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String-inspired higher-curvature terms and the Randall-Sundrum scenario
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We consider theO(a8) string effective action, with Gauss-Bonnet curvature-squared and fourth-order
dilaton-derivative terms, which is derived by a matching procedure with string amplitudes in five space-time
dimensions. We show that a non-factorizable metric of the Randall-Sundrum~RS! type, with a four-
dimensional conformal factore22kuzu, can be a solution of the pertinent equations of motion. The parameterk
is found to be proportional to the string couplinggs and thus the solution appears to be non-perturbative. It is
crucial that the Gauss-Bonnet combination have the right~positive in our conventions! sign, relative to the
Einstein term, which is the case necessitated by compatibility with string~tree! amplitude computations. We
study the general solution for the dilaton and metric functions, and thus construct the appropriate phase-space
diagram in the solution space. In the case of an anti–de Sitter bulk, we demonstrate that there exists a
continuous interpolation between~part of! the RS solution atz51` and an~integrable! naked singularity at
z50. This implies the dynamical formation of domain walls~separated by an infinite distance!, thus restricting
the physical bulk space-time to the positivez axis. Some brief comments on the possibility of fine-tuning the
four-dimensional cosmological constant to zero are also presented.

PACS number~s!: 04.50.1h, 11.10.Kk, 98.80.Cq
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I. INTRODUCTION

Recently considerable effort has been devoted to the s
of higher-dimensional space-times with metrics of no
factorizable form between four- and higher-~bulk! dimen-
sional coordinates@1,2#:

ds25e22s(z)h i j dXidXj1dz2, i , j 50,1, . . . ,3. ~1!

In the modern context of non-perturbative string~brane!
theory, this type of metrics arises from the so-call
D~irichlet!-brane picture of our world, according to whic
the observable Universe is viewed as a three-brane em
ded in a higher-dimensional~bulk! geometry@3,2#. Among
other issues, in such an approach one looks for mechan
that solve the mass hierarchy problem@2# or offer explana-
tions for the vanishing of the~four-dimensional! cosmologi-
cal constant. However, the latter case is inflicted by the p
ence of naked singularities in the bulk@4# and/or instabilities
@5#.

In the original approach@1,2# the metric ~1! has been
considered only in connection with Einstein-type theories
gravitation, i.e. theories in which only the curvature sca
appears in the gravitational part of the action. Recently, h
ever, attempts have been made towards the inclusion
higher-curvature~quadratic! terms in the action@6# of the
Gauss-Bonnet~GB! type @7#. Such terms, which arise natu
rally in ~super!string effective actions@8#, are known to lead
to non-trivial cosmological and general-relativistic solution
such as singularity-free expanding@9# and/or closed@10# uni-
verses, and black-hole solutions with non-trivial~secondary
dilaton! hair @11,12#.
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In Ref. @6# five-dimensional bulk geometries were consi
ered, with our four-dimensional universe viewed as a thr
brane embedded in them. It was argued, in agreement
the lowest-order~in the scalar curvature! results@4#, that the
presence of higher-curvature Gauss-Bonnet terms ca
lead to a solution of the cosmological constant on the br
without fine-tuning, as a result of the appearance of na
singularities in the bulk. However, in the models conside
in Ref. @6#, the Gauss-Bonnet term in the action was dec
pled from the dilaton field. This isnot the case in string-
effective models of higher-derivative gravity, compatib
with string ~tree! amplitude computations in the bulk geom
etry @8#. In the latter case, it is known that the dilaton fieldF
couples to the higher-curvature part of the effective act
through the appropriate conformal weight,emF. The weight
m is determined, together with the coefficient of the G
terms, by the requirement that the effective action be the
reproduced by the appropriate string amplitudes@8#.

The purpose of this work is to reconsider the soluti
under the inclusion of proper string-effective highe
curvature terms. In this article we show that, in a setup wh
there is an initial three-dimensional~spatial! brane located at
the originz50 of the bulk dimension of the five-dimension
geometry, a metric of the form~1! is still a solution of the
equations of motion of an effective action derived from~con-
ventional! string amplitudes@8#, up to O(a8) in the Regge
slopea8. As is well known, such actions can always be ca
by means of appropriate field redefinitions that leave
~perturbative! string amplitudes invariant, in a GB form@7#,
provided one includes appropriate fourth-derivative dilat
terms. In fact, as we shall show below, both of these fa
result in different conclusions, for the non-constant dilat
case, from those in Ref.@6#.
©2000 The American Physical Society04-1
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It is important to note that the sign, as well as the relat
strengthl of the GB terms in the action, is uniquely dete
mined by the amplitude-matching procedure. In our conv
tions for the metric and curvature the coefficientl comes out
positive. We shall demonstrate that the Randall-Sundr
~RS! type metric@2#, with

s~z!5(
i

kuz2zi u, ~2!

where i denotes thei th brane, located atzi along the bulk
direction, satisfies the equations of motion derived from s
anO(a8) string-effective action. It is important to stress th
the solutionexists onlyfor l.0. Moreover, the paramete
k}A1/l. Since@8# l}1/gs

2 , wheregs is the string coupling,
the resulting solution appears~formally! non-perturbative.

As we shall show, in our scenario there are also soluti
that are characterized by avanishingvacuum energy contri-
bution on the brane, a requirement that may come, for in
stance, by demanding a consistent embedding of the solu
~1! in a supersymmetric theory on the brane. However,
argued in @13#, recoil ~quantum! fluctuations of the D3-
brane, as a result of scattering with~bulk! closed strings or
other solitonic defects, may induce supersymmetry obst
tion by means of ‘‘conical’’ singularities on the brane. Th
yields small contributions to the vacuum energy of the bra
which, as a result of recoil, finds itself in anexcitedstate,
rather than its ground state. In addition, recoil fluctuatio
lead to a dynamical formation of horizons in the bulk dime
sion @14# of a given size, which is determined by the dyna
ics. Such effects, which here are viewed as subleading to
classical ones we are discussing, will be the topic of a fo
coming publication.

In the present article we shall consider dilaton configu
tions that depend solely on the bulk dimensionz. A particu-
larly interesting case is the one in which the dilaton field
linear in z. This case may be motivated by the fact that t
equations of motion of fields in the geometry~1! acquire a
‘‘friction type’’ form, suggestive of the role of the bulk di
mension as a renormalization group~RG! parameter@15#
and, actually, of the Liouville-field type@16–18#. The space-
like character of the Liouville field is dictated by the su
critical dimensionality of space-time in the specific fiv
dimensional geometry under consideration. Crucial to t
interpretation is the fact that the bulk space-time is of an
de-Sitter type, which is known to exhibit holographic pro
erties @19#. The fact that there exist non-trivial solutions
the equations of motion, including the~stringy! Gauss-
Bonnet term, is suggestive of a deeper connection of
string-inspired approach with the~holographic! bulk geom-
etries ~1!. However, in this paper we shall not pursue t
holographic RG interpretation in detail. We only mention
this stage that this interpretation does not seem to hold in
generic case, and requires specific properties of the bulk
ometry ~e.g. the validity of a properc theorem@20–22#!,
which could be quite restrictive in the presence of high
curvature terms. A detailed study of such important iss
will be the topic of a forthcoming publication.
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The structure of the article is as follows: in Sec. II w
formulate the problem, and discuss the GB higher-curvat
combination and its connection with string amplitudes in
general context of aD-dimensional space-time. In Sec. I
we discuss non-factorizable metrics of the form~1! in a five-
dimensional setup, with the fifth dimension generating a b
geometry, in which a three-brane world is embedded. In p
ticular, we first demonstrate the consistency of the Rand
Sundrum-type space-time with a constant dilaton, in
presence of the Gauss-Bonnet higher-curvature combina
derived from string amplitudes. We then proceed to discu
ing the linear-dilaton ansatz~with respect to the bulk coor
dinatez). We show that the string amplitude induced Gau
Bonnet combinationis not consistent with this solution
However, there is a solution corresponding to a case@6# in
which there isno conformal coupling of the dilaton with the
higher-curvature terms in the effective action. Our solutio
however, still differs from that of Ref.@6# because of the
presence of fourth-derivative dilaton terms. Some brief co
ments on the possibility of fine-tuning the four-dimension
cosmological constant to zero are made. In particular,
analysis demonstrates that such fine-tuning is possible
in the constant dilaton case. In Sec. IV, we discuss the g
eral solution of the equations of motion for the dilaton a
graviton fields in the string-effective case. This includes
above solutions as special cases. In this general case, o
capable of presenting some analytic arguments on the si
larity structure of the solutions, which allow important co
clusions to be drawn on the underlying physics, which
beyond the numerical solutions obtained. In particular, in
string amplitude effective case, we demonstrate the existe
of new solutionsconsisting of continuous functions for th
dilaton and space-time metric fields thatinterpolatebetween
a RS-type solution atz51` and an~integrable! naked sin-
gularity at z50. This implies thedynamical formationof
domain walls in the bulk geometry obtained from the strin
effective action. The walls are separated by an infinite d
tance, and this results in a dynamical restriction of the phy
cal bulk space-time on the positivez axis only. The fact that
this solution emerges from~perturbative! string-effective ac-
tions is remarkable in our opinion, implying that perturbati
world-sheet physics can still lead to important conclusions
relevance to~non-perturbative! string theory. Some conclu
sions and outlook are presented in Sec. V.

II. STRING AMPLITUDE-INDUCED
HIGHER-CURVATURE GRAVITY

In this section we shall formulate the problem mathema
cally, and set up our notation and conventions. Through
this work we shall follow the conventions of Ref.@23#, ac-
cording to which the five-dimensional space-time has sig
ture (2,1, . . . ,1), and the Riemann tensor is defined
Rmns

t5Gns,m
t 2••• .

We consider the action

S5S51S4 ~3!

whereS5 is the five-dimensional part:
4-2
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S55E d5xA2gF2R2
4

3
~¹mF!21 f ~F!~aR21bRmn

2

1gRmnrs
2 !1j~z!ezF1c2 f ~F!~¹mF!41•••G , ~4!

with F the dilaton field, and the ellipsis denoting other typ
of contraction of the four-derivative dilaton terms; these w
not be of interest to us here, for reasons that will be
plained below.

The four-dimensional partS4 of the action~3! is defined
as

S45(
i
E d4xA2g(4)e

vFv~zi ! ~5!

where

g(4)
mn5H gmn, m,n,5,

0 otherwise, ~6!

and the sum overi extends over D-brane walls located atz
5zi along the fifth dimension.1

The quantitiesa,b,g,c2 are constants to be determine
below by matching with string amplitudes in the bulk geo
etry. We notice that in our approach we consider the vacu
energy in the bulk and on the brane as having a spe
~exponential! dependence on the dilaton fieldF, dictated by
string amplitude computations. More general models,
which one considers arbitrary scalar potential functions ofF,
have also been considered in the literature@24#, but will not
be analyzed here. We simply mention that the precise
namics behind models with dilaton potentials is still u
known; in tree-level critical string theory there are no su
potentials, but string-loop corrections may be responsible
their generation.

We now consider, for definiteness, the case in which
action S5 is derived from aO(a8) (a8 the Regge slope!
heterotic-type string theory in the low-energy limit inD
(55) space-time dimensions. Some remarks are in orde
this point. From a formal point of view, one may think of th
12400
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~bulk! fifth dimension in the space-time~1! as a~space-like!
Liouville mode@15,16#. A more conventional~and probably
safer! approach, which we shall adopt here, is to assu
initially a ten-dimensional space-time, in which three bran
are embedded. In the bulk one may, then, consider the pr
gation ofclosedstrings only@3#, but take the case in which
all but one of the bulk coordinates are compactified. In t
case, the induced string theory amplitudes will formally co
respond to those residing in an effective 5-dimensio
space-time, in the sense that one may consider string b
grounds that depend only on the uncompactified coordina
and restrict oneself to effective string amplitudes~or, equiva-
lently, s-model conformal-invariance conditions@8#! for
those degrees of freedom.

With the above in mind, we have@8#

a511, f ~F!5leuF, l5a8/8gs
2.0, ~7!

wheregs is the string coupling. In this case we also havez
52u54/A3(D22) @54/3 in D55 dimensions of~for-
mal! interest to us here#. Moreover, in~perturbative! string
theory one has the freedom@8# to redefine the graviton and
dilaton fields so as to ensure that the quadratic-curva
terms in Eq.~4! are of the ghost-free GB form@7#:

R GB
2 5RmnrsRmnrs24RmnRmn1R2. ~8!

This field-redefinition ambiguity also allows us to consid
the four-derivative dilaton terms in Eq.~4! as having the
single structure exhibited above. Matching with tree-lev
string amplitudes toO(a8) then requires@8#

c25
16

9

D24

D22
. ~9!

It is interesting to note that for four dimensional targets, t
coefficient vanishes. This fourth-derivative dilaton term w
turn out to yield, in the five-dimensional case, the essen
difference in the solutions obtained here from those in R
@6#.

The graviton equations of motion derived from Eq.~4! in
the effective string case are~with a5g51,b524,c2
516/27)
d

05Rmn1
1

2
gmnS 2R2

4

3
~¹F!21c2f ~F!~¹F!41j~z!ezFD1

1

2 (
i

A2g(4)

A2g
g(4)

mnevFv~zi !2
4

3
~¹mF!~¹nF!2 f ~F!

3~2aRRmn12bRm
sRns12gRstr

m Rnstr!1
1

2
gmn f ~F!~aR21bRstR

st1gRstrkR
strk!12a$„gmn f ~F!R…;s

s

2„f ~F!R…;
mn%1b$„gmn f ~F!Rst

…;st1„f ~F!Rmn
…;s

s2„f ~F!Rms
…;
n

s2„f ~F!Rns
…;
m

s%12g$„f ~F!Rmsnt
…;st

1„f ~F!Rmsnt
…;ts%22c2f ~F!~¹mF!~¹nF!~¹F!2 ~10!

1It is also possible to consider@14# a ‘‘stuck’’ of such D-branes, in which case( i is replaced by*dz over flat integration measure, an
v(zi)→v(z). This term is not varied with respect to the fifth dimensional~bulk! gravitational field.
4-3
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where a semicolon denotes covariant differentiation.
The dilaton equation of motion, on the other hand, yie

05
8

3
¹2F1 f 8~F!~aR21bRmnRmn1gRmnrsRmnrs!

1(
i

A2g(4)

A2g
vevFv~zi !24c2¹m„f ~F!~¹mF!~¹F!2

…

1zj~z!ezF1c2f 8~F!~¹F!4, ~11!

where the prime denotes differentiation with respect toF.
In the next two sections we shall study the classical so

tions of these equations in the context of non-factoriza
space-times of the form~1!.

III. STRING-INDUCED HIGHER-CURVATURE GRAVITY
AND NON-FACTORIZABLE METRICS

A. General remarks

We consider the non-factorizable ansatz~1! for the five-
dimensional metric@1,2#, which recently attracted a grea
deal of attention because of its connection with the view
our world as a D~irichlet!-brane embedded in the five
dimensional geometry@3,2#. Our point in this article is to
examine first whether such metrics are compatible with
low-energy effective action obtained from theO(a8) string
effective action~4!. As we shall show below, it is only for a
particular ~positive! sign of the GB term~8! relative to the
Einstein term, which is the case obtained from string am
tudes@8#, that the equations of motion in the space-time~1!
have a real solution. Moreover, we shall also verify that
specific Randall-Sundrum scenario~2! is a solution of the
equations of motion under certain conditions.

Assuming that the metric functions(z) in Eq. ~1! and the
dilaton fields F(z) are functions only ofz, we write the
equations of motion~10!,~11! in the form

05
evF(z)v~z!

2
1

ezF(z)j~z!

2
26s8~z!2112euF(z)ls8~z!4

236euF(z)uls8~z!3F8~z!2
2F8~z!2

3

112euF(z)u2ls8~z!2F8~z!21
8euF(z)lF8~z!4

27

13s9~z!212euF(z)ls8~z!2s9~z!

124euF(z)uls8~z!F8~z!s9~z!

112euF(z)uls8~z!2F9~z! ~12!

05
ezF(z)j~z!

2
26s8~z!2112euF(z)ls8~z!4

248euF(z)uls8~z!3F8~z!1
2F8~z!2

3

2
8euF(z)lF8~z!4

9
~13!
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05evF(z)vv~z!1ezF(z)zj~z!1120euF(z)uls8~z!4

1
8F9~z!

3
2

32s8~z!F8~z!

3
1

256euF(z)ls8~z!F8~z!3

27

2
16euF(z)ulF8~z!4

9
296euF(z)uls8~z!2s9~z!

2
64euF(z)lF8~z!2F9~z!

9
. ~14!

Owing to the Bianchi identities, only two of the equation
are linearly independent in the bulk. It is straightforward
verify the following relation among the equations:

8s8~z!3@~12!2~13!#2F8~z!3~14!12
d

dz
~13!

5ezF(z)j8~z!1evF(z)v~z!@4s8~z!2vF8~z!#.

~15!

Note that, in order to avoid breaking of Poincare´ invariance
in the bulk space-time, which we assume here@1,2#, we must
impose

j8~z!50. ~16!

It should also be noted, however, that it is possible to p
serve Poincare´ invariance in the bulk by including a mor
general dilaton potentialj(F) @6,24#. In the ~heterotic!
string-inspired context of interest to us here, such potent
may be generated by string-loop corrections. We shall
discuss this case explicitly here, as it will not affect o
qualitative conclusions.

B. Constant dilaton case and the Randall-Sundrum
space-time

We commence our analysis with the case of constant
laton. In this case, we can setF5h5const, andF85F9
50 in the bulk, butnot on the brane, sinceF8 can be dis-
continuous there, as we shall discuss later on. In this case
equations of motion are reduced to

ehvvd~z!5
d

dz
@26s8~z!18ehuls8~z!3# ~17!

ezhj~z!212s8~z!2124ehuls8~z!450, ~18!

implying

26s8~z!18ehuls8~z!35c5const ~19!

in the bulk. As a third-degree equation this has always a
solution of the forms8(z)5k1 ,z.0, s8(z)5k2 ,z,0.

We now integrate Eq.~17! over z to an interval that in-
cludes the brane atz50:

ehvv526s8~z!18ehuls8~z!3u02

01
, ~20!

which reduces to
4-4
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ehvv526~k12k2!18ehul~k1
3 2k2

3 !, ~21!

thus relatingk1 ,k2 with v.
Solving Eq.~18! with respect toj, by requiring continuity

of j(z) at z50, we obtain

ehzj5212k1
2 ~2112ehulk1

2 !5212k2
2 ~2112ehulk2

2 !,
~22!

which has two solutions. The first one is

k152k25k, ~23!

which is the RS solution@2#.2

The second solution is

k1
2 1k2

2 5
e2hu

2l
~24!

and exists only forl.0, which is the case compatible wit
string amplitude computations@8#.

From the dilaton equation~14! in the bulk, after taking
into account Eq.~18!, one has

z12ehu~2z15u!lk1
2 5z12ehu~2z15u!lk2

2 50,
~25!

which, in conjunction with Eq.~22!, leads toeither

k152k25k and z12ehu~2z15u!lk250 ~26!

or

z5u50 and k1
2 1k2

2 5
e2hu

2l
. ~27!

Finally, integrating the dilaton equation~14! in the neighbor-
hood of the brane, we obtain

ehvvv532ehuuls8~z!3u02

01532ehuul~k1
3 2k2

3 !.

~28!

From Eqs.~22!,~26!,~28! we thus have

ezhj512k2224k4l ~29!

evhv54k~2314k2l! ~30!

z5
10k2ul

2112k2l
~31!

v5
16k2ul

2314k2l
. ~32!

Note that the string solutionz52u (5 4
3 for 5-dimensional

string theory! is satisfied for

2Note that the solution withk15k2 has a continuous metric func
tion at z50, and hence isnot of the RS type.
12400
v5
2

3
, v52

32k

3
, j510k2, k5

1

2A3l
, l5

1

8gs
2

.

~33!

Sincek is positive, we observe that the string-effective acti
yields, in the case of a constant dilaton, the RS scenario@2#
in which the bulk spacetime is of anti–de Sitter~in the sense
of a cosmological constantj.0 in our conventions!, while
the sign ofv is opposite to that ofj ~and hence the bran
world at z50 has positive tension!. We also notice that the
solution~33! implies that the sign of the conformal weightv
is opposite to that ofu, which is expected from generic con
siderations in string theory@8#.

For the second solution~27!, one obtains, on account o
Eqs.~22! and ~28!,

z5u5v50 ~34!

and

v526k118lk1
3 22A 1

2l
2k1

2 28lk1
2 A 1

2l
2k1

2

~35!

j5212k1
2 ~2112lk1

2 ! ~36!

k252A 1

2l
2k1

2 . ~37!

Above, we have chosen the negative solution fork2 to en-
sure finiteness of the metric atuzu→`. We observe that the
bulk spacetime is again of the anti–de Sitter type, for sm
l, where the perturbative string-effective-action approach
valid, whilev andj come with opposite signs on the brane
z50.

At this point it is natural to enquire whether a vanishin
cosmological constant on the brane occurs by an approp
choice of the~free! parameterk1 in the solution~37!. In-
deed, in the case of a single brane~at z50) the four-
dimensional cosmological constant (V) is given by

V[E
2`

`
A2gj1v5

k22k1

2k2k1
j1v, ~38!

which yields the Randall-Sundrum solution, with

k152k25k5
1

2Al
~39!

as the unique solution that guarantees the zero cosmolo
constant in our framework, where higher-curvature corr
tions have been taken into account.

So far we have concentrated on the case of a single br
located atz50. The above conclusions are not affected
including more than one branes, as in the approach of@2#,
which is needed for a solution of the hierarchy proble
Within our framework, despite the small value ofk
5A2/3gs , Eq. ~33!, in units of a8, this can be achieved by
4-5
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placing another brane atz5r 0, which we assume describe
the location of the observable world@2#. As in Ref. @2#, r 0
may be taken~within the classical framework! to be a free
parameter, which may be assumed, much larger than
string scalel s5Aa8. In such a case, the mass hierarchy
our world arises from the fact that the value of the deter
nant in front of the matter Lagrangian on the brane, az
5r 0, will be suppressed by exponential factors of the gene
form e2kr0. These can be small forr 0 /Aa8 sufficiently
large.

However, as we shall discuss in the next section, the g
eral solution to the equations of motion for the strin
effective case imply the possibility of adynamicalappear-
ance of a second brane~domain wall! located at a distance
which is determined by the underlying dynamics, and in f
turns out to beinfinite. We should mention that similar re
strictions on a dynamically induced magnitude ofr 0 may be
encountered in the case when quantum~recoil! fluctuations
in the D-branes are considered@14#. We reserve discussio
of this problem for a forthcoming publication.

C. Linear dilaton in Randall-Sundrum space-times

In this subsection we shall examine the simplest poss
case of a non-constant dilaton, namely that of a dilaton lin
in the bulk dimension@17,18#:

F~z!5Qz1h, ~40!

with Q constant.
Considering this case may seem well motivated by

proposal on the identification of the bulk coordinatez as a
holographic renormalization group parameter@15#, in case
the bulk space-time is anti–de Sitter, which is known to e
hibit special holographic properties@19#. From this point of
view, the linear dilaton ansatz, for a metric of the form~1!, is
suggestive of a more specific situation, namely that of
identification ofz with a ~space-like! Liouville mode@16# in
the five-dimensional context. However, this identification
quires some thinking, and is not always possib
Renormalization-group flow in stringys models is irrevers-
ible, due to the loss of information in modes beyond t
ultraviolet ~world-sheet! cutoff. This implies the presence o
a c theorem@20#, whose existence for generic bulk spac
times is not clear at present@21,22,6#. We shall not discuss
this interpretation further in this article. This will be the top
of a forthcoming publication.

Nevertheless, in this section we shall study the linear
laton case~40! per se and discuss whether this ansatz
compatible with the metric~1! in the context of theO(a8)
string-effective action~4!. To this end, we first consider th
linear combination (12)233(13) and substitute the ansa
~40! for the dilaton and the RS metric~2!. In such a case, we
obtain in the bulk,

272Q2164euF(z)Q4l1648euF(z)k3Qul

1648euF(z)k2Q2u2l. ~41!
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From this, it is trivial to conclude that the linear dilato
solution is compatibleonly with u50, which on account of
the equations of motion leads toz5v50. In this case, we
find two solutions forl.0:

Q25
9

8l
, k25

1

2l
, j5

1

4l
, v5218A2

l
~42!

or

Q25
9

8l
, k25

21A6

8l
, j50, v53A52122A6

l
.

~43!

We now remark that, from the point of view of a possib
holographic renormalization-group interpretation of the bu
geometry@15,19#, the consistent solution would be the fir
one~42!, characterized by an anti–de Sitter type bulk geo
etry. Because of thez independence ofQ in this case, the
fixed points connected with the renormalization-group flo
~i.e. the theories residing on the two branes in the RS ge
etry! would be degenerate, being characterized by the s
value of the central chargeQ, and hence would be connecte
by marginal operators in a RG sense on the world sheet. T
case is common in superstring theories.

Note the relative sign difference inv between the two
solutions. Also notice that in neither of the above cases i
possible to fine-tune the parameters so as to obtain a van
ing cosmological constant on the four-dimensional wor
The cosmological constant is relatively small, for weak
coupled strings, as being proportional togs . However, this is
not phenomenologically acceptable, unless one consi
~non-realistic! very weakly coupled string theories.

As a final remark, we would like to stress the differen
of our scenario from those discussed in Ref.@6#. In our case,
in contrast to that discussed in@6#, there exists the non-trivia
fourth-derivative dilaton term (¹f)4. Its presence is crucia
in ensuring~for theu50 case! the consistency of the linear
dilaton ansatz with the non-factorizable metric case a
moreover, in yielding solutions fors(z) that go beyond the
RS scenario.

IV. BEYOND THE RANDALL-SUNDRUM SCENARIO

In this section we shall examine the general solutio
within the string effective action framework, for the spac
time ~1!, where we shall treat boths(z) and the dilatonF(z)
as unknown functions, without restriction to the speci
form of the RS metrics~2!. We shall discuss the genera
solution of the equations of motion~12!–~14!, and discuss
the connection with the metrics~2! as a special case. As w
shall demonstrate below, sufficient analytic information
the structure of the solutions can be obtained, which allo
us to draw some general conclusions on the underly
physics.
4-6
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A. General solution of the graviton and dilaton equations

It is convenient to use the notation

y~z![leuF(z), u~y![
1

Ay

dy~z!

dz
,

q[Ay
ds~z!

dz
, J5jl2z/u. ~44!

From now on, we shall concentrate on the case of str
theory z52u (54/3 in the case of five-dimensiona
strings!. In the above parametrization, Eq.~13! becomes al-
gebraic:

16J2192q21384q421536q3u112u229u450. ~45!

Solving Eqs.~12!,~14! with respect toq8, u8 and using Eq.
~45! we obtain

y
dq~y!

dy
5

A~q,u!

8uC~q,u!

y
du~y!

dy
5

B~q,u!

uC~q,u!
, ~46!

where

A~q,u!52~24q148q322u216q2u1u3!

3~128q322u13u3!

B~q,u!54q~124q2112qu!

3~24q148q322u216q2u1u3!

C~q,u!52218q22512q4216qu13u2212q2u2

124qu3. ~47!

Dividing the two equations in Eqs.~46! we obtain

dq

du
5

128q322u13u3

32q~2114q2212qu!
. ~48!

Notice that the same equation is obtained by simply diff
entiating the algebraic equation~45! with respect tou, thus
demonstrating that this equation provides the general s
tion q5q(u). This is a one-parameter family of solution
with the parameter being provided by the bulk cosmologi
constantJ. This result was to be expected, considering
fact that the three equations are not independent@cf. Eq.
~15!#. Using the result forq(u) we can formally solve Eq.
~46! for u(y),

y5y0expS E duu
C@q~u!,u#

B@q~u!,u# D , ~49!

from which, on account of Eqs.~46! and ~44!, we obtain
y(z)„F(z)… ands(z) as functions of the bulk coordinatez.
However, in practice the analysis is obscured by the prese
of divergences in the derivatives of (q,u), which are re-
12400
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solved only in the physical parametrization„s(z),F(z)…. In
this case we resort to numerical integration of the full syst
~12!–~14!.

We first note that the above equations admit in the b
some exact solutions, which are known analytically. The fi
example is the trivial case of

J5u5q50, ~50!

corresponding to a flat bulk space-time with a constant d
ton, which is obviously an exact solution of the equations
motion.

A second exact solution occurs for anti–de Sitter bu
with a specific value of the cosmological constant:

q25
1

12
, u50, J5

5

6
. ~51!

This is the Randall-Sundrum~constant dilaton! solution~33!,
derived in Sec. III B.

A third exact solution can be found by inspecting Eq
~46!,~47!. We notice that bothdq/dy anddu/dy vanish for

q5q0 , u5u0Þ0 with

24q0148q0
322u0216q0

2u01u0
350 ~52!

and thus the above points correspond to exact solutions
J determined from Eq.~45!. These solutions correspond to
curve in the phase space~see the discussion in Sec. IV C an
Fig. 2!. In terms of the metric and the dilaton these solutio
are singular:

s~z!5s01s1ln~z2z0!, F~z!52
3

4
ln f02

3

2
ln~z2z0!,

~53!

with f0511s1 /(228s1
2112s1

3) and J determined from
Eq. ~45! in the range 0.60,J,44.44.

Finally, another exact solution is

q50, u56A2, J5
3

4
~54!

or, in terms of the original parameters,

s~z!5const, F~z!52
3

2
lnS z

A2l
D , j~z!5

3

4l

~55!

which implies a flat bulk space-time, with a non-consta
dilaton.

The general solution of Eqs.~46! and ~45! is represented
by a~Escher-illusion-like@25#! phase-space diagram given
Fig. 1. The shaded region corresponds to de Sitter type b
J,0, while the rest of the graph corresponds to the cas
interest here, namely anti–de Sitter type bulk,J.0. The
various contours in the diagram of Fig. 1 correspond to
lutions with various values of the cosmological constantJ
5lj. For instance, the depicted contours in the anti–de
ter region in the upper-right side of the graph correspond
4-7
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NICK E. MAVROMATOS AND JOHN RIZOS PHYSICAL REVIEW D62 124004
the following values ofJ: 0, 0.1, 5/6, 5, 10, 100, in increas
ing sequence, pointing outwards from the center of
graph.

The above-discussed exact solutions~50!–~55! corre-
spond to specific points in that diagram. For instance,
trivial flat space-time appears at the origin (0,0) of the so
tion space, while the RS solution~51! corresponds to the
marked points in Fig. 1.

From the graph it becomes clear that there areonly four
singular points, corresponding to the casesq→6`,u→6,
in which q/u;const. We shall study these points analy
cally in the next subsection.

B. Singularity structure in „u,q… parameter space

In this section we perform an analytic study of the sing
lar points of the solution space of Eqs.~46! in the (u,q)
parametrization. It would be instructive to consider first t
connection between singularities in the physical parame
s,F and their derivatives and the transformed space par
etersq,u,y and their derivatives. One easily concludes fro
Eqs. ~44! that whenq,u diverge there are divergences in
least one of the quantitiesF,ds/dz,dF/dz.3

3The inverse is also true; that is, finiteq andu correspond to finite
s,s8 andF,F8 with the exception of the points of the exact sol
tion ~53!.

FIG. 1. Phase-space diagramu(q) for the general solution of the
five-dimensional equations of motion for dilaton and graviton fie
in the presence ofO(a8) terms in the string-inspired effective ac
tion. The various contours are parametrized by the values of
bulk cosmological constant (J). The shaded region corresponds
de Sitter bulk space-times (J,0), while the rest of the diagram
corresponds to anti–de Sitter bulk (J.0). The boundaries be
tween these two regions correspond to theJ50 contours. The dots
represent the Randall-Sundrum space-time. The origin (u5q50)
corresponds to a flat bulk space-time.
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Regarding the second derivatives we have

d2s

dz2
5uS dq

dy
2

q

2yD ,
d2y

dz2
5uS du

dy
1

u

2yD , ~56!

and thus singularities indq/dy,du/dy, for u,q,y5finite,
correspond to singularities in the derivatives of the physi
parameters in all cases exceptu→0 with u(dq/dy)5finite
andu(du/dy)5finite.

We are now ready to proceed to a study of the singul
ties. The right-hand side of Eqs.~46! does not contain any
explicit dependence ony and, thus, can be easily examine
for singularities at the casesq→6` and/oru→6` and/or
q→0 and/oru→0. After a systematic search~see Fig. 1! of
all cases we find only one class of four singular solutions
q;u→6`:

q;r iu, u;u0yci, ~57!

wherer i ,i 51,2 is one of the real solutions of the equatio
232512r31128r450, r1'20.178,r2'4.000 and

ci5
1216r i

2148r i
3

32~231r i !r i
2

, ~58!

c1'20.070,c2'5.500.
We thus conclude@cf. Eqs.~44!# that the singularities in

the solution space are encountered aty→0 (F→1`) for
r1 andy→1` (F→2`) for r2 . From Eqs.~44! one ob-

s

e

FIG. 2. A solution interpolating between the Randall-Sundru
solution atz51` and a naked singularity@see Eqs.~59! for the
caser2] at z50. There are two~physically equivalent! branches
CH and AF. There are other solutions that encounter~D or B!
non-resolvable singularities in the derivativesdq/dy,du/dy
~dashed curves!. The dotted curve~for uÞ0) corresponds to the
exact solutions of Eq.~53!.
4-8
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STRING-INSPIRED HIGHER-CURVATURE TERMS AND . . . PHYSICAL REVIEW D62 124004
serves that, near the singular points, the dilatony @F(z)#
and metrics(z) functions acquire the form

y1/2 2ci5S 1

2
2ci Du0z.0, y~z!5Fu0S 1

2
2ci D zG1/(1/22ci )

,

F~z!5F02
3

224ci
lnuzu,

s~z!5s01
r i

1

2
2ci

lnuzu ~59!

wheres0 ,u0 ,F05const. Several remarks are in order at th
point: ~i! Both singularities occur atz50, but we have the
condition u0z.0 ~for r1), and u0z,0 ~for r2), so if one
assumes a fixed sign ofu0 for both singularities, then we se
that one approachesz50 from different side for each type o
singular solution.~ii ! As one approaches the singularitie
both the dilaton and metric functions diverge logarithmica
with z. ~iii ! The scalar curvature in the five-dimensional bu
near the singularity is given by

R54$5@s8~z!#222s9~z!%54~5g22!g
1

z2
, g5

r i

1

2
2ci

.

~60!

We observe from Eqs.~60! that the curvature diverges asz
→0, and thus one has anakedsingularity there. However
for a four-dimensional observer, residing on the brane az
→0, the singularity for both cases isintegrable, given that
the ~covariant! integral of the scalar curvature overz in the
vicinity of the singularity yields

E dzAgR~z!}E
z;e→0

dzz24(g i11/2);e24g i21→0,

~61!

since the exponent24g i21 takes on the positive value
0.25 and 2.2 for ther1 andr2 cases respectively.

By closely inspecting the general solution we observe~see
Fig. 1 and for a detailed view Fig. 2! that the RS solution
~51! is not isolated, but is connected by means of a conti
ous interpolating function with the naked singularityr2, Eq.
~59!. The important issue is to determine the point in thez
axis to which the RS solution corresponds. This will be t
topic of the next subsection.

Before doing so we should remark that there are ot
branches of the solution space that connect the RS solu
with genuine singularities of the derivatives ofq and u at
points in which theC(q,u) factor in the denominator of Eqs
~46! vanishes, forq,u finite and nonzero. This becomes ev
dent from Fig. 2 where we plot the contours crossing the
points (A,C) as well as the curves~dashed lines! represent-
ing the above~non-resolvable! divergences in the derivative
dq/dy,du/dy. Such points may correspond to naked sing
12400
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larities in thes(z) andF(z) space, given that the first an
second derivatives of both fields diverge, assuming finite v
ues ofy.

We have also plotted in Fig. 2 the curve that represe
the ~one parameter! exact solution of Eq.~53! ~dotted curve!.
The various points on the curve correspond to exact solut
with different values ofJ. The curve does not contain th
pointsA,B, since theu50 points are excluded.

In this article we shall not discuss these branches of
general solution further. A detailed study is postponed t
future publication.

C. Interpolating between the Randall-Sundrum solution
and naked singularities

Let us now proceed to an analytic determination of t
behavior of the solution in the neighborhood of the RS poi
(A,C in Fig. 2!, which will also determine the point in thez
axis to which the RS solution corresponds.

Expanding~45! aroundq5q0561/A12, u50 we obtain
q;q02 1

2 u, which on account of Eqs.~46!,~47! leads to

q56
1

2A3
7

1

A3
ln

y

y0
,

u56
2

A3
ln

y

y0
~62!

with y→y05finite. The sign ofy2y0 determines the branch
of the solutions depicted in Fig. 2. For theAF or CH
branches, which we shall study here,y,y0, on account of
Eqs.~62! ~the opposite is true for theAB, CD branches!.

From Eqs.~44! we have

y5y02e(62/A3y0)z, ~63!

which implies that the pointy→y0 occurs atz→7`, for y0

finite andq056A1/12 respectively.
Solving for the dilatonF(z) and metrics(z) functions,

we then obtain

F~z!.F01
3

4y0
e(62/A3y0)z1•••,

s~z!5s06
1

A12y0

z1
1

8y0
e(62/A3y0)z1•••,

~64!

whereF0[2 3
4 ln(y0 /l).

Thus, we see that the leading parts of the solution~64!,
for infinite z ~e.g., z→1` for q0521/A12), is a smooth
Randall-Sundrum type~with k521/A12y0), which should
be understood only as the part of the RS metric~2! inside a
given region of the bulk space-time, bounded by a membr
located at a positionz→` in the bulk. In fact the solution is
valid only near the membrane wall, and deviations from
are exponentially suppressed withz. The reader should no
be alarmed by the apparent divergent form of the me
4-9
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element asz→`. The correct way of viewing Eqs.~64! is to
consider first the solution as valid forz5L, where L is
larger than any other length scale in the problem. Then,
may shiftz→ z̃5L2z, and arrange the constants0 of Eqs.
~64! to be such as to cancel factors of (q0 /Ay0)L. Eventu-
ally, one may take the limitL→`. The resulting metric is of
the RS type aroundz̃50, while the naked singularity now
occurs atz̃5`.

At this point we should also remark that inspection of t
phase-space diagram of Fig. 1 reveals that the interpola
of the RS solution passes through the pointu50 twice. In
the journey fromz51` towards finite values, the solutio
passes first through another pointz0.0 that hasu50, before
reaching the naked singularityr2, Eq. ~59!, at z50. In the
point z5z0 the behavior ofbothF(z) ands(z) functions is
perfectly regular. Indeed, this second point of vanishingu
occurs forq→q156A5/12. Expanding around this poin
one obtainsz2z05O„(y2y1)1/2

…, for y→y1, wherez0.0
is finite. From Eqs.~44!, then, it is evident that, forz;z0 ,
F(z)5F12O(z2) and s(z)5const1O(z), where F1
5(1/u)ln(y1 /l) is a constant. This is a perfectly regul
behavior in thez space.

The numerical analysis summarized in Fig. 2 indica
that there exist smooth functions forF(z) ands(z) interpo-
lating between the RS solution atz51` and the naked~in-
tegrable! r2 singularity~59! at z50. These are plotted in Fig
3 for the caseq052A1/12.

The existence of the interpolating solution depicted

FIG. 3. The metrics(z) and dilaton F(z) as functions of
z interpolating between a RS type solution (q052A1/12) at
z51` and a naked singularity@see Eqs.~59! for r2] at z50. The
existence of this solution implies the dynamical restriction of
bulk space-time to the positivez axis.
12400
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Fig. 3 implies an important fact about the nature of the
lution in the context of the string-effective action in which
was derived. The induced bulk space-time isdynamically
restricted on the positivez axis ~for definiteness, if one con
siders theq52A1/12 branch, which corresponds to the co
tour segment AF in Fig. 2!. In this scenario, our~flat! four
dimensional world is viewed as the boundary of the anti–
Sitter bulk (J55/6) located atz5`. A RS-type solution is
valid near our world, which however deviates from it asz
runs towards the originz50, to become an integrable nake
singularity there.

In this scenario, we observe that the dynamics of
O(a8) perturbative string theory yielded important inform
tion on the structure of the bulk space-time, which may
related with solitonic~non-perturbative! structures such as
D-branes. The non-perturbative nature of the solution
have thus obtained becomes clear from the fact that in te
of the original parameters of the model, thek conformal
parameter of the RS solution~51! is found proportional to
1/Al;gs , wheregs is the string coupling.

From the point of view of a holographic RG interpretatio
of the bulk coordinate (z), we remark that the solution o
Fig. 3 satisfies a ‘‘c theorem’’ in the sense of Ref.@21#.
Namely, we observe thats9(z).0 for 0,z,`, which im-
plies that the weakest energy condition is satisfied for t
portion of the bulk space-time.

V. CONCLUSIONS AND OUTLOOK

In the present article we have performed a system
study of non-factorizable metrics of the form~1! in the spe-
cific case of five-dimensional geometries. We have cons
ered the situation in which such geometries are derived
consistent solutions of the equations of motion of string
fective actions in the five-dimensional case, toO(a8) in the
Regge slope. Such terms include quadratic-curvature co
butions of the Gauss-Bonnet type, as well as fourth-or
dilaton derivative terms.

Our analysis has shown that it is indeed possible to fi
compatibility of such a string-inspired model with th
Randall-Sundrum scenario, upon the appropriate embed
of three branes in the five-dimensional space-time. In ad
tion, we were able to find more general situations, wh
interpolate between the RS metric at the boundary of
anti–de Sitter bulk and an~integrable! naked singularity at
the origin. Such scenarios imply the dynamical formation
domain walls in the space-time, which may be useful wh
one discusses the consistent embedding of D~irichlet!-branes
in such a picture~as is the case of the original RS scenari!.
In our solutions the conformal parameterk of the RS type
metric, as well as the bulk cosmological constant, turns
to be proportional to the string coupling.

There are many issues that remain to be checked: firs
stability of the solution against the inclusion of higher ord
a82 corrections as well as string-loop corrections. Moreov
in the present work we have assumed that the dilaton
metric functions depend only on the bulk coordinate, and
took the four-dimensional world to be flat. The extension
more complicated metrics, especially time dependent
4-10
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needed in order to discuss cosmological implicatio
@9,6,26#. Moreover, the proper inclusion of quantum fluct
ating ~recoiling! D-branes, in the way discussed in@14#, a
situation that undoubtedly is expected to be encountered
complete quantum theory, is a very interesting issue that
serves special attention and is currently under investigat

In addition, the precise connection of the bulk coordin
with a holographic renormalization-group parameter in
case of anti–de Sitter bulk geometries also merits a sepa
study. As mentioned in the text, one should re-examine c
fully this interpretation in the context of the existence of
properc theorem, expressing the irreversibility of the reno
malization group flow in the bulk. In Ref.@21#, this c theo-
rem was suggested to be provided by the monotonicity
s8(z) @s9(z)>0# in the metrics~1!, which is the result of a
.
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positive energy theorem for consistent matter to be place
the bulk. For the interpolating solution of Fig. 3 this has be
shown to be valid. However, this is not always true@6,22# for
generic bulk~anti–de Sitter! geometries, especially in th
higher-curvature context discussed here, where the pres
of the Gauss-Bonnet terms complicates the positive ene
conditions@11#. A detailed study of such issues will appe
in a forthcoming publication.
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