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ABSTRACT
Strigolactones (SLs), first identified for their role in parasitic and
symbiotic interactions in the rhizosphere, constitute the most recently
discovered group of plant hormones. They are best known for their
role in shoot branching but, more recently, roles for SLs in other
aspects of plant development have emerged. In the last five years,
insights into the SL biosynthetic pathway have also been revealed
and several key components of the SL signaling pathway have been
identified. Here, and in the accompanying poster, we summarize our
current understanding of the SL pathway and discuss how this
pathway regulates plant development.
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Introduction
Strigolactones (SLs) are evolutionarily ancient plant signaling
molecules that play roles in diverse organisms [such as bryophytes,
angiosperms and arbuscular mycorrhizal (AM) fungi] and in several
aspects of plant development. The name ‘strigolactone’ comes from
the first identified role of these compounds as stimulants of seed
germination in species of the parasitic weed Striga (Cook et al.,
1966) and from their lactone ring-containing chemical structure. In
2008, SLs were shown to play a role in repressing shoot branching
and hence were included in the list of plant hormones that modulate
plant development. These early studies showed that SL-deficient
mutants are highly branched and that application of the synthetic SL
GR24 inhibits axillary bud outgrowth (Gomez-Roldan et al., 2008;
Umehara et al., 2008). Since then, novel functions of SLs in plant
development have continuously been identified (Brewer et al.,
2013; Ruyter-Spira et al., 2013). Furthermore, parts of the SL
biosynthesis pathway have recently been deciphered, with the
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discovery of carlactone (CL) as a key intermediate for SL
biosynthesis as well as of novel bioactive SL-like compounds
(Abe et al., 2014; Al-Babili and Bouwmeester, 2015; Seto et al.,
2014). Receptors for SLs, and some of their downstream effectors,
have also been identified (Hamiaux et al., 2012; Xiong et al., 2014).
Here, we summarize our current understanding of the SL

biosynthesis and signaling pathways, we describe the different
functions of SLs during plant development, and we discuss the
evolutionary origin of SL signaling. Models of SL signaling and
crosstalk with other plant signaling pathways in the context of shoot
branching are also presented.

Chemical structure and biosynthesis of natural SLs
The structural core of SLs is a tricyclic lactone (containing rings that
are referred to as ABC), with different carbon A-ring sizes and
substitution patterns on AB-rings. This core is connected via an enol
ether bridge to an invariable α,β-unsaturated furanonemoiety (termed
the D-ring). To date, at least 20 naturally occurring SLs have been
identified and characterized in root exudates of various land plants
(Al-Babili and Bouwmeester, 2015; Tokunaga et al., 2015). They can
be separated into two types – strigol and orobanchol – according to the
stereochemistry of the B–C-ring junction, with both having a
conserved R-configuration at the C-2′ position. The bioactiphore
responsible for the various SL bioactivities resides within the region
that connects the D-ring to the core, which can differ according to SL
type (Zwanenburg and Pospíšil, 2013).
Recent studies have provided some insights into the SL

biosynthesis pathway. SLs are synthesized from the key precursor
CL, which is derived from all-trans β-carotene via the action of an
isomerase (D27) and two carotenoid cleavage dioxygenases (CCD7
and CCD8). These steps of the SL biosynthesis pathway take place in
the plastid and the resulting CL is then exported into the cytoplasm.
The subsequent steps involve CL oxidation, further ring closures and
functionalizations involving members of the CYP711 family
(MAX1) (Zhang et al., 2014), eventually giving rise to SLs and SL-
like compounds. InArabidopsis, the unique enzymeMAX1 is able to
transform CL to carlactonoic acid, which is further transformed into
the SL-like compound methyl carlactonoate (MeCLA) by an
unknown enzyme (Abe et al., 2014). Other SL-like compounds,
with a CL-type structure lacking the canonical ABC-rings (Kim et al.,
2014; Ueno et al., 2014), have been discovered in different plants,
highlighting the structural diversity of this class of compounds. Once
synthesized, all of these compounds may be transported within the
plant and in the rhizosphere. PhPDR1, a member of the ABC family,
has been identified as a potential SL transporter (Kretzschmar et al.,
2012; Sasse et al., 2015).
SLbiosynthesis,which occursmainly in roots but also in the stem, is

tightly regulated (Al-Babili and Bouwmeester, 2015). Phosphate
starvation, for example, strongly induces SLbiosynthesis (López-Ráez
et al., 2008). In addition, high levels of SLbiosynthesis gene transcripts
(in particular CCD7 and CCD8) in SL-deficient and SL-insensitive
mutants in several species indicate that there is feedback regulation
of SL biosynthesis (Hayward et al., 2009; Proust et al., 2011).

SL perception: coordinating enzymatic activity and
reception
Using genetic approaches, genes encoding SL receptors have been
identified in several vascular land plants, including petunia (where
the receptor is named DAD2), rice (D14) and Arabidopsis (AtD14)
(Arite et al., 2009; Hamiaux et al., 2012; Waters et al., 2012). These
proteins belong to a clade of the α/β-hydrolase enzyme superfamily
that includes DWARF14 (D14) and GID1, which is a gibberellin

receptor that has lost its enzymatic activity. It was shown, using
in vitro enzymatic studies, that D14 proteins can hydrolyze the
synthetic SL GR24 into inactive ABC- and D-ring parts (Hamiaux
et al., 2012; Seto and Yamaguchi, 2014; Xiong et al., 2014).
Importantly, it was shown that the SL-like molecule MeCLA can
also interact in vitrowith the AtD14 SL receptor and be hydrolyzed,
despite not having the canonical four-ring structure (Abe et al.,
2014). The enzymatic activity of D14 proteins is mediated by a
conserved catalytic triad, Ser-His-Asp (S-H-D), that has hydrolase
activity. Additionally, the catalytic triad seems to be important for
the biological response of D14 proteins since mutated proteins, at
least those harboring mutations at the Ser residue, cannot
complement the d14 mutant branching phenotype, as shown in
petunia (Hamiaux et al., 2012).

The mechanism of SL reception by D14 is still not well
understood; in particular, it is unclear whether SL hydrolysis by the
receptor is of importance as the hydrolysis products have been
shown to be biologically inactive. However, it has been proposed
that, following hydrolysis, the D-OH part of SLs forms a complex
with D14 thereby allowing the recruitment of binding partners (de
Saint Germain et al., 2013; Nakamura et al., 2013).

It should be noted that the D14 SL receptor clade is closely
related to the KARRIKIN INSENSITIVE 2/HYPOSENSITIVE
TO LIGHT (KAI2/HTL) clade. In Arabidopsis, KAI2 is able to
perceive butenolide-containing rings, including the smoke-derived
karrikin (KAR) compounds, which, similar to SLs, have a lactone
D-ring (Guo et al., 2013b; Smith and Li, 2014; Waters et al., 2012).
Interestingly, the SL and KAR pathways modulate plant
development in distinct ways but both require the F-box protein
MAX2 (D3) to mediate their responses (Nelson et al., 2011).

SL signaling: the role of UPS-dependent protein degradation
Most plant hormone signaling pathways involve the targeting of
proteins for degradation through the ubiquitin-proteasome system
(UPS) (Kelley and Estelle, 2012). There are strong arguments to
suggest that the UPS is also involved in SL signaling (Bennett and
Leyser, 2014). In particular, the F-box protein MAX2, which is part
of a SKP1–CULLIN–F-BOX (SCF) ubiquitin ligase protein
complex, appears to play a key role in mediating SL-triggered
protein degradation (Stirnberg et al., 2007; Zhao et al., 2014).
Recently, the protein D53 was identified in rice and shown to be
targeted for degradation after SL treatment; this degradation was not
observed when the proteasome inhibitor MG132 was used (Jiang
et al., 2013; Zhou et al., 2013). The rice d53 semi-dominant mutant,
which expresses a mutated protein that is resistant to degradation by
SL treatment, is SL insensitive and shows high tillering/branching
(Jiang et al., 2013; Zhou et al., 2013). Furthermore, it was shown
that a reduction in D53 expression in d3 and d14 mutant
backgrounds can restore a non-branched wild-type phenotype
(Jiang et al., 2013; Zhou et al., 2013). Together, these data indicate
that D53 acts as a suppressor of SL signaling in the control of shoot
branching (Jiang et al., 2013; Zhou et al., 2013).

This idea led to a model in which MAX2 interacts with D14 in an
SL-dependent manner, and this leads to the ubiquitylation-
dependent degradation of D53 by the SCFMAX2 complex.
However, nothing is currently known about the subsequent effects
of D53 degradation and how this protein acts to suppress SL
signaling. D53 belongs to a small family of proteins [SMAX1-like
(SMXL)] that show some homology with class I CIp ATPase
enzymes (Stanga et al., 2013). The presence of potential ethylene-
responsive element binding factor-associated amphiphilic
repression (EAR) motifs in D53 and its ability to interact with
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topless-related (TPR) proteins, which are known transcriptional co-
repressors, suggest that a D53-TPR complex could repress the
transcription of downstream targets (Bennett and Leyser, 2014; Jiang
et al., 2013; Smith and Li, 2014), but this has not yet been
demonstrated. Other proteins that are subject to SL-triggered
degradation, or other transcription factors that lie directly
downstream of D53/SMXL proteins, are still unknown (Smith and
Li, 2014). BES1, a positive regulator in the brassinosteroid signaling
pathway, can also be targeted for degradation via SCFMAX2, although
SL is not needed for a BES1-MAX2 interaction (Wang et al., 2013).
An SL-dependent interaction between SLR1, a rice gibberellin
signaling repressor (DELLA protein), and D14 has also been shown
but the biological significance of this interaction is not yet understood
(Nakamura et al., 2013).

Models for SL signaling in the control of shoot branching
SLs are best known for their role in repressing shoot branching, and
two mechanisms have been proposed to explain this role. In rice and
pea, SLs were shown to act via their effects on the TCP transcription
factor OsTB1/PsBRC1 to repress axillary bud outgrowth (Braun
et al., 2012; Minakuchi et al., 2010). This transcription factor acts as
a key integrator of several other pathways, such as the cytokinin
pathway and the recently proposed sucrose signaling pathway in pea
(Mason et al., 2014; Rameau et al., 2015). Interestingly, the maize
ortholog (TB1) of the gene encoding this transcription factor seems
to act independently of SLs to repress shoot branching (Guan et al.,
2012). In rice, other transcription factors, such as MADS57 and
IPA1/OsSPL14, that are involved in shoot branching have also been
connected to key components of the SL signaling pathway, but
whether these various transcription factors mediate SL signaling,
and if or how they lie downstream of the D14-D3-D53 axis, are still
not clear (Guo et al., 2013a; Lu et al., 2013).
Because SL-deficient mutants are more branched than brc1

mutants (Braun et al., 2012; Minakuchi et al., 2010), there is very
likely a BRC1-independent effect of SLs on shoot branching.
Indeed, in Arabidopsis a non-transcriptional mechanism relies on
SLs triggering the rapid removal of the auxin efflux carrier
PIN-FORMED 1 (PIN1) from the plasma membrane of stem xylem
parenchyma cells (Shinohara et al., 2013). This effect of SLs would
increase competition between buds to export auxin into the main
auxin stream, based on an auxin transport canalization-dependent
mechanism (Shinohara et al., 2013; Waldie et al., 2014).
Whether both of these mechanisms regulate shoot branching or

act at different stages of bud outgrowth is still debated. Moreover,
whether these downstream targets of SL signaling are dependent on
the UPS-mediated degradation of D53 remains to be clarified.

Key developmental roles for SL signaling
SLs control numerous other aspects of plant development. Pea,
Arabidopsis, rice and petunia mutants with defects in SL
biosynthesis or SL responses were first identified based on their
increased shoot branching phenotypes and their dwarfism
(Beveridge et al., 1996; Ishikawa et al., 2005; Napoli, 1996;
Stirnberg et al., 2002). Less obvious phenotypes, such as reduced
secondary growth, delay in leaf senescence or modified root
architecture, were later identified (Brewer et al., 2013; Ueda and
Kusaba, 2015; Yamada et al., 2014). SLs can also modulate
tolerance to abiotic stresses (drought) (Ha et al., 2014). Direct or
indirect roles for SLs in biotic stress-related responses have been
suggested to act via crosstalk with other hormones (Al-Babili and
Bouwmeester, 2015; Brewer et al., 2013; Stes et al., 2015). Thus,
like other plant hormones, SLs can modulate multiple aspects of

plant growth and development, either independently or via
interactions with other hormonal and environmental pathways.
The observed diversity of D53-like/SMXL proteins may contribute
to the multiple processes controlled by SLs in plant development.

The origin and evolution of SL signaling
Studies have shown that species of the fresh water algae Nitella
(Charales) are able to synthesize SLs (Delaux et al., 2012), suggesting
that the SL pathway originated prior to the diversification of land
plants (embryophytes). Since Charales do not establish symbiosis
with AM fungi, it has been proposed that SLs first played a hormonal
role during rhizoid elongation and were later recruited for symbiotic
interactions (Delaux et al., 2012). In the moss Physcomitrella patens,
SLs regulate protonema filament extension (Proust et al., 2011) as
well as leafy shoot branching (Coudert et al., 2015). Furthermore,
although SLs are detected in basal plants (Delaux et al., 2012), the
KAI2/HTL clade appeared before the D14 clade, suggesting that D14
proteins might have been later selected as SL receptors during land
plant evolution for novel developmental processes. Intriguingly, a
high number of KAI2/HTL genes are present in the P. patens genome
compared with angiosperms but also with Selaginella and
Marchantia (Delaux et al., 2012). A similar KAI2/HTL gene
expansion is found in parasitic plants (Conn et al., 2015; Tsuchiya
et al., 2015). Interestingly, in these species, it was suggested that some
of these KAI2/HTL homologs could be SL receptors (Conn et al.,
2015). It should be noted that, despite SLs being detected in basal
plants, the SL signaling pathway is poorly described in these plants.
Recently, it was shown that KAI2/HTL homologs of Selaginella and
Marchantia do not complement Arabidopsis d14mutant phenotypes,
nor some phenotypes of Arabidopsis kai2 (Waters et al., 2015). This
leaves open the question of SL receptor identity in basal plants.

Perspectives
Despite significant progress, many key questions regarding SL
biosynthesis, perception and signaling remain to be answered. The
enzymatic activity of the SL receptor has been conserved during
evolution, indicating that it plays an essential function, but this
function is puzzling as the hydrolysis products (the ABC and D-OH
parts) are known to be inactive. Is this enzymatic function of the SL
receptor essential for SL reception and signaling? Does it play an
important role in SL homeostasis? Furthermore, if SL perception
truly involves an SL degradation process, are there other
mechanisms of SL inactivation? The link between SL perception
and downstream responses is also unclear. Although some
downstream transcription factors have been identified, it is often
noted that very few genes are transcriptionally regulated after SL
application, at least over a short time frame, compared with other
plant hormones (Smith and Li, 2014; Waldie et al., 2014),
suggesting that non-transcriptional mechanisms might also be
important in mediating the response to SL. Further investigation into
both transcriptional and non-transcriptional responses and their
importance will be key.

Understanding the molecular events acting downstream of D53/
SMXL proteins will also be essential. In particular, it is unknown
whether other post-translational modifications, such as
phosphorylation and/or glycosylation, are required for the regulation
of these downstream targets (Chen et al., 2014). The protein-protein
interaction network in SL signaling also appears to be quite complex,
and further understanding of these interactions might help to explain
the observed crosstalk between the SL pathway and other plant
signaling pathways. There is no doubt that the coming years will bring
answers to the key questions in this exciting field.
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López-Ráez, J. A., Charnikhova, T., Gómez-Roldán, V., Matusova, R., Kohlen,
W., De Vos, R., Verstappen, F., Puech-Pages, V., Bécard, G., Mulder, P. et al.
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