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Abstract—Complex (imaginary) signals arise commonly in the
field of communications in the form of time series in the complex
space. In this work we propose a symbolic approach for such
signals based on string kernels derived from a complex SAX
representation and apply it to a challenging counting problem.
Our approach, that we call cStrings, is within a Gaus-
sian process regression framework and outperforms established
Fourier transforms and complex kernels, achieving a correlation
coefficient of 0.985 when predicting the number of targets sensed
by a pulsed Doppler radar.

I. INTRODUCTION

In telecommunications, electromagnetics, and radar tech-
nology it is very natural to encounter sensory signals that

are complex time series: x1:T , {xt}
T
t=1 ∈ C

T where xt =
{αt+βti ∈ C | αt, βt ∈ R}. For example consider the sensory
output of the low-power mote-scale BumbleBee sensor, Figure
1, that can be employed to count the number of targets in
a spatio-temporal region S. This sensor has applications in
various fields such as environmental monitoring, sustainability,
security and defense, and in its highest sensitivity it can detect
human heartbeats within its range.

Fig. 1. The BumbleBee sensor is a monostatic wideband radar, with
a bandwidth of 100MHz, a center frequency of 5.8GHz and a maximum
detection range for people at ∼10m omnidirectional.

The sensory complex output xt contains information re-
garding movement, direction of movement and distance to the
sensor. Since that information is summarized by the sensory
output every time step t the task of modeling and predicting
the number of moving targets, or the total number of targets y
is very challenging. Assuming some stationarity of the process,
namely that y is constant within S, gives rise to a time series
data x1:T ∈ C

T for predicting the number of targets y in S.

The motivation for our work comes from the sustainability
domain where this sensor will be employed to count human
and animal targets within the Panna national park in India.
This is part of a larger integrated wireless sensor network
that will be in place for the protection of the tiger population
and monitoring of illegal human activities like poaching. In
this work we attempt to predict the number of students in a

classroom given a 30 sec BumbleBee measurement of activity,
Figure 2(a).
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Fig. 2. (a) Predicting the number of human targets (students) in a classroom
with the proposed approach based on the complex time series data from the
BumbleBee sensor. (b) Typical (log) power spectrum for the radar.

The problem can be stated as: Given a complex vector that
is a time-series x1:T ∈ C

T describing the number of moving
targets at any time t, predict the total number of targets y
within the time frame T . In this work we are going to focus
on direct prediction of y but we note that in terms of inference
this problem has a latent variable representation.

II. RELATED WORK

A. Target (people) counting

People counting has been a significant line of research
within computer vision [1], [2], [3] but has not been adressed
until now with radar based approaches. Considering the de-
ployment domains of interest and their restrictions such as
resource constraints, limited power, occlusion and low-light
environments it is straightforward to see that computer vision
based systems are ill-suited for this task. Furthermore, the
natural underperformance of computer vision systems under
occlusion and night settings highlights the need for alternative
sensing systems and corresponding machine learning tech-
niques.

B. Complex signals and time series

Techniques for analyzing (complex) time series have been
traditionally studied within the field of discrete signal pro-
cessing [4] and computer science [5], [6], [7]. The main tools
are the discrete Fourier and wavelet transforms (DFT, DWT)
that both offer orthogonal basis in the Hilbert space H of
the function f analyzed. These are complimented by other
approaches such as dynamic time warping (DTW) [8], [9],
hidden Markov models (HMMs) [10], Kalman filters [11],



symbolic representations such as SAX [12], [13], [14] and
piecewise linear techniques [15], [16]. In terms of analyzing
complex time series x1:T ∈ C

T some of the representations
such as DFT extend naturally to C

T , and we will make use of
that, while others do not or require intermmediate DFT estima-
tion. Before proceeding to the proposed symbolic approach we
briefly review some relevant work on complex valued signals
via complex Gaussian kernels and corresponding supervised
learning algorithms.

Complex kernels Recently, [17] proposed algorithms on
complexification of real reproducing kernel hilbert spaces
(RKHS) and complex kernels for Least Mean Squares (LMS)
and Support Vector Regression (SVR). The following Lemma
holds:

Lemma II.1. [17]
If kC(x,x

′) is a complex kernel, then

kR

((

xr

xi

)

,

(

x′r

x′i

))

= Re(kC(x,x
′)) (1)

where xr, x′r, xi, x′i are the real and imaginary parts of x,
x′ ∈ C

d, is a real kernel.

Proof: The proof is given in [18]

The above states that a complex kernel kC can be shown
to induce a real RKHS H with kernel kR ∈ R

2d×R
2d. A

Gaussian complex kernel for the complex time-series data
x1:T ∈ C

T is then given by:

kC(x,x
′) = exp

(

−
1

2
(x− x

′⋆)TΛ(x− x
′⋆)

)

(2)

where ⋆ denotes the complex conjugate and Λ is the
diagonal matrix containing the length-scale hyperparameters θ.
The inclusion of per-dimension scale hyperparameters is called
automatic relevance determination (ARD). The induced real
kernel kR describes both in-phase and quadrature components
of x1:T ∈ C

T and is not equivalent to the standard real
Gaussian kernel, as can be seen from the case x = x′.

The complex time series from the sensor i) have no possible
time alignment, i.e. the target movements across different
samples are spontaneous and chaotic, ii) might arise from un-
correlated, independent movements, i.e. is not clear if 1st order
Markov assumptions can be useful and to what extend, iii) have
no distance to source information for appropriate scaling, i.e.
the power intensity of the signal is inversely proportional to
the fourth power of distance but such information is not readily
available for signal normalization, and finally iv) the signal-
to-noise ratio varies as a function of movement speed due to
low frequency radar noise, hence low speed activities cannot
easily be detected.

Considering the above problem characteristics and the un-
derlying modeling assumptions from the reviewed approaches
it is clear that only a subset of techniques can be employed for
experimental comparison against the following approach that
we propose in this paper.

C. Time series approximations

We will extend two discrete approximation methods for
time series to the complex-valued domain: the Piecewise
Aggregate Approximation (PAA) [16], [19] and the Symbolic
Aggregate approXimation (SAX) [12]. PAA is a dimension
reduction technique where each non-overlapping window of
a fixed size in the sequence is replaced by the arithmetic
mean of the data within that window. The SAX approximation
converts the series of continuous-valued elements to discrete-
valued symbols based on equiprobable regions. The equations
for these transformations presented as Eq. 3 and Eq. 5 in the
following section reduce to the original form when applied to
real-valued sequences.

III. STRING KERNELS FOR COMPLEX TIME SERIES

The idea behind cStrings is to transform the complex
time series into a symbolic representation by extending the
Piecewise Aggregate Approximation (PAA) and the Symbolic
Aggregate approXimation (SAX) to handle complex vectors,
and then construct string kernels based on n-gram representa-
tions of the signals, see Figure 3 and Figure 4. This allows us
to capture informative subsequences, n-grams, in the complex
time series that are position independent and predictive of the
total number of targets within S.

A. Symbolic representation of the complex domain

Consider a complex time series x1:T , {xt}
T
t=1 ∈ C

T

where xt = {αt + βti ∈ C | αt, βt ∈ R} and a set of N
such series with associated counts {xn,1:T , yn}

N
n=1. We can

extend PAA and SAX to the complex domain and represent a
complex time series x1:T as a D-dimensional (D ≪ T ) vector
with elements:

x̃i =
D

T

T
D
i

∑

j= T
D
(i−1)+1

xj (3)

Lower bound on distance The new representation
x̃n,1:D ∈ C

D retains a lower bound on Lp measures

Lp(x̃n,1:D, x̃′
n,1:D) ≤ Lp(x1:T ,x

′

1:T ) with respect to the
original representation xn,1:T ∈ C

T where:

Lp(x1:T ,x
′

1:T ) =

(

T
∑

t=1

|xt − x′

t|
p

)

1

p

(4)

Theorem III.1. For any sequence x1:T = [x1, . . . , xT ] ∈ C
T

and 1 ≤ p < ∞ the following holds:

Lp(x̃n,1:D) ≤ Lp(x1:T )

Proof: We know that f = | · |p for 1 ≤ p < ∞ is a
convex function in R

2ν and hence it is also convex in C
ν .

Following [16] if we define λ1, . . . , λL ∈ R such that λi ≥ 0
and

∑L
i=1 λi = 1 then it follows that

f(λ1x1 + . . . λLxL) ≤ λ1f(x1) + · · ·+ λLf(xL)



and substituting for λi = 1
L

, f = | · |p and rearranging
based on Eq. 3 completes the proof.

We can now discretize the PAA representation further by
defining (N (0, 1)) equiprobable breakpoints along both real
and imaginary axis and extend SAX [12] to the complex
domain with a 2D alphabet, Figure 3. This implies that the
new SAX mapping is:

ĉi = Aj,k ⇐⇒ βj−1 ≤ Re(x̃i) < βj

∧ βk−1 ≤ Im(x̃i) < βk (5)

where Aj,k is the 2D symbolic alphabet and β are the
standard equiprobable breakpoints from the Gaussian CDF.

B. n-grams string kernel

Having obtained a symbolic representation of the complex
domain where the time series are defined we can now adopt a
text mining perspective and construct appropriate string kernels
[20], [21]. We consider n-grams that map the time series
into high-dimensional feature vectors ν() ∈ R

V , where each
dimension describes the number of occurrences of a given
contiguous subsequence. The number of distinict n-grams V
from alphabet A is bounded by V ≤ |A|n. In practise the
representation is very sparse as not all n-grams are represented
in every time series. Finally the n-gram feature vector is nor-
malized using the term frequency-inverse document frequency
statistic (tfidf ) commonly used in text mining applications to
discount the contribution from common subsequences:

tfidf (v,xi,X) = c(v,xi) log
N

|xj ∈ X : v ∈ xj |
(6)

where c(v,xi) is the raw count of n-gram v in the
sequence, and N is the number of sequences. The string
kernel (p.s.d. by construction) between two complex time
series x1:T ,x

′

1:T ∈ C
T is then given by:

k(x1:T ,x
′

1:T ) =
ν(ĉ)

T

ν(ĉ′)

‖ν(ĉ)‖2‖ν(ĉ′)‖2
+ b (7)

where b ∈ R is a bias constant, ν() is the vector of n-gram
counts following the tranformations defined in Eq. 3, 5, and 6,
and the denomitator denotes scaling to obtain a cosine kernel.
The sparse n-gram string kernel has a linear time complexity
[21] and hence is a viable solution for real-time deployment.

C. Gaussian process regression

In order to quantify the uncertainty of our predictions
we turn to Bayesian inference and employ Gaussian process
regression (GPR) as the kernel based learning algorithm. The
GP prior is specified by the mean m and covariance kernel
function k(x, x′):

f(x) ∼ GP (m(x), k(x, x′)) (8)

We assume a prior with zero mean and posterior inference
in GPR is available in closed form due to the Gaussian
nature of the prior and likelihood, see [22]. Hyperparameter
optimization for the complex and real Gaussian kernel is
done via conjugate gradients and the partial derivatives of the
marginal likelihood p(y|X,θ) w.r.t. the hyperparameters θ are
given by:

∂

∂θj
log p(y|X,θ) =

1

2
yTK−1 ∂

∂θj
K−1y −

1

2
trace

(

K−1 ∂K

∂θj

)

(9)

Where the derivatives ∂K
∂θj

for the complex kernel K

follow exactly as the real double exponential case. The overall
proposed algorithm is given in Algorithm 1.

−26−7 9 28

−28

−8
8

27

Normalized In−Phase (x 10
3
)

N
o

rm
a

liz
e

d
 Q

u
a

d
ra

tu
re

 (
x
 1

0
3
)

 

 

Subsequence 1

Subsequence 2

Subsequence 3

Subsequence 4

Subsequence 5

Subsequence 6

Fig. 3. 2D aggregation, SAX and n-gram construction. Every marker
denotes a complex number of the time series, colored cells denote the SAX
representation of the corresponding 10 complex numbers that gives rise to
the alphabet letter. The alphabet size (number of equiprobable regions) in this
example is 5x5 and this sequence gives rise to a 6-gram. See also Figure 4
for the correpsonding representation in time.

0 33 67 100 133 167

Time (ms)

In
−

P
h
a
s
e

0 33 67 100 133 167

Time (ms)

Q
u
a
d
ra

tu
re

Fig. 4. Time-series representation of the in-phase and quadrature components
from Figure 3 .



Algorithm 1 cStrings: Complex String kernels

Input: Time series and targets {xn,1:T , yn}
N
n=1

Initialize by CV: Window T/D, |A|, n-gram length n
for n = 1 to N do

for i = 1 to D do
(Complex PAA): x̃n,i ← Eq. 3
(Complex SAX): c̃n,i ← Eq. 5

end for
Index n-grams ν(ĉ)
Normalize ν by tfidf
for j = 1 to n do

k(xn,1:T ,x
′

j,1:T )← Eq. 7
end for

end for
GP ← K,y (Exact inference)

D. Computational complexity

The time complexity is a function of the number of samples
N , length of orginal time series T and length of symbolic
representation D. The GPR, as most kernel machines, has
a dominant term O(N3) that can be improved by sparsity
inducing priors and Nyström approximations [23]. The pro-
posed string kernel has a dominant term O(DN2) while the
total PAA complexity is linear O(NTD). The overall string
kernel construction can be brought down to a linear time
complexity [21] while analogous computational improvements
are available for SAX [8] and can be exploited within this
framework. Finally it is worth noting that storage requirements
and space compexity are significantly reduced via the symbolic
representation [13] in relation to DFT approaches.

IV. DATASETS, EXPERIMENTAL SETTING AND METHODS

In this section we describe the real world experimental
setting, resulting data and competing methodologies that we
compare against the proposed approach. All the experiments
were conducted with the BumbleBee sensor placed in four
different classrooms with a varying number of students (0-
40) and while performing various activities (teaching, breaks,
tutorials, etc.), e.g. see Figure 1 for a typical experimental
setting.

A. BumbleBee experiments

The BumbleBee radar has a 60 degree conical coverage
pattern, which allows for placement on ceilings, walls, posts,
tree trunks, etc. It transmits 2 million pulses per second, whose
reflections off of objects in the detection range are convolved
with a reference pulse to capture the movement in the scene.
The resulting signal is integrated over a 1000 pulse period, low
pass filtered to 100 Hz, and then sampled by a mote at several
hundred Hz. The radar is thus capable of providing information
for even minute motions with radial velocities between 2.6cm/s
and 2.6m/s.

The datasets consist of 33 recording sessions with data
sampled over a maximum duration of 130 minutes (longest
streak with the same number of people in a room) that we
subsample to various shorter framelengths from 20 up to 160
sec. This gives rise, after filtering, to N = 1482 samples
for the 30 sec framelength clips that we use as our main
experimental dataset. We examine and discuss the effect of

different framelengths in the results section. The radar has a
detection range of 10m omnidirectional and is typically placed
in the back corners of the classrooms covering the extend of the
room. It is worth noting that interference from neighborhing
rooms and adjacent activities within the detection range is
present, unreported, and can be seen to create outliers in the
data.

B. Methodologies

We compare the proposed approach against two DFT-
based feature construction techniques following a modular
learning strategy [24] and past work on kernels derived from
STFT features for doppler-based activity recognition [25] and
complex Gaussian kernels [17]. All approaches employ GPR as
the supervised learning technique and we describe and report
only the best DFT competing approaches across a range of
benchmarks and parameter settings.

DFT with the real Gaussian kernel

The first approach computes moments based on a standard
DFT construction and embeds them in a Gaussian kernel (with
ARD), similarly to [25], within GPR . Specifically, in this
case we compute the STFT of the complex signal using a
Chebyshev window and 50% window overlap. In order to set
the window length we perform a grid search that includes
window sizes that are powers of 2 between 2 and 256. The
result is converted to a power spectrum and we compute up
to 4th order moments on a per frequency basis. We reduce
dimensionality by truncating the DFT at a particular frequency,
selecting both the number of frequencies retained, and the
maximum order of the moments, by grid search. The resulting
moments are embedded in the Gaussian kernel; the vectors
have d*m dimensions where d is the number of retained
frequencies, and m is the number of moments. It is worth
noting that we did not observe an improvement in performance
using SVD as an alternate method of dimension reduction.

DFT with the complex Gaussian kernel

In the complex case, we again compute the STFT of the
complex signal with the same window function and overlap
without converting to power spectrum in order to retain the
complex components. Similarly, we compute up to 4th order
moments of each frequency; in the complex case this corre-
sponds to a maximum of 8 non-redundant moments, of which 6
are complex-valued. The resulting complex vector is embedded
with the complex Gaussian kernel from Equation 2 following
[17]. We normalize the diagonal of the kernel to correct for
the complex self-similarity measure and proceed with ARD
inference for the GPR.

cString kernels

The string kernel is described in detail in the preceeding
sections and summarized in Algorithm 1. In terms of the main
parameters we perform 10-fold cross-validation grid search for
the alphabet size |A| from 2×2 up to 14×14, n-gram lengths
up to 7 symbol-pairs and PAA window sizes from 1 to 20.



V. RESULTS

We report 10-fold CV results on the 30 second frame-
lengths in terms of the correlation coefficient r, RMSE and the
coefficient of determination R2. First we report results from
the DFT approaches with both the real and complex kernels
and proceed to the proposed symbolic approach. The following
notation applies: m is the order of moments employed (e.g.
m=2 implies 1st and 2nd moment), n is the n-gram length
and window sizes are the PAA window for the symbolic and
the Chebyshev window for DFT.

A. DFT with the real Gaussian kernel

In Figure 5(a) the correlation coefficient r is shown for var-
ious parameter settings on 10-fold CV with the Gaussian kernel
operating on the DFT moments. The corresponding RMSE and
R2 results are shown in Figures 5(b) and 6 respectively. The
best performances are r = 0.89, RMSE= 5.16, R2 = 0.8.
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Fig. 5. DFT with power spectrum: r and RMSE
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B. DFT with the complex Gaussian kernel

In Figure 7(a) the correlation coefficient r is shown for
various parameter settings on 10-fold CV with the Gaussian
complex kernel operating on the DFT features. The corre-
sponding RMSE and R2 results are shown in Figures 7(b)
and 8 respectively. The best performances from the complex
kernel are r = 0.84, RMSE= 6.26, R2 = 0.71

C. cStrings: String kernel

In Figure 2(a) we plot the estimated versus the real count
with the best performing settings for cSrings found from
10-fold cross-validation. We find that an alphabet size of 9
for each dimension, a PAA window size of 10 and an 6-
gram order give the best performance that outperforms the
complex Gaussian kernel and the DFT representation. The
best performances from the proposed approach are r = 0.98,
RMSE= 2.11, R2 = 0.97

Window size       

D
F

T
 D

im
e
n
s
io

n
s

m=1

1

5

10

m=2

m=3

2 256

1

5

10

m=4

2 256
 

 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Window size       

D
F

T
 D

im
e
n
s
io

n
s

m=1

1

5

10

m=2

m=3

2 256

1

5

10

m=4

2 256
 

 

7

8

9

10

11

12

Fig. 7. DFT with complex kernel: r and RMSE
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D. Performance stability across parameter settings

In analogy with the competing approaches we examine the
stability of the proposed algorithm acrosss different parameter
settings. In Figure 9(a) we plot the 10-fold CV estimate of
the correlation coefficient across the 3 main parameters for n-
gram, alphabet and PAA window sizes. As it can be seen the
performance of the estimator is quite stable across settings for
n ≥ 4. Similarly in Figure 10(a) we can see the R2 values
across settings and finally in Figure 9(b) the corresponding
RMSE estimates.
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E. Effect of frame length

Finally, we examine the effect of the framelength on the
estimator using the best performing parameter settings. As we
can see from Figure 10(b) as we increase the length of the
time frame performance experiences a small drop which can be
explained as the compounding effect of two processes. First,
as we increase the framelength different moving “activities”
may take place hence adding signal variability. Secondly,
the available sample size for 10-CV decreases placing us
earlier in the learning curve. Despite that, even the worst
performing framelength (160s with r = 0.96, RMSE= 3.06,
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R2 = 0.93) still outperforms the best DFT results. Finally, in
terms of tuning the framelength, which is activity and problem
dependent, standard cross-validation procedures can be used
to learn an optimal setting when the application goal and
constraints do not already pre-define the experimental setting
and specific predictive task.

VI. DISCUSION

We proposed a symbolic representation, that we call
cStrings, for complex time series that is shown to provide
state of the art performance (r = 0.985) on a challenging
task of counting people from a pulsed Doppler radar sensor
that detects movement. Our approach significantly outperforms
DFT representations and recently proposed complex kernels
while offering uncertainty estimates, Figure 2(a), and avoiding
the complexity of manipulating DFT spectrograms. The ap-
proach extends SAX to the complex domain while retaining
a lower bound on distance measures and hence is applicable
to general complex time series modelling and alignments.
The sensor is subject to masking and superposition effects
but we are able to accurately predict the number of targets
within a 30s sampling event. We are now examining com-
plexity improvements based on numerocity reduction [8] and
improved string kernel implementations while increasing the
complexity of the sensed environments and evaluating activity-
level recognition. To that front we are collecting data with
better coverage of possible activities and movement patterns
to reduce the induced frame-level correlation in the existing
experimental setting. We believe this work is a significant step
towards efficient and accurate target counting from non-vision
based radar sensors.
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