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This paper shows how the eigenstructure of the adjacency matrix can be used for the
purposes of robust graph-matching. We commence from the observation that the leading
eigenvector of a transition probability matrix is the steady state of the associated Markov
chain. When the transition matrix is the normalised adjacency matrix of a graph, then
the leading eigenvector gives the sequence of nodes of the steady state random walk on
the graph. We use this property to convert the nodes in a graph into a string where
the node-order is given by the sequence of nodes visited in the random walk. We match
graphs represented in this way, by finding the sequence of string edit operations which
minimise edit distance.

1. Introduction

Graph-matching is a task of pivotal importance in high-level vision since it provides
a means by which abstract pictorial descriptions can be matched to one-another.
Unfortunately, since the process of eliciting graph structures from raw image data
is a task of some fragility due to noise and the limited effectiveness of the avail-
able segmentation algorithms, graph-matching is invariably approached by inexact
means 18,16. The search for a robust means of inexact graph-matching has been
the focus of sustained activity over the last two decades. Early work drew heavily
on ideas from structural pattern recognition and revolved around extending the
concept of string edit distance to graphs 16,3. More recent progress has centred
around the use of powerful optimisation and probabilistic methods, with the aim
of rendering the graph matching process robust to structural error.

Despite proving effective, these methods lack the elegance of the matrix repre-
sentation first used by Ullman in his work on subgraph isomorphism 21. The task
of posing the inexact graph matching problem in a matrix setting has proved to
be an elusive one. This is disappointing since a rich set of potential tools are avail-
able from the field of mathematics referred to as spectral graph theory. This is the
term given to a family of techniques that aim to characterise the global structural
properties of graphs using the eigenvalues and eigenvectors of the adjacency ma-
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trix 2. In the computer vision literature there have been a number of attempts to
use spectral properties for graph-matching, object recognition and image segmen-
tation. Umeyama has an eigendecomposition method that matches graphs of the
same size 22. Borrowing ideas from structural chemistry, Scott and Longuet-Higgins
were among the first to use spectral methods for correspondence analysis 17. They
showed how to recover correspondences via singular value decomposition on the
point association matrix between different images. In keeping more closely with
the spirit of spectral graph theory, yet seemingly unaware of the related literature,
Shapiro and Brady 19 developed an extension of the Scott and Longuet-Higgins
method, in which point sets are matched by comparing the eigenvectors of the
point proximity matrix. Here the proximity matrix is constructed by computing
the Gaussian weighted distance between points. The eigenvectors of the proximity
matrices can be viewed as the basis vectors of an orthogonal transformation on
the original point identities. In other words, the components of the eigenvectors
represent mixing angles for the transformed points. Matching between different
point-sets is effected by comparing the pattern of eigenvectors in different images.
Kosinov and Caelli 7 have recently reported a graph-matching method which is
closely related to that of Shapiro and Brady. Their method involves projecting the
graph onto the leading eigenvectors of the adjacency matrix, and matching can
be realised as a rotation of the projections. Shapiro and Brady’s method can be
viewed as operating in the attribute domain rather than the structural domain.
Horaud and Sossa 6 have adopted a purely structural approach to the recognition
of line-drawings. Their representation is based on the immanental polynomials for
the Laplacian matrix of the line-connectivity graph. By comparing the coefficients
of the polynomials, they are able to index into a large data-base of line-drawings.
Shokoufandeh, Dickinson and Siddiqi 20 have shown how graphs can be encoded
using local topological spectra for shape recognition from large data-bases.

In a recent paper Luo and Hancock 11 have returned to the method of Umeyama
and have shown how it can be rendered robust to differences in graph-size and struc-
tural errors. Commencing from a Bernoulli distribution for the correspondence
errors, they develop an expectation-maximisation algorithm for graph-matching.
Correspondences are recovered in the M or maximisation step of the algorithm by
performing singular value decomposition on the weighted product of the adjacency
matrices for the graphs being matched. The correspondence weight matrix is up-
dated in the E or expectation step. However, since it is iterative the method is
relatively slow and is potentially sensitive to initialisation.

The aim in this paper is to investigate whether the eigenstructure of the adja-
cency matrix can be used to match graphs using a search method rather than by
iteration. To do this we draw on the theory of Markov chains. We consider a Markov
chain whose transition probability matrix is the normalised edge-weight matrix for
a graph. The steady-state random walk for the Markov chain on the graph is given
by the leading eigenvector of the transition probability, i.e. edge weight, matrix.
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Hence, by considering the order of the nodes defined by the leading eigenvector, we
are able to convert the graph into a string. This opens up the possibility of per-
forming graph matching by using string alignment to minimise the Levenshtein or
edit distance 8,24. We can follow Wagner 24 and use dynamic programming to eval-
uate the edit distance between strings and hence recover correspondences 24. It is
worth stressing that although there been attempts to extend the string edit idea to
trees and graphs 25,13,16,18, there is considerable current effort aimed at putting the
underlying methodology on a rigourous footing. For instance, Bunke has demon-
strated the relationship between graph edit distance and the size of the maximum
common subgraph 1. Taking a Bayesian perspective, Myers, Wilson and Hancock 12

have shown how to construct a probability distribution for local graph-edit distance
and have used this distribution for maximum likelihood inexact graph-matching.

The outline of the paper is as follows. In Section 2 we describe the relationship
between the steady state random walk on a graph and the leading eigenvector of
the edge transition weight matrix. Section 3 explains how the serial ordering of the
nodes in the walk may be used to convert the nodes of the graphs to a string order
and how the strings may be matched so as to minimise string edit distance. Section
4 presents experiments on real-world and synthetic data. Finally, Section 5 offers
some conclusions and identifies directions for future work.

2. Random Walks on Graphs

Our aim in this paper is to find a serial ordering of the nodes in a graph that
can be used to convert graphs to strings, so that graph-matching can be effected
using standard string matching techniques. To define the string order, we make use
of the steady-state random walk on the graph. The transition probability matrix
for the random walk is found by normalising the adjacency matrix. In the steady
state the probability of visiting nodes is related to the leading or left eigenvector
of the adjacency matrix. In its raw form the sequence defined by the serial order
of the steady-state site probabilities is not suitable as a string representation of
the graph. The reason for this is that the steady state random walk is not an
edge connected path. Hence, we can not exploit edge constraints when matching
the strings. Without these constraints the sites in the strings have no syntactic
structure and the matching process must rely on attributes alone. To overcome this
problem, we use a constraint filtering technique to search for an edge connected
path using the steady state site probabilities. In passing, it is important to note
that there are several alternative methods that can be used to characterise the
steady state random walk using the eigenvectors of the adjacency matrix. Since
we are interested in the steady state site probabilities, here we symmetrise the
normalised transition probability matrix and make use of the eigenvalue-eigenvector
expansion. However, there are more direct treatments which involve performing
singular value decomposition on the asymmetric transition probability matrix, and
using the matrix of left eigenvectors.
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To commence, consider the graph G = (V,E) with node index-set V and edge-
set E = {(i, j)|(i, j) ∈ V × V, i 6= j}. Associated with the graph is an adjacency
matrix A whose elements are defined as follows

A(i, j) =

{
1 if (i, j) ∈ E

0 otherwise
(1)

Our aim is to assign the nodes of the graph to a sequence order which follows
the steady state random walk on the graph. To pursue this analysis, we compute
a transition probability matrix P from the adjacency matrix. The elements of this
matrix are given by

P (i, j) =
A(i, j)∑

j∈V A(i, j)
(2)

To pursue our analysis we intend to exploit the relationship between the leading
eigenvector of the transition probability matrix and the steady state random walk
on the graph. However, the matrix P is not symmetric and before we can commence
our spectral analysis we must therefore convert it into a symmetric form so that
we can perform an eigenvector expansion. To do this we first compute the diagonal
degree matrix D, whose elements are

D(i, j) =





1
d(i) = 1∑|V |

j=1 P (i,j)
if i = j

0 otherwise
(3)

Hence, in matrix form P = DA. The symmetric version of the matrix P is

W = D− 1
2 PD

1
2 = D

1
2 AD

1
2

By normalising the matrix P in this way, we arrive at a normalised transition matrix
W that depends on the degree of the nodes in the graph. As we demonstrate later,
the probability of visiting nodes in the steady state random walk is controlled by
the degree of the nodes in the graph. The spectral expansion for the symmetric
transition matrix W is

W =
|V |∑

i=1

λi
~φi

~φT
i

where λi are the eigenvalues of W and ~φi are the corresponding eigenvectors of unit
length.

We are interested in random walks on the graph G. Let the sequence of nodes
visited by the random walk be X =< j1, ......., j|V >. Suppose that the transition
probability associated with the single step move between the nodes indexed jl and
jm is P (jl, jm). If the random walk can be represented by a Markov chain with
transition matrix P , then the probability of visiting the nodes in the sequence is

PX = P (j1)
|V |∏

l=1

P (jl+1, jl)
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Further, let Qt(i) be the probability of visiting the node indexed i after t-steps
of the random walk and let Qt = (Qt(1), Qt(2), ...)T be the state vector of site
visitation probabilities at time t. After t time steps Qt = P tQ0. As a result, after
t applications of the Markov transition probability matrix

P t = D
1
2 W tD− 1

2

Substituting the spectral expansion of the matrix W , we find

P t =
|V |∑

i=1

λt
iD

1
2 ~φi

~φT
i D− 1

2

Since the elements in individual rows and columns of the matrix W sum to
unity, then the leading eigenvalue is unity, i.e. λ1 = 1. Furthermore, from spectral
graph theory 2 provided that the graph G is not a bipartite graph, then the smallest
eigenvalue λ|V | > −1. As a result, when the Markov chain approaches its steady
state, i.e. t →∞, then all but the first term in the above series become negligible.
Hence,

lim
t→∞

P t = D
1
2 ~φ1

~φT
1 D− 1

2

This establishes that the leading eigenvector of the transition probability matrix
determines the steady state of the Markov chain. It is also important to note that the
equilibrium equation for the Markov process is Qs = PQs, where Qs is the vector
of steady-state site visitation probabilities. Hence, since the leading eigenvalue of P

is unity, then it follows that Qs is the leading eigenvector of P . For a more complete
proof of this result see the book by Varga 23 or the review of Lovasz 9.

We aim to visit the nodes in the graph in the order of their steady-state state
probabilities. Suppose that the initial state vector for the sites is uniform, i.e.

Q0 = (
1
|V | , ......,

1
|V | )

T

We can hence write

Qs = lim
t→∞

P tQ0

As a result the steady-state probability of visiting the node i is

Qs(i) =
1
|V |

|V |∑

j=1

√
d(j)
d(i)

φ1(i)φ1(j) =
1
|V |

φ1(i)√
d(i)

|V |∑

j=1

√
d(j)φ1(j)

Since the summation appearing above is the same for all nodes, the probability rank
order is determined by the quantity φ∗(i) = φ1(i)√

d(i)
. Hence, it is the scaled leading

eigenvector

~φ∗ = D
1
2 φ1 = (

φ1(1)√
d(1)

, .....,
φ1(|V |)√

d(|V | )
T
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that determines the probability rank order of the sites in the steady state random
walk.

Our aim is to use the sequence of nodes given by this rank order to define a
serial ordering for the nodes in the graph. If we visit the nodes of the graph in the
order defined by the magnitudes of the co-efficients of the leading eigenvector of
the transition probability matrix, then the path is the steady state of the Markov
chain. In this paper we aim to exploit this property to impose a string ordering
on the nodes of a graph, and to use this string ordering property for matching
the nodes in different graphs by minimising string edit distance. Unfortunately, the
path followed by the steady state random walk is not edge-connected. Hence, we
need a means of placing the nodes in a serial order in which edge constraints are
preserved using the elements of the scaled leading eigenvector ~φ∗.

To do this we commence from the node associated with the largest component
of φ∗, i.e. the largest site probability. We then sort the elements of the leading
eigenvector such that they are both in the decreasing magnitude order of the co-
efficients of the eigenvector, and satisfy edge connectivity constraints on the graph.
The procedure is a recursive one that proceeds as follows. At each iteration, we
maintain a list of nodes visited. At iteration k let the list of nodes be denoted by
Lk. Initially, L0 = jo where j0 = arg maxj φ∗(j), i.e. j0 is the component of φ∗

with the largest magnitude. Next, we search through the set of first neighbours
Nj0 = {k|(j0, k) ∈ E} of jo to find the node associated with the largest remaining
component of φ∗. The second element in the list is j1 = arg maxl∈Nj0

φ∗(l). The
node index j1 is appended to the list of nodes visited and the result is L1. In the
kth (general) step of the algorithm we are at the node indexed jk and the list of
nodes visited by the path so far is Lk. We search through those first-neighbours
of jk that have not already been traversed by the path. The set of nodes is Ck =
{l|l ∈ Njk

∧ l /∈ Lk}. The next site to be appended to the path list is therefore
jk+1 = arg maxl∈Ck

φ∗(l). This process is repeated until no further moves can be
made. This occurs when Ck = ∅ and we denote the index of the termination of the
path by T . The serial ordering of the nodes of the graph X is given by the ordered
list or string of nodes indices LT .

In practice we will be interested in finding the edit distance for a pair of graphs
GM = (VM , EM ) and GD = (VD, ED). The leading eigenvectors of the correspond-
ing normalised transition matrices WM and WD are respectively φ∗M and φ∗D. The
string representations of the graph GM is denoted by X and that for the graph GD

by Y .
We augment, the information provided by the leading eigenvectors, with mor-

phological information conveyed by the degree of the nodes in the two graphs. We
establish the morphological affinity βi,j of nodes i ∈ VD and j ∈ VM using their
degree ratio. Specifically, the morphological affinity of the nodes is taken to be

βi,j = exp
(
−max(d(i), d(j))−min(d(i), d(j))

max(d(i), d(j))

)
(4)
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If the degree ratio is one then the affinity measure is maximum. If the ratio is small
(i.e. βi,j << 1) then the affinity is zero. Of course, if we were working with directed
graphs, then a it would be possible to define a finer measure which distinguishes
between the number of incoming and outgoing edges.

3. Edit Distance

We are interested in computing the edit distance between the graphs GM =
(VM , EM ) referred to as the model graph and the graph GD = (VD, ED) referred
to as the data-graph. The serial orderings of the nodes of the two graphs are de-
noted by X = {x1, x2, ....., x|VM |} for the model graph and Y = {y1, y2, ....., y|VD|}
for the data graph. These two strings are used to index the rows and column of
an edit lattice. The rows of the lattice are indexed using the data-graph string,
while the columns are indexed using the model-graph string. To allow for differ-
ences in the sizes of the graphs we introduce a null symbol ε which can be used
to pad the strings. We pose the problem of computing the edit distance as that
of finding a path Γ =< γ1, γ2, ...γk, ....., γL > through the lattice. Each element
γk ∈ (VD ∪ ε) × (VM ∪ ε) of the edit path is a Cartesian pair. We constrain the
path to be connected on the edit lattice. In particular, the transition on the edit
lattice from the state γk to the state γk+1 is constrained to move in a direction
that is increasing and connected in the horizontal, vertical or diagonal direction
on the lattice. The diagonal transition corresponds to the match of an edge of the
data graph to an edge of the model graph. A horizontal transition means that the
data-graph index is not incremented, and this corresponds to the case where the
traversed nodes of the model graph are null-matched. Similarly when a vertical
transition is made, then the traversed nodes of the data-graph are null-matched.

Suppose that γk = (a, b) and γk+1 = (c, d) represent adjacent states in the edit
path between the strings X and Y . According to the classical approach, the cost of
the edit path is given by

d(X,Y ) = C(Γ) =
∑

γk∈Γ

η(γk → γk+1) (5)

where η(γk → γk+1) is the cost of the transition between the states γk = (a, b) and
γk+1 = (c, d). The optimal edit path is the one that minimises the edit distance
between string, and satisfies the condition

Γ∗ = arg min
Γ

C(Γ) (6)

and hence the edit distance is d(X,Y ) = C(Γ∗). Classically, the optimal edit se-
quence may be found using Dijkstra’s algorithm or by using the quadratic program-
ming method of Wagner 24.

Since, we commenced with a probabilistic characterisation of the matching prob-
lem using Markov chains, we define the elementary edit cost to be the negative
logarithm of the transition probability for the edit operation. Hence,
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η((a, b) → (c, d)) = − ln P ((a, b) → (c, d)) (7)

We adopt a simple model of the transition probability. The probability is a product
of the node similarity weight, and the edge probabilities. Hence we write

P ((a, b) → (c, d)) = βa,bβc,dRD(a, c)RM (b, d) (8)

where RD and RM are matrices of compatibility weights. The elements of the
matrices are assigned according to the following distribution rule

RD(a, c) =





P̂D(a, c) if(a, c) ∈ ED

Pε if a = ε or c = ε

0 otherwise

(9)

where ED is the edge set of the data-graph, WD is the associated normalised transi-
tion probability matrix and Pε is the probability associated with a match to the null
symbol ε. In practice, Pε can be estimated using the size difference in the strings
by setting

Pε =
2|(|VM | − |VD|)|
|VM |+ |VD|

The compatibility weight is hence zero if either the symbol pair (a, c) is unconnected
by an edge of the data-graph, or the symbol pair (b, d) is unconnected by a model
graph edge. As a result, edit operations which violate edge consistency on adjacent
nodes in the strings are discouraged.

The optimal set of correspondences between the two sequences of nodes is found
by minimising the string edit distance. The optimal sequence of correspondence Γ∗

is found using Dijkstra’s algorithm.

4. Experiments

We have conducted some experiments with the CMU house sequence. This sequence
consists of a series of images of a model house which have been captured from
different viewpoints. To construct graphs for the purposes of matching, we have
first extracted corners from the images using the corner detector of Luo, Cross and
Hancock 10. The graphs used in our experiments are the Delaunay triangulations
of these points. The Delaunay triangulations of the example images are shown in
Figure 1a. We have matched pairs of graphs representing increasingly different views
of the model house. To do this, we have matched the first image in the sequence,
with each of the subsequent images. In Figure 1 b, c and d we show the sequence of
correspondence matches. In each case the left-hand graph contains 34 nodes, while
the right-hand graphs contain 30, 32 and 34 nodes. From the Delaunay graphs it is
clear that there are significant structural differences in the graphs. The numbers of
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(a)

(b)

(c)

(d)

Fig. 1. Delaunay triangulations and sequence of correspondences
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Fig. 2. Sensitivity study results.

correctly matched nodes in the sequence are respectively 29, 24 and 20 nodes. By
comparison, the more complicated iterative EM algorithm of Luo and Hancock 11

gives 29, 23 and 11 correct correspondences. As the difference in viewing direction
increases, the fraction of correct correspondences decreases from 80% for the closest
pair of images to 60% for the most distant pair of images.

We have conducted some comparison with a number of alternative algorithms.
The first of these share with our method the feature of using matrix factorisation
to locate correspondences and have been reported by Umeyama 22 and Shapiro
and Brady 19. Since these two algorithms can not operate with graphs of different
size, we have taken pairs of graphs with identical numbers of nodes from the CMU
sequence; these are the second and fourth images which both contain 32 nodes.
Here the Umeyama method and the Shapiro and Brady method both give 6 correct
correspondences, while both the Luo and Hancock 11 method and our own give 22
correct correspondences.

Finally, we have conducted some experiments with synthetic data to measure
the sensitivity of our matching method to structural differences in the graphs and
to provide comparison with alternatives. Here we have generated random point-
sets and have constructed their Delaunay graphs. We have simulated the effects
of structural errors by randomly deleting nodes and re-triangulating the remain-
ing point-set. Three algorithms are compared with the new method. The first of
these is the Wilson and Hancock discrete relaxation scheme 26. This assigns dis-
crete matches to the nodes, and adjust the configuration of matches to maximise a
probabilistic consistency criterion. The second method is Gold and Rangarajan’s 5

soft-assign method, which uses a mean-field method to update a set of continuous
assignment variables so as to optimise a quadratic consistency criterion. Thirdly,
there is method of Finch, Wilson and Hancock 4 which is similar to the Gold and
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Rangarajan method, except that the consistency criterion is exponential in nature.
In Figure 2 we show the fraction of correct correspondences as a function of

the fraction of deleted nodes. For all four methods, as the fraction of nodes deleted
increases then so the fraction of correct correspondences decreases. The performance
curve for our new method is marked as “New Method”. Also shown on the plot are
performance curves for the Wilson and Hancock discrete relaxation scheme, 26, the
Gold and Rangarajan 5 quadratic assignment method and the Finch, Wilson and
Hancock 4 non-quadratic assignment method. The poorest performance is delivered
by the Gold and Rangarajan method, which drops of very rapidly with increasing
levels of corruption. Our method gives performance that is significantly better than
the Gold and Rangarajan method, and intermediate in performance between the
discrete relaxation and non-quadratic assignment methods. Both of the competitive
methods, achieve robustness by compounding a series of exponential functions, and
are hence computationally demanding, In fact, in the worst case the complexity
Wilson and Hancock method can grow exponentially with the degree difference
between nodes.

5. Conclusions

The work reported in this paper provides a synthesis of ideas from spectral graph-
theory and structural pattern recognition. We use the result from spectral graph
theory that the steady state random walk on a graph is given by the leading eigen-
vector of the adjacency matrix. This allows us to provide a string ordering of the
nodes in different graphs. We match the resulting string representations by minimis-
ing edit distance. The edit costs needed are computed using a simple probabilistic
model of the edit transitions which is designed to preserve the edge order on the
correspondences.

The ideas are relatively preliminary and there are clearly a number of ways
in which the work presented in this paper can be developed. First, there is no
guarantee that the serial ordering of the nodes is edge connected. To overcome this
problem, in a companion paper we have recently developed a graph-spectral method
for recovering a serial ordering which is maximally edge connected 14. This method
has also been applied to detect curvature minimising paths through fields of surface
normals for the purposes of surface height recovery 15. Second, there is considerable
scope for placing some of the heuristic elements of our current method on a more
rigorous footing. In the companion paper 14, we have posed the estimation of edit
costs in a maximum a posteriori probability setting. This more principled framework
will allow a deeper analysis of the method, and some of its theoretical properties
to be better understood. For instance, it would be interesting to relate the edit
distances to the structural properties of the graphs under study. One interesting
question, is that of what value the distance acquires when one graph is subgraph
isomorphic with a second. Finally, the serial orderings of the nodes of graphs may
be used for tasks other than matching. For instance, they may be used for graph
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clustering or embedding graphs in vector-spaces. This latter endeavour may be of
particular importance, since it would allow the apparatus of conventional pattern
recognition to be applied to graphs in vector form. Hence, the elusive task of learning
relational structures may come within grasp.
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