
String Matching on a multicore GPU using CUDA

Charalampos S. Kouzinopoulos and Konstantinos G. Margaritis

Parallel and Distributed Processing Laboratory

Department of Applied Informatics, University of Macedonia

156 Egnatia str., P.O. Box 1591, 54006 Thessaloniki, Greece

E-mail: {ckouz,kmarg}@uom.gr

Abstract—Graphics Processing Units (GPUs) have evolved
over the past few years from dedicated graphics rendering de-
vices to powerful parallel processors, outperforming traditional
Central Processing Units (CPUs) in many areas of scientific
computing. The use of GPUs as processing elements was very
limited until recently, when the concept of General-Purpose
computing on Graphics Processing Units (GPGPU) was intro-
duced. GPGPU made possible to exploit the processing power
and the memory bandwidth of the GPUs with the use of APIs
that hide the GPU hardware from programmers. This paper
presents experimental results on the parallel processing for
some well known on-line string matching algorithms using
one such GPU abstraction API, the Compute Unified Device
Architecture (CUDA).

Keywords-string matching, algorithms, CUDA, GPGPU, par-
allel and distributed computing, stream processing

I. INTRODUCTION

Graphics Processing Units (GPUs) are graphics rendering

devices introduced back in the 1980s to offload graphics-

related processing from Central Processing Units (CPUs).

Initially, GPUs were using two fixed-functioned proces-

sor classes to process data, vertex transform and light-

ing processors that allowed the programmer to alter per-

vertex attributes and pixel-fragment processors that were

used to calculate the colour of a fragment. Although this

model worked perfectly for graphics processing, offered

little to no flexibility for general purpose programming.

The architecture of the GPUs evolved in 2001, when for

the first time programmers were given the opportunity to

program individual kernels in the graphics pipeline by using

programmable vertex and fragment shaders [13]. Later GPUs

(as the G80 series by NVIDIA) substituted the vertex and

fragment processors with a unified set of generic processors

that can be used as either vertex or fragment processors

depending on the programming needs [15]. On each new

generation, additional features are introduced that move the

GPUs one step closer to wider use for general purpose

computations. The use of a GPU instead of a CPU to perform

general purpose computations is known as General Purpose

computing on Graphics Processing Units (GPGPU).

To hide all the specific hardware details of the graphics

cards from the programmers, a number of high level lan-

guages and APIs were introduced such as Cg [8], BrookGPU

[20], Sh library [21] and Stream [22]. One such pro-

gramming API for parallel computing using GPUs is the

Compute Unified Device Architecture (CUDA) [19]. CUDA

was released in 2007 enabling programmers to write code for

execution on GPUs and to use the available thread processors

of a GPU (also known as shaders in Graphics terminology)

without the need to write threaded code.

Unlike CPUs that are optimized for use on sequential

code, all commodity GPUs follow a streaming, data paral-

lel programming model resembling SPMD (single-program

multiple-data),. This model is structured around a graphics

pipeline that consists of a number of computation stages

that vertices have to pass to undergo transformation and

lighting (including Vertex transformations, Rasterization,

Fragmentation and Composition). These computation stages

are connected together with a highly localized data flow,

since the data that is produced by one stage is used in its

entirety by the next one [13] and each stage is separately

implemented in hardware, allowing highly efficient parallel

computations. Key to the stream model is the notion that

all data is represented as an ordered set of data of the

same data type or in other words as a stream. A stream

application consists of multiple functions (called kernels in

CUDA) and each of these functions can be mapped on a

different physical computation stage of the graphics pipeline.

GPUs have a parallel multi-core architecture, with each

core containing thread processors that are capable of running

hundreds of threads simultaneously. The threads are grouped

into a number of blocks that in turn are grouped into grids.

The threads in each block can be synchronized and exchange

information using shared memory. All the blocks that belong

to a grid can be executed in parallel while a hardware thread

manager is responsible to manage threads automatically at

runtime. The programmer can specify the number of blocks

as well as the number of threads per block depending on

the capabilities of each GPU with the CUDA compiler

determining the optimal number of registers per thread to

be used.

The idea of using a GPU to improve the performance

of existing algorithms is not new. Since the release of

CUDA, several researchers have used it across many areas

of computing including applied mathematics [6], sequence

alignment [9], astrophysical simulations [12] and image



processing [17]. The use of GPUs to perform string matching

computations has also been studied: the Cg programming

language is used in [5] to offload to the GPU an Intrusion

Detection System that uses a simplified version of the Knuth-

Morris-Pratt on-line string matching algorithm, reporting

a marginal improvement; the Aho-Corasick, Knuth-Morris-

Pratt and Boyer-Moore algorithms were implemented in

[18] using CUDA to perform Intrusion Detection on a set

of synthetic payload trace and real network traffic with a

reported increase of their performance by up to an order

of magnitude; a speedup of up to 35x was achieved in

[15] when executing the Cmatch algorithm in parallel to

perform string matching on sets of genome and chromosome

sequences. A detailed survey of many scientific applications

that use the GPGPU model can be found in [14].

In this paper, the performance of the Naive, Knuth-

Morris-Pratt, Boyer-Moore-Horspool and Quick-Search on-

line exact string matching algorithms is evaluated when

implemented using CUDA and executed on a state of the art

Graphic Processor Unit with a focus on the way the level

of the GPU utilization and the shared memory usage affects

their performance. The Naive, Boyer-Moore-Horspool and

Quick-Search algorithms, algorithms that to the best of

our knowledge have never been implemented before for

string matching using the CUDA API, used to locate all

the appearances of a pattern on a set of reference DNA

sequences and their running time when executed on the

GPU was measured along that of the Knuth-Morris-Pratt

algorithm. The algorithms were chosen as they involve

sequential accesses to the memory in order to locate all the

appearances of a pattern, an essential step to achieve peak

performance when executed on a GPU as detailed in [2].

II. STRING MATCHING

String matching is an important problem in text processing

and is commonly used to locate the appearance of one

dimensional arrays (the so-called pattern) in an array of

equal or larger size (the so-called text). The string matching

problem can be defined as: let Σ be an alphabet, given a

text array T[n] and a pattern array P[m], report all locations

[i] in T where there is an occurrence of P, i.e. T[i + k] =

P[k] for m ≤ n.

Naive or brute force is the most straightforward algorithm

for string matching. It simply attempts to match the pattern

in the target at successive positions from left to right by

using a window of size m. In case of success in matching

an element of the pattern, the next element is tested against

the text until a mismatch or a complete match occurs. After

each unsuccessful attempt, the window is shifted by exactly

one position to the right, and the same procedure is repeated

until the end of the text is reached.

Knuth-Morris-Pratt [7] is similar to the Naive since it uses

a window of size m to search for the occurrences of the

pattern in the text but after a mismatch occurs it uses a

precomputed array to shift several positions to the right.

The Boyer-Moore-Horspool [4] algorithm uses a window

of size m to search the text from right to left and a

precomputed array (known as the bad-character shift) of the

rightmost character of the window to skip character positions

when a mismatch occurs.

Finally, the Quick-Search [16] algorithm performs charac-

ter comparisons from left to right from the leftmost pattern

character and in case of mismatch it computes the shift

with the occurrence heuristic for the first text character after

the last pattern character by the time of mismatch. A more

detailed description of the algorithms can be found in [10].

III. EXPERIMENTAL METHODOLOGY

The experiments were executed locally on an Intel Xeon

CPU with a 2.40GHz clock speed and 2 Gb of memory. The

Graphics Processing Unit used was the NVIDIA GTX 280

with 1GB of GDDR3 global memory, 30 multiprocessors

and 240 cores, enabling the use of a maximum number

of 1024 active threads per multiprocessor for a total of

30720 active threads. The operating system used was a

Scientific Linux and during the experiments only the typical

background processes ran. To decrease random variation, the

time results were averages of 100 runs.

The algorithms presented in the previous section were

implemented using the ANSI C programming language

and were compiled using Nvidia’s nvcc compiler without

any extra optimization flags. The implementation of each

algorithm presented in this paper used 10 registers per thread

to execute out of the 16384 registers per block that the GTX

280 provides. The number of registers per thread is a limiting

factor on the number of concurrent threads the hardware is

capable of executing [3]. The utilization of all 512 threads

per block was achieved by ensuring that only a minimum

amount of registers was used for each algorithm.

The data set and the experimental methodology was

similar to the one used on [15]. It consisted of 3 reference

sequences: the bacterial genomes of Yersinia pestis (4.6 Mb

in length) and Bacillus anthracis (5.2 Mb in length) as well

as a simulated BAC built of the first 200.000 characters of

NCBI build 26 of Homo sapiens’ chromosome 2. The query

pattern was constructed of randomly chosen subsequences

from each reference sequence with a length of 25, 50, 200

and 800 characters.

To calculate the speedup of the string matching algo-

rithms, the practical running time was used as a measure.

Practical running time is the total time in seconds an

algorithm needs to find all occurrences of a pattern in

a text including any preprocessing time and any transfer

time between the host and the GPU and was measured

using the timer functions of the cutil toolkit. All data was

transferred in one batch to the global memory of the GPU

and the pattern as well as any lookup tables the algorithms



were using for the preprocessing were copied to the shared

memory area of each multiprocessor.

IV. EXPERIMENTAL RESULTS

Figure 1 presents the speedup achieved by the parallel

execution of the Naive, Knuth-Morris-Pratt, Boyer-Moore-

Horspool and Quick-Search string matching algorithms on

a GPU for the Y.pestis, B. anthracis and BAC reference

sequences and for different pattern sizes.

The parallel implementation of the Naive had an impres-

sive performance increase comparing to the serial version

when used on the Y. pestis and B. anthracis reference

sequences, achieving a speedup of up to 24x for pattern sizes

between m=25 and m=200. For m=800, the performance

increase of the Naive algorithm ranged between 16x and

18x. On the same reference sequences, the Knuth-Morris-

Pratt, Boyer-Moore-Horspool and Quick-Search algorithms

achieved up to 18x, 20x and 19x speedup respectively

when patterns of size m=25 and m=50 were used. Finally,

for larger pattern sizes, the performance increase ranged

between 5x and 12x for KMP, 2x and 15x for the Bmh and

between 1.5x and 4.5x for the Qs algorithm. According to

[15], the performance decrease when larger pattern sizes are

used could be due to thread divergence, the serial execution

of threads within the same warp that execute different

instructions as a result of if and while statements in the

kernel.

When used to locate all the positions in the BAC reference

sequence where the pattern appears, the parallel implemen-

tation of the Naive algorithm had a similar performance

increase as the one reported on the Y. pestis and B. anthracis

reference sequences, ranging between 14x and 21x. The

performance of the implementation of the Knuth-Morris-

Pratt, Boyer-Moore-Horspool and Quick-Search algorithms

was between 1.2x and 7.5x when patterns of size m=25 and

m=50 were used and actually slower than the serial imple-

mentation for larger pattern sizes. The cost of initializing

the kernel and the necessary structures for preprocessing a

data set of not sufficient size together with the problem of

thread divergence seems to produce inefficient code in some

cases.

The CUDA programming guide states that the shared

memory, a small high-bandwidth memory area that is private

to the threads of each block and can be up to 150 times faster

than the global memory, should be used in order to achieve

better performance when executing parallel code. Storing

frequently reused data to the shared memory can deliver

substantial performance improvements [11]. The size of the

shared memory is limited to 16KB per multiprocessor, and

was used to fit the pattern as well as the lookup tables of

the Knuth-Morris-Pratt, Boyer-Moore-Horspool and Quick-

Search algorithms.

As can be seen on Figure 2, by using the per-block shared

memory of the GPU comparing to using the global memory

Figure 1. Speedup for the Y. pestis (a), B. anthracis (b) and BAC (c)
reference sequences

to store data, the parallel implementation of the algorithms

was 2.5x to 24x faster depending on the algorithm. More

specifically, the Boyer-Moore-Horspool benefited most from

the use of the shared memory with a 24x speedup comparing

to only using the global memory, the Quick-Search algo-

rithm had a 13x speedup and the Knuth-Morris-Pratt had a

7x speed. Naive had a speedup of just 2.5x since is the only

algorithm that is not using a lookup table.

Figure 3 depicts the way the performance of the Naive,

Knuth-Morris-Pratt, Boyer-Moore-Horspool and Quick-

Search algorithms is affected by the number of threads for

the Y. pestis reference sequence and for a pattern size of



Figure 2. Speed improvement when using shared memory

m=25. The horizontal line depicts the performance of the

algorithms when executed on the CPU while the curved line

presents in a logarithmic scale the performance of the GPU

implementation of the algorithms for a varied amount of

threads.

The performance of a single thread processor is modest

comparing to the performance of a CPU, even though the

algorithms are designed to perform sequential accesses to

the memory. The GPU starts to outperform the CPU when

more than one block of 256 or more threads process the data

allowing the hardware to switch between the blocks to hide

the latency of the access to the global memory. From the

same Figure it can also be concluded that peak performance

can be achieved by using the maximum possible amount of

threads in order to keep the GPU fully utilized.

V. CONCLUSION

In this paper, parallel implementations were presented of

the Naive, Knuth-Morris-Pratt, Boyer-Moore-Horspool and

the Quick-Search on-line exact string matching algorithms

using the CUDA toolkit. Both the serial and the parallel

implementations were compared in terms of running time

for different reference sequences, pattern sizes and number

of threads. It was shown that the parallel implementation

of the algorithms was up to 24x faster than the serial

implementation, especially when larger text and smaller

pattern sizes where used. The performance achieved is close

to the one reported for similar string matching algorithms

in [15] and [18]. In addition, it was discussed that in order

to achieve peak performance on a GPU, the hardware must

be as utilized as possible and the shared memory should be

used to take advantage of its very low latency.

Future research in the area of string matching and GPGPU

parallel processing could focus on the performance study of

the parallel implementation of additional categories of string

matching algorithms, including approximate and two dimen-

sional string matching. Moreover, it would be interesting to

Figure 3. Running time of the Naive (a), KMP (b), Bmh (c) and Qs (d)
algorithms for a varied amount of threads (t)

examine the performance of the algorithms when executed

on multiple GPUs and on hybrid mpi and cuda clusters.

Finally, further optimization of the parallel implementation

of the algorithms could be considered to make better use

of the GPUs capabilities, including loop unrolling, matrix

reordering and register blocking [1] in addition to smarter

use of the shared memory.

REFERENCES

[1] L. Buatois, G. Caumon and B. Lvy, Concurrent Number
Cruncher : An Efficient Sparse Linear Solver on the GPU.
In proceedings of the Third International Conference on High
Performance Computing and Communications, 26-28, 2007.

[2] I. Buck, Taking the Plunge into GPU Computing. In GPU
Gems 2. M. Pharr, Ed. Addison-Wesley, 509-519, 2005. ISBN:
0-321-33559-7

[3] T. R. Halfhill, Parallel Processing with CUDA. Microprocessor
Journal, 2008.

[4] R. N. Horspool, Practical fast searching in strings. Software
- Practice and Experience, 10(6): 501-506, 1980.



[5] N. Jacob and C. Brodley, Offloading IDS Computation to the
GPU. Proceedings of the 22nd Annual Computer Security
Applications Conference, 371-380, 2006.

[6] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith and J.
Manferdelli, High performance discrete Fourier transforms on
graphics processors. In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, 2008.

[7] D. E. Knuth, J. H. Morris and V. R. Pratt, Fast pattern matching
in strings. SIAM Journal on Computing. 6(1): 323-350, 1977.

[8] W. R. Mark, R. S. Glanville, K. Akeley and M. J. Kilgard,
Cg: A System for Programming Graphics Hardware in a C-
like Language. In Proceedings of the 2003 ACM SIGGRAPH,
896-907, 2003

[9] S. Manavski and G. Valle, CUDA compatible GPU cards as
efficient hardware accelerators for Smith-Waterman sequence
alignment. BMC Bioinformatics, 9(2), 2008.

[10] P. D. Michailidis and K. G. Margaritis, On-line String Match-
ing Algorithms: Survey and Experimental Results. International
Journal of Computer Mathematics, 76(4): 411-434, 2001.

[11] J. Nickolls, I. Buck, M. Garland and K. Skadron, Scalable
parallel programming with CUDA. ACM Queue, 6(2): 40-53,
2008

[12] L. Nyland, M. Harris and J. Prins Fast N-Body Simulation
with CUDA. In GPU Gems 3. H. Nguyen, Ed. Addison-Wesley,
677-695, 2007. ISBN: 0-321-51526-9

[13] J. D. Owens, Streaming Architectures and Technology Trends.
In GPU Gems 2. M. Pharr, Ed. Addison-Wesley, 457-470,
2005. ISBN: 0-321-33559-7

[14] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger,
A. E. Lefohn and T. J. Purcell, A survey of general-purpose
computation on graphics hardware. In Proceedings of the 2007
Computer Graphics Forum, 26(1): 80-113, 2007.

[15] M. C. Schatz and C. Trapnell, Fast Exact String Matching on
the GPU.

[16] D. M. Sunday, A very fast substring search algorithm. Com-
munications of the ACM, 33(8): 132-142, 1990.

[17] Maraike Schellmann, Jurgen Vording, Sergei Gorlatch and
Dominik Meilander, Cost-effective medical image reconstruc-
tion: from clusters to graphics processing units. In Proceedings
of the 2008 conference on Computing frontiers, 2008.

[18] G. Vasiliadis, S. Antonatos, M. Polychronakis, E.P. Markatos
and S. Ioannidis, Gnort: High Performance Network Intrusion
Detection Using Graphics Processors. Proceedings of the 11th
international symposium on Recent Advances in Intrusion
Detection, 116 - 134, 2008.

[19] http://www.nvidia.com/object/cuda home.html CUDA Zone.

[20] http://graphics.stanford.edu/projects/brookgpu BrookGPU
compiler and runtime implementation.

[21] http://libsh.org/ Sh library.

[22] http://ati.amd.com/technology/streamcomputing/ AMD
Stream Computing.


