and Πj ⊆ typeX (tj) for all L(op) ≤ j ≤ n. When
we enter the fixpoint U(op,K,ΣK) we are able to replace the “if” by an “if and
only if”. In the definition of Uz we use stypez−1 in order to approximate the

type of the topmost 0-stack if op = push1 (from below). In this case, the “and
only if” part requires to consider the complete type of the 0-stack pushed onto
the stack. The fixpoint stype of the functions stypez yields this complete type
information. For the definition of U0 and stype0, we assume that stype−1 maps
any input to ∅.

Definition B.13. Let op be a stack operation, let 1 ≤ K ≤ n, let ΣK ⊆ T K ,
and let z ∈ N. Assume that stypez−1 is already defined. We have four cases
according to the operation used in δ.

1. Assume that op = popk. Then the set Uz(op,K,Σ
K) contains all tuples

((Ψn, Ψn−1, . . . , Ψ0), (Ψn, Ψn−1, . . . , Ψk))

where ne ∈ Ψk.
2. Assume that op = colk. If k 6= K or ne 6∈ ΣK , the set Uz(op,K,Σ

K) is
empty. If k = K and ne ∈ ΣK , the set Uz(op,K,Σ

K) contains all tuples

((Ψn, Ψn−1, . . . , Ψ0), (Ψn, Ψn−1, . . . , Ψk+1, Σ′k))

such that Σ′k ⊆ ΣK .
3. Assume that op = push1b,k. The set Uz(op,K,Σ

K) contains all tuples

((Ψn, Ψn−1, . . . , Ψ0), (Πn, Πn−1, . . . ,Π0))

which satisfy Πi = Ψ i for 2 ≤ i ≤ k, Π1 = comp(Ψ1, Ψ0) and Π0 ⊆
stypez−1(b, k, Ψk).

4. Assume that op = pushk with k ≥ 2. The set Uz(op,K,Σ
K) contains all

tuples
((Ψn, Ψn−1, . . . , Ψ0), (Πn, Πn−1, . . . ,Π0))

such thatΠi = Ψ i for 0 ≤ i ≤ n with i 6= k andΠk = comp(Ψk, Ψk−1, . . . , Ψ0).

Definition B.14. Let z ∈ N, let a ∈ Γ , let 1 ≤ K ≤ n, and let ΣK ⊆ T K .
Assume that stypez−1 and Uz are already defined. We define stypez(a,K,Σ

K)
as the set containing

1. all tuples

(Ψn, . . . , Ψ1, q0, (X,Ω
n, Ωn−1, . . . , Ωlev(X)+1, q0))

such that RX contains the rule X ⊇ , and Ωi ⊆ Ψ i for lev(X) + 1 ≤ i ≤ n
(and q0 is an arbitrary state), and

18

2. all tuples (Ψn, Ψn−1, . . . , Ψ1, q0, σ̂) such that for 0 ≤ m ≤ 2 and some rule
r = (X ⊇ δX1 . . . Xm) ∈ R>0

X with δ = (q0, a, ·, ·, op) we have

((Ψn, . . . , Ψ0), (Πn, Πn−1, . . . ,ΠL(op))) ∈ Uz(op,K,ΣK),

((Ψn, . . . , Ψ0), (Πn, Πn−1, . . . ,ΠM(r)+1, ΦM(r)), σ̂) ∈ T (r),

Ψ0 ⊆ stypez−1(a,K,ΣK), and

ΦM(r) = comp(ΠM(r), ΠM(r−1), . . . ,ΠL(op)).

Notice that the sequence stypez is monotone with respect to both z and ΣK :
for ΣK ⊆ Σ′K and each z ∈ N we have stypez(a,K,Σ

K) ⊆ stypez+1(a,K,Σ′K).
Independent of z ∈ N, the domain and range of stypez are fixed finite sets whence
there is some z ∈ N such that stypez = stypez+1. This fixpoint is denoted as
stypeX (formally, stypez also depends on X).

Definition B.15. We define typeX (sk) for each k-stack sk (for 0 ≤ k ≤ n) by
induction on the structure of sk. If sk is empty,

typeX (sk) := ∅.

Otherwise, assume that k = 0 and sk = (a,K, tK) where a ∈ Γ , 1 ≤ K ≤ n, and
tK is a K-stack such that typeX (tK) is already defined. In this case we set

typeX (sk) = stypeX
(
a,K, typeX (tK)

)
.

Finally, assume that k ≥ 1 and sk = tk : tk−1 such that typeX (tk) and typeX (tk−1)
are defined. In this case set

typeX (sk) = comp
(
typeX (tk), typeX (tk−1)

)
.

With the help of Lemma B.5 and the properties of the composer, the proof
of part 2 of Theorem 3.1 is done as follows.
Proof (of part 2 of Theorem 3.1). The proof is by induction on the length of
the run. Let X ∈ X be a set of level 0. Let R ∈ X be a run starting in a pds
sn : sn−1 : · · · : s0 and ending in a pds tn : tn−1 : · · · : t0. Furthermore, let
u := un : un−1 : · · · : u0 be a pds. Assume that typeX (si) ⊆ typeX (ui) for
0 ≤ i ≤ n. We prove that there is a run S ∈ X such that S starts in u and ends
in a stack vn : vn−1 : · · · : v0 with typeX (ti) ⊆ typeX (vi) for each 0 ≤ i ≤ n and
such that R and S have the same initial and final states. We continue by case
distinction on the wf-rule r describing R.

– If r = (X ⊇), the run S of length 0 with S(0) = (q, u) for q the initial state
of R satisfies the claim.

– Assume that r = (X ⊇ δ). Because X is described by a well-formed set
of rules, the run is also described by the rule of the set Xδ. Using part 1
of Theorem 3.1, there is a run S starting in u which performs δ, and such
that R and S have the same initial and final states. Since lev(X) = 0, the
operation in δ is a pushk of some level k. Notice that for 1 ≤ i ≤ k − 1 and

19

for k + 1 ≤ i ≤ n we have ti = si and vi = ui, so typeX (ti) ⊆ typeX (vi).
The same holds for i = 0 if k ≥ 2. If the operation is push1a,j , we have

t0 = (a, j, sj) and v0 = (a, j, uj). Since stypeX is monotone, typeX (t0) =
stypeX (a, j, typeX (sj)) ⊆ stypeX (a, j, typeX (uj)) = typeX (v0). We also have
tk = sk : sk−1 : · · · : s0 and vk = uk : uk−1 : · · · : u0. Due to Lemmas B.10
and B.9, we obtain

typeX (tk) = comp(typeX (sk), typeX (sk−1), . . . , typeX (s0)) ⊆
⊆ comp(typeX (uk), typeX (uk−1), . . . , typeX (u0)) = typeX (vk).

– Assume that r = (X ⊇ δY). By definition of a wf-rule, lev(Y) = 0. Decom-
pose R = R1 ◦ R2 where R1 has length 1. As in the above case, we obtain
a run S1 from u of length 1, performing transition δ, such that the types
of R1(1) and S1(1) are appropriately contained (for all levels), and that R1

and S1 have the same initial and final states. Then we apply the induction
assumption tor R2 ∈ Y and obtain a run S2 ∈ Y from S1(1), such that the
types at the end of R2 and S2 are contained as required (for all levels), and
that the final states are the same. Thus, S := S1 ◦ S2 satisfies the claim.

– Finally, assume that r = (X ⊇ δY Z). By definition of a wf-rule, lev(Z) = 0.
Decompose R = R1 ◦ R2 where R1 performs the transition δ followed by
a run from Y , and R2 is in Z. Since X is described by a well-formed set
of rules, R1 is in the set described by XδY . Using part 1 of Theorem 3.1
for R1 and XδY , there is a run S1 from u which performs δ followed by
a run from Y such that R1 and S1 have the same initial and final states.
Decompose the pds of R1(|R1|) and S1(|S1|) as s′n : s′n−1 : · · · : s′0 and
u′n : u′n−1 : · · · : u′0. Recall from the proof of part 1 of Theorem 3.1
(see page 15) that typeX (s′i) ⊆ typeX (u′i) for lev(Y) + 1 ≤ i ≤ n (notice
that lev(XδY) = lev(Y)). But by definition of a wf-rule we know that the
topmost lev(Y)-stack of R1(0) and of R1(|R1|) are the same, so s′i = si

for 0 ≤ i ≤ lev(Y); for the same reason u′i = ui for 0 ≤ i ≤ lev(Y).
Thus, typeX (s′i) ⊆ typeX (u′i) for 0 ≤ i ≤ n. Then we apply the induction
assumption to R2 ∈ Z and obtain a run S2 ∈ Z from S1(|S1|) such that the
types at the end of R2 and S2 are contained as required (for all levels) and
such that the final states are the same. Thus, S := S1 ◦S2 satisfies the claim.

�

Types in previous papers. A similar concept of defining types were already
present in [13] and [15]. In both these papers types were used only for systems
without collapse. The types in [13] are defined completely semantically: the defi-
nition is similar to our Lemma B.5. Then it is necessary to prove that the type of
sl does not depend on the choice of sn, sn−1, . . . , sl+1 present in the assumptions
of the lemma. We were unable to give a proof of the analogous fact for systems
with collapse.

The types in [15] are much more similar to our types: they are also defined
syntactically, i.e. basing on possible transitions of the system. But these types

20

were defined only for one class of runs, namely for k-returns for each k. The
generalisation to an arbitrary family described by wf-rules required mainly the
invention of a proper definition of these rules. The generalisation to systems with
collapse required mainly the invention of a proper definition of stacks (i.e. that
a 0-stack should keep the copy of the linked stack, instead of just a link).

C Types of Stacks—Proofs

This appendix is devoted to the proof of Lemma B.5. We assume that the family
X is fixed, and we write type for typeX . We will first prove the left-to-right
implication of this lemma, as restated below (in a slightly stronger version).

Lemma C.1. Let σ̂ ∈ DX for some X ∈ X , and let 0 ≤ l ≤ lev(X). Let R be a
run which agrees with σ̂, where R(0) = (q0, s

n : sn−1 : · · · : sl). Then

(type(sn), type(sn−1), . . . , type(sl+1), q0, σ̂) ∈ type(sl).

The proof is by induction on the length of R. It is divided into several lemmas;
the division follows the steps in the definition of types, i.e., we prove certain
properties of the functions T and U which finally allow to prove the lemma. We
start with two observations. The first follows immediately from the definitions
and the second is a corollary of Lemma B.10.

Proposition C.2. Let 1 ≤ k ≤ n, and let sk be a k-stack. Then ne ∈ type(sk)
if and only if sk is not empty.

Proposition C.3. Let 0 ≤ l ≤ k ≤ n, and let s = sk : sk−1 : · · · : sl be a
k-stack. The type of s, type(s), is comp(type(sk), type(sk−1), . . . , type(sl)).

The next lemma proves our intuition about T . This lemma uses the “big”
induction assumption, i.e., Lemma C.1 for shorter runs.

Lemma C.4. Let R be a run which agrees with some σ̂ ∈ DX , and let r = (X ⊇
δX1 . . . Xm) ∈ R>0

X be a rule which describes R. Assume that the statement of
Lemma C.1 is true for all runs strictly shorter than R. Decompose the stack of
R(0) as sn : sn−1 : · · · : s0, and the stack of R(1) as tn : tn−1 : · · · : tM(r). Then
T (r) contains the tuple

η =
((

type(sn), . . . , type(s0)
)
,
(
type(tn), type(tn−1), . . . , type(tM(r))

)
, σ̂
)
.

Proof. Let σ̂ = (X,Ωn, Ωn−1, . . . , Ωlev(X)+1, q′) and q1 the state of R(1), which is
also the state reached after application of δ. We distinguish three cases depending
on the form of r, i.e., on the value of m ∈ {0, 1, 2}.

1. Assume that r is X ⊇ δ. Then |R| = 1 whence the state of R(|R|) is q1 and
the stack of R(|R|) is tn : tn−1 : · · · : tlev(X) (recall that lev(X) = M(r)).
Since R agrees with σ̂, q′ = q1 and Ωi ⊆ type(ti) for lev(X) + 1 ≤ i ≤ n.
Due to Point 1 of Definition B.11, η ∈ T (r).

21

2. Assume that r is X ⊇ δX1. Let τ̂ = (X1, Ω
n, Ωn−1, . . . , Ωlev(X1)+1, q′) where

Ωi = ∅ for lev(X1)+1 ≤ i ≤ lev(X) (and the other Ωi are specified by σ̂). We
know that R�1,|R| is in X1 whence it agrees with τ̂ . Application of Lemma
C.1 to the shorter run R�1,|R|, to τ̂ and to lev(X1) yields

(
type(tn), type(tn−1), . . . , type(tlev(X1)+1), q1, τ̂

)
∈ type

(
tlev(X1)

)
.

Recall that M(r) = lev(X1). Due to Point 2 of Definition B.11, η ∈ T (r).
3. Assume that r is X ⊇ δX1X2. Fix some 1 ≤ i ≤ |R| such that R�1,i ∈ X1

and R�i,|R| ∈ X2. Let un : un−1 : · · · : u0 be the stack of R(i), and q2 its
state. Let

τ̂ = (X1, type(u
n), type(un−1), . . . , type(ulev(X1)+1), q2),

ρ̂ = (X2, Ω
n, Ωn−1, . . . , Ωlev(X2)+1, q′),

where Ωi = ∅ for lev(X2) + 1 ≤ i ≤ lev(X). The subrun R�1,i agrees with
τ̂ , and the subrun R�i,|R| agrees with ρ̂. Application of Lemma C.1 to the
shorter run R�1,i, to τ̂ and to lev(X1) yields

(type(tn), type(tn−1), . . . , type(tlev(X1)+1), q1, τ̂) ∈ type(tlev(X1)).

Analogously, application of the lemma to R�i,|R|, to ρ̂ and to 0 yields

(type(un), type(un−1), . . . , type(u1), q2, ρ̂) ∈ type(u0).

The definition of a wf-rule implies that the topmost lev(X1)-stacks of R(0)
and R(i) coincide whence type(si) = type(ui) for lev(X1) ≥ i ≥ 0. Thus,
Point 3 of Definition B.11 (with Ψ i = type(si) , Φi = type(ti) and Σi =
type(ui)), implies that η ∈ T (r).

�
Having related the sets T (r) with the subruns starting after the first transi-

tion of some run described by r, we now relate the function Uz with the first oper-
ation of such a run. Recall that stypeX is the fixpoint of the sequence (stypez)z∈N
which is reached at some z′ ∈ N, i.e., stypez′ = stypez′−1 = stypeX . For the next
lemma we fix this value z′.

Lemma C.5. Let s = sn : sn−1 : · · · : s0 and t = tn : tn−1 : · · · : tL(op) be pds
such that s0 contains a link of level K to a stack uK . Assume that t = op(s) for
some operation op. For all z > z′, Uz(op,K, type(u

K)) contains

η =
((

type(sn), type(sn−1), . . . , type(s0)
)
,(

type(tn), type(tn−1), . . . , type(tL(op))
))
.

Proof. The proof is by case distinction on op. Fix z > z′

22

1. Assume that op = popk. Then we have t = sn : sn−1 : · · · : sk, so ti = si

for k ≤ i ≤ n (recall that L(op) = k). In particular sk is not empty, so
ne ∈ type(sk). Due to Point 1 of Definition B.13, we conclude that η ∈
Uz(op,K, type(u

K)).

2. Assume that op = colk. In this case, k = K and uK is not empty (equiva-
lently: ne ∈ type(uK)) because otherwise colk would not be applicable. We
have t = sn : sn−1 : · · · : sk+1 : uk, so ti = si for k + 1 ≤ i ≤ n, and tk = uk

(recall that L(op) = k). Due to Point 2 of Definition B.13, we conclude that
η ∈ Uz(op,K, type(uK)).

3. Assume that op = push1b,k. Then

t = sn : sn−1 : · · · : s2 : (s1 : s0) : (b, k, sk)

whence ti = si for 2 ≤ i ≤ n, t1 = s1 : s0 and t0 = (b, k, sk) (recall that
L(op) = 0). Due to Proposition C.3, type(t1) = comp(type(s1), type(s0)).
Additionally,

type(t0) = stype(b, k, type(sk)) = stypez′(b, k, type(s
k)).

Thus, using Point 3 of Definition B.13 we conclude that η ∈ Uz(op,K, type(uK)).

4. Finally, assume that op = pushk for k ≥ 2. Then we have

t = sn : sn−1 : · · · : sk+1 : tk : sk−1 : · · · : s0 where

tk = (sk : sk−1 : · · · : s0).

Thus, ti = si for 0 ≤ i ≤ n with i 6= k (recall that L(op) = 0). Proposition
C.3 implies that

type(tk) = comp(type(sk), type(sk−1), . . . , type(s0)).

Thus, using Point 4 of Definition B.13, we conclude that η ∈ Uz(op,K, type(uK)).

�
We are now prepared to prove Lemma C.1.

Proof (of Lemma C.1). Let R be a run with R(0) = sn : sn−1 : · · · : sl that
agrees with

σ = (type(sn), type(sn−1), . . . , type(sl+1), q0, σ̂).

We make an external induction on the length of R and an internal induction on
l.

– Assume that l = 0 and |R| = 0. Let s0 = (a,K, uK). Since R agrees with
σ̂, we have σ̂ = (X,Ωn, Ωn−1, . . . , Ωlev(X)+1, q0) where Ωi ⊆ type(si) for
lev(X)+ 1 ≤ i ≤ n (and q0 is the state of R(0)). Due to Point 1 of Definition
B.14, σ ∈ stypez(a,K, type(u

K)) for every z ∈ N whence σ ∈ type(s0).

23

– Assume that l = 0 and |R| > 0. Then there is a rule r = (X ⊇ δX1 . . . Xm) ∈
R>0
X describing R. Let s0 = (a,K, uK). We have δ = (q0, a, ·, ·, op). Let

tn : tn−1 : · · · : tL(op) be the stack of R(1). Lemma C.5 implies that for all
z > z′ the set Uz(op,K, type(u

K)) contains(
(type(sn), type(sn−1), . . . , type(s0)), (type(tn), type(tn−1), . . . , type(tL(op)))

)
.

Setting vM(r) = tM(r) : tM(r)−1 : · · · : tL(op), the stack of R(1) is tn : tn−1 :
· · · : tM(r)+1 : vM(r). Our induction assumption on shorter runs and Lemma
C.4 implies that T (r) contains((

type(sn), type(sn−1), . . . , type(s0)
)
,
(
type(tn),

type(tn−1), . . . , type(tM(r)+1), type(vM(r))
)
, σ̂
)
.

Additionally, Proposition C.3 implies that

type(vM(r)) = comp
(
type(tM(r)), type(tM(r)−1), . . . , type(tL(op))

)
.

Due to Point 2 of Definition B.14, σ ∈ stypez(a,K, type(u
K)) for z > z′

whence σ ∈ type(s0).
– Assume that l ≥ 1. Decompose sl = tl : tl−1. The (inner) induction assump-

tion implies that type(tl−1) contains the tuple

(type(sn), type(sn−1), . . . , type(sl+1), type(tl), q0, σ̂).

From Definition B.7, it follows that σ ∈ comp(type(tl), type(tl−1)) = type(sl).

�
The rest of this appendix deals with the right-to-left implication of Lemma

B.5. In the proof we use the notion of having a witness. The intuition is that a
stack and a run descriptor have a witness, if this right-to-left implication holds
for them. Our goal is to prove that every such pair has a witness, which means
that the implication is always true.

Definition C.6. Let 0 ≤ k ≤ n, let sk be a k-stack, and let Φk ⊆ T k. We define
when (sk, Φk) has a witness by induction on k, starting with k = n. We say that
(sk, Φk) has a witness if (sk, σ) has a witness for every σ ∈ Φk, as defined below.

– (sk, ne) has a witness if ne ∈ type(sk) (equivalently: if k ≥ 1 and sk is
nonempty).

– For

σ = (Φn, Φn−1, . . . , Φk+1, p, σ̂) and

σ̂ = (X,Ωn, Ωn−1, . . . , Ωlev(X)+1, q),

(sk, σ) has a witness if

24

• σ ∈ type(sk) and
• for each configuration c = (p, tn : · · · : tk+1 : sk) such that (ti, Φi) has a

witness for each k + 1 ≤ i ≤ n there is a run Rc from c to some stack
un : un−1 : · · · : u0 such that Rc agrees with σ̂ and (ui, Ωi) has a witness
for each lev(X) + 1 ≤ i ≤ n.

We first prove that composers preserve witnesses.

Proposition C.7. Let 0 ≤ l ≤ k ≤ n. For each l ≤ i ≤ k let si be an i-stack,
and let Φi ⊆ T i be such that (si, Φi) has a witness. Then (sk : sk−1 : · · · :
sl, comp(Φk, Φk−1, . . . , Φl)) has a witness.

Proof. We have to show that for each σk ∈ comp(Φk, Φk−1, . . . , Φl), (sk : sk−1 :
· · · : sl, σk) has a witness. By Proposition C.3 σk ∈ type(sk : sk−1 : · · · : sl).
If σk = ne we are already done. Otherwise, σk = (Σn, . . . , Σk+1, p, σ̂) for some
σ̂ = (X,Ωn, . . . , Ωlev(X)+1, q). By definition of the composer, Φl contains a tuple
σl = (Σn, Σn−1 . . . , Σl+1, p, σ̂) such that Σi ⊆ Φi for l + 1 ≤ i ≤ k. Let c =
(p, tn : · · · : tk+1 : sk : · · · : sl) be a configuration for stacks ti such that (ti, Σi)
has a witness for each k + 1 ≤ i ≤ n. By assumption of the lemma, also (si, Σi)
has a witness for l + 1 ≤ i ≤ k (since Σi ⊆ Φi), and (sl, σl) has a witness (since
σl ∈ Φl). Application of Definition C.6 to (sl, σl) shows that there is a run R
from c to some configuration (q, un : · · · : u0) which agrees with σ̂ and such
that (ui, Ωi) has a witness for lev(X) + 1 ≤ i ≤ n. Thus, R also shows that
(sk : · · · : sl, σk) has a witness. �

Our next goal is to show that each 0-stack has a witness.

Lemma C.8. Let z ∈ N, 1 ≤ K ≤ n, uK a K-stack, and ΣK ⊆ T K such
that (uK , ΣK) has a witness. Let a ∈ Γ , and let σ ∈ stypez(a,K,Σ

K). Then
((a,K, uK), σ) has a witness.

Corollary C.9. Let 1 ≤ K ≤ n, uK be a K-stack, ΣK ⊆ T K be such that
(uK , ΣK) has a witness, and a ∈ Γ .

(
(a,K,ΣK), type((a,K,ΣK))

)
has a wit-

ness.

The proof of the lemma is by induction on the fixpoint stage z. As an auxiliary
step we show how the set T (r) can be used to prove that there is an appropriate
run described by r.

Lemma C.10. Let r = (X ⊇ δX1 . . . Xm) be a rule from R>0
X , and let σ̂ =

(X,Ωn, Ωn−1, . . . , Ωlev(X)+1, q′) ∈ DX . Let R1 be a run of length 1 from stack
sn : sn−1 : · · · : s0 to stack tn : tn−1 : · · · : tM(r) performing the transition δ. For
0 ≤ i ≤ n, let Ψ i be such that (si, Ψ i) has a witness, and for M(r) ≤ i ≤ n, let
Φi be such that (ti, Φi) has a witness. Assume that

((Ψn, Ψn−1, . . . , Ψ0), (Φn, Φn−1, . . . , ΦM(r)), σ̂) ∈ T (r).

Then there exists a run R from R1(0) which agrees with σ̂, and ends in a stack
vn : vn−1 : · · · : v0 such that (vi, Ωi) has a witness for lev(X) + 1 ≤ i ≤ n.

25

Proof. Let q1 be the state of R1(1), which is also the state reached after appli-
cation of δ. We distinguish three cases depending on the shape of r, i.e., on the
value of m ∈ {0, 1, 2}.

1. Assume that r is X ⊇ δ. Recall that M(r) = lev(X). Set R = R1. By
definition of the set T (r), we have q1 = q′, and Ωi ⊆ Φi for lev(X) + 1 ≤
i ≤ n. Notice that (ti, Ωi) has a witness (in particular Ωi ⊆ type(ti)) for
lev(X) + 1 ≤ i ≤ n, because (ti, Φi) has a witness, and Ωi ⊆ Φi. Observe
that R1 is in X whence it agrees with σ̂.

2. Assume that r is X ⊇ δX1. Recall that M(r) = lev(X1). By definition of
T (r), we have

τ = (Φn, Φn−1, . . . , Φlev(X1)+1, q1, τ̂) ∈ Φlev(X1) where

τ̂ = (X1, Ω
n, Ωn−1, . . . , Ωlev(X1)+1, q′).

Since (tlev(X1), τ) has a witness and (ti, Φi) has a witness for lev(X1)+1 ≤ i ≤
n, there is a run R2 agreeing with τ̂ from R1(1) to a stack vn : vn−1 : · · · : v0
such that (vi, Ωi) has a witness for lev(X1)+1 ≤ i ≤ n. As R we take R1◦R2;
this run is in X. By definition of a wf-rule we know that lev(X1) ≤ lev(X),
so R agrees with σ̂, and (vi, Ωi) has a witness for lev(X) + 1 ≤ i ≤ n.

3. Assume that r is X ⊇ δX1X2. Recall that M(r) = lev(X1). We have

τ = (Φn, Φn−1, . . . , Φlev(X1)+1, q1, τ̂) ∈ Φlev(X1)

for some τ̂ = (X1, Σ
n, Σn−1, . . . , Σ lev(X1)+1, q2) and

ρ = (Σn, . . . , Σ lev(X1)+1, Ψ lev(X1), . . . , Ψ1, q2, ρ̂) ∈ Ψ0

where ρ̂ = (X2, Ω
n, Ωn−1, . . . , Ωlev(X2)+1, q′). Since (tlev(X1), τ) has a witness,

and (ti, Φi) has a witness for lev(X1) + 1 ≤ i ≤ n, there is a run R2 agreeing
with τ̂ from R1(1) to a stack un : un−1 : · · · : u0 such that (ui, Σi) has a
witness for lev(X1) + 1 ≤ i ≤ n. By definition of a wf-rule we know that the
topmost lev(X1)-stack of R2(|R2|) is the same as of R1(0) whence ui = si

and (ui, Ψ i) has a witness for 0 ≤ i ≤ lev(X1). In particular (u0, ρ) has a
witness. Hence, there is a run R3 agreeing with ρ̂ from R2(|R2|) to a stack
vn : vn−1 : · · · : v0 such that (vi, Ωi) has a witness for lev(X2) + 1 ≤ i ≤ n.
As R we take R1 ◦ R2 ◦ R3; this run is in X. By definition of a wf-rule we
know that lev(X2) ≤ lev(X), so R agrees with σ̂, and (vi, Ωi) has a witness
for lev(X) + 1 ≤ i ≤ n.

�
The next lemma shows how the set Uz(op,K,Σ

K) can be used to prove that
an appropriate run performing operation op exists.

Lemma C.11. Fix a number z ≥ 1 and assume that Lemma C.8 holds for z−1.
Let s = sn : sn−1 : · · · : s0 be a pds, where s0 contains a link of level K to a

26

stack uK , and let op be an operation. For 0 ≤ i ≤ n, let Ψ i be such that (si, Ψ i)
has a witness; let also ΣK be such that (uK , ΣK) has a witness. Assume that(

(Ψn, Ψn−1, . . . , Ψ0), (Πn, Πn−1, . . . ,ΠL(op))
)
∈ Uz(r,K,ΣK).

Then op can be applied to s, and op(s) = tn : tn−1 : · · · : tL(op) is such that
(ti, Πi) has a witness for L(op) ≤ i ≤ n.

Proof. We proceed by case distinction on the operation op performed by δ.

– Assume that op = popk. Then L(op) = k, Πi = Ψ i for k ≤ i ≤ n and
ne ∈ Ψk. Thus sk is not empty, so popk can be applied to s, which results
in the stack sn : sn−1 : · · · : sk. We have (ti, Πi) = (si, Ψ i) for k ≤ i ≤ n
whence (ti, Πi) has a witness.

– Assume that op = colk. Then L(op) = k, k = K, ne ∈ ΣK , Πi = Ψ i for
k + 1 ≤ i ≤ n and Πk ⊆ ΣK . Thus, uk is not empty whence colk can be
applied to s. This results in the stack sn : sn−1 : · · · : sk+1 : uK . We have
(ti, Πi) = (si, Ψ i) for k + 1 ≤ i ≤ n. Moreover, tk = uK and Πk ⊆ ΣK

whence (ti, Πi) has a witness for k ≤ i ≤ n.
– Assume that op = push1b,k. Then L(op) = 0, Πi = Ψ i for 2 ≤ i ≤ n,

Πi = comp(Ψ1, Ψ0), and Π0 ⊆ stypez−1(b, k, Ψk). Additionally,

push1b,k(s) = sn : sn−1 : · · · : s2 : (s1 : s0) : (b, k, sk).

For 2 ≤ i ≤ n, we have (ti, Πi) = (si, Ψ i) whence (ti, Πi) has a wit-
ness. Due to Proposition C.7, (t1, Π1) = (s1 : s0, comp(Ψ1, Ψ0)) has a wit-
ness. Since we assumed that Lemma C.8 holds for z − 1, we conclude that
(t0, stypez−1(b, k, Ψk)) has a witness whence (t0, Π0) has a witness.

– Assume that op = pushk (for k ≥ 2). Then L(op) = 0, Πi = Ψ i for 0 ≤ i ≤ n
with k 6= i, and Πk = comp(Ψk, Ψk−1, . . . , Ψ0). Additionally,

pushk(s) = sn : sn−1 : · · · : sk+1 : tk : sk−1 : · · · : s0

where tk = sk : sk−1 : · · · : s0. For 0 ≤ i ≤ n with i 6= k we have (ti, Πi) =
(si, Ψ i) whence (ti, Πi) has a witness. Due to Proposition C.7,

(tk, Πk) = (sk : sk−1 : · · · : s0, comp(Ψk, Ψk−1, . . . , Ψ0))

has a witness.

�
Proof (Lemma C.8). The proof is by induction on z. Recall that we defined
stype−1(a,K,Σk) = ∅. Let z ≥ 0, σ ∈ stypez(a,K,Σ

K) and s0 = (a,K, uK).
Assume that we have already proved the lemma for z − 1. By definition, σ ∈
type(s0). Let

σ = (Ψn, Ψn−1, . . . , Ψ1, q0, σ̂), and

σ̂ = (X,Ωn, Ωn−1, . . . , Ωlev(X)+1, q′).

27

Let c = (q0, s
n : · · · : s1 : s0) be a configuration such that (si, Ψ i) has a witness

for each 1 ≤ i ≤ n. We have construct a run R from c to a stack wn : wn−1 : · · · :
w0 such that R agrees with σ̂ and (wi, Ωi) has a witness for each lev(X) + 1 ≤
i ≤ n. We distinguish two cases.

– Assume that σ is in stypez(a,K,Σ
K) thanks to the first point of Definition

B.14. Then Ωi ⊆ Ψ i for lev(X) + 1 ≤ i ≤ n, and q′ = q0. It follows that
(si, Ωi) has a witness (whence in particular Ωi ⊆ type(si)) for lev(X) + 1 ≤
i ≤ n and the run R of length 0 from c agrees with σ̂.

– Assume that σ is in stypez(a,K,Σ
K) thanks to the second point of Def-

inition B.14. Then for some rule r = (X ⊇ δX1 . . . Xm) ∈ R>0
X , where

δ = (q0, a, ·, ·, op), we have(
(Ψn, Ψn−1, . . . , Ψ0),

(Πn, Πn−1, . . . ,ΠL(op))
)
∈ Uz(op,K,ΣK),(

(Ψn, Ψn−1, . . . , Ψ0),

(Πn, Πn−1, . . . ,ΠM(r)+1, ΦM(r)), σ̂
)
∈ T (r),

Ψ0 ⊆ stypez−1(a,K,ΣK), and

ΦM(r) = comp(ΠM(r), ΠM(r−1), . . . ,ΠL(op)).

By induction assumption, (s0, Ψ0) has a witness. Notice that the state and
the topmost symbol of c are as required by δ. Lemma C.11 implies that δ can
be applied to c. Let d be the resulting configuration and tn : tn−1 : · · · : tL(op)
its stack. Furthermore, this lemma implies that (ti, Πi) has a witness for
L(op) ≤ i ≤ n. Setting vM(r) = tM(r) : tM(r)−1 : · · · : tL(op) the stack of d
is tn : tn−1 : · · · : tM(r)+1 : vM(r). Due to Proposition C.7, (vM(r), ΦM(r))
has a witness. Thus, Lemma C.10 can be applied (where as R1 we take
the run from c to d). We obtain a run R from c which agrees with σ̂, and
ends in a stack wn : wn−1 : · · · : w0 such that (wi, Ωi) has a witness for
lev(X) + 1 ≤ i ≤ n as required.

�

Corollary C.12. Let 0 ≤ k ≤ n, let sk be a k-stack, and let Φk ⊆ type(sk).
Then (Φk, sk) has a witness.

Proof. It is enough to prove this corollary for Φk = type(sk). We just make an in-
duction on the structure of the stack. Assume that k = 0 and let s0 = (a,K, tK).
From the induction assumption we know that (tK , type(tK)) has a witness. Using
Corollary C.9 we obtain that (s0, type(s0)) has a witness. If k > 0 and sk is empty,
type(sk) = ∅, whence the claim is trivial. Let now k > 0 and let sk be nonempty.
Decompose sk = tk : tk−1. By definition, type(sk) = comp(type(tk), type(tk−1)).
By induction assumption (tk, type(tk)) and (tk−1, type(tk−1)) have witnesses. Us-
ing Proposition C.7 we conclude that (tk, type(tk)) has also a witness. �

With this corollary, we can prove the right-to-left implication of Lemma B.5.

28

Proof (of Lemma B.5). Assume that there is a σ = (Ψn, Ψn−1, . . . , Ψ l+1, p, σ̂) ∈
type(sl) such that Ψ i ⊆ type(si) for l + 1 ≤ i ≤ n. Application of the corollary
shows that (si, Ψ i) has a witness for l + 1 ≤ i ≤ n, and (sl, σ) has a witness.
Thus, there is a run from (p, sn : sn−1 : · · · : sl) which agrees with σ̂ as required.
The other direction has already been proved (see Proof of Lemma C.1 on page
23). ut

D Runs, Positions and the History Function

In this section we give a technical analysis of runs and introduce the history
function which is useful to describe certain sets of runs. Appendix E relies on
the results developed here.

D.1 Positions and Histories of Stacks

In this section we first introduce positions of i-stacks in a k-stack for i ≤ k.
These positions allow to access each substack contained in a stack. Afterwards
we introduce the history function. Given a run R and a position x in the final
stack of the run, this function determines the origin of this position in the first
stack of R, i.e., it returns a position y such that the stack at position x in the
last stack of R was created from the stack at position y in the first stack of R.
For a k-stack s let us denote by |s| its size, i.e. the number of (k − 1)-stacks s
consists of.

Definition D.1. For each stack s of level k (where 1 ≤ k ≤ n) we define the
set of positions in s as follows.

If k = 1, a simple position in s is a number x1 ∈ N such that x1 ≤ |s|.
If k ≥ 2, a simple position in s is either a tuple (0, . . . , 0) of length k, or a

tuple (xk, . . . , x1) where 1 ≤ xk ≤ |s| and (xk−1, . . . , x1) is a simple position in
the xk-th (k − 1)-stack of s (counted bottom up).

We say that a simple position x points to a k-stack if k ∈ N is maximal such
that x ends in a sequence of 0’s of length k.

A position in s is either a simple position in s or a sequence x := x0
k→ y

such that x0 is a simple position pointing to a 0-stack (a, k, tk) in s and y is
a position in tk, but y 6= (0, . . . , 0).10 A position x points to a k-stack if its
rightmost simple position points to a k-stack.

For x, y positions in s we say that y points into the stack at x (abbreviated
y points into x) if

10 We forbid nonsimple positions ending in the simple position (0, 0, . . . , 0) because of
the following interpretation. In a 0-stack s0 = (a, k, tk) we actually do not consider tk

to be a k-stack but only the content of a k-stack. In this interpretation the application
of colk when s0 is the topmost 0-stack does not replace the topmost k-stack by tk

but the content of the topmost k-stack by the content of tk. This difference is only
of syntactical nature but it is useful to exclude such positions when defining the
history function.

29

1. either x points to a level 0 stack and y = x
k→ z or

2. x points to a level k ≥ 1 stack, x and y agree on all entries where x is nonzero,
and y 6= x, i.e., y extends the position x where x starts to be constantly 0.

Let s be some n-stack where si denotes the topmost i-stack of s. The position
of the topmost k-stack of s is topk(s) := (|sn|, . . . , |sk+1|, 0, . . . , 0).

Finally, we define the nesting rank of a position. This rank counts the number
of simple positions involved in the position. Let nr(x) := 0 if x is simple, and

nr(x
k→ z) := 1 + nr(x) + nr(z).

Remark D.2. We use the notation z
k→ z′ where z is a non-simple position of a

0-stack that links to a k-stack and z′ points to some position inside this linked
stack.

We next introduce the history function. This function is useful for giving
semantical characterisations of the sets in the family X defined by a grammar
in Section 5.

Definition D.3. Let R be a run from stack s to stack t and let x be a position
in t. If |R| = 0, then hist(x,R) := x. If |R| = 1, we make a case distinction on
the operation performed by R, and on the form of x.

– If R performs a push1a,k operation and x = top0(t) = (xn, . . . , x1), then

hist(x,R) := (xn, . . . , x2, x1 − 1).

– If R performs a push1a,k operation and x is of the form top0(t)
k→ (yk1 , . . . , y

1
1),

then we set

hist(x,R) := (|un|, . . . , |uk+1|, yk1 , . . . , y11)

for ui the topmost i-stack of t.

– IfR performs a push1a,k operation and x is of the form top0(t)
k→ (yk1 , . . . , y

1
1)

k′→
z, then

hist(x,R) := (|un|, . . . , |uk+1|, yk1 , . . . , y11)
k′→ z

where ui is the topmost i-stack of t.
– If R performs a pushi operation for 2 ≤ i ≤ n and x is of the form (xn, . . . , x1)

such that (xn, . . . , x1) is topi−1(t) or points into topi−1(t), then

hist(x,R) := (xn, . . . , xi, xi−1 − 1, xi−2, . . . , x1)

– If R performs a pushi operation for 2 ≤ i ≤ n and x is of the form

(xn, . . . , x1)
k→ z such that x points into topi−1(t), then

hist(x,R) := (xn, . . . , xi, xi−1 − 1, xi−2, . . . , x1)
k→ z.

30

– If R performs a colk operation and x = (xn0 , . . . , x
1
0) points into11 topk(t),

then

hist(x,R) := top0(s)
k→ (xk0 , . . . , x

1
0).

– If R performs a colk operation and x = (xn0 , . . . , x
1
0)

k′→ y points into topk(t),
then

hist(x,R) := top0(s)
k→ (xk0 , . . . , x

1
0)

k′→ y.

– In all other cases, we set hist(x,R) := x.

If |R| ≥ 2, we decompose R = S ◦ T where |S| = 1, and we set hist(x,R) :=
hist(hist(x, T), S).

Remark D.4. Our intuition of the history function is the following. hist(x,R) is
the (unique) position of a k-stack in s from which R created the k-stack at x in t
in the sense that the stack at x in t is a (possibly modified) copy of the stack at
hist(x,R) in s not only in terms of content but also in the way it was produced
by R.

Due to the inductive definition of the history function it is compatible with
decomposition of runs in the following sense.

Proposition D.5. Let R,S, T be runs such that R = S ◦T . If x, y are positions
such that hist(x, T) = y, then hist(x,R) = z if and only if hist(y, S) = z.

D.2 Basic Properties of Runs

In this section we collect useful properties of runs of collapsible pushdown sys-
tems and of the history function.

A careful look at the definition of the history function shows that a k-stack
can be changed only if it is the topmost one, and only by an operation of level
at most k.

Proposition D.6. Let R be a run of length 1, and x a position of some k-stack
in R(1). Let tk be the stack at x in R(1) and sk the stack at hist(x,R) in R(0).
Then exactly one of the following holds.

– x = topk(R(1)) and the operation in R is of level below k. In this case we
have hist(x,R) = topk(R(0)) and |tk| = |sk|.

– x = topk(R(1)) and the operation in R is of level k. In this case we have
hist(x,R) = topk(R(0)) and
• |tk| = |sk| − 1 if the operation is popk,
• |tk| < |sk| if the operation is colk, and
• |tk| = |sk|+ 1 if the operation is pushk.

11 Recall that topk(t) does not point into topk(t).

31

– sk = tk and if y points into x, then hist(y,R) points to the same position in
hist(x,R) as y in x.

We have an analogous property for longer runs which follows by straightfor-
ward induction on the length of the run.

Corollary D.7. Let R be a run of length m and x0 a position of some k-stack
in R(m) such that

1. hist(x0, R�i,m) 6= topk(R(i)) for all 0 ≤ i < m, or

2. hist(x0, R�i,m) 6= topk(R(i)) for all 0 < i < m, and m ≥ 2.

Then the k-stack at hist(x0, R) is equal to the k-stack at x0 in R(m). Moreover,
if x points into x0, then hist(x,R) points to the same position in hist(x0, R) as
x in x0.

Similarly, the relationship of k-stacks that are next to each other is preserved
unless the lower one becomes the topmost stack.

Proposition D.8. Let R be a run, and x, y positions such that x points to a
k-stack that is directly below the k-stack to which y points (in the same (k +
1)-stack), i.e., x and y differ only on the last non-zero coordinate by 1 (these
positions are not required to be simple). Assume that

1. hist(x,R�m,|R|) 6= topk(R(m)) for all 0 ≤ m ≤ |R|, or

2. hist(y,R�m,|R|) 6= topk(R(m)) for all 0 ≤ m < |R|.

Then hist(x,R) points to a k-stack that is directly below the k-stack to which
hist(y,R) points.

Proof. First assume that |R| = 1. For almost every operation in R, the his-
tory function behaves in the same way for two neighbouring k-stacks. The only
exception is pushk+1 if hist(x,R) = hist(y,R) = topk(R(0)). But this case is for-
bidden by our assumptions. For |R| ≥ 2, note that the claim is compatible with
compositions of runs, so we conclude by induction on the length of the run. �

Let x and y be positions such that y points into x. Intuitively, the history
function should preserve this containment because if a stack s is a copy of some
other stack t then every stack of lower level in this stack was created from some
stack of lower level inside of t. The next lemma provides a formal statement of
this kind.

Proposition D.9. Let R be some run and x a position of a k-stack. Let y point
into x such that for l := nr(y)−nr(x) the last l links in y are of level at most k.12

Then hist(y,R) points into hist(x,R) and for l′ := nr(hist(y,R))− nr(hist(x,R))
the last l′ links in hist(y,R) are of level at most k.

12 In other words, if x decomposes as x = x̂
k′→ x′ for a simple position x′, then all

decompositions of y as y = x̂
k′→ y′

k′′→ y′′ satisfy k′′ ≤ k.

32

Proof. For |R| = 0 there is nothing to prove. For |R| = 1 the claim follows directly
from a tedious but straightforward case distinction on the operation performed
by R. The general case then follows by induction: if |R| ≥ 2 we can decompose
R = R1 ◦ R2 such that by induction hypothesis y′ := hist(y,R2) points into
x′ := hist(x,R2) and we can apply the lemma again to R1, x

′ and y′. �

Corollary D.10. Let j > k. For every run R, hist(topk(R(|R|)), R) points into
hist(topj(R(|R|)), R). Additionally, if hist(topk(R(|R|)), R) = topk(R(0)) then
hist(topj(R(|R|)), R) = topj(R(0)).

According to our intuition that the history function tells us the original copy
from which a stack was created, history can only decrease a position (with respect
to the lexicographic ordering �). On the other hand, when a position is always
present in a stack, the history should point to the same position. The next two
lemmas prove this intuition.

Lemma D.11. Let R be a run and x a position in the final stack of R such
that x0 is the simple prefix of x, i.e., x0 is a simple position such that there is a

position x′ with x = x0
k→ x′. If y := hist(x,R) is a simple position, y � x0.

Lemma D.12. Let R be a run and let x := topk(R(0)). If x is present in all
configurations of R then hist(x,R) = x and for all i ≤ |R| hist(x,R�i,|R|) is
simple if and only if hist(x,R�i,|R|) = x.

In the rest of this section we prove these two Lemmas. For the proofs we use

functions packi. Let x = x0
k1→ x1 . . .

km→ xm with m = nr(x). For 0 ≤ i ≤ m we
define a simple position packi(x) as follows.

– pack0(x) := x0 and

– for i ≥ 1, packi(x) is obtained from packi−1(x) by replacing its last ki coor-
dinates by xi.

Note that pack1 is closely related to the colk and the push1a,k operations: if R

is a run of length 1 performing colk and x points into the topmost k-stack of
R(1), then packi+1(hist(x,R)) = packi(x) for all 0 ≤ i ≤ nr(x). On the other

hand, if R is of length 1 performing push1a,k and x = top0(R(1))
k→ x1, then

packi(x) = packi−1(hist(x,R)) for all 1 ≤ i ≤ nr(x).

In the following, for a simple position z = (zn, zn−1, . . . , z1) we call zk the
level k coordinate of z. Furthermore, we write x ≺k y for simple positions x, y
if x ≺ y and the first coordinate on which they differ is the level k coordinate.

Lemma D.13. Let R be a run and x = x0
k1→ x1 . . .

km→ xm a position in the
final stack of R. Assume that y := hist(x,R) is a simple position. Then

y � packm(x) ≺km packm−1(x) ≺km−1 . . . ≺k1 pack0(x).

33

Proof. The proof is by induction of the length of R. If |R| = 0 the claim is trivial
(as x = y and nr(x) = 0). For |R| ≥ 1, let S = R�|R|−1,|R|, and let z = hist(x, S).

The induction assumption, applied for R�0,|R|−1 and for z = z0
k′1→ z1 . . .

k′
m′→ zm′ ,

gives us that

y � packm′(z) ≺km′ packm′−1(z) ≺km′−1
. . . ≺1 pack0(z).

We analyse the cases of the definition of the history function, for run S.

– If S performs a push1a,k operation and x = top0(S(1)), then m = m′ = 0 and
x = pack0(x) � z = pack0(z) � y.

– If S performs a push1a,k operation, and x points into top0(S(1)) we already
remarked that packi(x) = packi−1(z) and m = m′+1. Thus, we immediately
conclude that

y � packm(x) ≺km packm−1(x) . . . ≺k2 pack1(x).

Note that for sk the topmost k-stack of S(0), x1 points to a position in
popk(sk) while x0 points into topk(s). Thus, the level k coordinate of pack0(x)
is |sk| while the corresponding coordinate in pack1(x) has value at most
|sk| − 1. Thus, pack1(x) ≺k pack0(x).

– If S performs a pushi operation and x is topi−1(S(1)) or points into topi−1(S(1)),
then every coordinate of z0 is either the same or smaller than the same co-
ordinate of x0 (and the rest of x and z is the same). Thus, we conclude
immediately from the properties of z that x also satisfies the claim.

– If S performs a colk operation, and x points into the topmost k-stack of
S(1). Then, packi(x) = packi+1(z) � y for all i ≤ m, and m = m′− 1. Thus,
the claim follows trivially.

– If none of the previous cases applies, then z = x and there is nothing to
show.

�
From the previous lemma we can easily deduce Lemma D.11.

Proof (Lemma D.11). Due to Lemma D.13, y � packnr(x)(x) � pack0(x) = x0.
�

We also obtain the following corollary of Lemma D.13.

Corollary D.14. Let s be some pds and 0 ≤ k ≤ n. If x be a position in s such
that packnr(x)(x) points to a k-stack and packnr(x)(x) � topk(s), then x = topk(s).

Proof. Decompose x = x0
k1→ x1 . . .

km→ xm and z := packm(x). Consider any
n-CPS such that there is a run R from the initial configuration (q0,⊥n) to the
pds s (recall that such a run exists by definition of a pds. Since ⊥n only contains
simple positions, y := hist(x,R) is simple. Application of Lemma D.13 gives
us topk(s) � z � x0, so x0 points into the topmost k-stack of s. This implies
that coordinates of levels greater than k of topk(s), z, and x0 agree whence
z = topk(s).

34

If m = 0, x = z = topk(s) and we are done. Heading towards a contradiction
assume that m ≥ 1. Let j be the maximum of all ki. The last k coordinates
of z = topk(s) are 0. Since the last km coordinates of z are xm 6= (0, . . . , 0)
(by definition of a position), we see that j ≥ km > k. Thus z points to or into
topj−1(s), whence its level j coordinate is the size of the topmost j-stack of s.
Since each application of pack preserves the coordinates of level above j, x also
points into topj(s) whence its level j coordinate is bounded by the size of the
topmost j-stack of s. Now Lemma D.13 implies that the level j coordinate in
packnr(x)(x) is smaller than that in x which is a contradiction. �

Finally, we prepare the proof of Lemma D.12 with the following lemma.

Lemma D.15. Let R be a run, and let x be a position of R(|R|), and let y :=
hist(x,R). If packnr(x)(x) is present in all configurations of R, then packnr(y)(y) =
packnr(x)(x).

Proof (Lemma D.15). If we prove the lemma for runs of length 1, the whole
claim follows by a simple induction on the length of a run. Let R be a run of
length 1. The proof is by case distinction on the definition of the history function.

– Assume that R performs a push1a,k operation, and x = top0(R(1)). Then
x = packnr(x) is not present in R(0) whence there is nothing to show.

– Assume that R performs a pushj operation, and x is topj−1(R(1)) or points

into topj−1(R(1)). Let x = x0
k1→ x1 . . .

km→ xm. If ki < j for all i, also
packnr(x)(x) is topj−1(R(1)) or points into topj−1(R(1)) (as then x and
packnr(x)(x) are equal on all coordinates of level at least j). But this would
mean that packnr(x)(x) was not present in R(0); thus ki ≥ j for some i (in

particular m ≥ 1). Notice that y = y0
k1→ x1 . . .

km→ xm, where y0 differs
from x0 only on the level j coordinate. This coordinate does not appear in
packm(x) whence packnr(y)(y) = packnr(x)(x).

– In the remaining three cases we easily see (from the definition of the history)
that packnr(y)(y) = packnr(x)(x).

�
Proof (Lemma D.12). For a simple position x = topk(R(0)) we have packnr(x)(x) =
x. For arbitrary i ≤ |R|, let yi := hist(x,R�i,|R|). We apply Lemma D.15 for

R�i,|R| and obtain packnr(yi)(yi) = topk(R(0)). If yi is simple, this implies y = x.
Corollary D.14 implies that y0 = x. �

E A Family of Sets of Runs

In this appendix we prove that the sets defined in Section 5 satisfy the (informal)
claims we formulated. In fact, our proof goes from intuition (which is made
precise using the history function) to grammars: First, using the history function
we give alternative definitions of pumping runs, topk-non-erasing runs, k-returns
and k-colreturns and show that they satisfy the intuition given before. We then
show that these runs are actually described by the grammars we presented in
Section 5.

35

E.1 Characterisation of Returns and Colreturns

We start with a definition of returns. In Lemmas E.6 and E.16 we later see that
the grammar from Section 5 correctly describes the sets of returns.

Definition E.1. A run R of length m is called k-return (where 1 ≤ k ≤ n) if

– hist(topk−1(R(m)), R) points to the second topmost (k − 1)-stack13 in the
topmost k-stack of R(0), and

– hist(topk−1(R(m)), R�i,m) 6= topk−1(R(i)) for all 1 ≤ i ≤ m− 1.

The following propositions confirm our intuition about k-returns.

Proposition E.2. The last operation of a k-return R is popk or colk.

Proof. Let m := |R|. Note that in order to satisfy

hist(topk−1(R(m)), R�m−1,m) 6= topk−1(R(m− 1))

the last operation of R is popj or colj with j ≥ k. Heading for a contradiction
assume that j > k. It follows that

hist(topk(R(m)), R�m−1,m) 6= topk(R(m− 1)).

Let i ≤ m− 2 be maximal such that

xi := hist(topk(R(m)), R�i,m) = topk(R(i))

Such i exists because i = 0 is of this form (cf. Corollary D.10). Due to Corollary
D.7 (variant 2), hist(topk−1(R(m)), R�i,m) points to the topmost (k − 1)-stack
of the k-stack to which xi points. Thus, it points to the topmost (k − 1)-stack
of R(i). But this contradicts the definition of a return. �

Proposition E.3. For every k-return R, the topmost k-stack of R(0) after re-
moving its topmost (k − 1)-stack is equal to the topmost k-stack of R(|R|). If x
points into topk(R(|R|) then hist(x,R) points to the same position in the stack
at topk(R(0)).

Proof. Let m := |R| and let l be the size of the topmost k-stack of R(m). For
1 ≤ i ≤ l, let tk−1i be the i-th (k − 1)-stack (counting from the bottom) of the
topmost k-stack of R(m). Let xi be the position pointing to tk−1i . By the above

proposition, R ends in popk or colk. Note that the histories of x1, . . . , xl with
respect to R�m−1,m point to (k−1)-stacks, where the history of x1 points to the
bottommost (k−1)-stack of some k-stack, xi is directly below the history of xi+1

for each 1 ≤ i < l and none of these histories point to the topmost (k− 1)-stack
of R(m−1). Note that non-topmost (k−1)-stacks in the same k-stack are always

13 Whenever we write “the second topmost (k − 1)-stack” we assume that it is in the
same k-stack as the topmost (k− 1)-stack, i.e., we assume that the topmost k-stack
has size at least 2.

36

treated the same way by the history function. Thus, a simple induction on the
operations performed by R�0,m−1 shows that this property is preserved by the
history function, i.e., hist(x1, R), hist(x2, R), . . . , hist(xl, R) point to the first l
(k−1)-stacks of a k-stack. But by definition hist(xl, R) = hist(topk−1(R(m)), R)
is the second topmost (k − 1)-stack of topk(R(0)). Application of Corollary D.7
(variant 1) shows that the (k − 1)-stack at xi in R(m) is the same as the (k −
1)-stack at hist(xi, R) in R(0). This proves the first part of this proposition.
Similarly, Corollary D.7 implies the preservation of pointers into topk(R(m))
which completes the proof. �

Corollary E.4. For every run R which starts with a pushk operation (including
arbitrary push1a,l for k = 1), and continues with a k-return, the topmost k-stacks

of R(0) and of R(|R|) coincide. Additionally, if x points into topk(R(|R|) then
hist(x,R) points to the same position in the stack at topk(R(0)).

Recall that wf-rules of the form X ⊇ δY Z must satisfy the property that
whenever R is a composition of a one-step run performing transition δ with a run
from Y , then the topmost lev(Y)-stack of R(0) and R(|R|) are the same. Notice
that in the grammars in Section 5 such rules appear only when δ performs a
push operation of some level k, and X is a set of k-returns. Since lev(X) = k,
the above corollary proves this property.

We now give a definition of k-colreturns. Lemmas E.7 and E.16 show that,
for such definitions, the grammar from Section 5 correctly describes the sets of
colreturns. As already mentioned, the intuition of the definition is the following.
A k-colreturn is a run whose last transition is colk from a stack where the topmost
symbol is a copy of the topmost symbol of the first stack.

Definition E.5. A run R of length m is called k-colreturn (where 1 ≤ k ≤ n)
if

– hist(topk−1(R(m)), R) is of the form top0(R(0))
k→ x, where x is simple, and

– hist(topk−1(R(m)), R�i,m) is not simple for all 0 ≤ i ≤ m− 1.

We first prove a decomposition result of k-returns and k-colreturns into one
transition followed by a sequence of shorter returns or colreturns. Later we deal
with the change levels.

Lemma E.6. Let R be some run. Then R is a k-return if and only if R is of
one of the following forms.

1. |R| = 1 and R performs popk.
2. R starts with an operation of level at most k − 1, and continues with a k-

return.
3. R starts with push1a,k and continues with a k-colreturn.

4. R starts with a pushj for j > k and continues with a k-return.
5. R starts with a pushj for j ≥ k (including push1a,l for j = k = 1) and

decomposes as R = S ◦T ◦U where S has length 1, T is a j-return and U is
a k-return.

37

Lemma E.7. Let R be some run. Then R is a k-colreturn if and only if R is
of one of the following forms

1. R has length 1 and performs colk.
2. R starts with pushj for some j ≥ 2 and continues with a k-colreturn.
3. R starts with a pushj (including push1a,l for j = 1) and decomposes as R =

S ◦ T ◦ U where S has length 1, T is a j-return and U is a k-colreturn.

Before we start the proof of these two lemmas, we state some auxiliary claims.
First, we observe that the history function either manipulates the simple prefix
of a position, or adds a simple prefix, or removes it. This will be useful while
analysing k-colreturns.

Proposition E.8. Let R be some run of length m. Let x
k→ y be a position in

R(m) such that

nr(hist(x
k→ y,R�i,m)) > nr(hist(y,R))

for all i ≤ m. Let x′ = hist(x,R). Then hist(x
k→ y,R) = x′

k→ y (neither x nor
x′ have to be simple). Additionally, the 0-stack of R(m) at position x is the same
as the 0-stack of R(0) at position x′.

Proof. Induction on m. For m = 1 we just analyse all cases. For m ≥ 2 we
observe that the claim for any decomposition R = S ◦ T follows from the claim
for S and for T . �

Corollary E.9. Let R be a run of length m ≥ 2, and x a simple position in
R(m) such that hist(x,R) is simple, but hist(x,R�i,m) is not simple for 1 ≤ i ≤
m−1. Then, for some k, R starts with push1a,k and ends with colk. Additionally,

x = topk−1(R(m)) if and only if hist(x,R) is the second topmost (k − 1)-stack
of R(0).

Proof. The last operation of R has to be a colk for some k, because other-
wise hist(x,R�m−1,m) would be simple. Then hist(x,R�m−1,m) is of the form

top0(R(m−1))
k→ x′. Proposition E.8, applied forR�1,m−1, shows that hist(x,R�1,m)

is of the form z
k→ x′, and that the topmost 0-stack of R(m − 1), and the 0-

stack in R(1) to which z points to are the same k-stack uk, which is in fact

the topmost k-stack of R(m). Because hist(z
k→ x′, R�0,1) is simple, necessarily

z = top0(R(1)), the first operation of R(0) is push1a,k, and the topmost k-stack

of R(0) after removing its topmost (k − 1)-stack is equal to uk. Additionally, x
points to the same position in the topmost k-stack of R(m), as hist(x,R) in the
topmost k-stack of R(0). Thus x = topk−1(R(m)) if and only if hist(x,R) is the
second topmost k-stack of R(0). �

The following lemma proves the intuition that k-colreturns make a copy of
the topmost stack symbol and finally use its collapse link of level k (the proof is
almost the same as that of the previous corollary).

38

Lemma E.10. Let R be a colreturn. Then the topmost k-stack of R(|R|) is
equal to the k-stack contained in the topmost 0-stack of R(0). In particular its
size is smaller than the size of the topmost k-stack of R(0). Additionally, the
last operation of R is colk, and hist(topk(R(|R|)), R) = topk(R(0)).

Proof. Let m := |R|, and let x := topk−1(R(m)). The last operation of R has to
be a colj for some j, because otherwise hist(x,R�m−1,m) would be simple. Then

hist(x,R�m−1,m) is of the form top0(R(m−1))
j→ x′. Proposition E.8, applied for

R�0,m−1, implies that hist(x,R) = hist(top0(R(m− 1)), R�0,m−1)
j→ x′. By defi-

nition of a k-colreturn it follows that j = k and hist(top0(R(m− 1)), R�0,m−1) =
top0(R(0)). From this proposition we also conclude that the topmost 0-stack of
R(0) and the topmost 0-stack of R(m − 1) store the same k-stack uk, which
is in fact the topmost k-stack of R(m). Of course the size of uk is smaller
than the size of the the topmost k-stack of R(0) because colk must decrease
the size of the topmost k-stack (see Remark 2.4). Corollary D.10 implies that
hist(topk(R(m− 1)), R�0,m−1) = topk(R(0)). Since the last operation is colk,

hist(topk(R(m− 1)), R) = topk(R(0)). �
The next two propositions describe which operations are allowed as the first

operation of a k-return and of a k-colreturn.

Proposition E.11. Let R be a k-return. The first operation of R is neither colj

for j ≥ k nor popj for j > k. If the first operation of R is popk, then |R| = 1.

Proof. Let m := |R|. If the first operation of a run R is colj , j ≥ k then by
definition of the history function hist(x,R�0,1) does not point to any simple

position inside topj(R(0)) for all positions x in R(1). Thus, also hist(x,R) does
not point to any simple position inside topj(R(0)) for all positions x in R(m).
But if R is a k-return, hist(topk−1(R(m)), R) is a simple position and points into
topk(R(0)) whence it also points into topj(R(0)). Analogously, one shows that
R does not start with popj for j > k.

If a k-return R starts with popk, it follows that hist(topk−1(R(m)), R�1,m) =

topk−1(R(1)). But this is not allowed if 1 ≤ m− 1. �

Proposition E.12. Let R be a k-colreturn. The first operation of R is a push
or colk. If the first operation of R is colk, then |R| = 1.

Proof. Let m := |R|. If the first operation of a run R is a pop then by definition of
the history function hist(x,R�0,1) does not point into top0(R(0)) for all positions
x in R(1). Thus also hist(x,R) does not point into top0(R(0)) for all positions
x in R(m), in particular for x = hist(topk−1(R(m)), R). This contradicts the
definition of a k-colreturn.

In R(0) we have a position top0(R(0))
k→ x. Thus, the only collapse operation

which can be performed at R(0) is a level k collapse, i.e., colk. If R starts with

colk, then hist(y,R�0,1) = top0(R(0))
k→ x for some simple x only if y is simple.

We conclude that hist(topk−1(R(m)), R�1,m) is simple which implies m = 1. �
We state a last auxiliary lemma nd then prove Lemmas E.6 and E.7.

39

Lemma E.13. Let R be a k-return of length at least 2. Let x be the position
hist(topk−1(R(|R|)), R�1,|R|). Then one of the following holds.

1. x points to the second topmost (k − 1)-stack of R(1) and the first stack
operation of R is of level strictly below k or a pushj for j > k.

2. x points to the third topmost (k−1)-stack of R(1) and the first stack operation
of R is a push of level k.

3. There is a j > k such that x points to the second topmost (k − 1)-stack of
the second topmost (j − 1)-stack of R(1) and the first stack operation of R
is pushj.

4. x = top0(R(1))
k→ topk−1(uk), the first stack operation of R is push1a,k and

the topmost 0-stack of R(1) is (a, k, uk).

Proof. Since R is a k-return, Proposition D.5 implies that hist(x,R�0,1) points to
the second topmost (k− 1)-stack of R(0). We proceed by case distinction on the
stack operation of S := R�0,1. Due to Proposition E.11 we only have to consider
the following cases.

– Assume that S performs a popj operation for j < k, or a colj operation
for j < k, or a pushj operation for 2 ≤ j < k, or a push1a,j operation for
j 6= k > 1. Then x necessarily points to the second topmost (k − 1)-stack
of R(1) (because S makes changes only inside the topmost (k − 1)-stack of
R(0)).

– Assume that S performs a pushk for k ≥ 2, or a push1a,j for j 6= k = 1. Then
x necessarily points to the third topmost (k − 1)-stack of R(1).

– Assume that S performs a pushj operation with j > k. Then either x points
to the second topmost (k−1)-stack of R(1), or to the second topmost (k−1)-
stack of the second topmost (j − 1)-stack of R(1).

– Assume that S performs push1a,k, and k ≥ 2. Then either x points to the

second topmost (k − 1)-stack of R(1), or x is of the form top0(R(1))
k→

topk−1(uk) where uk is the k-stack stored in the topmost 0-stack of R(1).
– Assume that S performs push1a,k, and k = 1. Then either x points to the third

topmost (k − 1)-stack of R(1), or x is of the form top0(R(1))
k→ topk−1(uk)

where uk is the k-stack stored in the topmost 0-stack of R(1).

�
Proof (Lemma E.6). We first show that every return decomposes as required.
Let R be a k-return of length m (by definition m ≥ 1). Set S := R�0,1. When S

performs a popk operation, and m = 1, we immediately get case one. Otherwise,
we proceed by distinction of the cases of Lemma E.13 for the position x :=
hist(topk−1(R(m)), R�1,|R|).

– Assume that x points to the second topmost (k − 1)-stack of R(1). Then
R�1,m is easily seen to be a k-return; we get case 2 or case 4.

– Assume that x points to the third topmost (k − 1)-stack of R(1). Then the
operation in S was pushk (or push1a,j for k = 1).

40

Proof (Claim). There is some 1 < i < m such that hist(topk−1(R(m)), R�i,m)
points to the second topmost (k − 1)-stack of R(i).
Under the assumption that this claim holds, choose the minimal such i.
From the choice of i it follows immediately that U := R�i,m is a k-return.
We show that T := R�1,i is also a k-return whence R decomposes as in case

5 of the lemma. Indeed, hist(hist(topk−1(R(m)), U), T) is the third topmost
(k− 1)-stack of R(1). Since topk−1(R(i)) is the (k− 1)-stack directly on top
of hist(topk−1(R(i)), U), and because hist(topk−1(R(m)), R�j,m) is not the
topmost (k− 1)-stack of R(j) for 0 ≤ j < m (definition of k-return), we can
apply Proposition D.8 (variant 1) and conclude that hist(topk−1(R(i)), T)
is the second topmost (k − 1)-stack of R(1). By the same proposition, if
hist(topk−1(R(i)), T ′) is the topmost (k − 1)-stack of T ′(0) for some proper
suffix T ′ of T , then hist(topk−1(R(m)), T ′ ◦ U) is the second topmost (k−1)-
stack of T ′(0) which contradicts the minimality of i. Thus, T is a k-return
and we showed that R decomposes as described in case 5 of the lemma.
Finally we prove our claim. If the operation leading toR(m) is popk, i = m−1
is a good candidate. Otherwise (Proposition E.2), this operation is colk. Then
hist(topk−1(R(m)), R�m−1,m) is not simple. Let i < m−1 be the last index for

which hist(topk−1(R(m)), R�i,m) is simple again (such i exists because i = 0
is a good candidate). From Corollary E.9, applied to R�i,m, we immediately

obtain that hist(topk−1(R(m)), R�i,m) is the second topmost (k−1)-stack of
R(i), so i is a good candidate.
Assume that S performs a pushj operation with j > k, and x points to the
second topmost (k − 1)-stack of the second topmost (j − 1)-stack of R(1).
Let 1 < i ≤ m be minimal such that for T := R�1,i and U := R�i,m we have

hist(topj−1(R(m)), U) = topj−1(R(i)). We show that T is a j-return and U
is a k-return which gives us case 5.
Due to the minimality of i all proper suffixes T ′ of T satisfy the inequality
hist(topj−1(T (|T |)), T ′) 6= topj−1(T ′(0)). Due to Corollary D.10, the position
hist(topk−1(R(m)), T ◦ U) points into

hist(topj−1(R(i)), T) = hist(topj−1(R(m)), T ◦ U).

Thus, hist(topj−1(R(i)), T) points to the second topmost (j − 1)-stack of
T (0) = R(1) and we conclude that T is a j-return.
Due to Corollary D.10, we know that hist(topk−1(R(m)), R�i,m) points into

hist(topj−1(R(m)), R�i,m) = topj−1(R(i)). On the other hand, by Corol-
lary E.4, the only position x in the topmost (j − 1)-stack of R(i) for which
hist(x,R�0,i) points to the topmost (k− 1)-stack of R(0) is x pointing to the
second topmost (k − 1)-stack of R(i). By Proposition D.5 we conclude that
hist(topk−1(R(m)), R�i,m) points to the second topmost (k− 1)-stack, hence
U is a k-return.
Finally, assume that S performs push1a,k, and x is of the form top0(R(1))

k→
topk−1(uk) where uk is the k-stack stored in the topmost 0-stack of R(1). Let
i > 1 be minimal such that hist(topk−1(R(m)), R�i,m) is simple. Recall that

hist(topk−1(R(m)), R) points to the second topmost (k − 1)-stack of R(0).

41

From Corollary E.9, applied toR�0,i, we see that hist(topk−1(R(m)), R�i,m) =

topk−1(R(i)). Since R is a return, this implies i = m and due to the mini-
mality of i, we conclude directly that R�1,i is a k-colreturn.

This concludes the proof that every k-return decomposes as required by the
lemma.

It is left to show that every run that decomposes as described by the lemma
is a k-return. Let R be some run of length m. There are the following cases.

1. If |R| = 1 and it performs popk, the definition of hist implies that R is a
k-return.

2. Assume that R starts with an operation of level at most k−1, and continues
with a k-return. Since history preserves positions of (k − 1)-stacks under
operations of level at most k − 1, and such operations also preserve the
existence of all (k−1)-stacks, the conditions for R being a return are trivially
deduced from the fact that R�1,m is a return.

3. Assume that R starts with push1a,k and continues with a k-colreturn. By

definition of a colreturn, the position hist(topk−1(R(m)), R�i,m) is not sim-

ple for all 1 ≤ i < m, whence this position is not topk−1(R(i)). Fur-
thermore, hist(topk−1(R(m)), R�1,m) points into top0(R(1)) and has nesting

rank 1, so hist(topk−1(R(m)), R) is simple. By Corollary E.9 it follows that
hist(topk−1(R(m)), R) is the second topmost (k − 1)-stack of R(0).

4. Assume that R starts with a pushj for j > k and continues with a k-return.
Then we conclude similar to the second case.

5. Assume that R starts with a pushj for j ≥ k (including push1a,l for j = 1)
and decomposes as R = S ◦ T ◦ U where S has length 1, T is a j-return
and U is a k-return. We know that x := hist(topk−1(R(m)), U) is the second
topmost (k−1)-stack of U(0). Corollary E.4 applied for run S◦T implies that
hist(topk−1(R(m)), R), R) (= hist(x, S ◦ T)) is the second topmost (k − 1)-
stack of R(0).
For j = k, we know that hist(topk−1(U(0)), T ′) 6= topk−1(T ′(0)) for every
suffix T ′ of T of positive length. We apply Proposition D.8 (variant 2) to
topk−1(U(0)) and x (the second topmost (k − 1)-stack of U(0) and obtain
that hist(topk−1(R(m)), T ′ ◦ U) 6= topk−1(T ′(0)) for every suffix T ′ of T .
From this we conclude directly that R is a k-return.
For j > k, we also see that hist(topk−1(R(m)), T ′ ◦ U) 6= topk−1(T ′(0)) for
every suffix T ′ of T of positive length. Indeed, if hist(topk−1(R(m)), T ′ ◦ U) =
topk−1(T ′(0)), then also hist(topj−1(R(m)), T ′ ◦ U) = topj−1(T ′(0)) (Corol-
lary D.10) which is impossible because T is a j-return. Again, it is easy to
conclude that R is a k-return.

�
Proof (Lemma E.7). We first show that every k-colreturn R decomposes as
described by the lemma. Set S := R�0,1 (the definition of a k-colreturn requires

|R| ≥ 1). If R performs colk and |R| = 1 we are in case 1 of Lemma E.7.
Otherwise, due to Proposition E.12, the operation in S is push. As in the return

42

case, we look at x := hist(topk−1(R(m)), R�1,|R|). By Corollary D.5 we know that

necessarily hist(x, S) is of the form top0(R(0))
k→ x′, where x′ is simple (because

hist(topk−1(R(m)), R) is of such form). There are the following possibilities.

1. S performs a pushj for j ≥ 2 and x = top0(R(1))
k→ x1 for some simple x1.

In this case, it is straightforward to see that R�1,m is a k-colreturn.

2. Otherwise, S performs a push operation of level j and x = top0(R(0))
k→ x1

for some simple x1. Notice that top0(R(0)) is the topmost 0-stack of the
second topmost (j − 1)-stack of R(1). Recall that the last operation of R
is colk whence hist(topk−1(R(m)), R�m−1,m) points into the topmost 0-stack
of R(m − 1) and has nesting rank 1. Let 1 < i < m be minimal such that
hist(topk−1(R(m)), R�i,m) has nesting rank 1 and points into the topmost

(j − 1)-stack of R(i). Let T := R�1,i, and let hist(topk−1(R(m)), R�i,m) =

y
k′→ y′. Due to Proposition E.8 (applied for run T), we have k′ = k,

and hist(y, T) = top0(R(0)). Due to Corollary D.10 and since y points into
topj−1(R(i)), hist(topj−1(R(i)), T) contains top0(R(0)) whence it points to
the second topmost (j − 1)-stack of R(1). The same corollary and the min-
imality of i implies that for each suffix T ′ of T of length at least 1 we have
hist(topj−1(R(i)), T ′) 6= topj−1(T ′(0)). Thus, T is a j-return.

Let U := R�i,m We know that hist(y, S ◦ T) = top0(R(0)), and that y is in
the topmost (j − 1)-stack of R(i). By Corollary E.4, the only y satisfying
this is y = top0(R(i)). It follows that U is a k-colreturn.

It is left to show that every run R that decomposes as described by the
lemma is a k-colreturn. In the first two cases we immediately see that R is a
k-colreturn. So assume that R = S ◦ T ◦ U where S has length 1 and performs
a pushj (including push1a,l for j = 1), T is a j-return and U is a k-colreturn.

Let m := |R|. As hist(topk−1(R(m)), U) is of the form top0(U(0))
k→ x for

simple x, by Corollary E.4 we immediately obtain that hist(topk−1(R(m)), R) =

top0(R(0))
k→ x.

In order to prove that R is a k-colreturn, we still have to show that the

position hist(top0(U(0))
k→ x, T �i,|T |) is not simple for all 0 ≤ i ≤ |T |. Heading

for a contradiction, assume that there is a greatest index i for which the position

hist(top0(U(0))
k→ x, T �i,|T |) is simple. Trivially i < |T |. If i = |T | − 1, the last

operation of T has to be push1a,k, which is impossible in a j-return. So i ≤ |T |−2.

As hist(top0(U(0))
k→ x, T �i+1,|T |) is not simple (maximality of i), it has to be of

the form top0(T (i+ 1))
k′→ x′. Proposition E.8 applied to T �i+1,|T | implies that

k′ = k and hist(top0(U(0)), T �i+1,|T |) = top0(T (i + 1)). Due to Corollary D.10,

also hist(topj−1(U(0)), T �i+1,|T |) = topj−1(T (i+ 1)). This is impossible because
T is a j-return. �

Up to now, we have only dealt with the general shape of k-returns and k-
colreturns. In Section 5 we divided these sets further according to their change

43

level. We next formally introduce this change level for every k-return and k-
colreturn and then complete the proof that the rules given in Section 5 correctly
describe returns and colreturns. The change level keeps track of the maximal
level on which the stack size was changed by the run R.

Definition E.14. Let R be a k-return or a k-colreturn. For 1 ≤ i ≤ n, let
xi be the size of the topmost i-stack of R(0); similarly yi for R(|R|). Then
chl(R) := max{i : xi 6= yi}.

Remark E.15. If R is a k-return (k-colreturn), then Proposition E.3 (Lemma
E.10, respectively) implies that the size of topmost k-stack of R(0) and of R(|R|)
is different, so chl(R) ≥ k.

We now give a characterisation of the change level of a k-return or k-colreturn
depending on the change level(s) of the subruns occurring in its decomposition.

Lemma E.16. Let R be a k-return or a k-colreturn.

1. If |R| = 1, then chl(R) = k,

2. If R decomposes as R = S ◦T , where S of length 1 performs an operation of
level j, and T is a k-return or a k-colreturn, then chl(R) = max{j, chl(T)}).

3. If R decomposes as R = S ◦ T ◦ U where S of length 1 performs a pushj

operation (including push1a,l for j = k = 1), T is a j-return, and U is a
k-return or a k-colreturn, then

chl(R) =

{
chl(U) if chl(T) = j

max{chl(T), chl(U)} otherwise.

We begin the proof with an auxiliary proposition saying that k-returns and
k-colreturns cannot decrease the size of the stacks of level greater than k.

Proposition E.17. Let R be a k-return or k-colreturn such that chl(R) > k.
Then the size of the topmost chl(R)-stack of R(0) is smaller than the size of the
topmost chl(R)-stack of R(|R|).

Proof. Let m := |R|. For a k-return, hist(topk−1(R(m)), R) points into in the top-
most k-stack of R(0), so by Corollary D.10, hist(topk(R(m)), R) = topk(R(0)).
For a k-colreturn we also have hist(topk(R(m)), R) = topk(R(0)), due to Lemma
E.10. In both cases, by Lemma D.11, topk(R(0)) � topk(R(m)). It follows that
the size of the topmost chl(R)-stack of R(0) is smaller than the size of the top-
most chl(R)-stack of R(m) (as for i > chl(R), the size of the topmost i-stack of
R(0) and of R(m) is the same, and for i = chl(R) > k they differ). �

Next we proof Lemma E.16.

Proof (Lemma E.16).

1. Case 1 is immediate.

44

2. Assume we have case 2 of the lemma. Notice that neither S nor T can change
the size of the i-stack for i > max{j, chl(T)}). If j 6= chl(T), we see that one
of the subruns changes the size of the stack of level max{j, chl(T)}), and the
other does not change it, so we get chl(R) = max{j, chl(T)}). If j = chl(T),
chl(T) ≥ k (Remark E.15) implies that the operation is necessarily push
(cf. Propositions E.11 and E.12). Then the size of the stack of level j is
increased by S and by T (cf. Proposition E.17). Thus, the claim follows
immediately.

3. Next, assume we have case 3 of the lemma. None of the parts S, T , U
changes the size of the i-stack for i > max{chl(T), chl(U)}). If chl(T) = j,
Corollary E.4 implies that the topmost j-stack of R(0) and of U(0) is the
same, thus chl(R) = chl(U). So assume that chl(T) > j. Then the size of
the stack of level max{chl(T), chl(U)}) cannot be decreased by S or T or U
(Proposition E.17), and at least one of T and U increases this value. Thus,
chl(R) = max{chl(T), chl(U)}).

�

E.2 Non-Erasing Runs

Definition E.18. For 0 ≤ k ≤ l, let Nk,ε be the set of topk-non-erasing runs
which is the set of runs R such that position topk(R(0)) is present in every
configuration of R.

Using k-returns we can characterise topk-non-erasing runs in the following
way.

Lemma E.19. Let R be some run and 0 ≤ k ≤ n. R is a topk-non-erasing run
if and only if R has one of the following forms.

1. |R| = 0.
2. R starts with an operation of level at most k, and continues with a topk-non-

erasing run.
3. R starts with a pushj (including arbitrary push1a,l for j = 1) for j ≥ k + 1,

and continues with a topj−1-non-erasing run.
4. R starts with a pushj (including arbitrary push1a,l for j = 1) and decomposes

as R = S ◦ T ◦ U , where S has length 1, T is a j-return of change level j,
and U is a topk-non-erasing run.

We start the proof by giving two propositions useful in the right-to-left im-
plication.

Proposition E.20. Let R = S ◦ T be a run such that S and T are topk-non-
erasing runs for some k. Then R is a topk-non-erasing run.

Proof. We claim the following. Take some run such that x and y are simple
positions in its initial stack such that x � y. If y is present in all configurations
of the run, then x is also present in all configurations of the run.

45

Since topk(R(0)) is present in all configurations of S, the claim implies that
all k-stacks present in R(0) = S(0) are also present in S(|S|). Thus, the topmost
k-stack of T (0) = S(|S|) is lexicographically greater or equal than topk(R(0)).
Again using the claim, topk(R(0)) is present in all configurations of T because
topk(T (0)) is present in all configurations of T .

For the proof of the claim note that the statement of the claim is preserved
under composition of runs. Thus, we may consider a run R of length 1 such that
x � y are positions in R(0). Since push operations do not delete positions in a
stack, we may assume that R performs popj or colj . Since an application of colj

has the same effect as several popj , it is sufficient to consider the popj case (the
colj-case then follows again by the composition closure argument). Assume that
R performs a popj and x is present in R(0) but not in R(1). Then x points into
or to the topmost (j − 1)-stack of R(0). Since x � y, y must also point into or
to the topmost (j − 1)-stack of R(0). But then y is not present in R(1). �

Proposition E.21. Let 0 ≤ k ≤ n, and let R be a run such that hist(y,R) =
topk(R(0)) for some position y of R(|R|). Then R is a topk-non-erasing run.

Proof. Heading for a contradiction, assume that there is a minimal i ≤ |R|
such that x0 := topk(R(0)) is not present in R(i). All simple positions in R(i)
are lexicographically smaller than x0, because x0 was removed either by a pop
operation, or by a col operation (cf. Remark 2.4). Let x1 be the simple prefix
of hist(y,R�i,|R|). Due to Lemma D.11 applied to R�0,i, x0 � x1. But this is a
contradiction. �
Proof (Lemma E.19). The proof of the right-to-left part is by case distinction on
the decomposition of R according to the four cases. Case 1 is trivial and Cases 2
and 3 follow directly from Proposition E.20. We now investigate Case 4. Notice
that hist(topk(T (|T |)), S ◦ T) = topk(S(0)): for k < j it follows from Proposition
E.3; for k ≥ j it follows from Corollary D.10. Thus, Proposition E.21 applied to
S ◦T and y := topk(T (|T |)) tells us that S ◦T is a topk-non-erasing run. Due to
Proposition E.20, also R is a topk-non-erasing run.

Now concentrate on the left-to-right part. Let R be a run of length m such
that x := topk(R(0)) is present in all configurations of R. If m = 0, we are in
case 1. Thus, assume that m ≥ 1. Note that the first operation cannot be colj or
popj for j ≥ k + 1 because this would delete position x from R(1) (cf. Remark
2.4). .Hence, one of the following cases applies.

– Assume that the first operation in R is of level at most k. Then x =
topk(R(1)) and x is not removed during R�1,m. Thus, R decomposes as in
case 2.

– Assume that the first operation in R is pushj for some j ≥ k + 1 (in the
rest of the proof, push1 stands for arbitrary push1a,k′). Furthermore, assume

that y := topj−1(R(1)) is present in all configurations of T := R�1,m. Then
R decomposes as as in case 3.

– Otherwise, the first operation is pushj for some j ≥ k + 1 and there is a
minimal l ≥ 1 such that y := topj−1(R(1)) is not present in R(l). We claim
that R�1,l is a j-return of change level j and that the positions topk(R(l))

46

and topk(R(0)) agree. Hence, R�l,m is topk-non-erasing and R decomposes
as in case 4.
Let us proof the claim. Recall that x = topk(R(0)) is present in all configu-
rations of R�0,l. Since x points into x′ := topj−1(R(0)) or x′ = x,

x′ is present in all configurations of R�0,l. (2)

Hence we can apply Lemma D.12 and conclude that hist(x′, R�0,l) = x′ and

if hist(x′, R�l′,l) is simple, it is equal to x′. (3)

Thus, hist(x′, R�1,l) = x′ because no non-simple position z in R(1) satisfies
x′ = hist(z,R�0,1).

By definition of pushj , x′ is the second topmost (j − 1)-stack in R(1). Since
y is directly above x′ and present in R(l′) for all 1 ≤ l′ < l, (2) and (3) imply
that hist(x′, R�l′,l) 6= topj−1(R(l′)). Finally, note that from R(l − 1) to R(l)
the (j − 1)-stack above x′ (which is at y) is removed but x′ is present in
R(l). Using Remark 2.4, the operation is popj or colj and y points into the
topmost j-stack of R(l− 1) whence x′ points to the topmost (j− 1)-stack of
R(l).
In summary, x′ = topj−1(R(l)), hist(x′, R�1,l) = x′ is the second topmost
(j − 1)-stack of R(1) and hist(x′, R�l′,l) is not the topmost (j − 1)-stack of
R(l′) for all 1 ≤ l′ < l. Thus, R�1,l is a j-return of change level j and the
claim is proved.

�

E.3 Pumping runs

In this subsection we give a definition of pumping runs and prove that the rules
from Section 5 describe pumping runs correctly.

Definition E.22. For x ∈ {=, <} and y ∈ {ε, 6ε}, let Px,y be the set of runs R
such that

– hist(top0(R(|R|)), R) = top0(R(0)), and
– top0(R(|R|)) = top0(R(0)) if and only if x is =, and
– R uses only ε-transitions if and only if y = ε.

A run R is a pumping run if it belongs to some Px,y.

Remark E.23. Lemma D.11 implies that for a pumping run R ∈ P<,y, we have
top0(R(0)) ≺ top0(R(|R|)). In this sense the final stack of a pumping run is is
greater than its initial one.

For the next proofs it is useful to distinguish all k-returns of minimal change
level (i.e., of change level k) from those of higher change level.

Definition E.24. We set Rk,=,x := Rk,k,x and Rk,<,x :=
⋃
i>kRk,i,x.

47

Remark E.25. A k-return R in Rk,=,x satisfies topk(R(0)) = topk(R(|R|)). Due
to Proposition E.17, a k-return R in Rk,<,x satisfies topk(R(0)) ≺ topk(R(|R|)).

In the rest of this subsection we characterise pumping runs using wf-rules.

Lemma E.26. Let R be some run. R is a pumping run if and only if R has one
of the following forms.

1. |R| = 0.
2. R starts with a pushk of any level (including arbitrary push1a,l for k = 1),

and continues with a pumping run.
3. R starts with a pushk of any level (including arbitrary push1a,l for k = 1),

and decomposes as R = S ◦ T ◦ U , where S has length 1, T is a k-return,
and U is a pumping run.

Additionally, assuming that R is a pumping run, top0(R(0)) = top0(R(|R|)) if
and only if

– R is of the first form, or
– R is of the last form, and topk(T (0)) = topk(T (|T |)), and top0(U(0)) =

top0(U(|U |))

The characterisation of pumping runs in terms of the well-formed rules pre-
sented in Section 5 follows immediately from the previous lemma.

Remark E.27. Observe that hist(x,R) = top0(R(0)) implies that the first oper-
ation of R is not pop or col. Indeed, after such operation in R(1) we have no
position y such that hist(y,R�0,1) = top0(R(0)) (which contradicts with Propo-
sition D.5).

Proof (Lemma E.26). The right-to-left direction of the first part is almost im-
mediate. In the third case we have to observe that hist(top0(U(0)), S ◦ T) =
top0(R(0)); it follows from Corollary E.4.

Now concentrate on the left-to-right direction of the first part of the lemma.
Let R be a pumping run of length m. If m = 0, we are in case 1. Thus, assume
that m ≥ 1. Due to the above remark, R starts with a push operation of some
level k. Recall that hist(x,R�0,1) = top0(R(0)) only if x = top0(R(1)) or if x
points to the topmost 0-stack of the second topmost (k−1)-stack. By Proposition
D.5, hist(top0(R(m)), R�1,m) is one of these positions x. Now there are two cases.

– If hist(top0(R(m)), R�1,m) = top0(R(1)), then R�1,m is a pumping run and
R decomposes as in case 2.

– Otherwise, hist(top0(R(m)), R�1,m) points to the topmost 0-stack of the sec-
ond topmost (k − 1)-stack of R(1). Due to Corollary D.10, we conclude
that hist(topk−1(R(m), R�1,m) points to the second topmost (k − 1)-stack

of R(1). Let 2 ≤ i ≤ m be minimal such that hist(topk−1(R(m)), R�i,m) =

topk−1(R(i)). Notice that T := R�1,i satisfies all requirements of a k-return.

48

By Corollary D.10 we know that hist(top0(R(m)), R�i,m) points into

hist(topk−1(R(m)), R�i,m) = topk−1(R(i)).

On the other hand, by Corollary E.4, the only position x in the topmost
(k− 1)-stack of R(i) for which hist(x,R�0,i) = top0(R(0)) is x = top0(R(i)).
By Proposition D.5 we conclude that hist(top0(R(m)), R�i,m) = top0(R(i)),
hence U := R�i,m is a pumping run.

Next we prove the last part of the lemma. If R is of length 0 we imme-
diately get top0(R(0)) = top0(R(|R|)). Let R be a run satisfying item 3 such
that topk(T (0)) = topk(T (|T |)) and top0(U(0)) = top0(U(|U |)). Because the
operation in S is pushk we also have topk(R(0)) = topk(T (|T |)). By Corollary
E.4 we know that the topmost k-stack of R(0) and of T (|T |) are the same, so
top0(R(0)) = top0(T (|T |)) = top0(R(|R|)).

Finally assume thatR is a pumping run of lengthm ≥ 1 such that top0(R(m)) =
top0(R(0)). Then hist(top0(R(m)), R) = top0(R(m)). We already have observed
that hist(top0(R(m)), R�1,m) is simple. Due to Lemma D.11 it is lexicographically
bounded from above by top0(R(m)) and from below by hist(top0(R(m)), R) =
top0(R(m)). We conclude that hist(top0(R(m)), R�1,m) = top0(R(0)). From the
analysis in the first part, we know that R then satisfies case 3, i.e., it decom-
poses as R = S ◦ T ◦ U where S performs only one pushk, T is a k-return
and U is a pumping run. Using the same argument again, we conclude that
top0(U(0)) = hist(top0(R(m)), U) = top0(R(m)). Using Corollary D.10 we also
get that topk(T (0)) = topk(R(0)) = topk(U(0)). �

In conclusion, Lemmas E.26, E.19, E.16, E.7 and E.6 show that the Rules
from Section 5 describe sets of runs that satisfy the intended meaning described
in that Section.

F Sketch of proof of Theorem 1.1

In this section we describe briefly the proof of the pumping lemma The single
steps of this proof follow closely the analogous proof for the non-collapsible
pushdown systems in [15]. For the details of these steps we refer the reader to
Appendix H (which requires Appendix G as combinatorial background).

First we list three propositions, which are consequences of Theorem 3.1 ap-
plied to the family X from Section 5.

Proposition F.1. Let R be a pumping run of the system S such that R satisfies
ctypeX (R(0)) v ctypeX (R(|R|)). Then there is a sequence of runs (Ri)i∈N such
that ctypeX (R(|R|)) v ctypeX (Ri(|Ri|)) and

1. if R ∈ P6 ε then Ri contains at least i non-ε-transitions,
2. if R ∈ P<,ε then the final stack of Ri+1 is greater than the final stack of Ri,

and Ri uses only ε-transitions.

Proof. Set R0 := R. Application of Theorem 3.1 to R and configuration Ri(|Ri|)
yields a pumping run R′i+1. Set Ri+1 := Ri ◦R′i+1. �

49

Proposition F.2. Let R be a top0-non-erasing run and c some configuration
such that ctypeX (R(0)) v ctypeX (c). Then there is a top0-non-erasing run S
that starts in c and ends in the same state as R.

Proposition F.3. Let R be a run and c a configuration such that ctypeX (R(0)) v
ctypeX (c). Then there is a run S which starts in c and ends in the same state
as R.

Let us also comment on the crucial properties of pumping runs and top0-non-
erasing runs. A run R ∈ P∪N0 ends in a stack which is not smaller than the stack
in which R starts; in particular R ∈ P<,ε ends in a strictly greater stack than
it starts. The classes P and N0 are quite similar. The main differences between
them are the following two. The definition of pumping runs is more restrictive,
i.e., P ⊆ N0 allowing to set lev(P6 ε) = lev(P<,ε) = 0 while lev(N0) > 0. Thus,
Theorem 3.1 gives a stronger transfer property for P than for N0. On the other
hand, N0 is closed under prefixes in the sense that for R ∈ N0 we also have
R�0,i ∈ N0 for any i ≤ |R|. For R ∈ P we have R�0,i ∈ N0 for all i < |R| but
not always R�0,i ∈ P.

Next we show how these propositions can be used to prove the pumping
lemma. This part consists of the following steps (where we write G for the ε-
contraction of the graph of S of level n).

1. A simple construction shows that we may assume that the state of a reach-
able configuration c determines whether c ∈ G (the state set Q is partitioned
as Q = Qε ∪ Q6 ε such that q ∈ Qε implies that all edges leading to q are
labelled ε and q ∈ Q6 ε implies that all edges leading to q are not labelled ε).
In the rest of the proof we assume that this condition holds.

2. We say a run R induces a path of length l in G if R(0) ∈ G and R(|R|) ∈ G
and there are l + 1 many i ≤ |R| such that R(i) ∈ G. Recall that Sn was
defined in Theorem 1.1. We show that every run R starting at a configuration
c of distance m from the initial one in G that induces a path of length Sn
in G contains a pumping subrun T ∈ P<,ε ∪ P6 ε such that R = S ◦ T ◦ U .
Moreover, if T ∈ P<,ε we can show that U�0,m is a top0-non-erasing run for
some m ≤ |U | such that U(m) ∈ G.

3. We conclude with the following case distinction.
– If T ∈ P<,ε, let i ≤ |S| be maximal such that S(i) is a node of G.

We apply Proposition F.1 to T and obtain infinitely many runs (Rj)j∈N
ending in configurations (q, si) such that S�i,|S| ◦ Rj is an ε-labelled
path from S(i) to (q, si) where si+1 is greater than si for all i ∈ N. We
can apply Proposition F.2 to U�0,m and (q, si) and obtain a top0-non-
erasing run U ′i from (q, si). By construction U ′i ends in the same state
as U�0,m. Due to step 1, we conclude that U ′i ends in some node of G
(because U�0,m does so and their final states coincide). Let Ui be the
minimal prefix of U ′i such that Ui(|Ui|) ∈ G, i.e., Ui = U ′i�0,j such that
the transition between U ′i(j − 1) and U ′i(j) is the first transition of U ′i
not labelled by ε. We know that Ui is also a top0-non-erasing run, so
it ends in a greater or the same stack than it starts. Let gi be the final

50

configuration of Ui. Note that S�i,|S|◦Ri◦Ui is a run that induces a path
of length 1 from S(i) to gi, i.e., gi is a successor of S(i) in G. Since the
sizes of the stacks si increase strictly for each i there is a j such that sj is
bigger than gi. Since gj is even bigger than sj , gi and gj cannot coincide.
Inductive use of this argument yields a sequence (ik)k∈N such that the
gik are pairwise different successors of S(i) in G. Especially, we conclude
that this case cannot occur in a finitely branching ε-contraction.

– Otherwise, T ∈ P6 ε. Application of Proposition F.1 to T yields a se-
quence (Ri)i∈N of runs in P6 ε starting in T (0) such that Ri contains
at least i transitions not labelled ε and such that ctypeX (T (|T |)) v
ctypeX (Ri(|Ri|)). Application of Proposition F.3 to U and Ri(|Ri|) yields
a run Ui from Ri(|Ri|) to some configuration with the same final state as
that of U (which is also the same final state as that of R). Using part 1),
we conclude that S ◦Ri ◦ Ui induces a path of length at least i starting
in c for each i ∈ N. Thus, G contains paths of arbitrary length starting
in c and ending in the same state as R; this completes the proof of the
pumping lemma.

G Combinatorics for Theorem 1.1

In this part we collect some combinatorial facts that turn out to be useful in
the proof of Theorem 1.1. The first lemma says that if we have a sequence of
natural numbers which increase at most by one from one number to the next
and if we choose a set G of 2k − 1 of these numbers then we find an increasing
subsequence of k numbers such that each element of the subsequence is strictly
smaller than all following elements of the sequence up to the next occurrence of
a number from G. This sequence is intended to contain sizes of a stack during
a run; such size can increase by at most 1 (when a push is performed) and can
decrease arbitrarily (when a col is performed). For G ⊆ N with l − 1 ∈ G and
i < l we set nG(i) := min{g ∈ G : g ≥ i}.

Lemma G.1. Let k ∈ N \ {0}, let (ai)0≤i≤l be a sequence of natural numbers
such that ai − ai−1 ≤ 1 for all 1 ≤ i ≤ l and such that a0 = min{ai : 0 ≤ i ≤ l}.
Let G ⊆ {0, 1, . . . , l − 1} be such that |G| ≥ 2k − 1.

There is an e ≤ l such that e− 1 ∈ G and for

He := {i ≤ e− 1 : ai ≤ aj for all i ≤ j ≤ e and

ai < aj for all i < j ≤ nG(i)}

we have |He| ≥ k.

Proof. The proof is by induction on l. For 0 ≤ b ≤ e ≤ l we write Hb,e = He∩{i ∈
N : i ≥ b}. Note that it suffices to find 0 ≤ b ≤ e ≤ l such that |Hb,e| ≥ k. We
distinguish the following cases.

1. Assume that k = 1. Since |G| ≥ 21 − 1 = 1, we can choose some e′ ∈ G. Let
e := e′+ 1 ≤ l. Choose b ≤ e′ maximal such that ab = a0. By choice, ab < aj
for all b < j ≤ e′, and ab = a0 ≤ ae. Thus, b ∈ Hb,e which settles the claim.

51

2. Assume that there is some 0 < b ≤ l such that G ⊆ {b, b+ 1, . . . , l − 1} and
ab = min{ai : b ≤ i ≤ e}. By induction hypothesis, there is some e ≤ l with
e− 1 ∈ G such that |Hb,e| ≥ k.

3. Assume that there is some 1 ≤ l′ ≤ l such that ai > a0 for all 1 ≤ i ≤ l′

and |G ∩ {1, 2, . . . , l′ − 1}| ≥ 2k−1 − 1. Since a1 − a0 ≤ 1, it follows that
a1 = a0 + 1 = min{ai : 1 ≤ i ≤ l′}. Thus, we can apply the induction
hypothesis to the sequence a1, a2, . . . , al′ and k − 1 and obtain e ≤ l′ such
that e − 1 ∈ G and |H1,e| ≥ k − 1. Since a0 < ai for all 1 ≤ i ≤ l′, we
conclude that H0,e = {a0} ∪H1,e contains at least k elements.

4. Assume that none of the above cases holds. Then in particular k ≥ 2. Let
b ≥ 1 be the smallest index such that ab = a0. If such b would not exist, case
3 would hold with l′ = l.
Let G′ = G ∩ {b, b + 1, . . . , l − 1}. We have ai > a0 for 1 ≤ i ≤ b − 1.
Because b − 1 cannot be taken as l′ in case 3, we either have b = 1, or
|G∩{1, 2, . . . , b−2}| ≤ 2k−1−2. In the former case, |G′| ≥ 2k−1−1 ≥ 2k−1−1
and in the latter case |G′| ≥ (2k − 1) − 2 − (2k−1 − 2) ≥ 2k−1 − 1. Since
ab = a0 = min{ai : 0 ≤ i ≤ l}, the induction hypothesis applies to the
shorter sequence ab, ab+1, . . . , al and G′. Thus, there is some e ≤ l such that
e− 1 ∈ G′ ⊆ G and |Hb,e| ≥ k − 1.
Since we are not in case 2, G′ 6= G whence there is some g ∈ G with
0 ≤ g ≤ b− 1. Since a0 < ai for all 0 < i ≤ b− 1 we also have a0 < ai for all
0 < i ≤ g. Since a0 is the minimal element of the sequence and since 0 < b
we have |H0,e| ≥ |{a0} ∪Hb,e| ≥ k.

�

Corollary G.2. Let k ∈ N \ {0} and let a0, a1, . . . , al be a sequence of positive
natural numbers such that ai − ai−1 ≤ 1 for 1 ≤ i ≤ l. Let G ⊆ {0, 1, . . . , l − 1}
be such that |G| ≥ a0 · 2k. Then there exist two indices 0 ≤ b < e ≤ l such that

1. e− 1 ∈ G,
2. ab = min{ai : b ≤ i ≤ e},
3. ai > ab for each 0 ≤ i < b and
4. |Hb,e| ≥ k.

Proof. For each 0 ≤ j ≤ l set

mj := min{ai : 0 ≤ i ≤ j}.

Notice that m0,m1, . . . ,ml is a decreasing sequence of numbers between 1 and
a0. Thus,

Mi := {j : 0 ≤ j ≤ l : mj = i}

is a (possibly empty) interval for each 1 ≤ i ≤ a0 and the Mi form a partition of
{j : 0 ≤ j ≤ l}. Thus, there is at least one 1 ≤ i ≤ a0 such that Gi := G∩Mi has
at least 2k many elements. Set b and c to be the minimal and maximal element,
respectively, of Mi. By definition ab = i = min{aj : j ∈Mi}, and ab < aj for all
0 ≤ j < b. We can now apply Lemma G.1 to (aj)j∈Mi

and Gi \ {c}. This shows
the existence of some e ≤ l such that e− 1 ∈ Gi ⊆ G and |Hb,e| ≥ k. �

52

We fix constants c ≥ 2 and m and define several sequences which are param-
eterised by c and m. In the next section, we will always use c = |TS | + 1 and
m will be the length of a fixed path in the graph of S. In the final part of this
section, we prove certain properties of these sequences that we will use in the
next section.

Definition G.3. 1. Set M1 := (m+ 1) · c and Mj := 2Mj−1 for j ≥ 2,

2. set M ′1 = m · c and M ′j := 2M
′
j−1 for j ≥ 2,

3. set N ′0 := c and N ′j := M ′j · 2N
′
j−1 for j ≥ 1,

4. set N0 := c and Nj := Mj · 2Nj−1 for j ≥ 1, and
5. set S1 := (m+ 1) · 3 · c · 2c and Sj := 2Sj−1 for j ≥ 2.

Lemma G.4. Mi −M ′i ≥ N ′i−1 for all i ≥ 1.

Proof. The proof is by induction on i. For i = 1 we just have M1 − M ′1 =
(m+ 1) · c−m · c = c = N ′0. For i ≥ 2 we have

Mi −M ′i = 2Mi−1 − 2M
′
i−1 = 2M

′
i−1(2Mi−1−M ′i−1 − 1)

≥ 2M
′
i−1(2N

′
i−2 − 1)

where the inequality holds due to our induction hypothesis. Since 2k ≥ 2k for
each k ∈ N, we have

2M
′
i−1(2N

′
i−2 − 1) ≥ 2 ·M ′i−1(2N

′
i−2 − 1).

Furthermore, N ′i−2 ≥ 1 implies that 2N
′
i−2 − 1 ≥ 2N

′
i−2−1. Hence,

2 ·M ′i−1(2N
′
i−2 − 1) ≥M ′i−1(2 · 2N

′
i−2−1) = N ′i−1.

�

Lemma G.5. Sj ≥ 3Nj for all j ≥ 1.

Proof. The proof is by induction on j. For j = 1 we have

S1 = (m+ 1) · 3 · c · 2c = 3 ·M1 · 2N0 = 3N1.

Now assume that j ≥ 2. Since Nj−1 ≥ N0 ≥ 2 holds, 2Nj−1 ≥ 3. We also have
Nj−1 = Mj−1 · 2Nj−2 ≥ Mj−1, so 2Nj−1 ≥ 2Mj−1 = Mj . Due to the induction
hypothesis, we have

Sj = 2Sj−1 ≥ 23Nj−1 = 2Nj−1 · 2Nj−1 · 2Nj−1

≥ 3 ·Mj · 2Nj−1 = 3Nj .

�

53

H Proof of Theorem 1.1

In this section we complete the proof of our main theorem. We start with several
technical lemmas which connect behaviour of runs described in terms of the stack
sizes and in terms of the history function (Subsection H.1). Then we give a lemma
ensuring that a run R satisfying a certain technical condition has a subrun S
which decomposes into a pumping run and a top0-non-erasing run (Subsection
H.2). Next, in Subsection H.3 we use this lemma in order to give a bound on
the size of stacks in finitely branching ε-contractions of collapsible pushdown
graphs: given such a finitely branching contraction G and a configuration c ∈ G
of distance m from the initial configuration, there is a bound on the size of the
stack of c in terms of m and of the size and the level of the system S generating
G. Using this bound we derive a pumping construction in Subsection H.4 which
proves the main theorem: for G and c as before, if there is a path starting in c of
length above some bound depending on m and on the size and level of S, then
there start infinitely many paths in c.

H.1 Technical Lemmas

Lemma H.1. Let 1 ≤ k ≤ n, let R be a run, let x be a position of a k-stack of
R(|R|), and y the position of its topmost (k − 1)-stack. Let ai be the size of the
k-stack of R(i) at hist(x,R�i,|R|) for each 0 ≤ i ≤ |R|. Assume that hist(x,R) =

topk(R(0)) and that a0 = min{ai : 0 ≤ i ≤ |R|}. Then hist(y,R) = topk−1(R(0)).

Recall that the size of a k-stack is just the number of its (k−1)-stacks. Before
we prove the lemma, we state a proposition which is an immediate consequence

of the definition of the history function (recall that for every position x1
k→ x2

we have x2 6= (0, . . . , 0)).

Proposition H.2. Let S be a run of length 1, and y a position of a (k−1)-stack
in S(1) for some 1 ≤ k ≤ n. Assume that the last non-zero coordinate of y and
hist(y, S) differ. Then hist(y, S) = topk−1(S(0)).

Proof (Lemma H.1). Set m := |R|. Let bi be the value of the last nonzero
coordinate of hist(y,R�i,m) for each 0 ≤ i ≤ m (notice that this is a level
k coordinate, as hist(y,R�i,m) always points to a (k − 1)-stack). We claim that
bi ≥ a0 for each 0 ≤ i ≤ m. To prove the claim we proceed by induction on i, from
m to 0. For i = m we have bm = am ≥ a0. Let i < m. If bi = bi+1 we are done.
By the above proposition, bi 6= bi+1 implies that hist(y,R�i,m) = topk−1(R(i)).
Due to Corollary D.10, hist(y,R�i,m) points into hist(x,R�i,m) whence ai is the
size of the topmost k-stack of R(i). Thus, bi = ai ≥ a0.

Finally we show that b0 ≥ a0. Let z := hist(y,R). Due to Proposition D.9 z
points into topk(R(0)), and contains only links of level at most k. If z is simple,
we are done: b0 ≥ a0 implies that z = topk−1(R(0)). Otherwise, as z points to a
(k− 1)-stack, the last link in z is of level (at least) k. Recall the notation of the
pack function from page 33. Coordinates of level greater than k in packnr(z)(z)

54

are the same as in topk(R(0)), the level k coordinate is b0 ≥ a0, and coordinates
of level smaller than k are zeroes. So packnr(z)(z) � topk−1(R(0)), and points

to a (k − 1)-stack. By Corollary D.14 z = topk−1(R(0)) which contradicts our
assumption that z is not simple. �

Lemma H.3. Let 1 ≤ k ≤ n, let R be a run with m = |R|, x a position of a
k-stack of R(|R|), and ai the size of the k-stack of R(i) at hist(x,R�i,|R|) for
each 0 ≤ i ≤ |R|. Assume that a0 < ai for all 0 < i < |R|, and a0 ≤ am. Then
R is a top0-non-erasing run.

Proof. If m = 0 there is nothing to show. Otherwise, a0 < a1 whence the first
operation of R has to be pushk.

– First assume that am > a0 whence a1 = min{ai : 1 ≤ i ≤ m}. Let y
be the topmost (k − 1)-stack of the k-stack of R(m) at x. Application of
Lemma H.1 to R�1,m, x and y implies that hist(y,R�1,m) = topk−1(R(1)).
Due to Proposition E.21 applied to R�1,m and k − 1 we obtain that R�1,m
is a topk−1-non-erasing run. Since top0(R(0)) � topk−1(R(1)), top0(R(0))
cannot be removed by R if topk−1(R(1)) is not removed whence R is a top0-
non-erasing run.

– Otherwise, am = a0. We apply the same argument as above, but to R�0,m−1.
We obtain that R�0,m−1 is a top0-non-erasing run. Since am−1 > am = a0
and since only the topmost k-stack can change its size, x = topk(R(|R|)), and
the operation between R(m− 1) and R(m) is popk or colk. As the topmost
k-stack of R(m) has size a0 and top0(R(0)) is present in R(m− 1), it is also
present in R(m).

�
Below we say that an l-stack s occurs in a k-stack t; this includes occurring

inside a link, and includes s = t.

Lemma H.4. Let 0 ≤ j < k ≤ n, let R be some run, x some position of a k-
stack in R(|R|), and ai the size of the k-stack at hist(x,R�i,|R|) in R(i). Assume
that ai > a|R| for all 0 ≤ i < |R|. Then every j-stack occurring in the k-stack at
x in R(|R|) occurs also in the k-stack at hist(x,R) in R(0).

Proof. Is is enough to prove, for 1 ≤ b ≤ a|R| that the b-th (k − 1)-stack of
the k-stack at x in R(|R|) is equal to the b-th (k − 1)-stack of the k-stack at
hist(x,R) in R(0). We prove this by induction on the length of R. For |R| = 0
this is immediate. Let |R| ≥ 1. In the light of the induction assumption, it is
enough to prove, for 1 ≤ b ≤ a|R|, that the b-th (k − 1)-stack of the k-stack
at hist(x,R�1,|R|) in R(1) is equal to the b-th (k − 1)-stack of the k-stack at
hist(x,R) in R(0).

– If the first operation in R is of level below k, then hist(x,R�1,|R|) = hist(x,R)
and only the topmost (k− 1)-stack is modified; this is not one of the consid-
ered (k − 1)-stacks, as a0 > a|R|.

55

– If the first operation in R is of level k, then hist(x,R�1,|R|) = hist(x,R)
and some (k − 1)-stacks are removed or added, but none of the considered
(k − 1)-stacks, as a0, a1 ≥ a|R| (this is also true for colk, as performing colk

is equivalent to performing several popk).
– If the first operation in R is of level greater than k, then the whole k-stacks

at hist(x,R�1,|R|) in R(1) and at hist(x,R) in R(0) are the same.

�

Lemma H.5. Let 1 ≤ k ≤ n, R a pumping run and x a position of a k-stack
in R(|R|). Assume that the size of the k-stack at x in R(|R|) is greater than
that of the k-stack at hist(x,R�i,|R|) in R(i) for some i. Then top0(R(0)) 6=
top0(R(|R|)).

Proof. Let m := |R|, and let aj be the size of the k-stack of R(j) at hist(x,R�j,|R|)
for all 0 ≤ j ≤ m. Take the maximal b such that ab < am (note that i ≤ b). Since
stack operations increase the number of stacks by at most one, ab+1 = ab + 1
whence maximality of b implies ab+1 = min{aj : b + 1 ≤ j ≤ m}. Set S :=
R�b+1,m. Notice that hist(x, S) = topk(S(0)) because only the topmost k-stack
can change its size. Since hist(top0(R(m)), R) = top0(R(0)), Proposition E.21
implies that R is a top0-non-erasing run. It means that topk−1(R(0)) is present
in R(b). Because the operation between R(b) and R(b+ 1) = S(0) is necessarily
pushk, it implies that top0(R(0)) ≺ topk−1(S(0)).

Application of Lemma H.1 to S and x shows that hist(y, S) = topk−1(S(0))
for some position y in R(m). Again using Proposition E.21, we conclude that S
is a topk−1-non-erasing run and we obtain

top0(R(0)) ≺ topk−1(S(0)) � topk−1(R(m)) ≺ top0(R(m)).

�

H.2 Main Technical Lemma

Below we present our main technical lemma. It shows how to find subruns of
long runs which consist of a pumping run followed by a top0-non-erasing run.
Recall that the function ctypeX maps configurations to a finite set of types. For
each collapsible pushdown system S, let TS denote the image of ctypeX with
respect to configurations of S.

Lemma H.6. Let S be an n-CPS, 0 ≤ k ≤ n, R be a run of S, and

Gk ⊆ {i < |R| : hist(topk(R(|R|)), R�i,|R|) = topk(R(i))}.

Furthermore, let sk be the k-stack of R(0) to which hist(topk(R(|R|)), R) points.
For 1 ≤ j ≤ k, let rj be the maximum of the sizes of j-stacks occurring in sk.
Let

N̂0 := |TS |+ 1 and N̂j = rj · 2N̂j−1 for 1 ≤ j ≤ k.

If |Gk| ≥ N̂k, then there are 0 ≤ x < y < z ≤ |R| such that

56

1. ctypeX (R(x)) = ctypeX (R(y)),
2. R�x,y is a pumping run,

3. hist(topk(R(|R|)), R�y,|R|) = topk(R(y)),

4. top0(R(x)) 6= top0(R(y)) or

Gk ∩ {x, x+ 1, . . . , y − 1} 6= ∅,

5. z − 1 ∈ Gk, and
6. R�y,z is a top0-non-erasing run.

Proof. We prove the lemma by induction on k. Consider the case that k = 0. By
assumption |G0| ≥ |N̂0| > |TS |. Thus, there are x, y ∈ G0 with x < y such that
ctypeX (R(x)) = ctypeX (R(y)). Since x, y ∈ G0,

hist(top0(R(|R|)), R�x,|R|) = top0(R(x)), and

hist(top0(R(|R|)), R�y,|R|) = top0(R(y)).

Due to Proposition D.5, we conclude that

hist(top0(R(y)), R�x,y) = top0(R(x))

which means that R�x,y is a pumping run. Since x ∈ G0, we have G0 ∩ {x, x +
1, . . . , y − 1} 6= ∅. By definition of y, R�y,|R| is a pumping run of length at least
1. Due to the characterisation of pumping runs (cf. Lemma E.26), this run starts
with some push operation. Thus, for z := y + 1, we have z − 1 ∈ G0 and R�y,z
is a top0-non-erasing run. Thus, x, y, and z satisfy the claim of the lemma.

Now consider the case k ≥ 1 and assume that the lemma holds for all k′ < k.
Let ai be the size of the k-stack of R(i) at position hist(topk(R(|R|)), R�i,|R|)
for 0 ≤ i ≤ |R|. Due to Proposition D.6 we know that ai − ai−1 ≤ 1 for all

1 ≤ i ≤ |R|. By definition a0 ≤ rk whence |Gk| ≥ N̂k ≥ a0 · 2N̂k−1 . Hence, we
can apply Corollary G.2 to (ai)0≤i≤|R| and obtain indices 0 ≤ b < e ≤ |R| such
that

1. e− 1 ∈ Gk,
2. ab = min{ai : b ≤ i ≤ e},
3. ai > ab for all 0 ≤ i < b and
4. |Hb,e| ≥ N̂k−1 where

Hb,e = {i : b ≤ i ≤ e− 1,

ai ≤ aj for all i ≤ j ≤ e, and

ai < aj for all i < j ≤ nGk
(i)}

with nGk
(i) := min{g ∈ Gk : g ≥ i}.

Set R′ := R�b,e and Gk−1 := {h − b : h ∈ Hb,e}. Let us first assume that the
following claims are true:

A) for each h ∈ Hb,e we have hist(topk−1(R(e)), R�h,e) = topk−1(R(h)),

57

B) for all i ≤ e− 1, hist(topk(R(e)), R�i,e) = hist(topk(R(|R|)), R�i,|R|), whence

ai is the size of the k-stack in R(i) at hist(topk(R(e)), R�i,e), and

C) if tk−1 is the (k−1)-stack at hist(topk−1(R′(|R′|)), R′), then the size of every
j-stack occurring in tk−1 for j ≤ k − 1 is bounded by rj .

We postpone the proof of these claims. Claim A implies (by shifting from R to R′)
that for each g ∈ Gk−1 we have hist(topk−1(R′(|R′|)), R′�g,|R′|) = topk−1(R′(g)).
Together with Claim C this allows us to apply the induction hypothesis to k−1,
R′ and Gk−1. We obtain three indices 0 ≤ x′ < y′ < z′ ≤ |R′|; let x = x′ + b,
y = y′ + b, and let z be the smallest index such that z ≥ z′ + b and z − 1 ∈ Gk
(it exists because z′ + b ≤ e and e− 1 ∈ Gk). Note that

1’. ctypeX (R(x)) = ctypeX (R(y)),
2’. R�x,y is a pumping run,

3’. hist(topk−1(R(e)), R�y,e) = topk−1(R(y)),
4’. top0(R(x)) 6= top0(R(y)) or

Hb,e ∩ {x, x+ 1, . . . , y − 1} 6= ∅,

5’. z′ + b− 1 ∈ Hb,e, and
6’. R�y,z′+b is a top0-non-erasing run.

Note that items 1’ and 2’ coincide with items 1 and 2 of the lemma. We now
prove items 3 – 6.

3. Due to Corollary D.10, item 3’ implies that

hist(topk(R(e)), R�y,e) = topk(R(y)).

Together with Claim B this yields item 3.
4. Assume that top0(R(x)) = top0(R(y)). Due to 4’, there is some

h ∈ Hb,e ∩ {x, x+ 1, . . . , y − 1} 6= ∅.

Items 2’, 3’, and Claim A, after application of Corollary D.10, imply

hist(topj(R(y)), R�x,y) = topj(R(x)),

hist(topj(R(e)), R�y,e) = topj(R(y)), and

hist(topj(R(e)), R�h,e) = topj(R(h))

for all j ≥ k − 1. Due to Proposition D.5, this implies that

hist(topj(R(b)), R�a,b) = topj(R(a)) (4)

for each pair a, b ∈ {x, h, y, e} with a ≤ b. With two applications of Lemma
D.11 (to R�h,y and R�x,h) we obtain that topk−1(R(h)) is lexicographi-

cally bounded by topk−1(R(x)) = topk−1(R(y)) from below and from above
whence it is this position. Claim B and equation (4) (setting j = k) imply
that ax, ah and ay are the sizes of the topmost k-stacks of x, h and y, re-
spectively. It follows that ax = ah = ay. Since h ∈ Hb,e, there exists some
g ∈ Gk such that x ≤ h ≤ g and aj > ah for all h < j ≤ g. As ay = ah, we
conclude that g < y whence Gk ∩ {x, x+ 1, . . . , y − 1} 6= ∅.

58

5. z − 1 ∈ Gk is satisfied by definition of z.
6. If z = z′ + b, items 6 and 6’ coincide. Assume that z > z′ + b. Because
z′ + b− 1 ∈ Hb,e, we know that aj > az′+b−1 for z′ + b ≤ j ≤ z − 1 because
z is minimal such that z − 1 ≥ z′ + b − 1 and z − 1 ∈ Gk. In particular,
z > z′ + b implies az′+b > az′+b−1. Since z ≤ e, z′ + b − 1 ∈ Hb,e implies
also that az ≥ az′+b−1. Thus, Lemma H.3 can be applied to R�z′+b−1,z. It
follows that R�z′+b−1,z is a top0-non-erasing run. Since R�y,z′+b is also a
top0-non-erasing run, R�y,z is one as well (cf. Proposition E.20).

Thus, x, y and z satisfy the lemma if Claims A – C hold. We continue with a
simultaneous proof of Claims A and B. We start with showing that for each
h ∈ Hb,e

hist(topk(R(|R|)), R�h,|R|) = topk(R(h)). (5)

Consider any h ∈ Hb,e. If h ∈ Gk, the condition is satisfied by definition of
Gk. Otherwise, we conclude that ah+1 > ah. But only the topmost k-stack can
change its size whence equation (5) holds.

Recall that e− 1 ∈ Gk, which implies that

hist(topk(R(|R|)), R�e−1,|R|) = topk(R(e− 1)). (6)

Together with equation (5) this implies

hist(topk(R(e− 1)), R�h,e−1) =

= hist(topk(R(|R|)), R�h,|R|) = topk(R(h))

for each h ∈ Hb,e. By definition of Hb,e, ah = min{ai : h ≤ i ≤ e}. Additionally,
equation (6) implies that ai (for b ≤ i ≤ e − 1) is the size of the k-stack of
R(i) at hist(topk(R(e− 1)), R�i,e−1), whence we may apply Lemma H.1 to x :=

topk(R(e− 1)) and to R�h,e−1. This yields

hist(topk−1(R(e− 1)), R�h,e−1) = topk−1(R(h)) (7)

for each h ∈ Hb,e.
We continue by case distinction on the operation between e− 1 and e in R.

1. Due to equation (6), the operation at e − 1 cannot be popk
′

or colk
′

for
k′ > k.

2. If the operation at e− 1 is of level below k or is a push operation, then

hist(topk−1(R(e)), R�e−1,e) = topk−1(R(e− 1)).

Due to equation (7), this implies Claim A. Together with (6) and Corollary
D.10, this implies

hist(topk(R(e)), R�e−1,e) = hist(topk(R(|R|)), R�e−1,|R|).

Using Proposition D.5, Claim B follows directly.

59

3. Assume that the operation at e−1 is popk or colk. We conclude immediately
that

hist(topk(R(|R|)), R�e,|R|) = topk(R(e)),

because this is the only position p of R(e) that satisfies hist(p,R�e−1,e) =

topk(R(e − 1)) (and because e − 1 ∈ Gk). With Proposition D.5, Claim B
follows directly.
Furthermore, ae is the size of the stack of R(e) at topk(R(e)). By definition
of Hb,e, we have ah = min{ai : h ≤ i ≤ e}. Application of Lemma H.1 to
x := topk(R(e)) and to R�h,e for each h ∈ Hb,e yields Claim A.

For the proof of Claim C, let tk−1 be the (k − 1)-stack of R′(0) at the posi-
tion hist(topk−1(R′(|R′|)), R′) which is by definition the (k− 1)-stack of R(b) at
hist(topk−1(R(e)), R�b,e). Due to Corollary D.10, hist(topk−1(R(e)), R�b,e) points

into hist(topk(R(e)), R�b,e). Hence, for j ≤ k− 1 every j-stack occurring in tk−1

occurs also in the k-stack of R(b) at hist(topk(R(e)), R�b,e). Due to Claim B,

ai is the number of (k − 1)-stacks of the stack at hist(topk(R(e)), R�i,e) for

all i ≤ b, and the k-stack of R(0) at hist(topk(R(e)), R�0,e) is sk. We have
ai > ab for all 0 ≤ i < b, so we can apply Lemma H.4 to R�0,b and position

hist(topk(R(e)), R�b,e). We conclude that for j ≤ k − 1 every j-stack occurring

in tk−1 occurs also in sk. Thus, its size is bounded by rj . �

H.3 Finitely Branching Epsilon-Contractions

The basic proof concept for the pumping lemma is as follows. If we find a pump-
ing run which starts and ends in configurations of the same type, then we can
apply Proposition F.1 to this run and obtain arbitrarily long runs in the graph
of the CPS. But if we consider ε-contractions, all runs that we construct may
consist of ε-edges except for a bounded number of transitions. In this case, the
longer and longer runs would perhaps always induce the same path in the ε-
contraction. In this section we show how to overcome this problem in the case
of finitely branching ε-contractions.

We first derive a technical condition that allows to conclude that the ε-
contraction of some collapsible pushdown graph is infinitely branching. This
result basically uses the naive pumping approach described before but we add
some assumptions such that we really obtain larger and larger runs that end in
larger and larger stacks that belong to the nodes of the ε-contraction. Afterwards,
we use this result in order to define a bound on the difference of stack sizes
between two nodes of a finitely branching ε-contraction that are connected by
an edge. In the next section we use this fact in the pumping construction in the
following way: instead of talking about a configuration being in some distance
from the initial configuration in the ε-contraction, we talk about a configuration
having stack sizes bounded by some numbers.

Without loss of generality (by doubling the number of states of the system),
we can assume that for each state q transitions leading to state q are all ε-
transitions or are all non-ε-transitions.

60

Proposition H.7. Let S be some CPS of level n such that for each state q
transitions leading to state q are all ε-transitions or are all non-ε-transitions.
Let R be a run starting in a configuration of the ε-contraction G of the graph of
S. Then G is infinitely branching if there are positions 0 ≤ x < y ≤ |R| such
that

1. ctypeX (R(x)) = ctypeX (R(y)),
2. R�x,y is a pumping run in P>,ε, i.e., a pumping run such that top0(R(x)) ≺

top0(R(y)) and all edges of R�x,y are labelled by ε, and
3. R�y,|R| is a top0-non-erasing run ending with a non-ε-transition.

Proof. Let q be the state of R(y). We apply Proposition F.1 to R�x,y and ob-
tain infinitely many ε-labelled runs (Ri)i∈N from R(x) to ci = (q, si) such that
top0(si) ≺ top0(si+1) for all i ∈ N. Now we apply Proposition F.2 to R�y,|R| and

to ci. We obtain a top0-non-erasing run S′i from ci. It ends in the same state as
R whence it ends with a non-ε-transition. Let Si be the prefix of S′i which ends
after the first occurrence of a non-ε-transition. Let z ≤ x be maximal such that
R(z) corresponds to a node of G. Then Ui := R�z,y ◦ Ri ◦ Si connects R(z) to
one of its successors in G whose stack ti contains the position top0(si). Since ti
contains only finitely many positions, and the (top0(sj))j≥i form an infinite se-
quence of pairwise distinct positions, for each i there is a j ≥ i such that top0(sj)
is no position in ti. This immediately implies ti 6= tj . By induction, we conclude
that the Ui connect R(z) with infinitely many pairwise different successors in G
whence G is infinitely branching at R(z). �

Now we are prepared to prove that in each finitely branching ε-contraction
of a collapsible pushdown system the stack sizes grow only in a bounded manner
from each node to its successors. For the combinatorial part in the proof we use
the sequences from Definition G.3 without reference.

Lemma H.8. Let S be a CPS of level n such that the ε-contraction G of its
configuration graph is finitely branching and such that transitions leading to some
state q are either all ε-transitions or all non-ε-transitions. Set c := |TS |+ 1. Let
R be a run starting in the initial configuration whose last edge is not labelled by
ε and which corresponds to a path of length m in G. The size of every k-stack of
R(|R|) is at most Mk for all 1 ≤ k ≤ n.

Proof. The proof is by induction on m. For m = 0, the claim is trivial (because
c ≥ 2 and the initial stack of any level has size 1). Assume that we have proven
the claim for all paths of length below m and assume that R describes a path
of length m in G. Let R(b) correspond to the (m− 1)-st node of G on this path
and set S := R�b,|R|.

Heading for a contradiction assume that p is the position of a k-stack in
R(|R|) such that the size of this stack is greater than Mk.

For 0 ≤ i ≤ |S|, let ai be the size of the k-stack of S(i) at hist(p, S�i,|S|). By
induction hypothesis, the size of any k-stack of S(0) is bounded by M ′k. Thus,
we have a|S| > Mk and a0 ≤M ′k. Let G ⊆ {0, 1, . . . , |S|−1} contain all elements
i such that ai < aj for all i < j ≤ |S|. Since ai − ai−1 ≤ 1 for 1 ≤ i ≤ |S|,

61

for each i in {M ′k,M ′k + 1, . . . ,Mk} we have an index j such that aj = i and
aj ∈ G. Using Lemma G.4 we conclude that |G| ≥Mk −M ′k ≥ N ′k−1. Since M ′k
is a bound on the sizes of k-stacks in S(0), it follows that G is big enough in
order to apply Lemma H.6 for k − 1. We want to apply this lemma to the run
T := S�0,max(G)+1.

In order to satisfy the requirements of this lemma, we have to prove that
hist(topk−1(T (|T |)), T �g,|T |) = topk−1(T (g)) for all g ∈ G. Choose g ∈ G arbi-
trarily. Since ag+1 > ag, the k-stack at hist(p, S�g,|S|) is smaller than that at
hist(p, S�g+1,|S|). Due to Proposition D.6, this requires that

hist(p, S�g,|S|) = topk(S(g)), and

hist(p, S�g+1,|S|) = topk(S(g + 1)).

Especially, hist(p, S�|T |,|S|) = topk(T (|T |)) whence ai for i ≤ |T | is the size of

the stack at hist(topk(T (|T |)), T �i,|T |). We conclude that for all g ∈ G we have

hist(topk(T (|T |)), T �g,|T |) = topk(T (g)).

Furthermore, for each i > g we have ag < ai whence we can apply Lemma H.1
to x := topk(T (|T |)) and to the run R�g,|T | obtaining that

hist(topk−1(T (|T |)), T �g,|T |) = topk−1(T (g)).

Application of Lemma H.6 to T and k − 1 yields indices 0 ≤ x < y < z ≤ |T |
such that

1. ctypeX (S(x)) = ctypeX (S(y)),
2. S�x,y is a pumping run,
4. top0(S(x)) 6= top0(S(y)) or

G ∩ {x, x+ 1, . . . , y − 1} 6= ∅,

5. z − 1 ∈ G, and
6. S�y,z is a top0-non-erasing run.

By definition of G, for g ∈ G and g < y we have ag < ay. In other words
the size of the k-stack in S(y) at hist(p, S�y,|S|) is greater than that of the k-
stack in S(g) at hist(p, S�g,|S|). Thus, if there is a g ∈ G ∩ {x, x+ 1, . . . , y − 1},
application of Lemma H.5 to S�x,y shows that top0(S(x)) 6= top0(S(y)). In the
light of Property 4), we always have top0(S(x)) 6= top0(S(y)).

Since z−1 ∈ G, we have ai > az−1 for all z ≤ i ≤ |S|. Application of Lemma
H.3 to S�z−1,|S| shows that S�z−1,|S| is a top0-non-erasing run. Since Property

6) implies that S�y,z−1 is top0-non-erasing, we conclude using Proposition E.20
that S�y,|S| is top0-non-erasing run.

Recall that the last edge of S is the only edge which is not labelled ε. Thus
the assumptions of Proposition H.7 are satisfied by S, x and y whence the lemma
yields that G is infinitely branching. This contradicts our assumption. Thus, we
conclude that every j-stack in R(|R|) has size bounded by Mj . �

62

H.4 Proof of the Pumping Lemma

Having bounded the size of stacks in finitely branching ε-contractions of push-
down graphs, we can prove the main theorem.

Note that – doubling the number of states of the system – we can enforce
that for each ε-transition δ1 and each non-ε-transition δ2, δ1 leads to a different
state than δ2.

Having obtained this condition the proof of the main theorem follows from
the following theorem.

Theorem H.9. Let S be a CPS of level n such that the ε-contraction G of its
graph is finitely branching and such that for each state q transitions leading to
state q are all ε-transitions or are all non-ε-transitions. Let cm be some config-
uration of distance m from the initial configuration.

Let S1 = (m + 1) · CS and Sj = 2Sj−1 for 2 ≤ j ≤ n, where CS = 3 · c · 2c
with c = |TS |+ 1. Assume also that in G there exists a path p of length at least
Sn which starts in cm.

Then there are infinitely many paths in G which start in cm and end in
configurations having the same state as the last configuration of p.

Proof. From Definition G.3 we obtain sequences Mi and Ni. Note that the se-
quence Si defined in this lemma and the sequence Si defined in that definition
agree. Due to the existence of p, there is a run R starting in cm such that Sn
transitions in R are not labelled by ε and especially the last transition is not
labelled ε. Let G be the set of those 0 ≤ i < |R| such that the transition between
R(i) and R(i+ 1) is not labelled ε. Since S is of level n, for any configuration c′

of S the only position of an n-stack in c′ is topn(c′) = (0, 0, . . . , 0). Especially,
every g ∈ G satisfies hist(topn(R(|R|)), R�g,|R|) = topn(R(g)). Furthermore, we
saw in Lemma H.8 that Mi is an upper bound for the size of each i-stack in cm
and for each 1 ≤ i ≤ m. Thus, Lemma G.5 implies that |G| = Sn ≥ 3Nn > N̂n
and we can apply Lemma H.6 to R. We obtain numbers 0 ≤ x < y < z ≤ |R|
such that

1. ctypeX (R(x)) = ctypeX (R(y)),
2. R1 := R�x,y is a pumping run,
4. top0(R(x)) 6= top0(R(y)) or

G ∩ {x, x+ 1, . . . , y − 1} 6= ∅,

5. z − 1 ∈ G, and
6. R2 := R�y,z is a top0-non-erasing run.

G ∩ {x, x + 1, . . . , y1} = ∅ is equivalent to saying that all labels in R1 are ε.
Moreover, since top0(R(x)) 6= top0(R(y)) in this case, we conclude that R1 ∈
P>,ε. As z − 1 ∈ G, Ry,z ends by a non-ε-transition. Thus, Proposition H.7
implies that G is infinitely branching which contradicts our assumptions.

Thus, R1 contains at least one edge with a label different from ε. Due to
Proposition F.1, there are runs (Si)i∈N such that

63

– Si starts in R(x),
– contains at least i transitions whose label is not ε and
– ctypeX (R(x)) v ctypeX (Si(|Si|)).

Let Ti be the copy of R�y,|R| obtained by application of Proposition F.3 starting
in Si(|Si|). Then Ui := R�0,x ◦ Si ◦ Ti is a run from cm to ei := Ti(|Ti|) that
contains at least i non-ε labelled edges. Furthermore, the state of ei is the final
state of R. Due to our assumption on the pushdown system, this state determines
whether the edge to ei is labelled ε. Since the last edge of R is not labelled ε,
the edge to ei is not labelled ε, whence ei is a node in G. Thus, Ui induces a
path of length at least i starting in cm and ending in a configuration with the
same state as the final configuration of p. �

I Collapsible Pushdown Systems as Tree Generators

In this section we describe how collapsible pushdown system can be used to
generate trees and we show that part 2 of Corollary 1.2 follows from Theorem
1.1. We consider ranked, potentially infinite trees. We fix an alphabet A of tree
labels and a function rank : A→ N. Some node of a tree labelled by a ∈ A has
always rank(a) many children.

We say that a system S generates a tree over alphabet (A, rank) if it satisfies
the following (syntactical and semantical) restrictions.

1. The input alphabet of S is A∪ {0, 1, . . . ,m− 1}, where m = max{rank(a) :
a ∈ A}.

2. The state set of S can be partitioned into Qε, Q0, Q1, . . . , Qm such that the
following holds for every stack symbol γ. For each state q ∈ Qε there is at
most one transition (q, γ, a, p, op), and a ∈ A ∪ {ε}; p ∈ Qrank(a) if a ∈ A,
and p ∈ Qε if a = ε. For each state q ∈ Qi (0 ≤ i ≤ m) there are exactly
i transitions (q, γ, a, p, op); for each of them a is a different number from
{0, 1, . . . , i− 1}, and for each of them p ∈ Qε. Additionally, the initial state
is in Qε.

3. From each configuration of S reachable from the initial one and having a
state in Qε there exists a run to a configuration having a state in Q \ Qε.
From each configuration of S reachable from the initial one and having the
state in some Qi (0 ≤ i ≤ m), all of the i transitions are applicable.

Definition I.1. The tree generated by a system S has as nodes runs from the
initial configuration to a configuration having a state in Q \ Qε. A node R is
labelled by a ∈ A if the last transition of R is labelled by a. A node S is the i-th
child (0 ≤ i ≤ rank(a)−1) of R if S = R◦T where the first edge of T is labelled
by i and it is the only edge of T labelled by a number from {0, 1, . . . ,m− 1}.

The conditions on S guarantee that the above definition really defines an A-
labelled ranked tree. Condition 2 says that the system behaves in a deterministic
way if the state is in Qε. It performs several ε-transitions and, finally, a transition

64

reading a letter a from A; this generates a tree node having letter a. Immediately
after that the state is in Qrank(a), so there are rank(a) possible transitions; they
correspond to the children of the node just generated. Condition 3 guarantees
that this construction will never block.

Now we come to the proof of the second part of Corollary 1.2. Let A =
{a, b, c}, where rank(a) = 2, rank(b) = 1, and rank(c) = 0). For level n consider
the tree Tn in which

– the rightmost path is labelled by a, and
– the left subtree of the i-th a-labelled node is a path consisting of expn(i)

many b-labelled nodes, ending with a c-labelled node.

It is known that Tn can be generated by a pushdown system (without collapse)
of level n + 1. (cf. Example 9 in [2], where Blumensath provides a very similar
pushdown system).

Assume that there exists a collapsible pushdown system of level n which
generates Tn. Let S be the system obtained from it by replacing every A-labelled
transition by an ε-transition (so we leave only labels 0 and 1; we remove a, b,
c for simplicity). Let G be the ε-contraction of the configuration graph of S.
Let m be a number such that expn(m − 1) > expn−1((m + 1) · CSL), where
CSL is the constant from Theorem 1.1 for L = {0, 1}∗. Let cm be the node of
G such that the path from the initial configuration to cm is labelled by 1m−10.
By definition of S such node exists, and in G there exists a path p from cm of
length expn(m− 1)− 1 (labelled by zeroes). Application of Theorem 1.1 yields
arbitrarily long paths from cm which contradicts with our assumption about the
form of the tree generated by S.

J Decidability of Finite Branching

In this section we show that types can be used to decide whether a given n-CPS
S generates a configuration graph whose ε-contraction is finitely branching. As
a consequence we obtain also an algorithm checking whether this ε-contraction
is finite, and whether its unfolding into a tree is finite.

Let us remark that the same can be shown in a nontrivial way using de-
cidability of µ-calculus on configuration graphs of n-CPS’s, and using (multiple
times) the reflection of n-CPS’s with respect to the µ-calculus (i.e., the result
from [A1]). This algorithm (at least its variant which we have in mind) works in
m-EXPTIME for some m = O(n2); the reason is that each use of the µ-calculus
reflection increases the size of the system (more or less) n-times exponentially,
and we use it (more or less) n times.

The proof using types is very elegant: first we observe that Proposition H.7
basically says that an ε-contraction of a configuration graph is infinitely branch-
ing if and only if it contains a pumping run from P<,ε that starts and ends in
a stack of the same type. Due to the pumpability of pumping runs, this is the
same as saying there are arbitrarily large sequences of pumping runs from P<,ε.
Thus, checking for infinite branching is the same as checking for long sequences

65

of pumping runs. The second ingredient of our proof is the fact that families de-
fined by well-formed rules are closed under composition (cf. Lemma 4.4). Thus,
for a well-chosen family Y, the function ctypeY yields informations about long
sequences of pumping runs and we only have to check whether the initial con-
figuration has a type that witnesses such a sequence in order to decide infinite
branching of the ε-contraction of a configuration graph.

As previously we may assume that for each state q transitions leading to state
q are all ε-transitions or are all non-ε-transitions. Let S be such system, and G
be the ε-contraction of the configuration graph of S. Let X be the family of sets
of runs defined in Section 5. Recall that it contains the set P<,ε of pumping runs
increasing the stack and using only ε-transitions, the set N0 of top0-non-erasing-
runs, and the set Q of all runs.

We begin by giving a “if and only if” version of Proposition H.7.

Claim. System S is infinitely branching if and only if there exists a run R from
the initial configuration, and indices 0 ≤ x < y ≤ |R| such that

1. ctypeX (R(x)) = ctypeX (R(y)),
2. R�x,y is a pumping run in P<,ε, i.e., a pumping run such that top0(R(x)) ≺

top0(R(y)) and all edges of R�x,y are labelled by ε, and
3. R�y,|R| is a top0-non-erasing run, i.e., a run in N0, ending with a non-ε-

transition.

Proof. The right-to-left implication is just Proposition H.7. For the opposite di-
rection we inspect the proof of Lemma H.8 Assume that G is infinitely branching.
Then for some m the thesis of Lemma H.8 is not satisfied: there exists a run
R from the initial configuration which corresponds to a path of length m in G
such that for some k the size of some k-stack of R(|R|) is greater than Mk (as
otherwise we trivially have finite branching). Choose the minimal such m. Notice
that the proof of Lemma H.8 goes by contradiction: it indeed assumes that such
run R exists. As a conclusion on the end of the proof we obtain a run S which
satisfies assumptions of Proposition H.7. This is almost what we need, but S
does not necessarily start in the initial configuration. However for sure it starts
in a reachable configuration, so we can append at the beginning of S the run
from the initial configuration to S(0); such run still satisfies the conditions on
the right side of our claim. �

Now consider a family Y (described by wf-rules) containing the set of runs

V = Q ◦ P<,ε ◦ P<,ε ◦ · · · ◦ P<,ε ◦ N0,

where the number of the P<,ε factors is a fixed number greater than the number
of possible values of ctypeX . Due to the claim a system is infinitely branching if
and only if there is a run from V starting in the initial configuration and ending
by a non-ε-transition. Indeed, if the system is infinitely branching, we have a run
R like in the claim. Because ctypeX (R(x)) = ctypeX (R(y)), we can again produce
a pumping run S1 from R(y) such that ctypeX (S1(0)) v ctypeX (S1(|S1|)) (by
Theorem 3.1), and then again a pumping run S2 from S1(|S1|). This way we

66

can produce arbitrarily many pumping runs (as many as required in V); let Sm
be the last of them. Then we have ctypeX (R(y)) v ctypeX (Sm(|Sm|)) and by
Proposition F.2 there is a top0-non-erasing run from Sm(|Sm|) ending in the
same state as R, thus ending by a non-ε-transition. The composition of all these
runs is in V. Oppositely, assume that we have a run R in V. Because the number
of the factors P<,ε in the definition of V is greater than the number of possible
values of ctypeX , we can find two indices x < y in R between these factors such
that ctypeX (R(x)) = ctypeX (R(y)). Because P<,ε ◦ P<,ε ⊆ P<,ε, we see that
R�x,y ∈ P<,ε. Similarly, because P<,ε ◦ N0 ⊆ N0, we see that R�y,|R| ∈ N0.
Thus, we can use the claim and obtain that G is infinitely branching.

Now the algorithm checking emptiness is very easy: it is enough to check if
from the initial configuration there is a run in V ending by a non-ε-transition. To
do that, we compute typeY of the initial stack, and we check whether it contains
a triple (qI ,V, q), where q is a state such that all transitions leading to state
q are non-ε-transitions. Notice that the number of possible values of ctypeX is
n-times exponential in the size of the system. Thus, also the size of the family
Y is n-times exponential (beside of the whole composition V it contains also all
shorter compositions). Thus, the number of run descriptors for the family Y is
2n-times exponential in the size of the system. It follows that the algorithm is
in 2n-EXPTIME.

As a corollary we obtain an algorithm checking whether the ε-contraction of
the configuration graph of a given CPS S is finite. In order to decide this, we
convert S into another system R such that the ε-contraction of the graph of S
is finite if and only if the ε-contraction of the graph of R is finitely branching.
We again assume that for each state q of S transitions leading to state q are
all ε-transitions or are all non-ε-transitions. In R we have the same transitions
as in S, but all labelled by ε. Additionally, we add a new initial state and a
transition labelled different from ε to the old initial state which preserves the
stack. Moreover, from each state q such that all transitions leading to state q in
S are not ε-transitions, in R we make a transition to a new state qdie labelled by
some letter (there are no transitions from state qdie). After this conversion, the
whole graph of S “lives” in the ε-transitions following the initial configuration
of S but every node of the ε-contraction of the graph of S induces an edge from
this initial configuration in the ε-contraction of the graph of R.

Moreover, we also obtain an algorithm checking whether the unfolding into
a tree of the ε-contraction of the configuration graph of a given CPS S is finite.
Indeed, a tree is finite if it is finitely branching (which we check as above), and
if it does not contain infinite paths. By Theorem 1.1 this tree contains infinite
paths if and only if it contains a path (from the initial configuration) of length at
least expn−1(CS). A run containing at least expn−1(CS) non-ε-transitions can be
easily defined using wf-rules, thus we can check whether such run exists from the
initial configuration by calculating the type of the initial configuration. (Whether
the tree contains infinite paths can be also easily expressed in µ-calculus, hence
decided using the µ-calculus decidability).

67

References

A1. C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre. Recursion schemes and
logical reflection. In LICS, pages 120–129. IEEE Computer Society, 2010.

68

	Strictness of the Collapsible Pushdown Hierarchy

