
Zhao and Sahni BMC Bioinformatics 2019, 20(Suppl 11):277

https://doi.org/10.1186/s12859-019-2819-0

RESEARCH Open Access

String correction using the
Damerau-Levenshtein distance
Chunchun Zhao* and Sartaj Sahni

From 7th IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS 2017)

Orlando, FL, USA. 19-21 October 2017

Abstract

Background: In the string correction problem, we are to transform one string into another using a set of prescribed

edit operations. In string correction using the Damerau-Levenshtein (DL) distance, the permissible edit operations are:

substitution, insertion, deletion and transposition. Several algorithms for string correction using the DL distance have

been proposed. The fastest and most space efficient of these algorithms is due to Lowrance and Wagner. It computes

the DL distance between strings of lengthm and n, respectively, in O(mn) time and O(mn) space. In this paper, we

focus on the development of algorithms whose asymptotic space complexity is less and whose actual runtime and

energy consumption are less than those of the algorithm of Lowrance and Wagner.

Results: We develop space- and cache-efficient algorithms to compute the Damerau-Levenshtein (DL) distance

between two strings as well as to find a sequence of edit operations of length equal to the DL distance. Our

algorithms require O(smin{m, n} +m+ n) space, where s is the size of the alphabet andm and n are, respectively, the

lengths of the two strings. Previously known algorithms require O(mn) space. The space- and cache-efficient

algorithms of this paper are demonstrated, experimentally, to be superior to earlier algorithms for the DL distance

problem on time, space, and enery metrics using three different computational platforms.

Conclusion: Our benchmarking shows that, our algorithms are able to handle much larger sequences than earlier

algorithms due to the reduction in space requirements. On a single core, we are able to compute the DL distance and

an optimal edit sequence faster than known algorithms by as much as 73.1% and 63.5%, respectively. Further, we

reduce energy consumption by as much as 68.5%. Multicore versions of our algorithms achieve a speedup of 23.2 on

24 cores.
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Background

Introduction

In the string correction problem, we are given two strings

A and B and are required to find the minimum number

of edit operations needed to transform A into B. The per-

mitted edit operations are: (a) substitute a character in A

to a different character, (b) insert a character into A, (c)

delete a character of A, and (d) transpose two adjacent

characters of A. When all four edit operations are per-

mitted, the length of the optimal edit sequence is known
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as the Damerau-Levenshtein (DL) distance [1, 2]. Some

applications limit the permissible edit operations to a sub-

set of the stated four operations. As a result, string correc-

tion has been studied using other distance metrics as well.

For example, the Levenshtein distance [1] is the length

of the shortest sequence of substitutions, insertions, and

deletions needed to transform A into B. This distance is

used in the longest common subsequence problem [3], for

example. When only substitutions are allowed, the length

of the minimum edit sequence is the Hamming distance

[4] and when only transpositions are allowed, this length

is the Jaro distance [5].

The cost of an edit sequence may be generalized by

using weights for the various operations. For example, in
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Fig. 1 DL trace example

sequence alignment using the methods of Needleman and

Wunsch [6] and Smith and Waterman [7], transpositions

are not permitted, the cost of a substitution depends on

the two characters involved, and there is a gap penalty.

The string-to-string correction algorithm of Lowrance

and Wagner [8] uses a cost of S for a substitution, I for an

insertion, D for a deletion, and T for a transposition and

requires 2T ≥ I + D. We note that the costs used in com-

puting the DL distance are S = I = D = T = 1 and

that these costs satisfy the 2T ≥ I + D requirement of the

algorithm of Lowrance and Wagner [8]. In fact, the best

algorithm currently known for the DL distance is the one

in [8] with edit operation costs set to 1.

Spelling error correction [9–11], data clustering and

data mining [12], comparing packet traces [13], quantify-

ing the similarity of DNA/RNA/protein sequences, gene

finding, and gene function prediction [14] are some of the

applications of the DL distance. While, in spelling error

correction, the stringsA and B are relatively short, in other

applications, these strings may be quite long. For example,

the length of a protein sequence may exceed 300,000 [15].

Bard [10] has shown that the DL distance is a

true metric; that is, it satisfies 1) non-negativity, 2)

identity, 3) symmetry, and 4) triangle inequality. The

algorithm of Bard [10] computes the DL distance in

O(mn ∗ max{m, n}) time, where m is the length of string

A and n is the length of B. This algorithm uses O(mn)

space. Hyyro [16] has developed a bit-parallel algorithm to

determine whether the DL distance between two strings

is less than a specified threshold. This bit-parallel algo-

rithm was tested using DNA sequences of length up

to 10,000.

In an effort to reduce time complexity, Oommen and

Loke [17] consider restricting edit sequences so that no

substring is edited more than once. We illustrate this

restriction using the example given in [18]. The string CA

may be transformed into ABC using the edit sequence

CA (transposition)→ AC (insertion)→ ABC. So, the DL

Fig. 2 DL trace recurrence. a substitution b insertion c deletion d translate A[k:i] to B[l:j] where (ak ,bj) and (bl ,ai) form a transposition opportunity
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Fig. 3 Computing H by strips

distance between CA and ABC is 2. With the restric-

tion of [17], the second operation in this edit sequence is

not permitted as it involves re-editing AC, which resulted

from the first edit operation. The restricted DL distance is

3, which corresponds to the restricted edit sequence CA

(deletion)→ A (insertion)→ AB (insertion)→ ABC. The

restricted DL distance is not a metric as it does not satisfy

the triangle inequality.

The algorithm of Lowrance and Wagner [8] computes

the DL distance in O(mn) time while also using O(mn)

Fig. 4 DL trace splitting opportunities. a No center crossing bWith center crossing
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Fig. 5 Cache misses for DL distance algorithms on Xeon4

space. This is the fastest and most space efficient algo-

rithm known for string correction using the DL distance.

Neither the algorithm of Bard [10] nor that of Lowrance

and Wagner [8] is practical when m and n are large due

to their excessive space requirement. The former algo-

rithm becomes impractical also due to its excessive run

time. In this paper, we focus on the development of

algorithms that are more space, time, and energy effi-

cient than that of Lowrance and Wagner [8]. To obtain

space efficiency, we observe that the DL distance can

be computed by retaining only O(sm) or O(sn) data,

where s is the size of the alphabet. We note that,

when m and n are large, s is much smaller than m

and n. In fact, s = 4 for RNA and DNA sequences

and s = 20 for protein sequences and the length

Table 1 Cache misses for DL distance algorithms, in millions, on

Xeon4

A B DL LS_DL Strip_DL L vs D S vs D S vs L

40000 40000 201 265 6 -31.8% 97.5% 97.9%

80000 80000 1267 715 16 43.6% 98.8% 97.8%

120000 120000 4006 2180 42 45.6% 99.0% 98.1%

160000 160000 ** 10,652 63 99.4%

200000 200000 ** 19,751 147 99.3%

240000 240000 ** 24,257 133 99.5%

280000 280000 ** 38,119 188 99.5%

320000 320000 ** 44,815 242 99.5%

360000 360000 ** 61,296 1352 97.8%

400000 400000 ** 160,118 2407 98.5%

** =⇒ insufficient memory

of these sequences is often orders of magnitude larger

than s.

Cache model

To analyze the cache performance of our algorithms, we

use the rather simple cache model which has been used

by us successfully in our past work [19]. In this model we

have a single-level cache that has l cache lines of size w,

where w is the number of data items that can be stored

in one cache line. So, when the data size is 4 bytes and

w = 8, each cache line is 32 bytes. The size (i.e., capac-

ity) of our one-level cache is lw. In accordance with this

cachemodel, we assume that mainmemory is divided into

blocks whose size is the same as that of a cache line (i.e., w

words each). When we attempt to read a piece of data that

is not in the cache, a read miss occurs. A read miss causes

Table 2 Run time of DL distance algorithms on Xeon4

A B DL LS_DL Strip_DL L vs D S vs D S vs L

40000 40000 0:00:27 0:00:17 0:00:13 34.3% 53.0% 28.4%

80000 80000 0:01:40 0:01:02 0:00:50 37.8% 50.1% 19.7%

120000 120000 0:04:50 0:02:40 0:01:52 44.8% 61.3% 29.9%

160000 160000 ** 0:05:37 0:03:19 40.8%

200000 200000 ** 0:09:38 0:05:14 45.7%

240000 240000 ** 0:13:37 0:07:28 45.1%

280000 280000 ** 0:18:34 0:10:10 45.2%

320000 320000 ** 0:24:13 0:13:17 45.1%

360000 360000 ** 0:33:10 0:17:22 47.6%

400000 400000 ** 0:37:55 0:20:46 45.3%
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Fig. 6 Run time of DL distance algorithms, in seconds, on Xeon4

the corresponding block of main memory to be read into a

cache line. When the cache is full, this read miss requires

us to first evict the block that is in the least recently used

(LRU) cache line. This eviction results in a write of the

evicted block to main memory in case the evicted block

has changed. A write miss occurs when we attempt to

write data that is not in a cache line. At this time, the cor-

responding block of main memory is read into a cache

line and the data we wish to write is written to this cache

line.

Notice that every read and write miss results in a read

access of main memory; some read and write misses also

result in the writing of a cache line to main memory.

Today’s computers actually employ multiple levels of

cache and a far more sophisticated and proprietary cache

Table 3 CPU and cache energy consumption of DL distance

algorithms on Xeon4

A B DL LS_DL Strip_DL L vs D S vs D S vs L

40000 40000 158.77 107.1 76.73 32.5% 51.7% 28.4%

80000 80000 598.12 383.88 305.12 35.8% 49.0% 20.5%

120000 120000 2180.59 996.9 686.54 54.3% 68.5% 31.1%

160000 160000 ** 2088.01 1212.27 41.9%

200000 200000 ** 3576.52 1905.54 46.7%

240000 240000 ** 5058.27 2714.47 46.3%

280000 280000 ** 6905.74 3711.18 46.3%

320000 320000 ** 9000.26 4852.4 46.1%

360000 360000 ** 12286.83 6365.86 48.2%

400000 400000 ** 14218.28 7615.16 46.4%

servicing policy combined with prefetching to hide mem-

ory latency. As a result, it is extremely difficult to analyze

cache performance using a realistic cache model. The

described simple cache model is amenable to analysis and

our experiments establish its usefulness for this purpose

as algorithms with reduced cache misses using this model

actually run faster on computers with more sophisticated

cache architectures, replacement policies, and prefetching

techniques.

Classical DL distance algorithm

Wagner and Fischer [20] developed the notion of a trace,

which is useful in reasoning about edit sequences that

are limited to substitutions, insertions, and deletions.

Lowrance andWagner [8] extended this notion to include

the transposition operation. A trace for the strings A =

Table 4 Cache misses for DL trace algorithms, in millions, on

Xeon4

A B DL_TRACE LSDL_TRACE Strip_TRACE L vs D S vs D S vs L

40000 40000 220 423 24 -92.0% 89.3% 94.4%

80000 80000 1537 1970 29 -28.1% 98.1% 98.5%

120000 120000 4852 5100 66 -5.1% 98.6% 98.7%

160000 160000 ** 16,350 115 99.3%

200000 200000 ** 33,998 513 98.5%

240000 240000 ** 42,252 268 99.4%

280000 280000 ** 70,370 358 99.5%

320000 320000 ** 91,501 453 99.5%

360000 360000 ** 146,103 2120 98.5%

400000 400000 ** 221,690 6032 97.3%
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Fig. 7 CPU and cache energy consumption of DL distance algorithms, in joules, on Xeon4

a1 · · · am and B = b1 · · · bn is a set T of lines, where the

endpoints u and v of a line (u, v) denote positions in A and

B, respectively. A set of lines T is a trace iff:

1 For every (u, v) ∈ T , u ≤ m and v ≤ n.

2 The lines in T have distinct A positions and distinct

B positions. That is, no two lines in T have the same

u or the same v.

A line (u, v) is balanced iff au = bv and two lines (u1, v1)

and (u2, v2) cross iff (u1 < u2) and (v1 > v2). As an exam-

ple, consider A = dafac and B = fdbbec. The set of lines

T = {(1, 2), (3, 1), (4, 3), (5, 6)} satisfies the requirements

for a trace. Line (4,3) is not balanced as a4 �= b3. The

remaining 3 lines in the trace are balanced. The lines (1,2)

and (3,1) cross. This trace may be depicted as a diagram as

in Fig. 1.

Table 5 Run time of DL trace algorithms on Xeon4

A B DL_TRACE LSDL_TRACE Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:27 0:00:30 0:00:26 -11.3% 3.5% 13.3%

80000 80000 0:01:40 0:01:54 0:01:40 -14.5% -0.4% 12.4%

120000 120000 0:04:53 0:04:42 0:03:44 3.6% 23.5% 20.6%

160000 160000 ** 0:09:21 0:06:37 29.2%

200000 200000 ** 0:15:58 0:10:30 34.2%

240000 240000 ** 0:23:42 0:14:52 37.3%

280000 280000 ** 0:33:41 0:20:13 40.0%

320000 320000 ** 0:45:26 0:26:24 41.9%

360000 360000 ** 1:04:18 0:34:01 47.1%

400000 400000 ** 1:15:14 0:41:11 45.3%

In a trace, an unbalanced line denotes a substitu-

tion operation and a balanced line denotes retaining

the character of A. If ai has no line attached to it, ai
is to be deleted and when bj has no attached line, it

is to be inserted. When two balanced lines (u1, v1)

and (u2, v2) cross, au1+1 · · · au2−1 are to be deleted

from A making au1 and au2 adjacent, then au1 and

au2 are to be transposed, and finally, bv2+1 · · · bv1−1

are to be inserted between the just transposed

characters of A.

The edit sequence corresponding to the trace of Fig. 1 is

delete a2, transpose a1 and a3, substitute b for a4, insert

b4 = b and b5 = e, retain a5. The cost of this edit sequence

is 5.

Table 6 CPU and cache energy consumption of DL trace

algorithms on Xeon4

A B DL_TRACE LSDL_TRACE Strip_TRACE L vs D S vs D S vs L

40000 40000 158.56 181.40 156.95 -14.4% 1.0% 13.5%

80000 80000 597.27 703.09 610.70 -17.7% -2.2% 13.1%

120000 120000 2,256.99 1,736.86 1,365.32 23.0% 39.5% 21.4%

160000 160000 ** 3,443.83 2,407.86 30.1%

200000 200000 ** 5,843.56 3,818.68 34.7%

240000 240000 ** 8,665.30 5,403.60 37.6%

280000 280000 ** 12,275.03 7,372.25 39.9%

320000 320000 ** 16,536.93 9,609.56 41.9%

360000 360000 ** 23,396.41 12,439.71 46.8%

400000 400000 ** 27,551.90 15,167.76 44.9%
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Fig. 8 Cache misses for DL trace algorithms on Xeon4

Lowrance and Wagner [8] have proved the following

properties:

P1: The cost of a trace equals the number of unbalanced

lines plus the number of positions in A and B not

touched by a line plus the number of line crossings.

P2: There is a trace whose cost equals that of an optimal

edit sequence (Theorem 2 of [8]). Since every trace

corresponds to an edit sequence, it follows that the

edit sequence that corresponds to a minimum cost

trace is optimal.

P3: There is a minimum cost trace in which each line

crosses at most one other line and in which every line

that crosses another is balanced (Theorem 4 of [8]).

P4: There is trace T that satisfies property P3 and for

every pair of crossing lines (u1, v1), (u2, v2), u1 < u2
in T, (a) ai �= au1 = bv1 , u1 < i < u2 and (b)

bj �= bv2 = au2 , v2 < j < v1. In words, u1 is the last

(i.e., rightmost) occurrence of bv1 in A that precedes

position u2 of A and v2 is the last occurrence of au2
in B that precedes position v1 of B. We refer to these

positions as lastA[u2] [bv1 ] and lastB[v1] [au2 ],

respectively (Theorem 5 of [8]).

Let Hij be the DL distance between A[1 : i] to B[1 : j].

So, Hmn is the DL distance between A and B. The fol-

lowing dynamic programming recurrence follows from

properties P1-P4 of a trace.

Hi,0 = i, H0,j = j, 0 ≤ i ≤ m, 0 ≤ j ≤ n (1)

When i > 0 and j > 0,

Hi,j=min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Hi−1,j−1 + c(ai, bj)

Hi,j−1 + 1

Hi−1,j + 1

Hk−1,l−1 + (i − k − 1) + 1 + (j − l − 1)

(2)

where c(ai, bj) is 1 if ai �= bj and 0 otherwise, k =

lastA[i] [bj] and l = lastB[j] [ai]. If k or l do not exist, then

case 4 of the recurrence does not apply.

Figure 2 illustrates the four cases of this recurrence.

These cases correspond to the four possibilities for an

optimal trace that transforms A[1 : i] into B[1 : j] and sat-

isfies properties P2-P4. Such a trace may (a) contain the

Table 7 Cache misses of parallel DL distance algorithms, in

millions, on Xeon4

A B PP_DL PP_LS_DL PP_Strip_DL L vs D S vs D S vs L

40000 40000 259 235 3 9.2% 99.0% 98.9%

80000 80000 1417 500 6 64.7% 99.6% 98.8%

120000 120000 4746 1857 24 60.9% 99.5% 98.7%

160000 160000 ** 4028 26 99.4%

200000 200000 ** 6243 43 99.3%

240000 240000 ** 9101 66 99.3%

280000 280000 ** 12,636 112 99.1%

320000 320000 ** 16,267 202 98.8%

360000 360000 ** 40,741 1020 97.5%

400000 400000 ** 66,469 1644 97.5%
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Fig. 9 Run time of DL trace algorithms, in seconds, on Xeon4

line (i, j), (b) contain no line that touches bj, (c) contain

no line that touches ai, or (d) have crossing balanced lines

that involve ai and bj. Figure 2a illustrates the first case,

which is a substitution between ai and bj; we optimally

transform A[1 : i − 1] into B[1 : j − 1] and then substitute

bj for ai. If ai = bj, the substitution cost is 0, otherwise it

is 1. Figure 2b shows the second case. Here, bj is inserted

at the end of B[1 : j − 1] following an optimal transforma-

tion of A[1 : i] into B[1 : j − 1]. Figure 2c shows the third

case in which ai is deleted from A[ 1 : i] following an opti-

mal transformation of A[1 : i − 1] into B[1 : j]. Figure 2d

shows the case of crossing balanced lines (i, l) and (k, j).

Here, A[1 : k − 1] must be optimally transformed into

B[1 : l − 1]. Note that to perform the crossing operation,

we must delete i− k−1 characters from A, do an adjacent

character transposition in A, and then insert j− l−1 char-

acters from B between the two just transposed positions.

So, the cost is (i − k − 1) + 1 + (j − l − 1).

Algorithm 1 is the pseudocode to compute H using

Eqs. 1 and 2. This is a simplification of the pseudocode

given in Lowrance and Wagner [8] to the case when

each edit operation has unit cost. In this algorithm,

last_row_id[ c] keeps track of the last occurrence of char-

acter c in A (note that this is a row index of H) and

last_col_id keeps track of the last occurrence of ai in B.

We shall refer to Algorithm 1 as algorithm DL. Its time

and space complexities are readily seen to beO(mn). Once

H has been computed using algorithm DL, an optimal

trace may be obtained in O(m + n) additional time using

a standard dynamic programming traceback. We refer to

the combination of DL and the traceback as algorithm

DL_TRACE.

Algorithm 1 Damerau-Levenshtein distance

1: DL(A[1 : m] ,B[1 : n] )

2: for j ← 0 to n do

3: H[−1] [ j]← maxVal; H[0] [ j]← j

4: end for

5: for i ← 1 tom do

6: H[i] [−1]← maxVal; H[i] [0]← i

7: last_col_id ← −1

8: for j ← 1 to n do

9: diag ← H[i − 1] [j − 1]+c(A[i] ,B[ j] )

10: left ← H[i] [j − 1]+1

11: up ← H[i − 1] [j]+1

12: k = last_row_id[B[ j] ] , l = last_col_id

13: transpose ← H[k − 1] [l − 1]+(i − k − 1) + 1 +

(j − l − 1)

14: H[i] [j]← min{diag, left,up, transpose}

15: if A[i]= B[ j] then

16: last_col_id ← j

17: end if

18: end for

19: last_row_id[A[i] ]← i

20: end for

21: return H[m] [n]

The total number of cache misses is dominated by the

read and write misses of the array H. So, we count only

these misses. In each iteration of the loop for computing

row i of H, we need the elements of rows i and i − 1 of H

in left-to-right order as in Algorithm 1 lines 9-11 and 14.

Since these rows are read from main memory in blocks

of size w and row i is written to main memory in blocks
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Table 8 Run time of parallel DL distance algorithms on Xeon4

A B PP_DL PP_LS_DL PP_Strip_DL L vs D S vs D S vs L

40000 40000 0:00:08 0:00:05 0:00:03 33.4% 59.0% 38.4%

80000 80000 0:00:29 0:00:20 0:00:13 30.7% 56.7% 37.5%

120000 120000 0:03:00 0:00:56 0:00:28 68.9% 84.2% 49.2%

160000 160000 ** 0:01:49 0:00:50 54.1%

200000 200000 ** 0:02:55 0:01:19 55.2%

240000 240000 ** 0:04:09 0:01:53 54.5%

280000 280000 ** 0:05:48 0:02:34 55.9%

320000 320000 ** 0:07:21 0:03:20 54.5%

360000 360000 ** 0:10:13 0:04:24 57.0%

400000 400000 ** 0:11:41 0:05:13 55.3%

of this size, lines 9-11 and 14 result in 2n/w read accesses

and n/w write accesses for each i. These lines, therefore,

result in 3mn/w cache misses over the entire execution

of DL. Line 13 makes one read access of H per iteration

and so contributes at most mn to the total cache-miss

count. Hence, the cache-miss count for algorithm DL is

approximatelymn(1 + 3/w).

Methods

Single-core algorithms

In this section, we develop four linear-space single-core

algorithms for string correction using the DL distance.

All four run in O(mn) time. The first two (LS_DL and

Strip_DL) compute only the score Hmn of the optimal

trace; they differ in their cache efficiency. The last two

(LSDL_TRACE and Strip_TRACE) compute an optimal

trace.

The linear space algorithm LS_DL

Let s be the size of the alphabet. Instead of using the array

H used in DL, algorithm LS_DL uses a one-dimensional

array U[−1 : n] and a two-dimensional array T[1 : s]

Table 9 Speedup of parallel DL distance algorithms on Xeon4

A B DL/PP LS_DL/PP Strip_DL/PP

40000 40000 3.45 3.40 3.96

80000 80000 3.44 3.09 3.97

120000 120000 1.62 2.87 3.96

160000 160000 ** 3.08 3.98

200000 200000 ** 3.30 3.99

240000 240000 ** 3.29 3.96

280000 280000 ** 3.20 3.97

320000 320000 ** 3.30 3.98

360000 360000 ** 3.24 3.95

400000 400000 ** 3.24 3.98

[−1 : n]. These two arrays have a space requirement of

O((s + 1)n) = O(n) for constant s. When m < n, one

may swapA and B to reduce the requiredmemory. Adding

the memory needed for A and B, the space complexity is

O(smin{m, n} + m + n) = O(m + n) when s is a constant.

As in algorithm DL, the Hij values are computed by

rows. The one-dimensional array U is used to save the

H[i] [∗] values computed by algorithm DL when row i

Algorithm2 Linear-space Damerau-Levenshtein distance

1: LS_DL(A[1 : m] ,B[1 : n] )

2: for j ← -1 to n do

3: U[j]← j

4: for each character c in the alphabet do

5: T[c] [j]← maxVal;

6: end for

7: end for

8: U[−1]← maxVal

9: for i ← 1 tom do

10: swap(T[A[i] ] ,U)

11: prevU ← T[A[i] ]

12: U[0]← i

13: for j ← 1 to n do

14: diag ← prevU[j − 1]+c(A[i] ,B[j] )

15: left ← U[j − 1]+1

16: up ← prevU[j]+1

17: k = last_row_id[B[j] ] , l = last_col_id

18: transpose ← T[B[j] ] [l − 1]+(i − k − 1) + 1 +

(j − l − 1)

19: U[j]← min{diag, left,up, transpose}

20: if A[i]= B[j] then

21: last_col_id ← j

22: end if

23: end for

24: last_row_id[A[ i] ]← i

25: end for

26: return U[n]



Zhao and Sahni BMC Bioinformatics 2019, 20(Suppl 11):277 Page 28 of 103
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is being computed. Let H[w] [∗] be the last row com-

puted for character c. Then, T[c] [∗] is row w − 1 of H.

Algorithm 2 gives the pseudocode for LS_DL. Its cor-

rectness follows from the correctness of algorithm DL.

Note that swap(T[A[i] ] ,U) takes O(1) time as pointers

to 2 one-dimensional arrays are swapped rather than the

content of these arrays. The cache-miss count for LS_DL

is the same as that for DL when n is suitably large as both

have the same data access pattern. However, for smaller

instances LS_DL will exhibit much better cache behavior.

For example, because of its use of much less memory, we

may have enough LLC cache to store all the data in LS_DL

but not in DL (O(sn) vs O(mn)).

The cache-efficient linear-space algorithm Strip_DL

When (s+ 1)n is larger than the size of the LLC cache, we

may reduce cache misses relative to algorithm LS_DL by

computing Hij by strips of width q, for some q less than

n (the last strip may have a width smaller than q). This is

shown in Fig. 3. The strips are computed in the order 0, 1,

... using algorithm LS_DL. However, the space needed by

T andU in LS_DL is reduced to (s+1)q as the strip width

is q rather than n. By choosing q small enough, we can

ensure that blocks of the T and U arrays used by LS_DL

are not evicted from cache once they are brought in. So, if

each entry of T and U takes 1 word, then when the cache

size is lw, we have q < lw/(s+1). Note that, in addition to

T andU, the cache needs to hold partials of A, B and other

arrays needed to pass the data from one strip to the next.

To pass the data from one strip to next, we use an

additional one-dimensional array strip of size m and a

two-dimensional s ∗ m array V. The array strip records

the values of H computed for the rightmost column in

the strip. V [c] [ i] gives the H value in the rightmost

Table 10 CPU and cache energy consumption of parallel DL distance algorithms on Xeon4

A B PP_DL PP_LS_DL PP_Strip_DL L vs D S vs D S vs L

40000 40000 89.12 60.64 37.31 32.0% 58.1% 38.5%

80000 80000 336.87 238.15 147.82 29.3% 56.1% 37.9%

120000 120000 1800.48 657.89 334.86 63.5% 81.4% 49.1%

160000 160000 ** 1285.34 591.9 53.9%

200000 200000 ** 2063.55 926.64 55.1%

240000 240000 ** 2928.87 1332.29 54.5%

280000 280000 ** 4106.15 1818.66 55.7%

320000 320000 ** 5223.54 2385.45 54.3%

360000 360000 ** 6640.93 3164.4 52.4%

400000 400000 ** 8287.46 3727.31 55.0%
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column j of row i of H that is (a) in a strip to

the left of the one currently being computed and (b)

c = B[j].

The pseudocode for Strip_DL is given in Algorithm 3.

For clarity, this pseudocode uses two strip arrays (lines

18 and 30) and two V arrays (lines 24 and 32). One set

of arrays is used to fetch data calculated for the previous

strip and the other set for data that is to be passed to the

next strip. In the actual implementation, we use a single

strip array and a singleV array overwriting values received

from the previous strip with values to be passed to the next

strip.

The time and complexity of Strip_DL are, respectively,

O(mn) and O((s + 1)m + (s + 1)q + n) = O(sm + sq + n)

= O(sm + n) as q is a constant. When m > n, we may

switch A and B to conserve memory and so the space

complexity becomesO(smin{m, n}+m+n) =O(m+n) for

constant s.

When we analyze the cache miss, we note that q is

chosen such thatU and T fit into cache. Wemake the rea-

sonable assumption that the LRU replacement rule does

not cause any block of U or T to be evicted during the

running of algorithm Strip_DL. As a result, the total num-

ber of cache misses due to U and T is independent of m

and n and so may be ignored in the analysis. The initial-

ization of strip and V results inm/w and (s+ 1)m/w read

accesses , respectively. The number of write accesses is

approximately the same as the number of read accesses.

The computation for each strip accesses the array strip in

ascending order of index. This results in (approximately)

Table 11 Cache misses for parallel DL trace algorithms, in millions, on Xeon4

A B PP_DL_TRACE PP_LSDL_TRACE PP_Strip_TRACE L vs D S vs D S vs L

40000 40000 247 636 16 -157.0% 93.6% 97.5%

80000 80000 1312 2431 15 -85.3% 98.9% 99.4%

120000 120000 4940 6814 34 -37.9% 99.3% 99.5%

160000 160000 ** 12,774 53 99.6%

200000 200000 ** 28,908 85 99.7%

240000 240000 ** 30,529 110 99.6%

280000 280000 ** 40,803 154 99.6%

320000 320000 ** 53,892 179 99.7%

360000 360000 ** 91,621 796 99.1%

400000 400000 ** 188,325 2727 98.6%
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Algorithm 3 Strip Damerau-Levenshtein distance

1: Strip_DL(A[1 : m] ,B[1 : n] )

2: for i ← 1 tom do

3: strip[i]← i

4: for each character c in the alphabet do

5: V [c] [i]← maxVal;

6: end for

7: end for

8: for t ← 1 to n/q do

9: for j ← t ∗ q to t ∗ q + q − 1 do

10: U[j]← j

11: for each character c in the alphabet do

12: T[c] [j]← maxVal;

13: end for

14: end for

15: for i ← 1 tom do

16: swap(T[A[i] ] ,U)

17: prevU ← T[A[i] ]

18: U[0]← strip[i]

19: for j ← t ∗ q to t ∗ q + q − 1 do

20: diag ← prevU[j − 1]+c(A[i] ,B[j] )

21: left ← U[ j − 1]+1

22: up ← prevU[ j]+1

23: k = last_row_id[B[ j] ] , l = last_col_id

24: transpose ← (l <= t ∗ q)?V [A[ i] ] [k − 1] :

T[B[ j] ] [ l− 1] ) + (i− k − 1) + 1+ (j− l− 1)

25: U[ j]← min{diag, left,up, transpose}

26: if A[ i]= B[ j] then

27: last_col_id ← j

28: end if

29: end for

30: new_strip ← r[ t ∗ q + q − 1]

31: for each character c in the alphabet do

32: new_V [c] [ i]← r[ last_col_id[c]−1]

33: end for

34: last_row_id[A[i] ]← i

35: end for

36: end for

37: return U[q]

the same number of cache misses as made during the ini-

tialization phase. Hence, the total number of cache misses

due to strip is approximately (2m/w)(n/q + 1). For V,

we note that when computing the current strip, the ele-

ments in any row of V are accessed in non-decreasing

order of index (i.e., from left to right) and that we need to

retain, in cache, only the most recently read value for each

character of the alphabet (i.e., at most s values are to be

retained). Making the assumption that a V value is evicted

from cache only when a new value for the same char-

acter is accessed, the total number of read misses from

V when computing a single strip is sm/w. The number

of write misses is approximately the same. So, V con-

tributes (2sm/w)(n/q + 1). Hence, the total number of

cache misses for algorithm Strip_DL is≈ 2(s+1)mn/(wq)

whenm and n are large.

Recall that the approximate cache-miss count for algo-

rithms DL and LS_DL is mn(1 + 3/w). This is (wq +

3q)/(2s + 2) times that for Strip_DL.

The linear-space trace algorithm LSDL_TRACE

Although algorithms LS_DL and Strip_DL determine the

score (cost) of an optimal trace (and hence of an optimal

edit sequence) that transforms A into B, these algorithms

do not save enough information to actually determine an

optimal trace. To determine an optimal trace using linear

space, we adopt a divide-and-conquer strategy similar to

that used by Hirschberg [21] for the simple string editing

problem (i.e., transpositions are not permitted) andMyers

and Miller [22] for the sequence alignment problem.

We say that a trace has a center crossing iff it contains

two lines (u1, v1) and (u2, v2), u1 < u2 such that v1 > n/2

and v2 ≤ n/2 (Fig. 4).

Let T be an optimal trace that satisfies properties P2-P4.

If T contains no center crossing, then its lines may be par-

titioned into sets TL and TR such that TL contains all lines

(u, v) ∈ T with v ≤ n/2 and TR contains the remaining

lines (Fig. 4a). Since there is no center crossing, all lines

in TR have a u value greater than the u value of every line

in TL. It follows from properties P2-P4 that there is an i,

1 ≤ i ≤ m such that T is the union of an optimal trace

for A[1 : i] and B[1 : n/2] and that for A[i + 1 : m] and

B[n/2 + 1 : n]. Let H[i] be the cost the former optimal

trace and H ′[i + 1] that of the latter optimal trace. We see

that when T has no center crossing, the cost of T is

costNoCC(T) = min
1≤i≤m

{H[i]+H ′[i + 1] } (3)

When T contains a center crossing, its lines may be

partitioned into 3 sets, TL, TM, and TR, as shown in

Fig. 4b. Let (u1, v1) and (u2, v2) be the lines defining the

center crossing. Note that TL contains all lines of T with

v < v2, TR contains all lines with v > v1, and TM =

{(u1, v1), (u2, v2)}. Note also that all lines in TL have a u <

u1 and all in TR have u > u2. From property P1, it follows

thatTL is an optimal trace forA[1 : u1−1] and B[1 : v2−1]

andTR is anoptimal trace forA[u2+1 : m] andB[v1+1 : n].

Further, since (u1, v1) and (u2, v2) are balanced lines, the

cost of TM is (u2 − u1 − 1) + 1 + (v1 − v2 − 1). Also,

A[u1] �= A[u2] as otherwise, replacing the center-crossing

lines with (u1, v2) and (u2, v1) results in a lower cost trace.

From property P4, we know that u1 = lastA[u2] [bv1 ] and

v2 = lastB[v1] [au2 ]. Let H[i] [j] be the cost of an optimal

trace for A[1 : i] and B[1 : j] and let H ′[i] [j] be that for an
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Fig. 12 Run time of parallel DL distance algorithms, in seconds, on Xeon4

optimal trace for A[i : m] and B[j : n]. So, when T has a

center crossing, its cost is

costCC(T)=min{H[u1−1] [v2 − 1]+H ′[u2+ 1] [v1 + 1]

+ (u2 − u1 − 1) + 1 + (v1 − v2 − 1)}

(4)

where, for the min{}, we try 1 ≤ u1 < m and for each

such u1, we set v1 to be the smallest i > n/2 for which

bi = au1 . For each u1 we examine all characters other than

au1 in the alphabet. For each such character c, v2 is set to

the largest j ≤ n/2 for which bj = c and u2 is the smallest

i > u1 for which ai = c. So, the min is taken over (s− 1)m

terms.

Let Utop and Ttop be the final U and T arrays computed

by LS_DL with inputs B[1 : n/2] and A[1 : m] and Ubot

and Tbot be these arrays when the inputs are the reverse

of B[n/2 + 1] and A[m : 1]. From these arrays, we may

readily determine the H and H ′ values needed to evaluate

Eqs. 3 and 4. Algorithm LSDL_TRACE (Algorithm 4) pro-

vides the pseudocode for our linear space computation of

an optimal trace. It assumes that LS_DL has beenmodified

to return both the arrays U and T.

For the time complexity, we see that at the top level of

the recursion, we invoke LS_DL twice with strings A and

B of size m and n/2, respectively. This takes at most amn

time for some constant a. The time required to compute

Eqs. 3 and 4 is O(sn) and may be absorbed into amn by

using a suitably large constant a. At the next level of recur-

sion, LS_DL is invoked 4 times. The sum of the lengths

of the A strings across these 4 invocations is at most 2m

and the B string has length at most n/4. So, the time for

these four invocations is at most amn/2. Generalizing to

the remaining levels of recursion, we see that algorithm

LSDL_TRACE takes amn(1 + 1/2 + 1/4 + 1/8 + . . .) <

2amn = O(mn) time. The space needed is the same as that

Algorithm 4 Linear space optimal trace

1: LSDL_TRACE(A[1 : m] ,B[1 : n] )

2: ifm ≤ 1 or n ≤ 1 then

3: Do a linear search to find an optimal trace forA and

B

4: Return optimal trace

5: else

6: (Utop,Ttop) ← LS_DL(B[1 : n
2 ] ,A[ 1 : m] )

7: (Ubot ,Tbot) ← LS_DL(B[n : n
2 + 1] ,A[m : 1] )

8: Compute costNoCC(T) and costCC(T) using these

U and T arrays

9: Let i′, (u′
1,u

′
2), and (v′

1, v
′
2) minimize Eqs. 3 and 4

10: if costNoCC(T) ≤ costCC(T) then

11: T1 = LSDL_TRACE(A[1 : i′] ,B[1 : n/2] )

12: T2 = LSDL_TRACE(A[i′+1 : m] ,B[n/2+1 : n] )

13: Return T1
⋃

T2

14: else

15: T1 = LSDL_TRACE(A[1 : u′
1−1] ,B[1 : v′

2−1] )

16: T2 = LSDL_TRACE(A[u′
2+1 : m] ,B[v′

1+1 : n] )

17: Return T1
⋃

T2
⋃

{(u1, v1), (u2, v2)}

18: end if

19: end if
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Fig. 13 CPU and cache energy consumption of parallel DL distance algorithms, in joules, on Xeon4

for LS_DL (note that the parameters to this algorithm have

been switched). From the time analysis, it follows that the

number of cache misses is approximately twice that for

LS_DL when invoked with strings of size m and n. Hence

the approximate cache miss count for LSDL_TRACE is

2mn(1 + 3/w).

We note that some reduction in actual run time can be

achieved by switching A and B when A is shorter than B

thus ensuring that the shorter string is split at each level of

recursion. This enables us to get the recursion terminates

faster.

The strip trace algorithm Strip_TRACE

This algorithm differs from LSDL_TRACE in that it uses

a modified version of Strip_DL rather than a modified

version of LS_DL. The modified version of Strip_DL

returns the arrays strip andV computed by Strip_DL. Cor-

respondingly, Strip_TRACE uses Vtop and Vbot in place

of Ttop and Tbot . The asymptotic time complexity of

Strip_TRACE is also O(mn) and it takes the same amount

of space as does Strip_DL (note that the parameters to

Strip_DL are switched relative to those for Strip_TRACE).

The number of cache misses is approximately twice that

for Strip_DL.

Multi-core algorithms

In this section, we describe our parallelizations of algo-

rithm DL and the four single-core algorithms of previous

section. These parallelizations assume that the number of

processors is small relative to string length. The naming

Table 12 Run time of parallel DL trace algorithms on Xeon4

A B PP_DL_TRACE PP_LSDL_TRACE PP_Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:08 0:00:10 0:00:07 -36.1% 0.9% 27.2%

80000 80000 0:00:29 0:00:38 0:00:27 -32.7% 7.0% 29.9%

120000 120000 0:04:15 0:01:39 0:00:59 61.2% 76.8% 40.3%

160000 160000 ** 0:03:05 0:01:43 44.2%

200000 200000 ** 0:05:03 0:02:43 46.3%

240000 240000 ** 0:07:50 0:03:50 51.0%

280000 280000 ** 0:11:11 0:05:13 53.4%

320000 320000 ** 0:15:07 0:06:46 55.2%

360000 360000 ** 0:21:25 0:08:44 59.2%

400000 400000 ** 0:24:10 0:10:34 56.3%
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Fig. 14 Cache misses for parallel DL trace algorithms on Xeon4

convention we adopt for the parallel versions is adding

PP_ as a prefix to the name of the single-core algorithm.

The algorithm PP_DL

Our parallel version of algorithm DL, PP_DL, computes

the elements in the same order as does DL. However, it

starts the computation of a row before the computation of

its preceding row is complete. Each processor is assigned

a unique row to compute and it computes this row from

left to right. Let p be the number of processors. Processor

z is initially assigned to do the outer loop computation for

i = z, 1 ≤ i ≤ p. Processor z begins after a suitable time

lag relative to the start of processor z − 1 so that the data

it needs for its computation have already been computed

by processor z − 1. In our code, the time lag between the

start of the computation of two consecutive rows is the

time needed to compute n/p elements. Upon completion

of its iteration i computation, the processor proceeds to

iteration i + p of the outer loop. The time complexity of

PP_DL is O(mn/p).

The algorithm PP_LS_DL

While the general parallelization strategy for PP_LS_DL is

the same as that used in PP_DL, extra care is needed to

ensure a computation identical to that of LS_DL. Diver-

gence in results is possible when two or more processors

are simultaneously computing different rows of H using

the same memory. This happens for example when A =

aaabc · · · and p ≥ 3. We start with processor i assigned

to compute row i of H, 1 ≤ i ≤ p. Suppose that U = x

and T[a]= y initially (note that x and y are addresses in

memory). Because of the swap(T[A[i] ] ,U) statement in

LS_DL, processor 1 begins to compute row 1 of H using

memory beginning at the address y. If processor 2 begins

with a suitable time lag as in PP_DL, it will compute row

2 of H using memory beginning at the address x. With a

further lag, processor 3 will begin to compute row 3 of H

again usingmemory beginning at the address y. Now, both

processors 1 and 3 are using the samememory to compute

different rows of H and so we run the risk of overwriting

H values that may be needed for subsequent computa-

tions. As another example, consider A = ababa · · · and

p ≥ 4. Suppose that U = x and T[a, b]=[y, z] initially.

Processor 1 begins to compute row 1 using the memory

y, then, with a lag, processor 2 begins to compute row 2

using memory z, then processor 3 starts to compute row 3

Table 13 Speedup of parallel DL trace algorithms on Xeon4

A B DL/PP LSDL_TRACE/PP Strip_TRACE/PP

40000 40000 3.53 2.88 3.44

80000 80000 3.44 2.97 3.72

120000 120000 1.15 2.86 3.79

160000 160000 ** 3.03 3.85

200000 200000 ** 3.16 3.87

240000 240000 ** 3.02 3.87

280000 280000 ** 3.01 3.88

320000 320000 ** 3.01 3.90

360000 360000 ** 3.00 3.89

400000 400000 ** 3.11 3.90
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Fig. 15 Run time of parallel DL trace algorithms, in seconds, on Xeon4

using memory x. Next processor 4 begins to compute row

4 using memory y. At this time processor 1 is computing

row 1 with A[1]= a and processor 4 is computing row 4

with A[4]= b and both processors are using the same row

memory y.

Let p1 and p2 be two processors that are using the same

memory to compute rows r1 < r2 of H and that no pro-

cessor is using this memory to compute a row between

r1 and r2. From the swapping assignment scheme used

in LS_DL, it follows that p1 is computing the row r1 =

lastA[r2] [ar2 ]−1. The H values in this row are needed

to compute rows r1 + 1 through r2 as r1 = lastA[i] [ar2 ]

r1 < i ≤ r2. These values are not needed for rows i > r2 as

for these rows lastA[i] [ar2 ]= r2 > r1+1 = lastA[r2] [ar2 ].

Let j1 be such that bj = ar2 = ar1+1. Then, for j > j1,

lastB[j] [ar2 ]≥ j1. Hence, for j > j1 columns 1 through

j1 − 2 of row r1 are not needed to compute an H in rows

between r1 and r2.

Our parallel code uses a synchronization scheme that is

based on the observations of the preceding paragraph to

delay the overwriting of values that are needed for later

computations and ensure a correct computation of the DL

distance. Our synchronization scheme employs another

array W [1 : n] that is initialized to 1. Suppose that a

processor is computing row i of H and that A[i]= a.

When this processor first encounters an a in B, say at posi-

tion j1, it increments W [ 0 : j1 − 2]. When the next a is

encountered, say at j2, it increments W [j1 − 1 : j2 − 2] by

Table 14 CPU and cache energy consumption of parallel DL trace algorithms on Xeon4

A B PP_DL_TRACE PP_LSDL_TRACE PP_Strip_TRACE L vs D S vs D S vs L

40000 40000 87.39 118.74 84.85 -35.9% 2.9% 28.5%

80000 80000 334.01 449.89 310.34 -34.7% 7.1% 31.0%

120000 120000 2,433.28 1,149.61 684.28 52.8% 71.9% 40.5%

160000 160000 ** 2,149.58 1,202.52 44.1%

200000 200000 ** 3,524.59 1,898.35 46.1%

240000 240000 ** 5,410.42 2,684.72 50.4%

280000 280000 ** 7,707.41 3,657.54 52.5%

320000 320000 ** 10,384.75 4,789.03 53.9%

360000 360000 ** 14,612.39 6,200.10 57.6%

400000 400000 ** 16,559.76 7,472.52 54.9%
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1. When the processor finishes its computation of row i,

the remaining positions of W are incremented by 1. The

processor assigned to compute row q of H may compute

U[j] iffW [j]= q. From our earlier observations, it follows

that when W [j]= q, the old values in memory positions

U[1 : j] may be overwritten as these are not needed for

future computations.

This p-processor algorithm PP_LS_DL’s time complex-

ity depends on the data sets as the synchronization

delay is data dependent. We, however, expect a run-time

performance of approximatelyO(mn/p) when the charac-

ters in B are roughly uniformly distributed.

The algorithm PP_Strip_DL

In the parallel version PP_Strip_DL of Strip_DL, proces-

sor i is initially assigned to compute strip i, 1 ≤ i ≤ p.

Upon completion of its currently assigned strip j, the pro-

cessor proceeds to compute strip j + p. An array signal[ ]

is used for synchronization purposes. When computing

a row r in its assigned strip s, a processor needs to wait

until signal[r]= s. signal[r] is set to s by the processor

working on strip s − 1 when the values to the left of

strip s needed in the computation of row r of strip s have

been computed and there is no risk that the computa-

tions for row r of strip s will overwrite V values needed

by other processors. signal works very much like W in

PP_LS_DL.

Note that when we are working on p strips, we need p

copies of the arrays U and T used by Strip_DL.

The time complexity of PP_Strip_DL depends on the

synchronization delay and is expected to approximate

O(mn/p).

Table 15 Run time of DL distance algorithms for real DNA sequences on Xeon4

A B DL LS_DL Strip_DL PP_DL PP_LS_DL PP_Strip_DL

NZ_LRIA01000064 CYPR01000097 0:00:23 0:00:19 0:00:12 0:00:08 0:00:06 0:00:03

LNFE01000131 AGUF01000028 0:01:27 0:01:16 0:00:47 0:00:29 0:00:24 0:00:12

NZ_CYTG01000018 LVKN01000071 0:03:21 0:02:53 0:01:46 0:02:42 0:00:54 0:00:28

BX000446 BX511181 ** 0:05:01 0:03:09 ** 0:01:34 0:00:49

NZ_AMFW01000007 LYHN01000016 ** 0:07:49 0:04:54 ** 0:02:26 0:01:17

JLXA01000008 AUHZ01000004 ** 0:11:31 0:07:04 ** 0:03:38 0:01:51

NZ_FNNC01000004 NZ_APZF01000097 ** 0:15:03 0:09:37 ** 0:04:43 0:02:31

LHOK01000008 AGYI01000018 ** 0:19:44 0:12:36 ** 0:06:11 0:03:17

BAMV01000017 MIMZ01000025 ** 0:24:56 0:15:56 ** 0:07:49 0:04:09

LSMI01000030 CZBU01000005 ** 0:30:13 0:19:39 ** 0:09:34 0:05:08
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Fig. 17 Run time of DL distance algorithms, in seconds, on Xeon6

The algorithm PP_DL_TRACE

This algorithm first uses PP_DL to compute H[ ] [ ]. Then,

a single processor performs a traceback to construct

the optimal trace. For reasonable values of p, the run

time is dominated by PP_DL and so, the complexity of

PP_DL_TRACE is also O(mn/p).

The algorithms PP_LSDL_TRACE and PP_Strip_TRACE

In LSDL_TRACE (Strip_TRACE), we repeatedly partition

the problem into two and apply either LS_DL (Strip_DL)

to each partition. The parallel version PP_LSDL_TRACE

(PP_Strip_TRACE) employs the following parallelization

strategy:

• Each subproblem is solved using PP_LS_DL

(PP_Strip_DL) when the number of independent

subproblems is small; all p processors are assigned to

the parallel solution of a single subproblem. I.e., the

subproblems are solved in sequence.
• p subproblems are solved in parallel using LS_DL

(Strip_DL) to solve each subproblem serially when

the number of independent subproblems is large,

The time complexity of PP_LSDL_TRACE and

PP_Strip_TRACE is O(mn/p).

Results

Experimental platform and test data

The single-core algorithms were implemented using C

and the multi-core ones using C and OpenMP. Our codes

may be downloaded from [23]. The following computa-

tional platforms were used:

1 Xeon4: Intel Xeon CPU E5-2603 v2 Quad-Core

processor 1.8GHz with 10MB cache and 32GB

memory.

Table 16 Run time of DL trace algorithms for real DNA sequences on Xeon4

A B DL_Trace LSDL_Trace Strip_Trace PP_DL_Trace PP_LSDL_Trace PP_Strip_Trace

NZ_LRIA01000064 CYPR01000097 0:00:23 0:00:33 0:00:24 0:00:08 0:00:12 0:00:08

LNFE01000131 AGUF01000028 0:01:27 0:02:12 0:01:35 0:00:29 0:00:45 0:00:28

NZ_CYTG01000018 LVKN01000071 0:03:23 0:05:02 0:03:33 0:03:48 0:01:44 0:01:00

BX000446 BX511181 ** 0:08:45 0:06:18 ** 0:02:59 0:01:45

NZ_AMFW01000007 LYHN01000016 ** 0:13:43 0:09:51 ** 0:04:39 0:02:43

JLXA01000008 AUHZ01000004 ** 0:20:10 0:14:10 ** 0:06:50 0:03:54

NZ_FNNC01000004 NZ_APZF01000097 ** 0:26:25 0:19:18 ** 0:08:49 0:05:17

LHOK01000008 AGYI01000018 ** 0:34:41 0:25:15 ** 0:11:29 0:06:55

BAMV01000017 MIMZ01000025 ** 0:43:49 0:31:58 ** 0:14:38 0:08:44

LSMI01000030 CZBU01000005 ** 0:52:54 0:39:23 ** 0:18:14 0:10:46
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Fig. 18 Run time of DL trace algorithms, in seconds, on Xeon6

2 Xeon6: Intel I7-x980 Six-Core processor 3.33GHz

with 12MB LLC cache and 16GB memory.

3 Xeon24: Intel Xeon CPU E5-2695 v2 2xTwelve-Core

processors 2.40GHz with 30MB cache and 512GB

memory.

We compiled all codes using the gcc compiler with

the O2 option. Cache miss and energy consumption data

were obtained for our Xeon4 platform using the “perf”

[24] software and the RAPL interface. This is the only

platform for which we obtained cache miss and energy

consumption data.

For test data, we downloaded the real

DNA/RNA/protein sequences from the NCBI (National

Center for Biotechnology Information) server [25] and

PDB (Protein Data Bank) server [15]. In addition to

that, we also generated random DNA/RNA and protein

sequences.

Xeon E5-2603 (Xeon4) using random data

DL distance algorithms

The observed cache misses for our DL distance algo-

rithms on our Xeon4 platform for randomly generated

sequences of size between 40000 and 400000 are given

in Fig. 5 and Table 1. “**” in the table indicates there

was insufficient memory for the algorithm to run. The

column of Table 1 labeled LvsD (SvsD) presents the

percentage changes in cache misses reduced by LS_DL

(Strip_DL) relative to DL while that labeled SvsL gives

this percentage changes reduced by Strip_DL relative to

LS_DL.

Table 17 Run time of DL distance algorithms on Xeon6

A B DL LS_DL Strip_DL L vs D S vs D S vs L

40000 40000 0:00:17 0:00:14 0:00:08 16.2% 52.3% 43.1%

80000 80000 ** 0:00:55 0:00:32 41.3%

120000 120000 ** 0:02:12 0:01:13 44.8%

160000 160000 ** 0:05:19 0:02:09 59.5%

200000 200000 ** 0:10:16 0:03:23 67.1%

240000 240000 ** 0:16:17 0:04:50 70.3%

280000 280000 ** 0:24:19 0:06:36 72.9%

320000 320000 ** 0:33:32 0:08:36 74.4%

360000 360000 ** 0:45:50 0:10:58 76.1%

400000 400000 ** 0:55:44 0:13:27 75.9%
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Fig. 19 Run time of parallel DL distance algorithms, in seconds, on Xeon6

Notice that DL runs out of memory when |A| = |B| ≥

160000. Strip_DL has fewer cache misses than LS_DL and

LS_DL has fewer cache misses than DL. Strip_DL reduces

cache misses by up to 99.0% relative to DL and by up to

99.5% relative to LS_DL.

Run times are given in seconds in Fig. 6 and using the

format hh : mm : ss in Table 2 for our random data

set. Strip_DL is the fastest followed by LS_DL and DL.

Strip_DL reduces run time by up to 61.3% relative to DL

and by up to 47.6% relative to LS_DL.

Energy consumption by the CPU and cache are gievn, in

joules, in Fig. 7 and Table 3. Strip_DL required up to 68.5%

less CPU and cache energy than DL and up to 48.2% less

than LS_DL.

DL trace algorithms

The observed cache misses for our single-core DL

trace algorithms on our Xeon4 platform are given in

Fig. 8 and Table 4. Since DL_TRACE is simply DL

with a linear time traceback added, that cache miss

count for DL_TRACE is only slightly more than that

for DL. LSDL_TRACE has a higher count than does

DL_TRACE for the instances that DL has sufficient

memory to solve though the gap narrows with increas-

ing instance size. Strip_TRACE consistently has fewer

cache misses than both DL_TRACE and LSDL_TRACE.

Strip_TRACE reduces cache misses by up to 98.6% rel-

ative to DL_TRACE and by up to 99.5% relative to

LSDL_TRACE.

Run times of the DL trace algorithms on our Xeon4

platform are given in seconds in Fig. 9 and Table 5.

Strip_TRACE is competitive with DL_TRACE on our

instances of size 40,000 and 80,000 and 23.5% faster on the

instance of size 120,000. Strip_TRACE was consistently

faster than LSDL_TRACE achieving a speedup of up to

47.1%.

Table 18 Run time of DL trace algorithms on Xeon6

A B DL_TRACE LSDL_TRACE Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:17 0:00:22 0:00:17 -26.3% 4.8% 24.6%

80000 80000 ** 0:01:24 0:01:05 22.1%

120000 120000 ** 0:03:33 0:02:26 31.2%

160000 160000 ** 0:07:20 0:04:20 41.0%

200000 200000 ** 0:13:19 0:06:46 49.1%

240000 240000 ** 0:20:51 0:09:43 53.4%

280000 280000 ** 0:31:19 0:13:14 57.7%

320000 320000 ** 0:43:24 0:17:16 60.2%

360000 360000 ** 0:59:27 0:21:55 63.1%

400000 400000 ** 1:13:51 0:26:57 63.5%
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Fig. 20 Run time of parallel DL trace algorithms, in seconds, on Xeon6

The energy consumed by the CPU and cache is

given in Fig. 10 and Table 6. Strip_TRACE required

up to 46.8% less CPU and cache energy than

LSDL_TRACE.

Parallel DL distance algorithms

The observed cache misses for our parallel DL algorithms

are given in Fig. 11 and Table 7. PP_Strip_DL has the

fewest cache misses followed by PP_LS_DL and PP_DL

(in this order). The reduction is cache misses achieved by

PP_Strip_DL is up to 99.6% relative to PP_DL and up to

99.4% relative to PP_LS_DL.

Run times for our parallel DL algorithms are given in

Fig. 12 and Table 8. PP_Strip is up to 84.2% faster than

PP_DL and up to 57.0% faster than PP_LS_DL.

Speedup numbers are given in Table 9. The column

labeled DL/PP, for example, is the time for DL divided by

that for PP_DL. PP_Strip_DL has a speedup between 3.95

and 3.99, which is quite close to the number of cores (4)

on our Xeon4 platform. The speedup for PP_DL is up to

3.45 and that for PP_LS_DL is up to 3.40.

Energy data are given in Fig. 13 and Table 10.

PP_Strip_DL used up to 81.4% less CPU and cache

energy than did PP_DL and up to 55.7% less than

PP_LS_DL.

Although the multi-core algorithms use more CPU

power than used by their single-core counterparts, the

power increase is less than the decrease in run time.

Hence, energy consumption is reduced.

Parallel DL trace algorithms

The number of cache misses incurred by our multi-

core DL trace algorithms is given in Fig. 14 and

Table 11. PP_Strip_TRACE has the fewest number of

Table 19 Run time of parallel DL distance algorithms on Xeon6

A B PP_DL PP_LS_DL PP_Strip_DL L vs D S vs D S vs L

40000 40000 0:00:03 0:00:03 0:00:03 22.2% 25.6% 4.4%

80000 80000 ** 0:00:11 0:00:06 46.7%

120000 120000 ** 0:00:32 0:00:13 59.8%

160000 160000 ** 0:01:18 0:00:23 71.1%

200000 200000 ** 0:02:34 0:00:36 76.8%

240000 240000 ** 0:03:47 0:00:52 77.2%

280000 280000 ** 0:05:25 0:01:09 78.6%

320000 320000 ** 0:06:59 0:01:32 77.9%

360000 360000 ** 0:09:23 0:01:56 79.4%

400000 400000 ** 0:11:03 0:02:23 78.5%
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Fig. 21 Run time of DL distance algorithms, in seconds, on Xeon24

cache misses. PP_Strip_TRACE reduces cache misses by

up to 99.3% and 99.6% relative to PP_DL_TRACE and

PP_LSDL_TRACE, respectively.

Run times are given in Fig. 15 and Table 12.

PP_Strip_Trace is faster than PP_LSDL_TRACE by up

to 59.2%. As in Table 13, the speedup achieved by

PP_Strip_TRACE relative to its single-core version ranges

from 3.44 to 3.90.

Energy consumption data are given in Fig. 16 and

Table 14. PP_Strip_TRACE required up to 57.6% less CPU

and cache energy than PP_LSDL_TRACE.

Xeon E5-2603 (Xeon4) using real data

Tables 15 and 16, respectively, give the run times for

our single-core and multi-core DL and DL trace algo-

rithms using real DNA sequences on our Xeon4 plat-

form. The observed times are quite comparable to those

for similarly sized random strings. Further, the speed

up achieved by our parallel algorithms relative to the

single-core algorithms is also comparable to that for

random strings. So, for our remaining test platforms,

we present only the results for our randomly generated

data sets.

I7-x980 (Xeon6) using random data

DL distance algorithms

Single core run times are given in Fig. 17 and Table 17

for our Xeon6 platform. As can be seen, Strip_DL is the

fastest followed by LS_DL and DL. Strip_DL reduces run

time by up to 52.3% relative toDL and by up to 76.1% rela-

tive to LS_DL. The classicalDL algorithm ran out memory

when |A| = |B| = 8000.

DL trace algorithms

The run times for the DL trace algorithms are given in

Fig. 18 and Table 18. Strip_TRACE reduces run time by up

to 63.5% relative to LSDL_TRACE.

Parallel DL distance algorithms

Run times for the parallel DL distance algorithms are

given in Fig. 19 and Table 19. As was the case on our

Xeon4 platform, PP_Strip_DL is faster than PP_DL and

PP_LS_DL. It reduces the run time by up to 25.6% and

79.4%, respectively. The speedup of our parallel algorithm

PP_Strip_DL relative to its single-core version (Table 20)

is up to 5.71. This is quite close to the number of cores

(6). The maximum speedup achieved by PP_DL and

PP_LS_DL was 4.89 and 5.27, respectively.

Table 20 Speedup of parallel DL distance algorithms on Xeon6

A B DL/PP LS_DL/PP Strip_DL/PP

40000 40000 4.89 5.27 3.13

80000 80000 ** 5.15 5.68

120000 120000 ** 4.08 5.59

160000 160000 ** 4.07 5.71

200000 200000 ** 3.99 5.67

240000 240000 ** 4.30 5.60

280000 280000 ** 4.49 5.70

320000 320000 ** 4.80 5.58

360000 360000 ** 4.88 5.67

400000 400000 ** 5.04 5.65
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Fig. 22 Run time of DL trace algorithms, in seconds, on Xeon24

Parallel DL trace algorithms

Xeon6 run times for the parallel DL trace algorithms are

given in Fig. 20 and Table 21. PP_Strip_TRACE is faster

than PP_LSDL_TRACE and reduces the run time by up

to 68.9%. As shown in Table 22, PP_Strip_TRACE obtains

a speedup of up to 5.33 while the maximum speedup by

PP_DL_TRACE and PP_LSDL_TRACE was 5.23 and 4.55,

respectively.

Xeon E5-2695 (Xeon24) using random data

DL distance algorithms

The run times for our single-core DL distance algorithms

on the Xeon24 are given in Fig. 21 and Table 23. As on our

other test platforms, Strip_DL is the fastest followed by

LS_DL and DL. Strip_DL reduces run time by up to 73.1%

relative to DL and by up to 42.9% relative to LS_DL.

DL trace algorithms

The run times for our single-core DL trace algorithms

on the Xeon24 are given in Fig. 22 and Table 24.

Strip_TRACE reduces run time by up to 46.9% and 31.5%

relative to DL_TRACE and LSDL_TRACE, respectively.

Parallel DL trace algorithms

Parallel DL trace run times are given in Fig. 24

and Table 27. PP_Strip_TRACE is faster than

Fig. 23 Run time of parallel DL distance algorithms, in seconds, on Xeon24
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Fig. 24 Run time of parallel DL trace algorithms, in seconds, on Xeon24

PP_DL_TRACE and PP_LSDL_TRACE on large data. It

reduces the run time by up to 51.1% and 50.1%, respec-

tively. PP_Strip_TRACE achieves a speedup of up to 17.42

(Table 28); PP_DL_TRACE and PP_LSDL_TRACE have

maximum speedups of 16.98 and 12.60.

Parallel DL distance algorithms

Parallel DL distance run times are given in Fig. 23

and Table 25. PP_Strip_DL is faster than PP_DL and

PP_LS_DL and reduces the run time by up to 79.1%

and 72.8%, respectively. As can be seen from Table 26,

PP_Strip_DL scales quite well and results in a speedup of

up to 23.22. The maximum speedups provided by PP_DL

and PP_LS_DL are 18.00 and 17.88, respectively.

Discussion

Cache efficient and multi-core linear-space algorithms

to compute the DL distance between two strings as

well as to determine an optimal trace (edit sequence)

have been developed. The reduction in space pro-

vided by these algorithms enables the solution of much

larger instances than is possible using previously known

algorithms.

Conclusion

Our algorithms were empirically evaluated on 3 com-

putational platforms. Cache-misses were experimentally

measured on one of these platforms and we verified that

the algorithms analyzed to have a smaller number of cache

misses using our simple cache model actually had fewer

misses on a real computational platform. Significant run-

time improvement (relative to known algorithms) was

seen for our cache-efficient algorithms on all three plat-

forms. On all platforms, the linear-space cache-efficient

algorithms Strip_DL and Strip_TRACE were the best-

Table 21 Run time of parallel DL trace algorithms on Xeon6

A B PP_DL_TRACE PP_LSDL_TRACE PP_Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:03 0:00:05 0:00:05 -56.2% -51.2% 3.2%

80000 80000 ** 0:00:19 0:00:16 15.7%

120000 120000 ** 0:00:51 0:00:31 38.1%

160000 160000 ** 0:01:49 0:00:56 48.9%

200000 200000 ** 0:03:19 0:01:21 59.3%

240000 240000 ** 0:05:04 0:01:56 61.9%

280000 280000 ** 0:07:19 0:02:33 65.1%

320000 320000 ** 0:09:55 0:03:21 66.3%

360000 360000 ** 0:13:11 0:04:12 68.2%

400000 400000 ** 0:16:14 0:05:03 68.9%
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Table 22 Speedup of parallel DL trace algorithms on Xeon6

A B DL_TRACE/PP LSDL_TRACE/PP Strip_TRACE/PP

40000 40000 5.23 4.23 3.30

80000 80000 ** 4.49 4.15

120000 120000 ** 4.19 4.65

160000 160000 ** 4.05 4.68

200000 200000 ** 4.02 5.02

240000 240000 ** 4.12 5.04

280000 280000 ** 4.28 5.18

320000 320000 ** 4.38 5.17

360000 360000 ** 4.51 5.22

400000 400000 ** 4.55 5.33

Table 23 Run time of DL distance algorithms on Xeon24

A B DL LS_DL Strip_DL L vs D S vs D S vs L

40000 40000 0:00:24 0:00:14 0:00:10 41.5% 57.1% 26.7%

80000 80000 0:01:26 0:00:53 0:00:41 38.3% 53.0% 23.8%

120000 120000 0:03:06 0:02:01 0:01:31 35.3% 50.9% 24.2%

160000 160000 0:05:33 0:03:34 0:02:42 35.6% 51.3% 24.3%

200000 200000 0:08:32 0:06:08 0:04:15 28.2% 50.2% 30.6%

240000 240000 0:12:40 0:08:05 0:06:05 36.2% 52.0% 24.8%

280000 280000 0:19:24 0:11:32 0:08:20 40.6% 57.0% 27.7%

320000 320000 0:29:51 0:15:55 0:10:58 46.7% 63.3% 31.1%

360000 360000 0:44:44 0:26:41 0:15:11 40.4% 66.0% 43.1%

400000 400000 1:04:03 0:30:11 0:17:15 52.9% 73.1% 42.9%

Table 24 Run time of DL trace algorithms on Xeon24

A B DL_TRACE LSDL_TRACE Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:23 0:00:25 0:00:21 -6.1% 9.7% 14.9%

80000 80000 0:01:25 0:01:36 0:01:23 -12.8% 2.7% 13.8%

120000 120000 0:03:04 0:03:38 0:03:04 -18.2% -0.1% 15.3%

160000 160000 0:05:29 0:06:26 0:05:27 -17.1% 0.7% 15.2%

200000 200000 0:08:30 0:10:26 0:08:54 -22.9% -4.8% 14.7%

240000 240000 0:12:40 0:14:44 0:12:14 -16.3% 3.5% 17.0%

280000 280000 0:19:07 0:20:22 0:16:39 -6.5% 12.9% 18.2%

320000 320000 0:29:14 0:27:39 0:21:51 5.4% 25.3% 21.0%

360000 360000 0:44:52 0:41:56 0:28:55 6.6% 35.6% 31.0%

400000 400000 1:04:33 0:50:01 0:34:16 22.5% 46.9% 31.5%
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Table 25 Run time of parallel DL distance algorithms on Xeon24

A B PP_DL PP_LS_DL PP_Strip_DL L vs D S vs D S vs L

40000 40000 0:00:02 0:00:01 0:00:01 67.7% 74.7% 21.5%

80000 80000 0:00:08 0:00:04 0:00:02 53.6% 75.1% 46.4%

120000 120000 0:00:16 0:00:08 0:00:04 51.8% 72.7% 43.5%

160000 160000 0:00:28 0:00:18 0:00:08 34.8% 70.4% 54.6%

200000 200000 0:00:44 0:00:28 0:00:11 37.1% 74.6% 59.6%

240000 240000 0:01:04 0:00:37 0:00:16 42.0% 74.3% 55.8%

280000 280000 0:01:33 0:00:59 0:00:23 36.3% 75.8% 61.9%

320000 320000 0:02:11 0:01:33 0:00:30 29.1% 77.4% 68.1%

360000 360000 0:03:07 0:02:01 0:00:40 35.1% 78.5% 66.9%

400000 400000 0:03:34 0:02:44 0:00:45 23.2% 79.1% 72.8%

Table 26 Speedup of parallel DL distance algorithms on Xeon24

A B DL/PP LS_DL/PP Strip_DL/PP

40000 40000 9.86 17.88 16.69

80000 80000 10.53 13.99 19.90

120000 120000 11.39 15.29 20.51

160000 160000 12.02 11.86 19.77

200000 200000 11.51 13.14 22.57

240000 240000 11.91 13.10 22.29

280000 280000 12.51 11.68 22.19

320000 320000 13.70 10.30 22.27

360000 360000 14.39 13.21 22.73

400000 400000 18.00 11.05 23.22

Table 27 Run time of parallel DL trace algorithms on Xeon24

A B PP_DL_TRACE PP_LSDL_TRACE PP_Strip_TRACE L vs D S vs D S vs L

40000 40000 0:00:01 0:00:03 0:00:02 -153.0% -79.8% 28.9%

80000 80000 0:00:07 0:00:11 0:00:07 -58.3% -7.1% 32.3%

120000 120000 0:00:17 0:00:21 0:00:15 -25.4% 8.3% 26.9%

160000 160000 0:00:30 0:00:35 0:00:24 -18.4% 18.1% 30.8%

200000 200000 0:00:47 0:00:53 0:00:41 -11.0% 14.3% 22.8%

240000 240000 0:01:08 0:01:13 0:00:53 -8.0% 21.7% 27.5%

280000 280000 0:01:39 0:01:52 0:01:10 -13.4% 28.9% 37.3%

320000 320000 0:02:27 0:02:30 0:01:26 -1.8% 41.7% 42.7%

360000 360000 0:03:23 0:03:20 0:01:40 1.5% 50.9% 50.1%

400000 400000 0:04:22 0:04:14 0:02:08 3.3% 51.1% 49.5%
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Table 28 Speedup of parallel DL trace algorithms on Xeon24

A B DL_TRACE/PP LSDL_TRACE/PP Strip_TRACE/PP

40000 40000 16.98 7.12 8.53

80000 80000 12.59 8.97 11.43

120000 120000 11.01 10.38 12.02

160000 160000 11.14 11.02 13.51

200000 200000 10.76 11.91 13.15

240000 240000 11.20 12.06 13.81

280000 280000 11.65 10.94 14.26

320000 320000 11.92 11.08 15.28

360000 360000 13.29 12.60 17.42

400000 400000 14.77 11.83 16.04

performing single-core algorithms to determine the DL

distance and optimal trace, respectively.

Strip_DL reduced run time by as much as 73.1% relative

to the classical distance algorithm DL and Strip_TRACE

reduced run time by as much as 63.5% relative to the

classical trace algorithm. Multi-core versions of these two

algorithms scaled quite well and achieved a speedup of up

to 23.22 on a 24 core computer.

We also measured the energy efficiency of our

algorithms on one of the platforms. Our best single-

core algorithms reduced energy consumption by as

much as 68.5% (relative to the best previously known

algorithm) when computing the DL distance and

by as much as 46.8% when computing an optimal

trace. Our best multi-core algorithms achieves up

to 81.4% and 57.6% energy consumption reduction,

respectively.
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