
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 7 Issue 3 March 2018, Page No. 23769-23772

Index Copernicus Value (2015): 58.10, 76.25 (2016) DOI: 10.18535/ijecs/v7i3.19

Mukku Bhagya Sri, IJECS Volume 7 Issue 3 March 2018 Page No. 23769-23772 Page 23769

String Matching Algorithms

Mukku Bhagya Sri, Rachita Bhavsar, Preeti Narooka

Computer Department

Terna engineering college, Nerul

Computer Department

Terna Engineering college, nerul

Assistant professor

Computer Department

Terna Engineering college, Nerul

Abstract:

To analyze the content of the documents, the various pattern matching algorithms are used to find all the

occurrences of a limited set of patterns within an input text or input document. In order to perform this task,

this research work used four existing string matching algorithms; they are Brute Force algorithm, Knuth-

Morris-Pratt algorithm (KMP), Boyer Moore algorithm and Rabin Karp algorithm. This work also proposes

three new string matching algorithms. They are Enhanced Boyer Moore algorithm, Enhanced Rabin Karp

algorithm and Enhanced Knuth-Morris-Pratt algorithm.

Findings: For experimentation, this work has used two types of documents, i.e. .txt and .docx. Performance

measures used are search time, number of iterations and accuracy. From the experimental results, it is

realized that the enhanced KMP algorithm gives better accuracy compared to other string matching

algorithms. Application/Improvements: Normally, these algorithms are used in the field of text mining,

document classification, content analysis and plagiarism detection. In future, these algorithms have to be

enhanced to improve their performance and the various types of documents will be used for

experimentation.

Keywords: Brute Force, Boyer Moore, Information

Retrieval, Knuth-Morris-Pratt, Pattern Matching,

Rabin Karp

I. Introduction

String searching algorithms, sometimes called

string matching algorithms, are an important class

of string algorithms that try to find a place where

one or several strings (also called patterns) are

found within a larger string or text. Let Σ be an

alphabet (finite set). Formally, both the pattern and

searched text are vectors of elements of Σ. The Σ

may be a usual human alphabet (for example, the

letters A through Z in the Latin alphabet). Other

applications may use binary alphabet (Σ = {0,1}) or

DNA alphabet (Σ = A,C,G,T}) in

bioinformatics.[11] We assume that the text is an

array T[1..n] of length n and that the pattern is an

array of length[1..m] of length m and that m<=n.

The character arrays T and P are often called strings

of characters. We say that pattern P occurs with

shift s in text T (or equivalently that the pattern P

occurs beginning at position s+1 in text T) if

0<=s<=n-m and T[s+1….s+m]=P[1..m]. If P occurs

with shift s in T then we

calls a valid shift otherwise we call s an invalid

shift. The string matching algorithm is the problem

of finding all valid shift with which a pattern P

occurs in given text.

Large number of algorithms is known to exist to

solve string matching problem. Based on the

number of patterns searched for the algorithms can

be classified as single pattern and multiple pattern

algorithms. Applications may require exact or

approximate string matching.

Exact String Matching Problem

We are given a text string pattern string we want to

find all occurrences of P in T. In Exact string

matching problem the pattern is exactly found

inside the text. Consider the following example:

T=AGCCTAAGCTCCTAAGTC

http://www.ijecs.in/

Mukku Bhagya Sri, IJECS Volume 7 Issue 3 March 2018 Page No. 23769-23772 Page 23770

P=CCTA

There are two occurrences of P in T as shown

below:

AGCCTAAGCTCCTAAGTC

A brute force method for exact string matching

algorithm:

T=ACCACTAGA

P=ACTA

 ACTA

 ACTA

 ACTA

If the brute force method is used, many characters

which had been matched will be matched again

because each time a mismatch occurs, the pattern is

moved only one step. There are many exact string

matching algorithms. Nearly all of them are

concerned with how to slide the pattern. Few of

them are listed below.

II. Metholodgy:

The main goal of this research work is to match the

patterns of text by analyzing the contents of the

documents using string matching algorithms. In

order to perform this task, this research work uses

four existing string matching algorithms; they are

Brute Force algorithm, Knuth-Morris-Pratt

algorithm (KMP), Boyer Moore algorithm and

Rabin Karp algorithm. This work also proposes

three new string matching algorithms. They are

Enhanced Boyer Moore algorithm, Enhanced Rabin

Karp algorithm and Enhanced Knuth-Morris-Pratt

algorithm. The performance factors are used time

taken for searching the pattern, number of iterations

required and its accuracy for single word search,

multiple words search and a file search. But in this

research work we study in detail about , Knuth-

Morris-Pratt algorithm (KMP) and Rabin Karp

algorithm.

Fig: Methodology

Existing Algorithms:
1 Rabin- Karp Algorithm

Rabin-Karp Algorithm is the simplest string

searching algorithm. This algorithm was developed

by Michael O. Rabin and Richard M. Karp in 1987.

This algorithm uses the hash function to discover

the potential pattern in the input text. For the length

of text n and pattern p of mutual length m, its

average and best case running time is O (n+m) in

space O (p), and also the worst-case time is O (nm)

in space O (m). It is used to discover the hash value

of the certain pattern substring and then it discovers

the hash value of all possible m length substring of

the input text. If the hash value of the pattern and

text substring match than it returns the value

otherwise next substring value is matched to

calculate the string of length m.

Algorithm: Rabin-Karp

RABIN-KARP-MATCHER(T,P,d,q)

1 N=T.length

2 M=P.length

3 h=dm-1mod q

4 p = 0

5 t0=0

6 for i=1 to m

7 p =(dp+P[i])mod q

8 t0=(dt0+t[i])mod q

9 for s = 0 to n-m

10 if p == ts

11 if p[1..m] == T[s+1...s+m]

12 Print”Pattern occcurs with shift ”s

13 If s<n-m

14 ts+1 =(d(ts – T[s+1]h)+T[s+m+1]) mod q

The procedure works as follows. All characters are

interpreted as radix-d digits. The subscript on t are

Mukku Bhagya Sri, IJECS Volume 7 Issue 3 March 2018 Page No. 23769-23772 Page 23771

provided only for clarity; the program works

correctly if all the subsripts are dropped. Line 3

intializes h to the value of the high-order dogit

podition of an m-digit window. Line 4-8compute p

as the value of the of P[1...m] mod q and t0 as the

value of T[1...m]modq. The for loop of lines 9-14

iterates thrugh all possible shifts s, maintaining the

following invariant.

 Knuth-Morris-Pratt Algorithm
The Knuth–Morris–Pratt were developed a linear

time string searching algorithm by analysis of the

brute force algorithm or naïve algorithm.

The algorithm was developed in 1974 by Donald

Knuth and Vaughan Pratt, and independently

by James H. Morris and they published it jointly in

1977.The Knuth-Morris-Pratt algorithm moderates

the total number of comparisons of the pattern

against the input string. A matching time of O(n) is

accomplished by evading associations with

essentials of „S‟ that have earlier been

 1. The prefix function, Π The prefix function, Π for

a pattern summarizes the knowledge regarding

however the pattern matches in contradiction of

shifts of itself. This information may be accustomed

avoid unusable shifts of the pattern “p”. In other

words, this succeeds avoiding backtracking on the

string “S”.

 2. The KMP Matcher With string “S”, pattern “p”

and prefix function “Π” as inputs, the prevalence of

“p” in “S” is found and the algorithm yields the

variety of shifts of “p” after which the existence is

found.

3. Running - time analysis: The period of time for

computing the prefix function is Θ (m) and period

of time of matching function is Θ (n).

 Algorithm:Knuth-Morris-

Pratt

1 n = T.length

2 m=P.length

3 3.14 = Computer-Prefix-function(p)

4 q = 0

5 for i = 1to n

6 while q>0 and P[q+1]=/ T[i]

7 q = 3.14[q]

8 if P[q+1]== T[i]

9 q = q+1

10 if q == m

11 print”Pattern occurs with shift” i-m

12 q=3.14[q]

Enhanced Algorithms:

Enhanced Rabin Karp Algorithm

This searching algorithm that uses the hashing

function to find any one of a set of pattern in input

text. Hashing offers a simple method to avoid a total

number of character comparisons. For length of text

N and the pattern P of combined length M, its best

case running time is O (N+M). And the worst case

time is O (NM). First the algorithm used to find the

hash value of the pattern. Then it checks the input

text along with its hash value. If mismatch occurs,

shift the window to the next character then calculate

the hash value and the same process will continue.

Otherwise it returns the index position of the

particular character.

Algorithm: Enhanced Rabin Karp Algorithm

1 Functrion relation(S,P,n,m,k,q)

2 Begin

3 h – Km-1 mod q;

4 p – 0;

5 t0 – 0;

6 for i=1 to m do

7 P –(K, p+ p[i])modq;

8 T0 –(K, t0+s[i])modq;

9 End for

10 For j=0 to n-m do

a) If p-tj then

i) If p=s[j+1,j+m] then

Out j+1;

ii) End if

b) End if

11 If j<n-m then

12 Tj-1 =(K(tj-s[j+1]).h)+s[j+m+1])mod q;

13 End for

14 End.

Enhanced Knuth-Morris-Pratt Algorithm
Knuth-Morris-Pratt algorithm is one of the efficient

string matching algorithms. This algorithm

examines for existences of a pattern p within a main

text t by using the reflection that while matching,

the mismatch occurs, the word itself represents

satisfactory information to regulate where the next

match can begin, thus avoiding the re examination

of formerly matched characters. The KMP

algorithm uses a bit table to discover the mismatch

of the pattern in an input text. This algorithm

performs the comparison from left to right. It uses

the bit table for the comparison, if match it returns

the index of the text. Otherwise it checks the next

bit.

Algorithm: Enhanced Knuth-Morris-Pratt

Algorithm

1 KMP_search(E(p),E(T))

Mukku Bhagya Sri, IJECS Volume 7 Issue 3 March 2018 Page No. 23769-23772 Page 23772

2 Begin

3 Preprocess E(p)to obtain the next_bit table

4 While (not emd of input)do

a) Get next bit b;

b) If (j>=0)&(b!=E(p)[j])do

c) End if

d) If (j=|E(p)|)

i) Return a match

ii) J--1

e) End if

f) J-j+1

g) End while

5 End.

Variants:

Robin-Karp Algorithm

A. Long patterns and Σ For long patterns and Σ,

Boyer-Moore algorithm gives much better

efficiency compared to other string matching

algorithms. The program involves two heuristics

that allows the program to skip many text characters

altogether. The algorithm makes successive

comparisons from right to left. When a mismatch

occurs, both heuristics proposes a value (maximum

of which is chosen) by which shift is increased

without skipping any valid shift.

B. Repetition Factors An efficient algorithm for

string matching based on repetition factors was

developed by Galil and Seiferas. The algorithm has

linear running time complexity and requires only

O(1) storage beyond P and T.

C. Approximate String Matching The Bitap

algorithm performs approximate string matching

based on Levenshtein distance between strings. The

algorithm requires much lesser preprocessing and

can uses mostly bitwise operations, making the

algorithm extremely fast.

D. Dictionary Matching Aho-Corasick algorithm

can perform multiple (but finite) pattern matching in

a text in parallel achieving linear running time.

E. Polymorphic String Matching Combination of

more than one string matching algorithm (example

KMP and Boyer-Moore fusion) can be used to

provide a better functional algorithm with decreased

space and

Knuth-Morris-Pratt

A real-time version of KMP can be implemented

using a separate failure function table for each

character in the alphabet. If a mismatch occurs on

character in the text, the failure function table for

character is consulted for the index in the pattern at

which the mismatch took place. This will return the

length of the longest substring ending at matching a

prefix of the pattern, with the added condition that

the character after the prefix is With this restriction,

character in the text need not be checked again in

the next phase, and so only a constant number of

operations are executed between the processing of

each index of the text. This satisfies the real-time

computing restriction.

III. Conclusion:

This research work analyzes the performance

measures of existing and enhanced string matching

algorithms. The performance factors are time,

number of iteration and its accuracy for single line,

multiple lines and a file. From the analysis, in

existing the KMP algorithm gives the better

accuracy for all the inputs. In enhanced algorithms,

the enhanced KMP algorithm gives the better

accuracy. Form the existing and enhanced KMP

algorithms; the enhanced KMP algorithm gives the

better accuracy.

IV. Acknowledgement

We feel privileged to express our deepest sense of

gratitude. To our guide Profs.Preeti mam. Her

prompt and kind help led to completion of work.

References

[1] Verma A, Kaur I, Singh I. Comparative

analysis of data mining tools and techniques

for information retrieval. Indian Journal of

Science and Technology.

[2] Al-Mazroi A, Rashid NA. A Fast Hybrid

Algorithm for the Exact String Matching

Problem. American Journal of Engineering

and Applied Sciences. 2011.

[3] Algorithm book by Cormen.

