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1. Introduction

The AdS/CFT correspondence [1] offers new profound insights into a strong cou-

pling dynamics of gauge theories. In the basic case of the duality between type IIB

superstrings on AdS5 × S5 and N = 4 SYM one may even hope to find an exact

solution of the tree-level string theory, and, therefore, to solve the dual gauge theory

in the ‘t Hooft limit. This would be done by employing the conjectured quantum

integrability of the AdS5×S5 superstring which is supported by classical integrability

[2] of the Green-Schwarz action [3], and by one-loop integrability of the dual gauge

theory [4, 5].

Solving string theory is a multi-step problem. One starts by imposing the light-

cone gauge for the AdS5 × S5 superstring, and obtains a 2-d non-linear sigma model

defined on a cylinder of circumference equal to the light-cone momentum P+ [6, 7].

The gauge-fixed Hamiltonian is equal to E−J and, therefore, its spectrum determines

the spectrum of scaling dimensions of gauge theory operators. To find the spectrum,

one first takes the decompactification limit [8]-[11], i.e. the limit where P+ goes to

infinity, while keeping the string tension g fixed. Then, one is left with a world-sheet

theory on a plane which has a massive spectrum and well-defined asymptotic states
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(particles). This reduces the spectral problem to finding dispersion relations for par-

ticles and the S-matrices describing their pairwise scattering. Quantum integrability

then implies factorization of multi-particle scattering into a sequence of two-body

events [12].

To define the S-matrix, one should deal with particles with arbitrary world-

sheet momenta which requires to give up the level-matching condition. As a result,

the manifest psu(2|2) ⊕ psu(2|2) ⊂ psu(2, 2|4) symmetry algebra of the light-cone

string theory gets enhanced by two central charges [13]. The same centrally-extended

symmetry algebra also appears in the dual gauge theory [14].

An important observation made in [14] is that the dispersion relation for fun-

damental particles is uniquely determined by the symmetry algebra of the model.

Moreover, the matrix structure of their S-matrix is uniquely fixed by the algebra, the

Yang-Baxter equation and the generalized physical unitarity condition [14, 15, 16].

The S-matrix is thus determined up to an overall scalar function σ(p1, p2) –

the so-called dressing factor [17]. Its functional form was conjectured in [17] by

discretizing the integral equations [18] describing classical spinning strings [19, 20],

and using insights from gauge theory [21]. It was proposed in [22] that the dressing

factor satisfies a crossing equation. Combining the functional form of the dressing

factor together with the first two known orders in the strong coupling expansion

[17, 23], a set of solutions to the crossing equation in terms of an all-order strong

coupling asymptotic series has been proposed [24]. Opposite to the strong coupling

expansion, gauge theory perturbative expansion of the dressing factor is in powers

of g and it has a finite radius of convergence. An interesting proposal for the exact

dressing factor has been put forward in [25], and passed many tests [26]-[29]. Thus,

one can adopt the working assumption that the exact dressing factor and, therefore,

the S-matrix are established.

Having found the exact dispersion relation and the S-matrix, the next step is

to determine bound states of the model. Analysis reveals that all bound states

are those of elementary particles [30], and comprise into the tensor product of two

4Q-dim atypical totally symmetric multiplets of the centrally-extended symmetry

algebra su(2|2) [31].

Having understood the spectrum of the light-cone string sigma model on a plane,

one has to “upgrade” the findings to a cylinder. All physical string configurations

(and dual gauge theory operators) are characterized by a finite value of P+, and as

such they are excitations of a theory on a cylinder. The first step in determining

the finite-size spectrum is to impose the periodicity condition on the Bethe wave

function. This leads to a system of equations on the particle momenta known as

the Bethe-Yang equations. In the AdS/CFT context these equations are usually

referred to as the asymptotic Bethe ansatz [32, 33]. The AdS5 × S5 string S-matrix
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has a complicated matrix structure which results at the end in a set of nested Bethe

equations [14, 34, 35].

The Bethe-Yang equations determine any power-like 1/P+ corrections to energy

of multi-particle states. To find the exact spectrum for finite values of string tension

and P+, one may try to generalize the thermodynamic Bethe ansatz (TBA), originally

developed for relativistic integrable models [36], to the light-cone string theory.

The TBA approach might allow one to relate the exact string spectrum to proper

thermodynamic quantities of the mirror theory obtained from the light-cone string

model by means of a double-Wick rotation. The mirror theory lives on a plane at

temperature 1/P+, and, in particular, its Gibbs free energy is equal to the density

of the ground state energy of the string model. It should be also possible to find

the energies of excited states by analytic continuation of the TBA equations, see e.g

[39]-[43] for some relativistic examples.

Since the light-cone string model is not Lorentz-invariant, the mirror theory is

governed by a different Hamiltonian and therefore has very different dynamics. Thus,

to implement the TBA approach one has to study the mirror theory in detail. The

first step in this direction has been taken in [16], where the Bethe-Yang equations

for fundamental particles of the mirror model were derived. Another result of [16]

was the classification of mirror bound states according to which they comprise into

the tensor product of two 4Q-dim atypical totally anti-symmetric multiplets of the

centrally-extended algebra su(2|2). This observation was used in the derivation [37]

of the four-loop scaling dimension of the Konishi operator by means of Lüscher’s

formulae [38]. We consider this derivation as prime evidence for the validity of the

mirror theory approach.

In this paper we take the next step in studying the mirror theory, and iden-

tify the states that contribute in the thermodynamic limit. We use the Bethe-Yang

equations of [16] and the fusion procedure, see e.g. [44], to write down the equations

for the complete spectrum of the mirror theory. We use the observation of [31] that

the equations for auxiliary roots can be interpreted as the Lieb-Wu equations for an

inhomogeneous Hubbard model [45], and notice that the inhomogeneous Hubbard

model becomes homogeneous in the limit of the infinite real momenta of the mirror

particles. This observation allows us to formulate the string hypothesis for the mirror

theory. We show that the solutions of the Bethe-Yang equations in the thermody-

namic limit arrange themselves into Bethe string configurations similar to the ones

appearing in the Hubbard model [46]. We then derive a set of equations describing

the bound states of the mirror theory and the Bethe string configurations. These

equations can be readily used to derive a set of TBA equations for the free energy of

the mirror model following a textbook route, see e.g. [46]. The resulting equations

are however complicated and we postpone their discussion for future publication.
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1.1 Bethe-Yang equations

The Bethe-Yang equations for fundamental particles and bound states of the mirror

theory defined on a circle of large circumference R are derived by using the su(2|2)⊕
su(2|2)-invariant S-matrix [16] and the fusion procedure, and are of the form

1 = eiepkR

KI∏

l=1
l 6=k

SQkQl

sl(2) (xk, xl)

2∏

α=1

KII
(α)∏

l=1

x−
k − y

(α)
l

x+
k − y

(α)
l

√
x+

k

x−
k

−1 =
KI∏

l=1

y
(α)
k − x−

l

y
(α)
k − x+

l

√
x+

l

x−
l

KIII
(α)∏

l=1

v
(α)
k − w

(α)
l − i

g

v
(α)
k − w

(α)
l + i

g

(1.1)

1 =

KII
(α)∏

l=1

w
(α)
k − v

(α)
l + i

g

w
(α)
k − v

(α)
l − i

g

KIII
(α)∏

l=1
l 6=k

w
(α)
k − w

(α)
l − 2i

g

w
(α)
k − w

(α)
l + 2i

g

.

Here p̃k is the real momentum of a physical mirror particle which can be either

a fundamental particle or a Q-particle bound state. We will often refer to such

a particle as a Q-particle, a 1-particle being a fundamental one. Then, KI is the

number of Q-particles, and KII
(α) and KIII

(α) are the numbers of auxiliary roots y
(α)
k and

w
(α)
k of the second and third levels of the nested Bethe ansatz, and α = 1, 2 because

the scattering matrix is the tensor product of the two su(2|2)-invariant S-matrices.

We will often refer to K’s as to excitation numbers. The parameters v are related

to y as v = y + 1
y
. The parameters x± are functions of the string tension g, the

momentum p̃ and the number of constituents Q of a Q-particle, and their explicit

expressions can be found in appendix 4, eq.(4.6).

The function SQkQl

sl(2) (xk, xl) is the two-particle scalar S-matrix which describes

the scattering of a Qk-particle with momentum p̃k and a Ql-particle with momentum

p̃l in the sl(2) sector of the mirror theory. The S-matrix can be found by using the

fusion procedure and the following sl(2) S-matrix of the fundamental particles

S11
sl(2)(x1, x2) = σ−2

12 s12 , s12 =
x+

1 − x−
2

x−
1 − x+

2

1 − 1
x−
1 x+

2

1 − 1
x+
1 x−

2

, (1.2)

where σ12 is the dressing factor [17] that depends on x± and g. Its exact form was

conjectured in [25] but we will not need it here. For complex values of the momenta

p̃1, p̃2 the S-matrix (1.2) exhibits a pole at x−
1 = x+

2 , and it is this pole that leads to

the existence of a Q-particle bound state satisfying the bound state equation [16]

x−
1 = x+

2 , x−
2 = x+

3 , . . . , x−
Q−1 = x+

Q . (1.3)

The equation has a unique solution in the physical region of the mirror theory defined

by Im x± < 0 [16], and it is used in the fusion procedure. It implies that the S-matrix

SQkQl

sl(2) (xk, xl) depends only on the total real momenta of the Q-particles.
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Since S11
sl(2)(xk, xl) can be also written as

S11
sl(2)(x1, x2) =

u1 − u2 + 2i
g

u1 − u2 − 2i
g

×
(

1 − 1
x+
1 x−

2

1 − 1
x−
1 x+

2

σ12

)−2

, (1.4)

the Q-particle bound state equations (1.3) can be cast in the form

uj − uj+1 −
2i

g
= 0 ⇐⇒ x−

j = x+
j+1 , j = 1, 2, . . . , Q − 1 . (1.5)

Then, the solution to (1.5) is simply given by the Bethe string

uj = u + (Q + 1 − 2j)
i

g
, j = 1, . . . , Q , u ∈ R , (1.6)

where the real rapidity u determines the momentum of the bound state through

eq.(4.13) from appendix 4.

By taking the complex conjugate of the first Bethe-Yang equation in (1.1) one

can easily see that the unitarity of the S-matrix (1.2) implies that for real values of

p̃k the auxiliary roots y either come in pairs y2 = 1/y∗
1 or lie on unit circle. As a

consequence the variables v and w come in complex conjugate pairs, or are real.

It is the set of Bethe-Yang equations (1.1) we will be using in the paper to

analyze the solutions which contribute in the thermodynamic limit. However, before

starting the analysis we would like to show the relation of the last two equations in

(1.1) for the auxiliary roots to the Lieb-Wu equations for the Hubbard model.

1.2 Relation to the Lieb-Wu equations

Let us recall that the Lieb-Wu equations are the Bethe equations for the Hubbard

model and have the form [45, 46]

e−iφeiqkL =

M∏

l=1

λl − sin qk − iU
4

λl − sin qk + iU
4

, (1.7)

N∏

l=1

λk − sin ql − iU
4

λk − sin ql + iU
4

=
M∏

l=1
l 6=l

λk − λl − iU
2

λk − λl + iU
2

,

where U is the coupling constant of the Hubbard model, qk, k = 1, . . . , N , and λl,

l = 1, . . . , M are charge momenta and spin rapidities, respectively. The arbitrary

constant φ is a twist which has the physical interpretation of the magnetic flux.

To relate the Bethe-Yang equations (1.1) for the auxiliary roots to the Lieb-Wu

equations1 let us make the following change

y = ie−iq , v = 2 sin q , w = 2λ .

1This relation was first observed in [31] and is quite natural taking into account that the su(2|2)-

invariant S-matrix coincides with Shastry’s R-matrix [49] up to a scalar factor [31, 34].
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Then the second and third equations in (1.1) can be cast in the form

−
KI∏

l=1

e−iq
(α)
k + ix−

l

e−iq
(α)
k + ix+

l

√
x+

l

x−
l

=

KIII
(α)∏

l=1

sin q
(α)
k − λ

(α)
l + i

2g

sin q
(α)
k − λ

(α)
l − i

2g

,

KII
(α)∏

l=1

λ
(α)
k − sin q

(α)
l − i

2g

λ
(α)
k − sin q

(α)
l + i

2g

=

KIII
(α)∏

l=1
l 6=k

λ
(α)
k − λ

(α)
l − i

g

λ
(α)
k − λ

(α)
l + i

g

.

Thus, we see that if for each value of α we identify g → 2/U , KI → L, KIII
(α) → M

and KII
(α) → N , then we get two copies of equations which can be interpreted as the

Bethe equations for an inhomogeneous Hubbard model. The inhomogeneities are

determined by the real momenta of the physical particles of the mirror theory. One

can easily see that in the limit p̃ → ∞ the parameters x± behave as x+ → 0, x− → ∞
and one obtaines the homogeneous Lieb-Wu equations (1.7) with φ = (L − 2)π/2.

The relation to the Hubbard model leads us to a natural conjecture that in the

thermodynamic limit where KI, KII
(α), K

III
(α) → ∞ the auxiliary roots y and w will

arrange themselves in vw- and w-strings that in the case of the Hubbard model are

called the k-Λ and Λ strings [46].

2. String hypothesis

In this section we argue that in the thermodynamic limit R, KI, KII
(α), K

III
(α) → ∞ with

KI/R and so on fixed the solutions of the Bethe-Yang equations (1.1) are composed

of the following four different classes of Bethe strings

1. A single Q-particle with real momentum p̃k or, equivalently, rapidity uk

2. A single y(α)-particle corresponding to an auxiliary root y(α) with |y(α)| = 1

3. 2M roots y(α) and M roots w(α) combining into a single M |vw(α)-string

v
(α)
j = v(α) + (M + 2 − 2j)

i

g
, v

(α)
−j = v(α) − (M + 2 − 2j)

i

g
, j = 1, . . . , M ,

w
(α)
j = v(α) + (M + 1 − 2j)

i

g
, j = 1, . . . , M , v ∈ R . (2.1)

4. N roots w(α) combining into a single N |w(α)-string

w
(α)
j = w(α) +

i

g
(N + 1 − 2j) , j = 1, . . . , N , w ∈ R . (2.2)

This includes N = 1 which has a single real root w(α).
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According to the string hypothesis for large R almost all solutions of the Bethe-

Yang equations (1.1) are approximately given by these Bethe strings with corrections

decreasing exponentially in R. The last three types are in fact the same as in the

Hubbard model [46]. Every solution of (1.1) corresponds to a particular configuration

of the Bethe strings, and consists of

1. NQ Q-particles, Q = 1, 2, . . . ,∞

2. N
(α)
y y(α)-particles

3. N
(α)
M |vw

M |vw(α)-strings, α = 1, 2; M = 1, 2, . . . ,∞

4. N
(α)
N |w N |w(α)-strings, α = 1, 2; N = 1, 2, . . . ,∞

We have infinitely many states of all these kinds in the thermodynamic limit. The

numbers NQ, N
(α)
y , N

(α)
M |vw

, N
(α)
N |w are called the occupation numbers of the root

configuration under consideration, and they obey the ‘sum rules’

KI =
∞∑

Q=1

NQ , (2.3)

KII
(α) = N (α)

y +
∞∑

M=1

2M N
(α)
M |vw

,

KIII
(α) =

∞∑

M=1

M
(
N

(α)
M |vw

+ N
(α)
M |w

)
.

Solutions of the Bethe-Yang equations (1.1) with no coinciding roots, and having

excitation numbers satisfying the following inequalities

∞∑

Q=1

Q NQ ≡ KI
tot ≥ KII

(α) ≥ 2KIII
(α) (2.4)

are called regular. Solutions which differ by ordering of roots are considered as

equivalent.

We expect in analogy with the Hubbard model that each regular solution corre-

sponds to a highest weight state of the four su(2) subalgebras of the su(2|2)⊕su(2|2)

symmetry algebra of the model and vise versa. The Dynkin labels are related to the

excitation numbers as follows

sα = KI
tot − KII

(α) , qα = KII
(α) − 2KIII

(α) .

This follows from the fact that a Q-particle is a bound state of Q fundamental

particles.

In the remaining part of the section we explain how the Bethe string configura-

tions can be found.
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2.1 M |vw-strings

Let us recall that to find the Q-particle bound states one should consider complex

values of particle’s momenta and take the limit R → ∞ keeping the numbers KI,

KII
(α) and KIII

(α) of the physical particles and auxiliary roots finite. The Bethe string

configurations of the auxiliary roots can be also found in a similar way.

To determine the string configurations of y
(α)
k roots we assume that the momenta

of physical particles are real, and take KI to infinity keeping KII
(α) and KIII

(α) finite.

Then, one can easily show that

KI∏

l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

√
x−

l

x+
l

−→ 0 if |y(α)
k | < 1 ,

and

KI∏

l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

√
x−

l

x+
l

−→ ∞ if |y(α)
k | > 1 .

If |y(α)
k | = 1 then the absolute value of the product is equal to 1.

We can consider roots with α = 1, denote them as yk, vk and wk, and assume

without loss of generality that |y1| < 1. Then the Bethe-Yang equation for y1 in

(1.1) takes the form

− 1 =

KI∏

l=1

y1 − x+
l

y1 − x−
l

√
x−

l

x+
l

KIII∏

l=1

v1 − wl + i
g

v1 − wl − i
g

−→ −1 = 0 ×
KIII∏

l=1

v1 − wl + i
g

v1 − wl − i
g

. (2.5)

Thus, to satisfy this equation we must have a root w1 such that

v1 − w1 −
i

g
= 0 =⇒ v1 = w1 +

i

g
, (2.6)

and computing y1 by using v1 we should keep the solution with |y1| < 1.

The equation for w1 takes the form

1 =

KII∏

l=1

w1 − vl − i
g

w1 − vl + i
g

KIII∏

l=2

w1 − wl + 2i
g

w1 − wl − 2i
g

−→ 1 =
1

0
×

KII∏

l=2

w1 − vl − i
g

w1 − vl + i
g

KIII∏

l=2

w1 − wl + 2i
g

w1 − wl − 2i
g

.

We have to assume that there is a root v2 such that

w1 − v2 −
i

g
= 0 =⇒ v2 = w1 −

i

g
. (2.7)

Otherwise if there is no such v2 then w1 − w2 + 2i/g = 0, and, therefore from (2.6),

v1 − w2 + i/g = 0, and we get into a contradiction with (2.5).
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Then the Bethe-Yang equation for y2 in (1.1) acquires the form

−1 =
KI∏

l=1

y2 − x+
l

y2 − x−
l

√
x−

l

x+
l

KIII∏

l=1

v2 − wl + i
g

v2 − wl − i
g

−→ −1 = 0×
KI∏

l=1

y2 − x+
l

y2 − x−
l

√
x−

l

x+
l

KIII∏

l=2

v2 − wl + i
g

v2 − wl − i
g

.

Now, if we take y2 with |y2| > 1, then we can satisfy this equation and obtain a

1|vw-string

v1 = v +
i

g
, |y1| < 1 , v2 = v − i

g
, |y2| > 1 , w1 = v , v ∈ R ,

where the roots yi satisfy y2 = 1/y∗
1.

On the other hand, if we take y2 with |y2| ≤ 1, then we get the same conditions

we had for y1 in (2.5), and, therefore, there should exist a root w2 such that

v2 − w2 −
i

g
= 0 =⇒ w2 = v2 −

i

g
= w1 −

2i

g
.

If we stop here we get a 2|vw-string with

w1 = v +
i

g
, w2 = v − i

g
, v ∈ R ,

v1 = v +
2i

g
, |y1| < 1 , v−1 = v − 2i

g
, y−1 =

1

y∗
1

,

v2 = v , |y2| ≤ 1 , v−2 = v , y−2 =
1

y2
,

where we denoted y4 ≡ y−1 and y3 ≡ y−2.

If we continue the process we get a general M |vw-string characterized by the

following set of equations

wj = v + (M + 1 − 2j)
i

g
, j = 1, . . . , M , v ∈ R , (2.8)

vj = v + (M + 2 − 2j)
i

g
, v−j = v − (M + 2 − 2j)

i

g
, j = 1, . . . , M ,

where the corresponding roots yj and y−j are related as y−jy
∗
j = 1 if j 6= M+2

2
, and

yM+2
2

y−M+2
2

= 1 (that may happen only for even M). Computing them by using vj

and v−j we should keep the solutions with |yj| ≤ 1 and |y−j| ≥ 1 for 1 ≤ j ≤ M .

It is worth mentioning that even though vj = v−M−2+j for j = 2, 3, . . . , M , this

requirement guarantees that all the roots yj in the string are different. In particular,

for j = 2, 3, . . . , M the roots yj and y−M−2+j are related to each other as yjy−M−2+j =

1. It is also interesting that Im(y1) < 0 for any string. This is the condition the

parameters x± have to satisfy because it defines the physical region of the mirror

theory. In general, however, the y-roots can take arbitrary values.
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2.2 M |w-strings

As we discussed in the previous subsection if we have a root y with |y| < 1 (or

|y| > 1) then in the thermodynamic limit we unavoidably get a M |vw-string. So, we

just need to consider the case where |y1| = 1 that is v1 is real, and takes the values

−2 < v1 < 2. Then, taking the limit KII
(α) → ∞ and keeping KIII

(α) finite, one can

easily see that
KII

(α)∏

l=1

w
(α)
k − v

(α)
l − i

g

w
(α)
k − v

(α)
l + i

g

−→ 0 if Im(w
(α)
k ) > 0 ,

and
KII

(α)∏

l=1

w
(α)
k − v

(α)
l − i

g

w
(α)
k − v

(α)
l + i

g

−→ ∞ if Im(w
(α)
k ) < 0 ,

Thus, assuming for definiteness that Im(w1) > 0, we get that the first factor in the

third equation in (1.1) is exponentially decreasing, and therefore we should have

w2 = w1 −
2i

g
.

Then there are two cases. First we could have

Im(w2) < 0 ,

and one can easily check that the equation for w2 is satisfied. The reality condition

would also give w2 = w∗
1, and one gets a 2|w-string

w1 = w +
i

g
, w2 = w − i

g
, w ∈ R .

If Im(w2) > 0 then there is w3 = w2 − 2i
g
, and the procedure repeats itself. As a

result we get a M |w-string

wj = w +
i

g
(M − 2j + 1) , j = 1, . . . , M , w ∈ R ,

which is the usual Bethe string.

3. Bethe-Yang equations for string configurations

Next we express the Bethe-Yang equations (1.1) in terms of real physical momenta

p̃ of Q-particles, auxiliary momenta q of y-particles with y = ie−iq, real coordinates

v of centers of vw-strings, and real coordinates w of centers of w-strings.
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3.1 Bethe-Yang equations for Q-particles

The first step is to rewrite the first equation in (1.1) in terms of momenta q
(α)
k ,

k = 1, . . . , N
(α)
y of y(α)-particles, and coordinates v

(α)
k,M , k = 1, . . . , N

(α)
M |vw

of vw-

strings. A simple computation gives

1 = eiepkR

KI∏

l=1
l 6=k

SQkQl

sl(2) (xk, xl)

2∏

α=1

N
(α)
y∏

l=1

x−
k − y

(α)
l

x+
k − y

(α)
l

√
x+

k

x−
k

∞∏

M=1

N
(α)
M|vw∏

l=1

SQkM
xv (xk, v

(α)
l,M) , (3.1)

Here the auxiliary S-matrix is given by

SQkM
xv (xk, v

(α)
l,M) =

x−
k − y

(α)+
l,M

x+
k − y

(α)+
l,M

x−
k − y

(α)−
l,M

x+
k − y

(α)−
l,M

x+
k

x−
k

M−1∏

j=1

u−
k − v

(α)−
l,M − 2i

g
j

u+
k − v

(α)+
l,M + 2i

g
j

, (3.2)

where

y
(α)±
l,M = x(v

(α)±
l,M ) , v

(α)±
l,M = v

(α)
l,M ± i

g
M ,

and x(u) is defined in (4.15).

For what follows it is convenient to adopt the following notation

Ny = N (1)
y + N (2)

y , yl = y
(1)
l , l = 1, . . . , N (1)

y , y
N

(1)
y +l

= y
(2)
l , l = 1, . . . , N (2)

y ,

v
(1)
k,M = vk,M , v

(2)
k,M = vk,−M . (3.3)

With this notation the Bethe-Yang equations (3.1) for Q-particles take a slightly

simpler form

1 = eiepkR

KI∏

l=1
l 6=k

SQkQl

sl(2) (xk, xl)

Ny∏

l=1

x−
k − yl

x+
k − yl

√
x+

k

x−
k

∞∏

M=−∞
M 6=0

NM|vw∏

l=1

SQkM
xv (xk, vl,M) , (3.4)

where the auxiliary S-matrix is given by (3.2) with

y±
l,M = x(v±

l,M) , v±
l,M = vl,M ± i

g
|M | . (3.5)

3.2 Bethe-Yang equations for y-particles

Next we take a y(α)-particle with the root y
(α)
k = ie−iq

(α)
k and rewrite the second

equation in (1.1) in terms of coordinates v
(α)
k,M , k = 1, . . . , N

(α)
M |vw

of vw-strings, and

coordinates w
(α)
k,N , k = 1, . . . , N

(α)
N |w of w-strings. The result is

− 1 =

KI∏

l=1

y
(α)
k − x−

l

y
(α)
k − x+

l

√
x+

l

x−
l

∞∏

M=1

N
(α)
M|vw∏

l=1

v
(α)
k − v

(α)+
l,M

v
(α)
k − v

(α)−
l,M

∞∏

N=1

N
(α)
N|w∏

l=1

v
(α)
k − w

(α)+
l,N

v
(α)
k − w

(α)−
l,N

, (3.6)
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where

w
(α)±
l,N = w

(α)
l,N ± i

g
N . (3.7)

In fact we get the same equation for any root y
(α)
k , no matter if it is a root of a

y-particle or a vw-string.

3.3 Bethe-Yang equations for w-strings

Now we take a K|w-string with the coordinates w
(α)
k,K . The last equations in (1.1)

can be written in the form

− 1 =

N
(α)
y∏

l=1

w
(α)
k − v

(α)
l + i

g

w
(α)
k − v

(α)
l − i

g

∞∏

N=1

N
(α)
N|w∏

l=1

w
(α)
k − w

(α)+
l,N + i

g

w
(α)
k − w

(α)−
l,N + i

g

w
(α)
k − w

(α)+
l,N − i

g

w
(α)
k − w

(α)−
l,N − i

g

. (3.8)

It is interesting that the equation has no dependence on the coordinates of vw-strings.

Multiplying K equations in (3.8) with the roots w
(α)
k that form the K|w-string, we

get

(−1)K =

N
(α)
y∏

l=1

w
(α)+
k,K − v

(α)
l

w
(α)−
k,K − v

(α)
l

∞∏

N=1

N
(α)
N|w∏

l=1

SKN
vv (w

(α)
k,K, w

(α)
l,N) , (3.9)

where the auxiliary S-matrix is

SKM
vv (u, u′) =

u − u′ − i
g
(K + M)

u − u′ + i
g
(K + M)

u − u′ − i
g
(M − K)

u − u′ + i
g
(M − K)

(3.10)

×
K−1∏

j=1

(
u − u′ − i

g
(M − K + 2j)

u − u′ + i
g
(M − K + 2j)

)2

.

3.4 Bethe-Yang equations for vw-strings

Finally we take a K|vw-string with the coordinates v
(α)
k,K , and multiply 2K equations

(3.6) with the roots y
(α)
k that form the K|vw-string. The resulting equation takes

the form

1 =

KI∏

l=1

SQlK
xv (xl, v

(α)
k,K)

∞∏

M=1

N
(α)
M|vw∏

l=1

SKM
vv (v

(α)
k,K , v

(α)
l,M)

∞∏

N=1

N
(α)
N|w∏

l′=1

SKN
vv (v

(α)
k,K , w

(α)
l′,N) , (3.11)

where the auxiliary S-matrix is given by (3.10).

In fact the coordinates w
(α)
l,N of the w-strings appearing in (3.11) can be excluded

from the equation if one takes into account that the product of K equations in

– 12 –



(3.8) with roots w
(α)
k that form a K|vw-string gives the following equation on the

coordinates v
(α)
k,K of the K|vw-string

(−1)K =

N
(α)
y∏

l=1

v
(α)+
k,K − v

(α)
l

v
(α)−
k,K − v

(α)
l

∞∏

N=1

N
(α)
N|w∏

l=1

SKN
vv (v

(α)
k,K , w

(α)
l,N) . (3.12)

Thus, (3.11) and (3.12) lead to the following equation

(−1)K =

KI∏

l=1

SQlK
xv (xl, v

(α)
k,K)

N
(α)
y∏

l=1

v
(α)−
k,K − v

(α)
l

v
(α)+
k,K − v

(α)
l

∞∏

M=1

N
(α)
M|vw∏

l=1

SKM
vv (v

(α)
k,K , v

(α)
l,M) (3.13)

which has no dependence on the coordinates of w-strings.

The set of the equations (3.1), (3.6), (3.11), (3.9) can be used to derive the

TBA equations for the free energy of the mirror model. These equations and their

consequences will be discussed in our forthcoming publication.
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4. Appendix: Mirror dispersion and parametrizations

The dispersion relation in any quantum field theory can be found by analyzing the

pole structure of the corresponding two-point correlation function. Since the corre-

lation function can be computed in Euclidean space, both dispersion relations in the

original theory with H and in the mirror one with H̃ are obtained from the following

expression

H2
E + 4g2 sin2 pE

2
+ Q2 , (4.1)

which appears in the pole of the 2-point correlation function. Here we consider the

light-cone gauge-fixed string theory on AdS5×S5 which has the Euclidean dispersion

relation (4.1) for Q-particle bound states in the decompactification limit L ≡ P+ →
∞. The parameter g is the string tension, and is related to the ’t Hooft coupling λ

of the dual gauge theory as g =
√

λ
2π

.

Then the dispersion relation in the original theory follows from the analytic

continuation (see also [8])

HE → −iH , pE → p ⇒ H2 = Q2 + 4g2 sin2 p

2
, (4.2)
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and the mirror one from

HE → p̃ , pE → iH̃ ⇒ H̃ = 2 arcsinh
( 1

2g

√
Q2 + p̃2

)
. (4.3)

Comparing these formulae, we see that p and p̃ are related by the following analytic

continuation

p → 2i arcsinh
( 1

2g

√
Q2 + p̃2

)
, H =

√
Q2 + 4g2 sin2 p

2
→ ip̃ . (4.4)

In what follows we need to know how the parameters xQ± which satisfy the

relations

xQ+ +
1

xQ+
− xQ− − 1

xQ− = 2i
Q

g
,

xQ+

xQ− = eip , (4.5)

are expressed through p̃. By using formulae (4.4), we find

xQ±(p̃) =
1

2g

(√

1 +
4g2

Q2 + p̃2
∓ 1

)
(p̃ − iQ) , (4.6)

where we fix the sign of the square root from the conditions

Im
(
xQ+

)
< 0 , Im

(
xQ−) < 0 for p̃ ∈ R . (4.7)

As a consequence, one gets

ixQ− − ixQ+ =
i

g
(p̃ − iQ) , xQ+xQ− =

p̃ − iQ

p̃ + iQ
,

which implies that |xQ+xQ−| = 1 and |xQ+| < |xQ−| for p̃ real. Also one has

xQ±(−p̃) = − 1

xQ∓(p̃)
, (xQ±(p̃))∗ =

1

xQ∓(p̃∗)
(4.8)

Note that these relations are well-defined for real p̃, but one should use them

with caution for complex values of p̃. Our choice of the square root cut agrees with

the one used in Mathematica: it goes over the negative semi-axes.

It what follows it will be often convenient to use the u-rapidity variables defined

by

u =
1

2

(
xQ+ +

1

xQ+
+ xQ− +

1

xQ−

)
= xQ+ +

1

xQ+
− i

Q

g
= xQ− +

1

xQ− + i
Q

g
,

uQ+ = xQ+ +
1

xQ+
= u + i

Q

g
, uQ− = xQ− +

1

xQ− = u − i
Q

g
. (4.9)

The u-variable is expressed in terms of p̃ as

u(p̃) =
p̃

g

√

1 +
4g2

Q2 + p̃2
, (4.10)
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and it is an odd function of p̃. The parameters xQ± and p̃ are expressed in terms of

u as follows

xQ+(u) =
1

2


u +

iQ

g
− i

√

4 −
(

u +
iQ

g

)2

 , (4.11)

xQ−(u) =
1

2


u − iQ

g
− i

√

4 −
(

u − iQ

g

)2

 , (4.12)

p̃Q(u) =
ig

2



√

4 −
(

u +
iQ

g

)2

−
√

4 −
(

u − iQ

g

)2

 . (4.13)

Here the cuts in the u-plane run from ±∞ to ±2± iQ

g
along the horizontal lines. The

u-plane with the cuts is mapped onto the region Im
(
xQ±) < 0 which is the physical

region of the mirror theory, and therefore it is natural to expect that the u-plane

should be used in all the considerations. To describe bound states for all values of

p̃ one should also add either the both lower or both upper edges of the cuts to the

u-plane. They correspond Im
(
xQ±) = 0. This breaks the parity invariance of the

model.

The energy of a Q-particle is expressed in terms of u as follows

ẼQ(u) = log
xQ−

xQ+
= 2arcsinh




√(
u2 +

√
(u2−4)2g4+2Q2(u2+4)g2+Q4

g4 − 4

)
g2 + Q2

2
√

2g




,(4.14)

and it is positive for real values of u.

It would be also convenient to introduce the function

x(u) =
1

2

(
u − i

√
4 − u2

)
, (4.15)

with the cuts in the u-plane run from ±∞ to ±2 along the real lines, so that

xQ+(u) = x(u +
iQ

g
) , xQ−(u) = x(u − iQ

g
) . (4.16)

Also one has

xQ±(−u) = − 1

xQ∓(u)
, x(−u) = − 1

x(u)
, (xQ±(u))∗ =

1

xQ∓(u∗)
, (x(u))∗ =

1

x(u∗)
,

and

p̃(−u) = −p̃(u) , (p̃(u))∗ = p̃(u∗) . (4.17)
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“The One-Dimensional Hubbard Model,” Cambridge University Press (2005).

– 18 –



[47] G. Arutyunov and S. Frolov, “The S-matrix of String Bound States,” Nucl. Phys. B

804 (2008) 90 [arXiv:0803.4323 [hep-th]].

[48] M. de Leeuw, “The Bethe Ansatz for AdS5 x S5 Bound States,” arXiv:0809.0783

[hep-th].

[49] B. S. Shastry, “Exact integrability of the one-dimensional Hubburd-model”,

Phys.Rev.Lett 56 (1986) 2453.

– 19 –


