
BIOINFORMATICS Vol. 19 no. 14 2003, pages 1733–1738
DOI: 10.1093/bioinformatics/btg268

STRING: finding tandem repeats in DNA
sequences

Valerio Parisi1,∗ , Valeria De Fonzo2 and Filippo Aluffi-Pentini3

1Sez. INFM, 2EuroBioPark, Univ. Roma ‘Tor Vergata’ Via della Ricerca Scientifica 1,
00133 Roma, Italy and 3Dip. Metodi e Modelli Matematici, Univ. Roma ‘La Sapienza’
Via A. Scarpa 16, 00161 Roma, Italy

Received on November 4, 2002; revised on March 13, 2003; accepted on April 15, 2003

ABSTRACT
Motivation and results: The importance of Tandem Repeats
in some genomes is now well established. We have reported
elsewhere some interesting new results obtained by means
of a preliminary program for finding Tandem Repeats in DNA
sequences, together with a brief description of the basic ideas
of the algorithm. We describe here a completely new pro-
gram based only in part on those ideas, we briefly discuss
the interpretation of the results, and, by way of example, we
provide a few novel results relative to the parasites respons-
ible of two re-emerging diseases, Plasmodium falciparum and
Mycobacterium tuberculosis. Our program is portable, effect-
ive, powerful and fast: it can run on current desktop computers,
and it finds all significant Tandem Repeats also in the longest
segments of sequences in databases (up to millions of bases),
in short times (minutes).
Availability: An academic version of the algorithm (full source
listing in standard C language) can be freely downloaded
(http://www.caspur.it/∼castri/STRING/).
Contact: valerio.parisi@roma2.infn.it
Supplementary information: Some illustrative figures and
some sample results are provided as supplementary material
at: http://www.caspur.it/∼castri/STRING/.

1 INTRODUCTION
The examination of DNA sequences, trying to make assump-
tions about how a given sequence might have been generated
by successive mutations acting on a given or hypothetical
starting sequence, is a scientifically and practically interest-
ing problem. An important aspect of genomic sequences is
the presence of repetitions, that can be scattered (as the Alu
sequences) or consecutive, i.e. tandemly repeated. A Tandem
Repeat (TR) is a tract of DNA where a unit is tandemly
repeated exactly or nearly exactly a number of times. In this
paper we shall deal only with TRs.

The importance of TRs in some genomes is well-
established. It is moreover well known that in some places of
the human genome one finds a Variable Number of Tandem

∗To whom correspondence should be addressed.

Repeats (VNTRs), i.e. TRs where the number of repetitions is
variable: variable within a population (polymorphism), vari-
able from parent to offspring (genetic instability), variable
within the same organism (mosaicism); the search for VNTRs
is of growing importance: for example it is now commonly
acknowledged that in many cases their excessive expansions
cause several diseases (Richards and Sutherland, 1996). The
best known cases are some nervous system diseases, where
the repeated unit is often a triplet (Reddy and Housman,
1997).

We therefore consider of paramount interest to have power-
ful and efficient modern algorithms to effectively find all TRs
that can be considered significant (for example according to a
suitable figure of merit), especially in the cases of very long
sequences (up to millions of bases), also in view of further
(bioinformatic or experimental) studies about important TR
features such as their instability (Jakupciak and Well, 2000;
De Fonzo et al., 2000) or their propensity to build anomal-
ous three-dimensional structures (Keniry, 2000; Shafer and
Smirnov, 2000; De Fonzo et al., 2001).

We reported elsewhere (De Fonzo et al., 1998; Bersani
et al., 2001) some interesting new results obtained by means
of a preliminary program for finding tandem repeats in DNA
sequences, together with a brief description of the basic ideas
of the algorithm.

We describe here a completely new program (STRING:
Search for Tandem Repeats IN Genomes) based only in part
on those ideas, we briefly discuss the interpretation of the
results, and, by way of example, we provide a few novel res-
ults relative to the genomes of Plasmodium falciparum and
Mycobacterium tuberculosis.

We note that there exist a number of algorithms for
finding tandem repeats. A detailed list is provided by
the dedicated Web site by Professor Ramaswamy’s Group
(http://bic.jnu.ac.in/anju); a more restricted but critical exam-
ination of some important algorithms can be found in the paper
of Benson (1999). It is clear from the above resources that most
algorithms cannot be considered as competitive candidates for
general purpose use, due to various kinds of design limita-
tions. For example, some of them look only for TRs having

Bioinformatics 19(14) © Oxford University Press 2003; all rights reserved. 1733

http://www.caspur
http://www.caspur
http://bic.jnu.ac.in/anju


V.Parisi et al.

a repeated unit of limited length (Sagot and Myers, 1998), or
separated by error blocks of fixed length (Karlin et al., 1988).
Other algorithms (Rivals et al., 1997, and the references con-
tained therein) exploit the unconventional idea that sequences
that contain more repeats are obviously more compressible by
many compression algorithms, but limit themselves to only
signal a suspected presence of TRs whenever a high com-
pressibility is encountered. Of course the suspect must be
then verified by other means.

Also from a more extensive survey of the references quoted
in the above sources, it appears to us that the recent algorithm
by Benson (1999) is the only good candidate for a general
purpose use (in fact his program is used by several groups,
and can be easily used online) and the scarcity of different
tools is by itself, in our opinion, a good reason to justify the
proposal of new algorithms, especially if based on completely
different ideas.

2 METHODS
It is well known that genome sequences are subject to many
kinds of modifications, such as point mutations, i.e. substitu-
tions, insertions and deletions (indels for short), and expan-
sions, i.e. exact tandem replications of some tracts. Situations
that are more complicated may arise, such as an expansion
followed by point mutations and further expansions, which
may be called nested expansions.

In the present work we do not pursue the most general case,
but we restrict ourselves to a simpler but practically more
important aim: to assess if some tracts of a given sequence
can be interpreted as follows. An exact TR, i.e. a single exact
tandem repetition of a suitable word called consensus, under-
went a (small) number of point mutations thus producing an
inexact TR.

One must therefore compare a suitable prospective exact TR
(model TR) with a suitable tract of the given sequence: and
while if only point substitutions are present a simple one-to-
one comparison is sufficient, indels produce misalignments.
The standard tool in bioinformatics to compare misaligned
sequences is an alignment procedure; in this case we use a
local alignment procedure (Section 3.1), which, for a given
proposed consensus, provides the best one-to-one correspond-
ences between the model TR and some tracts of the sequence.
The interpretation of a tract of a sequence as a TR is there-
fore fully described by the pair consisting of the hypothesized
consensus and the associated alignment, and this pair will
be called Single-Expansion Interpretative Pattern, or more
briefly SIP.

We could think to perform all possible local alignment
procedures between all possible model TRs and the given
sequence, and to select only the best SIPs by means of a
suitable optimization procedure. Unfortunately the number
of possible local alignments for a given consensus is an expo-
nential quantity (in the length of the tract to be examined), and

the number of possible consensus words is also an exponential
quantity (in the length of the consensus).

The exact algorithmic search of the best local alignments for
a given model TR can be performed by means of a dynamic
programming procedure as indicated in Section 3.2. Dynamic
programming allows to lower the search time, for the best
local alignments for a given consensus, from an exponential
time to a polynomial time, but unfortunately as far as we know
there exist no similar exact methods to reduce the exponential
complexity of the number of possible consensus words. It is
therefore necessary to resort to approximate methods.

Our approach has been to exploit some heuristically plaus-
ible criteria to reduce the size of the search space by
considering, by means of a suitable pre-screening, only a reas-
onably restricted number of ‘promising’ sequence tracts and
of ‘promising’ possible consensus words.

In the past (De Fonzo et al., 1998) we adopted the idea
of searching tandem (and not scattered) repeats by means
of a local autoalignment procedure (i.e. a search of local
alignments of a sequence with itself, see Section 3.1) sat-
isfying suitable conditions and of considering as TRs the
autoaligned tracts. Of course it is not strictly correct to con-
sider such autoaligned tracts as TRs: by their very nature such
autoalignments compare every repeated unit only with the
adjacent ones, possibly of different length (see phase 1 of
http://www.caspur.it/∼castri/STRING/figure1.pdf), instead
of correctly comparing every repeated unit with a same con-
sensus word. Therefore, using such procedure, one may in
some cases fail to detect the fact that many small changes
in adjacent unit may produce a sort of ‘drift’ effect, so that
far-away entirely different repeated units could be indicated
as belonging to the same TR (for details see De Fonzo et al.,
1998). We therefore consider the autoaligned tracts only as
provisional TRs: they only suggest promising sequence tracts
and possible consensus words, which will be more thoroughly
examined later by the algorithm.

In more detail, our two basic heuristic criteria are:

(a) Instead of studying the whole sequence we examine only
the tracts (interesting zones) that we consider to be the
more promising ones, i.e. those including autoaligned
bases, according to autoalignments that we consider sig-
nificant since they have a score greater than a given
significance threshold.

(b) Instead of studying all possible consensus words we
examine only the words that we consider to be the
more promising ones, suitably selecting them (in a way
inspired by the autoalignments) only among those already
present in the considered tract.

3 ALGORITHM
We give here a brief overview of the algorithm, while a
more detailed description of the algorithm and of its software
implementation will be given elsewhere.

1734

http://www.caspur


STRING: finding tandem repeats in DNA sequences

The algorithm has two phases. The first phase obtains prosp-
ective TRs using the search for autoalignments used in a previ-
ous work (De Fonzo et al., 1998), and is described in Section
3.2; the second phase performs the final TR search, based on
the above heuristic criteria, and is described in Section 3.3.

From a purely logical standpoint, the second phase can be
thought as occurring after the end of the first one, although
practical reasons (especially for very long sequences) sugges-
ted us a more intermingled use.

We first introduce some notation.

3.1 Alignments
Given two sequences a and b of respectively L(a) and
L(b) bases

a = (ai)i∈[1,L(a)] and b = (bi)i∈[1,L(b)]
an alignment of the two sequences a and b is defined by two
strictly increasing sequences α and β of the same number
L(α) = L(β) of indices chosen respectively in [1, L(a)] and
in [1, L(b)] that produces the pairs

(α(k), β(k)), for k = 1, . . . , L(α)

of corresponding (aligned) indices, and the pointed pairs

(aα(k), bβ(k)), for k = 1, . . . , L(α)

of aligned bases. If aα(k) > bβ(k) we say that a point
substitution occurred at the positions α(k) and β(k).

For the sequence α and for k = 1, . . . , L(α) − 1, let

�α(k) = α(k + 1) − α(k) − 1

If �α(k) > 0 we say that there is a gap in the sequence α at
location k, of length �α(k), indicating a deletion of �α(k)

bases going from a to b. Obviously there is no gap if �α(k) =
0. The same applies for the sequence β. A usually implicitly
assumed condition is that for each k at least one of the two
sequences α and β does not have a gap.

An autoalignment of a sequence b is simply an alignment
of the sequence b with itself, and its use will be considered in
Section 3.2.

For purposes of evaluation and comparison it is necessary
to give a measure of the quality of an alignment. The measure
of the quality is sometimes based on probabilistic criteria,
but more often simple additive scores are used. The scores
we shall use are as follows. We evaluate the pairs of aligned
bases by giving a positive score p (say p = 10) if the bases are
equal, and a negative score q (say q = −30) if the bases are
different. The use of the above numerical values for the addi-
tive score stems from probabilistic considerations (De Fonzo
et al., 1998). For a base pair (x, y) the score will therefore be

w(x, y) =
{

p if x = y

q if x �= y

We shall evaluate the gaps in the sequences α and β by giving
a negative score W0 (say W0 = −100) for the very existence

of a gap, and a negative score W1 (say W1 = −10) for any
non-aligned base of the gap. For a gap of length g the score
will therefore be

W(g) =
{

0 if g = 0

W0 + W1 · g if g > 0

and is usually called affine gap penalty: such a choice allows a
great speed, as first pointed out by Gotoh (1982), in dynamic
programming optimization.

The overall score given to an alignment will therefore be

S(a, b, α, β) =
L(α)∑
i=1

w(aα(i), bβ(i)) +
L(α)−1∑

i=1

W(�α(i))

+
L(α)−1∑

i=1

W(�β(i))

and higher scores will denote ‘better’ alignments.
We note that it may well be that there exist non-aligned

bases that do not belong to the above gaps. Such bases are
sometimes said to belong to the so-called external gaps. In
such a parlance our formula is said to refer to a local alignment,
while if a score is given also to external gaps one speaks of a
global alignment. In this paper we shall not consider global
alignments.

3.2 Phase 1
We briefly recall here the use of autoalignment of a sequence b

to search for TRs (De Fonzo et al., 1998).
We define the offset between two aligned indices

γ (k) = β(k) − α(k), for k = 1, . . . , L(α)

We first consider a few ideal oversimplified cases that can be
easily detected but have of course a limited practical interest,
and are considered here only for clarity’s sake.

If, for a given k, the aligned bases are equal, i.e. b[α(k)] =
b[β(k)], there is a base exactly repeated with offset γ (k). If
for n consecutive values of k, b[α(k)] = b[β(k)] and γ (k) is
a constant, say γC :

• if γC = n there is a unit of γC bases tandemly repeated
exactly twice;

• if γC < n there is a unit of γC bases tandemly repeated
(n/γC+1) times. There is a partial superposition between
the two aligned tracts and γC is the repetition period along
the TR;

• if γC > n we must distinguish: if γC is much greater
than n there is a scattered repeat of a unit of n bases, with
offset γC (a case not examined here), while if γC is only
slightly greater than n, it may be better to speak of an
exact TR that underwent some mutation, for example an
insertion of length (γC − n).

1735



V.Parisi et al.

A more interesting and frequent case in practice is the
case of an inexact TR where the aligned bases are equal
not for all pairs but for almost all pairs, and γ (k) is not
constant but nearly constant and less than n (see phase 1
of http://www.caspur.it/∼castri/STRING/figure1.pdf); in this
case γ (k) can be called a pseudoperiod.

Our algorithm for searching autoalignments uses the
dynamic programming of Bellman (1957), along the lines first
suggested by Needleman and Wunsch (1970) for the global
alignment between two sequences, where the optimization
is performed with respect to the score defined in Section 2.
In more detail our algorithm is analogous to the algorithm
of Waterman and Eggert (1987), which was devised, like
the algorithm of Smith and Waterman (1981), for search-
ing the best local alignments of two different sequences. The
algorithm of Waterman and Eggert performs a sequence of
dynamic programming optimizations, with the progressive
condition of non-intersection between pairs of alignments:
each pair of aligned indices, involved in any of the higher
scoring alignments, must not be considered in the current
optimization.

The basic differences of our algorithm with respect to the
algorithm of Waterman and Eggert are those needed to make
it apt to detect TRs, i.e. to look for auto-alignments (instead
of alignments), and to add two important constraints aimed
at detecting only TRs. In more detail our constraints can be
written:

1 ≤ γ (k) ≤ γmax, k = 1, . . . , L(α)

where γmax is a fixed given maximum value (say γmax = 100).
The left constraint is needed to avoid the trivial identical auto-
alignment, while the right constraint is needed to restrict the
search to Tandem Repeats (of course TRs with a pseudoperiod
greater than γmax are not detected). Moreover the last con-
straint is extremely advantageous from the standpoint of both
memory requirement and computing time: both quantities, as
functions of the length L(b) of the considered sequence, grow
linearly, O[γmax · L(b)], instead of quadratically, O[L2(b)].
When considering sequence lengths of the order of 106 bases
(as in Section 5), such gains are absolutely necessary.

In phase 1 our algorithm provides local auto-alignments,
and therefore tracts consisting of words consecutively
repeated more or less identically (inexact TRs): we shall
use such words as preliminary candidates to be considered
consensus words, and such tracts as ‘interesting’ tracts to be
further explored.

For future reference we define the extension of the con-
sidered autoalignment (or of the tract of prospective TR) the
interval starting from the first index of α and ending with the
last index of β, i.e.

e(α, β) ≡ [α(1), β(L(α))]
and its augmented extension the interval

ẽ(α, β) ≡ [
α(1) − 1

2D0, β(L(α)) + 1
2D0

] ∩ [1, L(b)]

i.e. the interval obtained by symmetrically increasing the
length of the extension by a given quantity D0 (say D0 =
100), but without overflowing outside the sequence.

3.3 Phase 2
The second phase can be schematized as follows.

We group in suitable clusters all the autoalignments
obtained in phase 1, by putting in the same cluster all the
autoalignments whose augmented extensions are not disjoint.
For each cluster we perform the following actions.

We define the extension of the cluster as the union of all the
augmented extensions of the autoalignments of the cluster.
This extension will be used as the interesting zone within
which we shall restrict any further search for TRs, according
to the heuristic criterion (a) in Section 2.

Instead of studying all possible consensus words we suit-
ably extract some segments (‘words’) of the interesting zone
that we consider as the more promising ones and that we shall
examine as prospective consensus words, i.e. as candidates
to be later declared consensus words. To this end we could
consider, for each autoalignment of the cluster, all the L(α)

words defined by the autoalignment, i.e. the tracts of the inter-
esting zone containing all the bases pointed by the indices
from α(k) to β(k) − 1, and having therefore length γ (k), for
k = 1, . . . , L(α).

The words we shall use as candidates are not all the above
words, for example since the same word may appear many
times, or since a word may be a TR of a shorter word. For each
candidate we perform a local alignment procedure between
the corresponding model TR and the interesting zone (with
the same score function defined in phase 1, possibly with dif-
ferent values for p, q, W0, W1). Our algorithm, as in the first
phase, is similar to the Waterman and Eggert algorithm, with
an important difference: the model TR sequence is treated as
a single consensus word cyclically addressed. This is not a
simple coding detail, but is essential since it reduces the
required memory and the computing time from quadratic to
linear, as in phase 1. Each local alignment procedure produces,
for each candidate, a number of local alignments having a
score greater than a given threshold, and therefore a num-
ber of SIPs: we remind here that a SIP is the couple of a
consensus and of an alignment, for a graphic example see the
phase 2 of http://www.caspur.it/∼castri/STRING/figure1.pdf.
For each cluster we compare pairwise each SIP with each one
of all other SIPs, in order to assess if one of them can be
considered a trivial and less significant version of the other,
and therefore must be discarded: an example is provided in
http://www.caspur.it/∼castri/STRING/figure2.pdf

We perform the comparison by first taking into account
the amount of overlapping of the two tracts of the original
sequences involved in the two alignments. If there is no over-
lapping, neither SIP is discarded by this comparison. If there
is overlapping, the comparison takes suitably into account
the amount of overlapping, the two scores, and the length of

1736

http://www.caspur
http://www.caspur
http://www.caspur


STRING: finding tandem repeats in DNA sequences

the two consensus words. If there is complete overlapping, the
SIP with lower score is discarded, unless it has a sufficiently
shorter consensus, thus suggesting a likely nested expansion
that is beyond the scope of our search, but is nevertheless
indicated in the results. A partial overlapping is treated as
complete or absent, according to the amount of overlapping.

We finally consider as a good consensus the candidate word
associated with each one of the remaining SIPs and we con-
sider as a good TR the tract of the original sequence involved
in the alignment of the SIP. We note that with different values
for the score parameters, the optimal alignments may differ:
for example it may well happen that a single TR may split into
two TRs if one increases the weight of the gap penalty.

Such good SIPs will be the core of the output of our program.

4 IMPLEMENTATION
The algorithm has been implemented in standard C language
and has undergone extensive preliminary testing, with sat-
isfactory results, on many available sequences containing
VNTRs. The program name, STRING, stands for ‘Search for
Tandem Repeats IN Genomes’.

For each accepted SIP, the output of the program
consists of

• the length of the consensus word;

• the first and the last position of the TR;

• the number of repeated units, defined as the (possibly
non-integer) ratio between the length of the model TR
and the length of the consensus;

• the score;

• the consensus word;

• the flanking sequences;

• the alignment between the model TR and the given
sequence;

• the number of insertions and deletions;

• the number of matches and mismatches;

• the TR base composition percentages;

• a flag indicating a likely nested expansion.

5 RESULTS
While a systematic exploitation of our program to produce
novel results is deferred to a future occasion, we report here,
by way of example, a few novel results obtained by running
STRING on the genomes of two interesting unicellular para-
sites, a prokaryote and a eukaryote, namely Mycobacterium
tuberculosis and Plasmodium falciparum.

The study of these parasites is important since they are
responsible for two re-emerging diseases. It is important
to note that in their genomes many VNTRs are present
(Frothingham and Meeker-O’Connell, 1998; Frontali, 1994)
and that these VNTRs appear to be useful for the parasite in

escaping the host immune system. Since future endeavours of
contrasting such diseases will most likely require a detailed
understanding of the dynamics of the involved VNTRs, it is
most likely of strategic importance to detect all the TRs in
order to perform deeper analyses.

We have examined the complete genome of the strain
H37Rv of M.tuberculosis and the complete sequence of
chromosomes 2 and 3 (the only ones already completely
sequenced) of P.falciparum.

The runs have been performed setting a threshold score
equal to 150 for the first phase and equal to 200 for the second
phase (below these values, too many non-significant statistical
fluctuations occur). We have restricted our search to consensus
length between 3 and 100, discarding TRs having less than 2.5
repeated units.

For the other parameters we have used the following
values:

γmax = 100 (phase 1)

D0 = 100 (phase 2)

p = 10, q = −30, W0 = −100, W1 = −10 (both phases)

We have obtained the following results:

– 226 TRs for the complete genome of M.tuberculosis
H37Rv (GenBank accession: NC_000962, 4411529 bp).

– 555 TRs for the chromosome 2 of P.falciparum (GenBank
accession: NC_000910, 947103 bp).

– 708 TRs for the chromosome 3 of P.falciparum (GenBank
accession: NC_000521, 1060106 bp).

The detailed results, for the best 50 TRs of each run, are
reported at http://www.caspur.it/∼castri/STRING/tables.pdf

The meaning of the column headings is as follows:

– start, end: the start and the end of the TR;

– length: the length of the consensus word;

– repeat: the number of repetitions;

– score: the total score of the alignment between the TR
and the model TR;

– ins, del, match, mism: the number of insertions, dele-
tions, matches and mismatches (of the alignment between
the TR and the model TR);

– A%, C%, G%, T%: the percentage of bases in the TR;

– consensus: the consensus word (only the first 10 bases);

– nesting: a flag that indicates a probably nested expansion.

A comparison of the results of the runs for the two organisms
indicate that M.tuberculosis has a lower ratio TRs/bp, longer
TRs with more uniform lengths, and lower number of cases
of likely nested expansions.

1737

http://www.caspur


V.Parisi et al.

6 CONCLUSION
STRING has been designed to be portable since it has been
written in a portable subset of standard C, by deliberately
avoiding risky constructs; it is therefore usable without prob-
lems on any standard UNIX system, and its portability has also
been verified on some desktop operating systems (Windows,
MacOS). Moreover, possible incompatibilities with peculiar
compilers should be easily fixed by the user with minimal
adjustments in the source code, which is available, structured,
readable and with many comments.

STRING is remarkably effective since it apparently finds
all significant Tandem Repeats, and it is powerful, since it
has successfully coped also with the longest segments of
sequences in databases (up to millions of bases).

As for the required computing time we have observed that it
slowly increases as a function of the sequence length, while it
increases more quickly as a function of the number of TRs. To
give a rough order of magnitude we can say that the program
goes through the longest sequences in times of the order of
minutes, and can be therefore considered satisfactorily fast.

We now consider briefly the problem of the comparison of
algorithms.

As for a theoretical comparison, we note that till now, as far
as we know, no accepted objective figure of merit for the bio-
logical importance of a TR is available, and therefore there is
no easy way, from an objective standpoint, to perform a satis-
factory evaluation (e.g. to declare false positives or negatives
and to assess the significance of the results).

As for an experimental comparison, we think that, following
a common fairness practice, a thorough comparative bench-
mark should be best systematically performed by a third party,
on a hopefully accepted set of test problems (obviously taking
in due account the possible presence of different tunable input
parameters, that can drastically affect the performance).

We feel that the non-existence, as far as we know, of such set
of test problems and the scarcity of available good algorithms,
indicates that the situation is still far from a mature state, and
therefore the proposal of new algorithms (especially if based
on quite different ideas) may be useful.

As a purely preliminary comparison, we ran online
(simply with default parameters) version 2.02 of Ben-
son’s algorithm (http://c3.biomath.mssm.edu/trf.html), on
some test sequences, including the above sequence of
M.tuberculosis; the results were practically the same (except
for a few borderline cases).

REFERENCES
Bellman,R.E. (1957) Dynamic Programming. Princeton University

Press, Princeton, NJ.

Benson,G. (1999) Tandem repeats finder: a program to analyse DNA
sequences. Nucleic Acids Res., 27, 573–580.

Bersani,E., De Fonzo,V., Aluffi-Pentini,F. and Parisi,V. (2001) On
new hypotheses about Autosomal Dominant Polycystic Kidney
Disease type 1. Med. Hypotheses, 57, 754–758.

De Fonzo,V., Bersani,E., Aluffi-Pentini,F. and Parisi,V. (2000) A new
look at the challenging world of tandem repeats. Med. Hypotheses,
54, 750–760.

De Fonzo,V., Bersani,E., Aluffi-Pentini,F. and Parisi,V. (2001) DNA
quadruplexes and dynamical genetics. Med. Hypotheses, 57,
103–111.

De Fonzo,V., Bersani,E., Aluffi-Pentini,F., Castrignanò,T. and
Parisi,V. (1998) Are only repeated triplets guilty? J. Theor. Biol.,
194, 125–142.

Frontali,C. (1994) Genome plasticity in Plasmodium. Genetica, 94,
91–100.

Frothingham,R. and Meeker-O’Connell,W.A. (1998) Genetic
diversity in the Mycobacterium tuberculosis complex based on
variable numbers of tandem DNA repeats. Microbiology, 114,
1189–1196.

Gotoh,O. (1982) An improved algorithm for matching biological
sequences. J. Mol. Biol., 162, 705–708.

Jakupciak,J.P. and Well,R.D. (2000) Genetic instabilities of
triplet repeat sequences by recombination. IUBMB Life, 50,
355–359.

Karlin,S., Morris,M., Ghandour,G. and Leung,M.-Y. (1988) Efficient
algorithms for molecular sequence analysis. Proc. Natl Acad. Sci.
USA, 85, 841–845.

Keniry,M.A. (2000) Quadruplex structures in nucleic acids.
Biopolymers, 56, 123–146.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applic-
able to the search for similarities in the amino acid sequence of
two proteins. J. Mol. Biol., 48, 443–453.

Reddy,P.S. and Housman,D.E. (1997) The complex patho-
logy of trinucleotide repeats. Curr. Opin. Cell Biol., 9,
364–372.

Richards,R.I. and Sutherland,G.R. (1996) Repeat offenders: simple
repeat sequences and complex genetic problems. Hum. Mutat.,
8, 1–7.

Rivals,É., Delgrange,O., Delahaye,J.-P., Dauchet,M.,
Delorme,M.-O., Hénaut,A. and Ollivier,E. (1997) Detec-
tion of significant patterns by compression algorithms: the case
of approximate tandem repeats in DNA sequences. Comput.
Appl. Biosci., 13, 131–136.

Sagot,M.-F. and Myers,E.W. (1998) Identifying satellites and peri-
odic repetitions in biological sequences. J. Comput. Biol., 5,
539–554.

Shafer,R.H. and Smirnov,I. (2000) Biological aspects of DNA/RNA
quadruplexes. Biopolymers, 56, 209–227.

Smith,T.F. and Waterman,M.S. (1981) Identification of common
molecular subsequences. J. Mol. Biol., 147, 195–197.

Waterman,M.S. and Eggert,M. (1987) A new algorithm for best
subsequence alignments with application to tRNA–rRNA com-
parisons. J. Mol. Biol., 197, 723–728.

1738

http://c3.biomath.mssm.edu/trf.html

