
String handling in ALGOL

By R. Milner*

DASH (Dynamic ALGOL String Handling) is a set of procedures designed to extend ALGOL
to the expression of non-numerical or partly non-numerical algorithms for which it is normally
unsuited.

1. Introduction

DASH is designed to allow a user to handle strings and
perform efficient arithmetic in the same language. There
are a number of languages designed to handle strings
(Farber, Griswold and Polonsky, 1964 and 1966; Guzman
and Mclntyre 1966), but their arithmetic facilities are
slight. On the other hand, on many computers the only
"general purpose" languages at present implemented
(e.g. ALGOL 60, FORTRAN) are almost purely
arithmetic. This hampers both users and those whose
job is computer science education.

The procedures to be described aim to provide string
processing of the SNOBOL type (Farber et al, 1966)
to the extent that is reasonably possible within ALGOL.
The description is informal, and some details are omitted
for brevity. The reader will benefit from a knowledge
of SNOBOL, though it is hoped an understanding can
be gained without this knowledge.

The superimposition of procedures of this type on
ALGOL will be rendered easier and more natural with a
facility such as the proposed record handling of Wirth
and Hoare (1966).

2. String variables, constants and expressions
As implemented on the I.C.T. 1905, DASH processes

strings on the alphabet consisting of letters (upper and
lower case), digits, space and

: ; < = > ? ! " # £ % & ' () * + , — . / © []

Strings are represented by reals; a real variable becomes
a string variable after appropriate use of the system
procedure make or makearray at the beginning of the
body of the block in which it is declared. For example,
in the following block

begin real A,B,C,D,E;
makearray (S,101); .

array S[0 : 100]; make
. . ; destroy end

the variables B,C,D and all elements of S are used as
string variables. They are assigned null initial values by
make and makearray. The procedure destroy must
appear at the end of any block with string variables local
to it.

String constants are represented by the real procedure
str applied to ordinary ALGOL strings; the effect of
str is to convert the string storage to chained form.

Henceforward we refer to DASH strings as "strings",
and the conventional ALGOL strings as "ALGOL
strings".

String expressions may be built from string (and other
ALGOL) constants and variables, using the DASH
procedures described in Table 1.

For example, if the string variable X has value f23.0/T
then the expressions

tfrs(tfsr(X) + tfsr(str((—\4.W)),2,l)
field(cc{X,cc(str('BCD'1),str(r£F(T))), 5,9)

have respective string values ' u U 8.91 and (ABCDE\

Table 1

PROCEDURE IDENTIFIER
AND PARAMETERS

CC{U\, V2)
field (Ul,i,j)
tfsr (C/l)

tfrs (x,m,ri)

lgth(U\)
eq(U],U2)

PARAMETER TYPES

string, string
string, integer, integer
string

real, integer, integer

string
string, string

RESULT
TYPE

string
string
real

string

integer
boolean

RESULT

The concatenation of U\, U2
The /th toy'th characters inclusive of U\
The real value of the real number represented by an initial

substring of U\
The string representing the real value of x; m,n are format

descriptors
The number of characters in U\
true if U\, U2 are identical strings, otherwise false

The City University, St. John Street, London, E.CA.

321

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/321/463851 by guest on 20 August 2022

String handling

3. Input/output procedures
The procedure stringout {Ul) outputs the value of C/l

to the currently selected channel. The value of stringin
{Ul ,j) is the characters of currently selected input stream
up to and excluding the appearance of the first character
of C/l, or j characters from the input stream, which ever
is less. A typical use would be

stringin {str{f?),ll0)

4. Simple string-processing procedures
Most of the system procedures still to be described

alter the value of at least one of their string parameters;
such a parameter is therefore restricted to being a string
variable, not a constant or expression. We will also
divide string variables into two classes, "actuals" and
"shadows" (see Section 6), and some parameters are
restricted to one or other of these classes of variable.
We will use the following notation for parameters;

Integers
Any string expression
String variables only
Actuals only
Shadows only

U j .
Ul, U2, ...
MX,Ml, . . .
Al,A2, . . .
Sl,S2, . . .

Table 2 describes some procedures for performing
routine tasks.

Table 2

PROCEDURE IDENTIFIER
AND PARAMETERS

set (Ml, Ul)
append {Al, Ul)
prefix 041,C/l)
setfield{Ml, Ul,

U j)
behead (Ml, j)

EFFECT

Assign to Ml the value of C/l.
Append to A1 the value of C/l.
Prefix to A1 the value of C/l.
Equivalent to set {Ml, field

(Ul,i,j)), but see Section 6.
Delete first/ characters of Ml.

Note that one must write set {Ml,Ul) and not Ml : — Ul.

5. Pattern-matching
It is often required to determine whether a string, or a

substring of it, satisfies a certain property, or consists of
a sequence of substrings satisfying a given sequence of
properties in order. In SNOBOL, and other languages,
it is possible to specify a complex pattern (or property
sequence) in a single statement; in ALGOL this cannot
be easily done, due to the restriction that any procedure
has a fixed number of arguments. In DASH therefore
we match the pattern elements one at a time. There are
two main procedures provided for this purpose. The
first is remove {Ml,Ul,M2), a boolean procedure which
scans Ml for a substring equal to C/l. If found, then
the preceding part of Ml is assigned to Ml, the suc-

ceeding part to Ml, and true is returned, otherwise
Ml,Ml are unaltered and false is returned.

As an example, if X has the value 'EASING uTHELJ
SPRING^ then

remove {X, str {'UTHEU^), Y)

will return true, leaving (SPRING^ in X and 'EASING*
in Y. After the success of the match, X or Y may be
the object of further matching tests.

The second pattern-matching procedure is matchpred
{Ml,P,M3,Ml), a boolean procedure which scans Ml
for a substring for which the predicate P (a boolean
procedure) is true, and if found, assigns this substring
to M3, and the preceding and succeeding parts of Ml
to Ml, Ml respectively, and returns true, otherwise
false is returned and M1,M2,M3 are unaltered. The
actual procedure parameter replacing P is called a
"string-resolving predicate" and must be written in a
particular way, which can best be explained by a brief
description of how matchpred works. After matchpred
is entered, it hands a string MM, initially equal to Ml,
to P for an answer to the question "does MM have an
initial substring with the required property?" If the
answer is "no", matchpred removes one character from
the head of MM and repeats the question; the process
continues until either "yes" is returned by P or MM is
null.

A string-resolving predicate therefore has two para-
meters: the string MM which it is to examine and an
integer variable j to which it assigns the length of the
initial substring of MM which has the required property.
There is one system procedure of this type, num{Ml,j),
which returns true if and only if an initial substring of
Ml is a number; toy is assigned the length of the longest
such substring.

Thus, if X has value fAB\-i0.llBC then

matchpred {X, num,number,head)

will return true, and leave (BC\ fl_l0.12\ 'AS1 in X,
number and head respectively.

As an example of a user-defined string-resolving
predicate, suppose we require to find a substring of X
(if any) which is of length 3 and is immediately followed
by itself in X. The SNOBOL pattern-match would be

X *A/"3"* A

which, if successful, would assign the required substring
to A.

In DASH, if we have the procedure declaration
boolean procedure rpt 3 {M,j); real M; integer j ;

begin rpt 2, := eq{field{M, 1,3),field{MA,6)); j : = 3 end;

Then the boolean expression

matchpred {X,rpt3,A,Junk)
will have the appropriate truth value and side effects,
though X will have been mutilated (beheaded, in fact).
A copy of X may be made before pattern-matching
begins if it is needed, but this may be embarrassing in

322

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/321/463851 by guest on 20 August 2022

String handling

storage, and shadow strings (described below) give a
means of preservation during pattern-matching without
copying.

The boolean procedure replace (Al,Ul,U2) scans A\
for an appearance of Ul, as in remove, and if found
returns true and replaces Ul by U2 in A\.

All scanning in DASH is performed left to right.
During a scan, it may be required to ignore any part of
the string enclosed between two given characters, often
X and y. For example, if X has the value ((P + Q)+JV
then we may want

remove (X,str(c+^), Y)

to leave '(P+ Qf and (B? in Y, X respectively; that is,
the pattern-matching process must ignore anything
between X a n d T- This selective mode of scanning with
respect to any given pair of characters a, /J (not neces-
sarily parentheses) is adopted after the procedure

balance (Ul)

has been obeyed, where a, /? are the first two characters
of Ul. Thus in the above case, the statement balance
(str((Q^)) should have been obeyed. Normal scanning is
resumed after obeying the parameterless procedure
unbalance.

6. Shadow strings
Hitherto all string variables were considered to have

"actual"' status, i.e. each variable has a value which is
independent of the values of other variables. Any string
variable may be given "shadow" status by use of the
procedure shadow (Ml); it may then be used only to
designate a substring of an actual string variable, called
its "parent". A shadow variable may be processed in
three ways:

(1) It may be assigned to a parent, and made to
designate all or part of the parent, e.g. by appearing
as the first parameter of set or setfield.

(2) It may be truncated at its left end by appearing as
the first parameter of behead, remove, or matchpred.

(3) It may be moved from left to right over its parent
by the procedure step (51,/,_/), which moves its
left, right ends, i,j places respectively (strictly, only
i is required to be non-negative).

The simplest use of shadows is in analysing the
structure of a string with the minimum of copying.
Thus, to determine whether the value of X is of the
form (u A v B u1 where u, v are arbitrary strings, we
may write

set (SI,X);
if remove (Sl,str(rA"),S2) then

begin if remove (Sl,str({B^),S3) then
begin if eq (SI,52) then goto yes end end;

goto no;

and if 51,52,53 all have shadow status and the test is
successful they will all be assigned to X as parent and

will designate different parts of X. Moreover, no copying
of strings will have taken place.

A shadow is rendered meaningless (until reassigned to
a parent) as soon as that part of its parent which it
designates is altered. However, a shadow may be used
as a means of altering its parent: the procedure change
(A\,S\,U\) assumes that A\ is the parent of 51, replaces
the designated part of A\ by the value of Ul, and makes
51 designate this new substring of Al.

An important restriction is that a shadow may not
designate part of the value of a string expression which
is not a string variable; set(Sl,field(Ml,l,5)) is inad-
missible and will give rise to an error message. On the
other hand, setfield(Sl, Af 1,1,5) is admissible.

7. User-defined string-handling procedures
The user may freely construct procedures with string

parameters and results. It is simplest to call string para-
meters by name always; if the result is a string, it must
be assigned to the procedure identifier after applying the
procedure result(Ul). As an example, cc could be
defined in terms of append as follows:

real procedure cc(Ul,U2); real Ul,U2;
begin real B; make (B,l); set (B,Ul); append
(B,U2);

cc := result (B); destroy end;

Another example appears in Section 9.

8. Indirect addressing
It is convenient (and often necessary) to be able to

refer to a string variable indirectly through a string
expression whose value is its name. But ALGOL
identifiers are forgotten at run time, and hence not
eligible as names for this purpose. DASH allows the
assignment of a name to any string variable by the
procedure givename (Ml, Ul); at any subsequent time
the procedure ref (Ul) will address the variable Ml
indirectly. For example, after

givename (X,str((ABC))

the expression

ref(cc(str((A''),str('BO)))

can occur anywhere that X can occur, with exactly the
same effect. Finally the procedure nameof (Ml) yields
as result the string which is the name of M l .

9. Examples
Programs in DASH have been written for several types

of problem, including radix sorting, manipulation and
differentiation of algebraic expressions, and table-driven
syntax analysis. Two short examples of procedures are
given below; neither illustrates indirect addressing, but
the second illustrates the use of an array of strings, a
feature not present in pure string handling languages.
Both procedures have worked, but are not necessarily
the best that could have been written.

323

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/321/463851 by guest on 20 August 2022

Example 1
real procedure mult (e,ee); real e,ee;
comment e,ee are assumed to designate unparenthesized
expressions made up of identifiers and the operators *
and + , represented by the global string variables times
and plus. The expressions are assumed to terminate
with + . The result is the algebraic product in the
same form. For example rA + B + "" and
CX*Y*Z+ CAT+y will yield rA*X*Y*Z +
A*CAT + B*X* Y*Z + B*CAT +"1;
begin real a,aa,s,ss,prod ; make(a,5) ; set{a,e);

next: if—i remove (a,plus,s) then goto done;set(aa,ee);
again: if —i remove (aa,plus,ss) then goto next;
append (prod, cc(s,cc (times cc(ss, plus))));%oto again;
done: mult : = result (prod); destroy end;

Example 2
procedure printroutes(s,m,ri); value m,n; real s; integer
m,n; comment the procedure, which is recursive,
enumerates and prints all the routes from one given
node to another in a directed network assumed to be
without loops (if there are loops it will not terminate).
The network is assumed to be stored in a global string
array a : nodes are denoted by integers, and the value
of a[i] is a string in which the nodes immediately
accessible from node i are listed—for example, if there
are connections from node 1 to nodes 4,5 and 27 then
the value of a [/] is f4,5,27,\ All node numbers are
considered to be < 1000. The string parameter s
contains a list of the nodes traversed so far from the
start node: node m is one of those immediately accessible
from the last node in s, and node n is the goal. The
statement

print routes(null,j,k)
will print all the routes starting at node j and ter-
minating at node k;
begin real sofar, nextnode, steplist; integer mm;

make(sofar,3); shadow(steplist);
set(sofar, cc(s,tfrs(m,3,0))); set(steplist,a[m\);
again: if remove(steplist,str('^), next node) then

References

String handling

begin mm := tfsr(next node); if mm*n then print-
routes(sofar, mm,n) else

begin newline(\); stringout(sofar); print(n,3,0) end;
goto again

end; destroy
end of printroutes ;

10. Operation
The user's program is in the form of a block, which

has to be embedded in the system block containing the
procedure declarations. The system block is held on
magnetic tape, and the user prefaces his block on paper
tape with a steering line which causes its insertion into
the system block at compile time. He may also specify
the amount of string storage he requires.

Several run-time error messages are provided, mostly
concerned with inadmissible combinations of string
parameters.

11. Implementation
The implementation is largely machine independent.

In fact the only machine dependence is embodied in a
set of about a dozen simple procedures written in PLAN
(the I.C.T. 1900 Assembly Language) totalling less than
150 machine-code instructions. Two or three man-
weeks should be ample to implement the system on any
other machine with an ALGOL compiler. The currently
operating version falls short of the foregoing description
in a few minor respects, the most important of which is
a different, slightly less convenient, indirect addressing
system. Since this is temporary, a description of it
would not be of interest.

12. Conclusion
It appears that DASH, while lacking some of the

conciseness of SNOBOL, nevertheless extends ALGOL
to the expression of algorithms, in more than one subject
area, for which it is normally unsuited. This unsuita-
bility arises not from the structure of the language but
from the paucity of data types.

FARBER, D. J., GRISWOLD, R. E., and POLONSKY, I. P. (1964). SNOBOL, A String Manipulation Language, J. Assoc. Comp.
Mach., Vol. 11, p. 21.

FARBER, D. J., GRISWOLD, R. E., and POLONSKY, I. P. (1966). The SNOBOL 3 Programming Language, Bell System Technical
Journal, July-August 1966, p. 895.

GUZMAN, A., and MCINTOSH, H. V. (1966). CONVERT, Comm. Assoc. Comp. Mach., Vol. 9, p. 604.
WIRTH, N., and HOARE, C. A. R. (1966). A contribution to the development of ALGOL, Comm. Assoc. Comp. Mach., Vol. 9,

p. 413.

324

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/10/4/321/463851 by guest on 20 August 2022

