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Abstract

We develop an algorithm for finding and kinematically

tracking multiple people in long sequences. Our basic as-

sumption is that people tend to take on certain canonical

poses, even when performing unusual activities like throw-

ing a baseball or figure skating. We build a person detector

that quite accurately detects and localizes limbs of people

in lateral walking poses. We use the estimated limbs from

a detection to build a discriminative appearance model; we

assume the features that discriminate a figure in one frame

will discriminate the figure in other frames. We then use the

models as limb detectors in a pictorial structure framework,

detecting figures in unrestricted poses in both previous and

successive frames. We have run our tracker on hundreds of

thousands of frames, and present and apply a methodology

for evaluating tracking on such a large scale. We test our

tracker on real sequences including a feature-length film,

an hour of footage from a public park, and various sports

sequences. We find that we can quite accurately automat-

ically find and track multiple people interacting with each

other while performing fast and unusual motions.

1. Introduction

Kinematically tracking people is a task of obvious im-

portance; people are quite concerned about what other peo-

ple are doing. Large-scale, accurate, and automatic kine-

matic tracking would allow for data mining of surveillance

video, studies of human behavior and bulk motion capture.

No current systems are capable of kinematic tracking on a

large scale; most demonstrate results on mere hundreds of

frames. We develop an algorithm that is accurate and auto-

matic, allowing us to evaluate results on over one hundred

thousand frames.

The literature on human tracking is too large to review

in detail. Tracking people is difficult, because people can

move very fast and configure themselves in many differ-

ent poses. One can use the configuration in the current

frame and a dynamic model to predict the next configura-

tion; these predictions can then be refined using image data

(see, for example, [2, 7, 17]). Particle filtering uses multi-

ple predictions – obtained by running samples of the prior

through a model of the dynamics – which are refined by

comparing them with the local image data (the likelihood)

(see, for example [2, 9, 19]). The prior is typically quite

diffuse (because motion can be fast) but the likelihood func-

tion may be very peaky, containing multiple local maxima

which are hard to account for in detail. For example, if an

arm swings past an “arm-like” pole, the correct local maxi-

mum must be found to prevent the track from drifting. An-

nealing the particle filter [5] or performing local searches

[21] are ways to attack this difficulty. An alternative is to

apply a strong model of dynamics [19]; typically one must

choose this model a priori, but methods for online selection

exist [1].

An alternative is to ignore dynamics and find people in

each frame independently, using such cues as local mo-

tion [22] or appearance [8, 13, 23] or both [25]. This ap-

proach is attractive because it self-starts and is robust to

drift (since it essentially re-initializes itself at each frame).

In general, detecting people is hard because people wear

different clothes and can take on many poses; this suggests

a bottom-up approach using part detectors [10, 12, 14, 18,

20]. Approaches combining detection and tracking have

also proven useful [11, 15].

2. General approach

We follow the approach of [16], which uses the fact that

people tend not to change appearance over a track. The

authors first (a) cluster candidate limbs detected in a set

of frames to learn appearance models for each limb and

then (b) track by detecting the appearance models in each

frame. The clustering step only works for sequences where

limbs are reliably found by low-level detectors and where

limbs look different from the background. If the algorithm

produces bad clusters, the resulting appearance models will

produce poor tracks.

We observe that the initial set of detectors are not trying

to detect but rather learn appearance. This is an important
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Figure 1. Our lateral-walking pose finder. Given an edge image on the left, we search for a tree pictorial structure [6] using rectangle

chamfer template costs to construct limb likelihoods. We restrict limbs to be positioned and oriented within bounded intervals consistent

with walking left. We set these bounds (designated by the arcs overlaid on the model) by hand. We also search a mirror-flipped version of

the image to find people walking right. To enforce global constraints (left and right legs should look similar), we sample from the pictorial

structure posterior (using the efficient method of [6]), and re-compute a global score for the sampled configurations. The best configuration

is shown on the right. In general, this procedure also finds walking poses in textured backgrounds; to prune away such false detections, we

re-evaluate the score by computing the goodness of a segmentation into person/non-person pixels. We do this by building an appearance

model for each limb (as in Fig.2) and then use the model to classify pixels from this image. We define the final cost of a walking-pose

detection to be the number of mis-classified pixels.

distinction because typically one wants detectors with high

precision and recall performance. In our case, we want a

person detector with rather unique properties: (a) it must

accurately localize limbs (since we will use the estimated

limbs to build appearance models) and (b) it should have

high precision (we want most detections to be of people).

Given both, we can tolerate a low recall rate since we can

use the learned appearance models to find the figure in those

frames where the detector failed.

We build a person detector that only detects people in

typical poses. Even though the detector will not fire on

atypical poses, we can use the appearance learned from the

standard poses to track in those atypical frames. This no-

tion of opportunistic detection states that we can choose

those poses we want to detect. This way we concentrate

our efforts on easy poses rather than expending consider-

able effort on difficult ones. Convenient poses are ones that

are (a) easy to detect and (b) easy to learn appearance from.

For example, consider a person walking in a lateral direc-

tion; their legs form a distinctive scissor pattern that one

tends not to find in backgrounds. The same pose is also

fairly easy to learn appearance from since there is little self-

occlusion; both the legs and arms are swinging away from

the body. Following our observations, we build a single-

frame people detector that finds people in the mid-stance of

a lateral-walk.

Once we have detected a lateral-walking pose with our

detector (Sec.3), we build a discriminative model of appear-

ance of each limb (Sec.4). We assume the features that help

discriminate the figure in one frame will help detect the fig-

ure in other frames. We finally track by detecting the ap-

pearance model in other frames where the figure can be in

any pose (Sec.5). We develop and apply a methodology for

evaluating data on a large scale in Sec.6.

3 Detecting Lateral Walking Poses

An overview of our approach to people detection is

found in Fig.1. We will use a sequence from the film ’Run

Lola Run’ as our running example (pun intended). Our ba-

sic representation is a tree pictorial structure that decom-

poses a person model into a shape model and appearance

model [6, 8, 16]. If we write the configuration of a limb as

Pi = [x, y, θ], we can write the posterior configuration for

a person given an image as

Pr(P1 . . . Pn|Im) ∝
∏

(i,j)∈E

Pr(Pi|Pj)

n∏

i=1

Pr(Im(Pi))

(1)

where i ranges over set of limbs (head, torso, upper/lower

arm, and left/right upper/lower legs) and E is the set of

edges that defines the tree structure. Pr(Pi|Pj) is the shape

model, and Pr(Im(Pi)) is the local image likelihood given

the limb appearance model. We search for only one arm

since we assume the other will be occluded in our lateral

walking pose. When convenient we refer to the terms above

as costs rather than probabilities (implying we are in nega-

tive log space).

Pr(Pi|Pj): We manually set our kinematic shape po-

tentials to be uniform within a bounded range consistent

with walking laterally (Fig.1). For example, we force θ for

our upper legs to be between 45 and 15 degrees with respect

to the torso axis. We do not allow them to be 0 degrees be-

cause we want to detect people in a distinctive scissor-leg

pattern. Learning these potentials automatically from data

is interesting future work.

Pr(Im(Pi)): We evaluate the local image likelihood

with a chamfer template edge mask [24]. We use rectan-

gles as our edge templates (Fig.1). Given an image, the

chamfer cost of a edge template is the average distance be-

tween each edge in the template and the closest edge in

the image. We compute this efficiently by convolving the

distance-transformed edge image with the edge template.

To exploit edge orientation cues, we quantize edge pixels

into one of 12 orientations, and compute the chamfer cost

separately for each orientation (and add the costs together).

To capture the deformations from Fig.1, we convolve using

rotated versions of our templates. We assume the figure is

at a fixed scale, and as such do not search over scale.
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Figure 2. An overview of our approach; given a video sequence, we run a single-scale walking pose detector on each frame. Our detector

fails on the small scale figure and the on a-typical pose, but correctly detects the walking pose (left). Given the estimated limb positions

from that detection, we learn a quadratic logistic regression classifier for each limb in RGB space, using the masked limb pixels as positives

and all non-person pixels as negatives. In the middle left, we show the learned decision boundary for the torso and crudely visualize the

remaining limb classifiers with a gaussian fit to the positive pixels. Note the visual models appear to be poor; many models look like the

background because some of the limb pixels happen to be in shadow. The classifiers are successful precisely because they learn to ignore

these pixels (since they do not help discriminate between positive and negative examples). We then run the classifiers on all frames from

a sequence to obtain limb masks on the middle right (we show pixels from the third frame classified as torso, lower arm, lower leg, and

head). We then search these masks for candidate limbs arranged in a pictorial structure (searching over general pose deformations at

multiple scales) [6]. This yields the recovered configurations on the right. We show additional frames in Fig.4

Since we use our lateral-walking detector in a high-

precision/low-recall regime, we need to only look at those

configurations where all the limbs have high likelihoods.

Before evaluating the kinematic potentials, we perform non-

maximum suppression on the chamfer likelihood response

functions (and only keep candidate limbs above a likelihood

threshold). We also throw away arm candidates that are ver-

tical or horizontal (since there tends to be many vertical and

horizontal rectangles in images of man-made structures).

This is again justified for high-precision/low-recall detec-

tion; even though the arm of a person may in fact be hori-

zontal or vertical, we choose not to learn their appearance

in this pose, since we would encounter many false positive

detections (and build incorrect appearance models).

Global constraints: We found it useful to enforce global

constraints in our person model. For example, left and right

legs tend to be similar in appearance. Also, our kinematic

leg potentials still allow for overlap if the left leg happens

to be translated over onto the right leg. Instead of find-

ing the MAP estimate of Eq.1, we generate samples from

the posterior (using the efficient method of [6]), and throw

away those samples that violate our global constraints. We

generate 2000 samples per image. To find configurations

where the left and right legs look similar, we add the dis-

parity in leg appearance (as measure by the L2 distance be-

tween color histograms) to the negative log probability of

the sampled configuration. To force left and right legs to

be far apart, we discard samples where leg endpoints are

within a distance d of each other, where d is the width of

the torso. We finally keep the sample with the lowest cost.

Segmentation score: Given an image with a laterally

walking person, the procedure above tends to correctly lo-

calize the limbs of the figure. But it does not perform well

as a people detector; it fires happily on textured regions. We

add a region-based cue to the detection score. We can inter-

pret the recovered figure as a proposed segmentation of the

image (into person/non-person pixels), and directly evalu-

ate the segmentation [14] as the final detection cost. Rather

than use a standard segmentation measure, we adopt a sim-

pler approach.

We build classifiers (in RGB space) for each limb, as

described in Sec.4. For each limb classifier, we create a

test pool of limb pixels (from inside the corresponding limb

mask) and background pixels (from identically-sized rect-

angles flanking both sides of the true limb). We then clas-

sify the all test pixels, and define the cost of the segmenta-

tion to be the total number of misclassified pixels. Note this

strategy would not work if we used classifiers with high VC

dimension (a nearest neighbor classifier always returns 0 er-

rors when training and testing on the same data). Restricting



Figure 3. We show tracking results for a sequence with large changes in the background. On the left, we show the frame on which our

walking pose detector fired. By learning discriminative limb appearance models from that single frame, we are still able to track the figure

when the background changes (right). This suggests that our logistic regression model is quite generalizable.

ourselves to a near-linear classifier (such as quadratic logis-

tic regression) seems to address this issue. We threshold

this final segmentation score to obtain good stylized-pose

detections.

4. Discriminative Appearance Models

Since our person detector localizes a complete person

in a single frame, we know both the person pixels and the

non-person pixels. This suggests we can build a discrimi-

native model of appearance. We assume each limb is (more

or less) constant colored, and train a quadratic logistic re-

gression classifier. We use all pixels inside the estimated

limb rectangle as positives, and use all non-person pixels

(not inside any limb mask) as negatives. Our appearance

model for each limb is a quadratic surface that splits RGB

space into limb/non-limb pixels (Fig.2). Recall our set of

limbs are the head, torso, upper/lower arm, and left/right

upper/lower leg. We fit one model for the upper leg using

examples from both left and right limbs (and similarly for

the lower leg). We find our appearance models to be quite

generalizable (Fig.3).

5. Tracking as Model Detection

We track by detecting the limb appearance models (built

from Sec.4) in other frames (both prior to and after the

walking pose detection). We use the same pictorial struc-

ture framework as Sec.3, but use the appearance model to

compute the image likelihood Pr(Im(Pi)) (as opposed to a

chamfer edge template). We score the likelihood that a limb

is at given configuration by counting the number of mis-

classified pixels for that configuration. For example, given

a torso rectangle at a certain position and orientation, we

count the number of non-torso pixels inside that rectangle

and the number of torso pixels inside rectangles flanking ei-

ther side. To compute this score, we first classify each pixel

to obtain a limb mask (Fig.2). We then perform two convo-

lutions with rectangular masks; one to compute the number

of limb pixels misclassified as background and another to

compute the number of background pixels misclassified as

limb (and add the 2 together appropriately).

We find the MAP estimate of Eq.1 by dynamic program-

ming (working in log space for convenience). With our im-

proved image likelihoods, we no longer need to restrict our

shape potentials to lateral walking poses; we enlarge the

interval bounds for our shape model to respect reasonable

joint limits. However, this introduces a difficulty; the esti-

mated left and right legs tend to overlap, since they are both

attracted to regions with high likelihood. A related problem

is that in some poses arms and legs are occluded.

Occlusion: We must take care to prevent the estimated

configuration to be drawn toward an awkward/incorrect

pose just to minimize the image likelihood of an occluded

limb. Rather than building an explicit model of occlusion,

we found the following simple strategy to be effective. We

observe that in almost all poses, the head, torso, and one

upper/lower leg is visible. We create a pictorial structure

model just with these limbs, and directly find the MAP esti-

mate. This tends to result in good localizations (even when

an arm occludes much of the torso) because of the quality of

our limb masks and likelihoods. We search for the remain-

ing limbs (again using the pictorial structure framework)

holding the torso fixed at the estimated location. When

searching for a new leg, we mask out the already-estimated

leg from the new leg mask; this prevents the left and right

leg from lying on the same image region. The same ap-

proach can be used for estimating left/right arms. We finally

disregard those limbs that fall below a detection threshold.

We show results for our running example in Fig.4.

Multiple People: In general, we must account for mul-

tiple people in a video. Given a set of walking-pose detec-

tions from across the video, we need to automatically estab-

lish the number of different people that are actually present.

For each detection, we learn a generative appearance model

(by fitting a gaussian in RGB space for each limb). This

returns a vector of RGB values. We cluster these vectors

to obtain sets of people models with similar appearance.

We use the mean-shift clustering procedure since we do not

know the number of people in a video a priori [4]. After

obtaining clusters of similar looking people, we use positive

and negative examples from across the cluster when train-

ing the logistic regression for each limb appearance. We

then use these people models as described in the next two

paragraphs.

Multiple instances: If a video has multiple people that

look similar, walking-pose detections for different people



Figure 4. A sequence from ‘Lola’ of Lola running around corner and bumping into a character while undergoing extreme scale changes.

Note the character is wearing bulky clothing and so our person detector has no hope of finding him. Our initial walking detector is run at

a single scale; once we learn an appearance model (as shown in Fig.2), we track over multiple scales by searching an image pyramid at

each frame.

might cluster together (consider a video of a soccer team).

In this case, when searching for people using an appear-

ance model, we might need to instance that model multiple

times in a single frame. We do this by first finding the best

matching pictorial structure, as described previously. We

then mask away those pixels covered by all the estimated

limbs, and find the best match in the remaining pixels, and

repeat again. We repeat until the posterior falls below a

threshold.

In general, we will have multiple appearance models,

each possibly instanced multiple times. For each model,

we independently find all instances of it in a frame. Many

models will compete to explain the same or overlapping im-

age regions. We use a simple greedy assignment; we first

assign the best-scoring instance to the image pixels it cov-

ers. For all the remaining instances that do not overlap, we

find the best-scoring one, assign it, and repeat.

6. Results

We have run our tracker on hundreds of thousands of

frames. Our dataset includes the feature length film ‘Run

Lola Run’, an hour of footage of a local park, and long

sequences of sports footage. This presents an interesting

challenge in evaluating our system; we cannot mark up ev-

ery frame. Our system consists of 2 main components; (a)

we run a stylized pose detector in each frame to find people

and then (b) use the learned appearance from the detection

to find people in other frames. We evaluate each component

separately.

Lateral-Walking Pose Detection: Evaluating our walk-

ing pose detector is a difficult task by itself. Labeling false

positives is straightforward; if the detector finds a person

in the background, that is incorrect. But labeling missed

detections is difficult because our detector is not trying to

detect all people; only people in certain configurations.

In the case of ‘Lola’, we can exploit shots (sequences

where the camera is filming continuously) in our evalua-

tion. We label each shot (as determined by a histogram-

based shot detector) as containing a full-body figure or not.

We define the score of a shot to be the best score from our

walking detector on its set of frames; the implicit assump-

tion is that if a shot contains a person, our walking pose de-

tector will fire at some point. In Fig.5, we show precision-

recall curves for the task of detecting shots with full-body

figures using our walking detector. We do quite reasonably

at high-precision/low-recall regions of the graph, and sig-

nificantly better than chance. We show detections returned

by our detector from the ‘Lola’ frames in Fig. 9.

For the park sequence, there are no natural shots, making

recall measurements awkward to define. Since this video

contains multiple people (many of which look similar), we

cluster the appearance models to obtain a set of different-

looking people models, and then use them to search the en-

tire video. In this case, we would like to select a detector

threshold for our walking detector where most of the ac-

cepted detections are correct and we still accept enough dif-

ferent looking models to capture most people in the video.

As such, we plot precision versus number of appearance

model clusters spanned by the accepted detections in Fig.6.

We do quite reasonably; we can find most of the different

looking people in the video while still maintaining about

50% precision. In other words, if our appearance model de-

tection was perfect and we were willing to deal with 50%

of the tracks being junk, we could track all the people in

the video. We show the top 5 detections returned by our

walking detector in Fig.10.

We look at the ability of our detector to find peo-
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Figure 5. Precision recall curves for our walking pose detector on

shots from ‘Lola’. At low-recall, high-precision regions, our de-

tector performs quite well. Many running shots of ‘Lola’ show her

running toward or away from the camera, for which our detector

does not fire. If we use the model learned from one shot across the

whole video, we would expect to do significantly better (since the

central figure never changes clothes!)
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Figure 6. Precision curves for our walking pose detector on 30000

frames from the park sequence. We define a correct detection to oc-

cur when all the limbs are correctly localized. Recall is awkward

to define since we are not trying to detect people in every frame;

rather we want to fire at least once on different looking people in

the sequence. We obtain a set of models of different looking people

by clustering the correct detections of our walking detector (which

we validate by hand). For a given detector threshold, we can ex-

plicitly calculate precision (how many of the reported detections

are correct) and the number of different models spanned by correct

detections. As we lower the threshold, we span more models.

ple performing unusual activities in Fig.13. Perhaps sur-

prisingly, we are able to find frames where our detector

fires. This means our algorithm is capable of tracking long

and challenging sports footage, where people are moving

fast and taking on extreme poses. We show results on a

baseball pitch from the 2002 World Series and Michelle

Kwan’s medal winning performance from the 1998 Winter

Olympics.

Appearance model detection: In the second phase of

our algorithm, we track by detecting the learned appear-

ance models in each frame. Since we are implementing our

tracker as a detector, we evaluate the final track by looking

at precision and recall rates. For ‘Lola’, we evaluate per-

formance on two shots (shown in Fig.3 and Fig.4) where

the walking detector correctly fired. Our algorithm learns

models from the single detected frame, and uses them to

detect configurations in other frames of the shot. For a ran-

dom set of 100 frames from each shot, we manually mark

correct detections of the torso, arm and leg. We define a

correct torso detection to occur when the majority of pix-

els covered by the estimated torso can be labeled as a torso.
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Figure 7. ‘Lola’ precision/recall curves for limb detection in the

appearance model-based person detector. We manually mark cor-

rect torsos, arms, and legs, for shots where our walking detector

correctly fired. Each limb has its own segmentation score, ob-

tained from its corresponding logistic regression limb mask. We

threshold the score to obtain the above curves. We do almost per-

fect torso and leg detection, and near perfect arm detection. This

is because the central character is visually distinctive, and that the

discriminative appearance model captures this fact.
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Figure 8. Precision/recall curves for limb detection for the park se-

quence, using the same procedure as Fig.7. Our torso detection is

quite good, but our arm detection is poor because arms are small

and fast, making them hard to detect. Our performance is good

considering the difficulty of this dataset; the video has weak color

quality, there are strong shadow effects, and many small figures

are interacting, performing quick motions.

We define a correct arm detection to occur when most of

the pixels masked by the estimated lower arm can be la-

beled as an upper or lower arm (and likewise for leg de-

tections). For the arm and leg scoring, we only look at the

first arm and leg found (from the two-step MAP estimation

procedure described in Sec.5). We generate the final pre-

cision/recall curves by thresholding the segmentation score

for the torso, lower arm, and lower leg limbs. Looking at

Fig.7, we do extremely well; torsos and legs are found al-

most perfectly, with quite good performance on the arms as

well. These results imply that if the walking pose detector

performs ideally, than we can track with near perfect accu-

racy. These (startlingly) good results are really an artifact

of the way films are photographed; characters are often in-

tentionally dressed to be visually distinctive. A wonderful

example is Lola’s hair (Fig.3); once our head model learns

to look for something red, it is essentially impossible for it

to loose track (since there is nothing red in the background).

We use a similar criteria for 200 random frames from the

park sequence in Fig.8. Here, we consider a detection to be

correct if it fires on any person in the image; we do not look

for consistency of detections from one frame to the next.

Since many people in the sequence look like each other,

we need additional constraints to pull out individual tracks

(such as motion). Our results are also good, though not near

the performance we achieve on ‘Lola’. We do quite well



Figure 9. The top detections for our walking pose detector on 30000 frames from ‘Lola’. On the left, we show the top 3 correct detections

(at positions 1, 9, and 13 in a ranked list). On the right, we show the top 2 false positives (at positions 2 and 3). Even though in the second

correct detection, one leg is incorrectly localized, we still learn the correct appearance model since we use both leg masks to train the

logistic regression classifier.

at detecting torsos, with about 90% accuracy, while arms

are still difficult because they are small and move fast. This

data is hard for many reasons; the video is washed out, there

are significant shadow effects, there are many small people

interacting with each other (Fig.12).

We obtain quite good results (similar to Lola) for the

sport sequences from Fig.13, though we omit quantitative

evaluation for lack of space. The observation that movie

characters are visually distinctive applies to athletes as well;

teams tend to wear uniforms that are not the same color as

an athletic field. This suggests that our algorithm can be

used to automatically track interesting and historic sports

footage.

7. Discussion

We present a simple and effective algorithm for tracking

on extremely large datasets. We also present and apply a

methodology for evaluation on a large scale. Our algorithm

is based on two observations. First, detecting and tracking

objects in video can be done opportunistically; we choose to

find people in certain stylized poses that are easy to detect

and build appearance from. One could also look for styl-

ized motions over short frames; such a detector might per-

form better since it pools information from across frames.

Secondly, discriminative appearance models learned from

a few frames can discriminate the object in other frames.

Discriminative features for tracking are not new [3], but by

learning them from select frames where we trust our detec-

tions, we make them quite powerful.
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Figure 10. The top 5 people detections for our walking pose detector on 30000 frames from an unscripted park video. Even though multiple

people are frequently interacting (see Fig.12), our walking pose detector tends to fire on frames where the figures are well separated, since

they have a better detection score. Even though most detections are not perfect, we find that the logistic model learned can compensate for

small errors. Note we do not use any form of background subtraction.

Figure 11. Automatic tracking of one of the shots from the 30000 frame ‘Lola’ sequence. Even though the figure is performing a fast

running motion, the arms and legs are quite well localized. The track recovers from the full occlusion of the telephone pole and handles

self-occlusion as well.

Figure 12. Automatic tracking of a sequence from the 30000 frame park sequence. This sequence is harder than our ‘Lola’ sequence; we

have poor color resolution, many small figures are in shadow and many are occluding each other while performing fast motions. We still

obtain good detections and reasonable localization of arms and legs. Since many of the learned models look similar, we do not try to

disambiguate instances from frame to frame. One might do that using motion constraints.

Figure 13. Our automatic tracker on legacy sports footage with fast and extreme motions. We show the walking detection on the left and

example frames from the final track (obtained using the learned appearance) on the right. On the top, we use a 300 frame sequence

of a baseball pitch from the 2002 World Series. On the bottom, we run our algorithm on the complete (7600 frame) medal-winning

performance of Michelle Kwan from the 1998 Winter Olympics. For each sequence, we run our walking pose finder and use the single

frame with the best score (shown on the left) to train the logistic models. In the skating sequence, the walking detection does not have a

correctly localized head. The tracker learns an appearance model for the wrong image region, and this same mistake is repeated in the

tracked frames. We still however obtain reasonable kinematic estimates.
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