String Matching with Metric Trees
Using an Approximate Distance

Ilaria Bartolini, Paolo Ciaccia, and Marco Patella

DEIS - CSITE-CNR
University of Bologna, Italy
{ibartolini, pciaccia, mpatella}@deis.unibo.it

Abstract. Searching in a large data set those strings that are more sim-
ilar, according to the edit distance, to a given one is a time-consuming
process. In this paper we investigate the performance of metric trees,
namely the M-tree, when they are extended using a cheap approximate
distance function as a filter to quickly discard irrelevant strings. Using
the bag distance as an approximation of the edit distance, we show an im-
provement in performance up to 90% with respect to the basic case. This,
along with the fact that our solution is independent on both the distance
used in the pre-test and on the underlying metric index, demonstrates
that metric indices are a powerful solution, not only for many modern
application areas, as multimedia, data mining and pattern recognition,
but also for the string matching problem.

1 Introduction

Many modern real world applications, as text retrieval, computational biology,
and signal processing, require searching in a huge string database for those se-
quences that are more similar to a given query string. This problem, usually
called approximate string matching, can be formally defined as follows: Let X be
a finite alphabet of symbols, let O C X* be a database of finite length strings
over the X alphabet, let ¢ € X* be a string, and let d.q;; be the edit distance
function, find the strings in O which are sufficiently similar to ¢, up to a given
threshold. The edit distance deq;:(X,Y) between two strings X, Y € X* counts
the minimum number of atomic edit operations (insertions, deletions, and substi-
tutions of one symbol) needed to transform X in Y. As an example, the distance
between the strings "spire" and "peer" is 4, d.q;:("spire", "peer") = 4, be-
cause to transform "spire" in "peer" we need at least 4 edit operations, i.e. 1
substitution (replace i with e), 2 deletions (s and e), and 1 insertion (e).

In the online version of the problem [13], the query string can be pre-
processed, but the database cannot, thus the best algorithms are at least linear
in the database size. An alternative approach, first proposed in [2], considers
the strings to be searched as points in a metric space: A metric index is then
built on the strings to reduce the number of distance computations needed to
solve a query. Metric indices organize strings using relative distances and are
able to consistently improve search performance over the simple sequential scan,

since only a fraction of database strings has to be compared against ¢. In some
cases, however, response times are still unsatisfactory, particularly in the case
of long strings, due to the fact that computing deq;:(X,Y) using dynamic pro-
gramming is O(|X| - [Y|), where | X| (resp. |Y]) is the length of string X (resp.
Y') [19]. To overcome such limitation, we propose the use of an approximate and
cheap distance function to quickly discard objects that cannot be relevant for
the query. We then show how, using a simple “bag distance”, whose complex-
ity is O(|X| + |Y]), performance of metric trees can be improved up to 90%.
Moreover, our results can also be applied to other approximate distances, thus
making metric trees a powerful solution also for the text application domain, a
fact that only in recent times has been considered [2,14].

The paper is organized as follows: In Section 2 we give background infor-
mation on solving similarity queries with metric trees. Section 3 presents our
approach, and Section 4 contains results obtained from experimentations with
real data sets. Finally, in Section 5 we conclude and discuss about possible ex-
tensions for our work.

2 Background

Metric trees are access methods that are able to efficiently solve range and k-
nearest neighbor queries over general metric spaces. A metric space is a pair
(U, d), where U is a set of objects and d : U xU — RT is a symmetric binary func-
tion that also satisfies the triangle inequality: d(O;, O;) < d(O;, Ok) +d(Ok, O;),
V0;,0;,0, € U. Given a data set O = {O1,...,0n}, an object ¢ € U, and a
value r € R, a range query selects all the objects O in O whose distance d
from ¢ is not higher than r. A k-nearest neighbor query, k£ being a natural num-
ber, retrieves the k objects in O having the minimum distance d from ¢. This
general view of the problem is shared by many application domains (e.g. image
databases [15], computational biology [8], and pattern recognition [3]).

To reduce the number of distance evaluations needed to solve a query, a
number of index structures has been recently introduced for the general case of
metric spaces [6,5,4,9]. Among them, metric trees, like the M-tree [9] and the
Slim-tree [17], are secondary memory structures whose goal is to reduce both
CPU and I/O times for solving queries over very large data sets, that cannot fit
into main memory.

A characteristic shared by all metric trees is that they partition the data space
U into regions and assign each region to a node n stored on a disk page, whereas
data objects are stored into leaf nodes [7]. In detail, at index-construction time,
a hierarchical subdivision of the space is performed, such that each region of a
node in a sub-tree is enclosed within the region associated to the root of the tree
(thus, the root of a sub-tree is a coarser description of its descendant nodes).

Even if metric trees can be used to solve both range and k-nearest neighbors
queries, in the following we will concentrate on the former type, since the latter
can be built over range queries by using a priority search on the tree [9,7]. At
query time, the index is explored downwards, and distances between the query

object ¢ and objects in internal nodes are computed in order to prune away sub-
trees that cannot lead to any qualifying object, since their regions are disjoint
from the query region. At the leaf level, objects that have not been filtered
out, which are called candidate objects, are directly compared to the query to
check if they should be included in the result (for a candidate object O this
happens if d(g, O) < r). Following the terminology introduced in [7], the cost for
determining the candidate objects is named internal complezity, while the cost
for checking all candidates is referred as external complezity (see Figure 1).

internal complexity

tree

external complexity

o I
T

Fig. 1. Internal and external complexity when querying a tree.

Usually, the internal complexity is (much) lower than the external complexity.
For a given range query, with query object ¢ and radius r, let aq(r) - N be
the number of candidate objects, N being the cardinality of the data set and
ay(r) € [0,1] being the selectivity factor of the tree with respect to the query.
Although the definition of a,(r) depends on both ¢ and r, we can eliminate
the dependency on ¢ by simply averaging aq(r) over a sample of query objects.
Moreover, let costy be the average cost of computing d.! The external complexity
needed to solve a range query is therefore:

a(r) - N - costy (1)

The goal of metric trees, therefore, is to (consistently) reduce the external
complexity, i.e. access only the objects relevant to the query, by (slightly) in-
creasing the internal complexity (for the sequential scan, the internal complexity
is 0 and the external complexity is N - costy).

2.1 The M-tree

The M-tree is a paged, dynamic, and balanced metric tree. Each node n cor-
responds to a region of the indexed metric space (U,d), defined as Reg(n) =

! Note that this is a simplification, since, in the general case, the cost of a single
distance does depend on the objects for which it is computed, e.g. this is the case
for the edit distance.

{0 e U|d(OM,0) < 7"}, where O is called the routing object of node n and
rl" is its covering radius. All the objects in the sub-tree rooted at n are then
guaranteed to belong to Reg(n), thus their distance from O™ does not exceed
r[". Both O™ and r[are stored, together with a pointer to node n, ptr(n), in
an entry of the parent node of n. In order to save distance computations, the
M-tree also stores pre-computed distances between each object and its parent.
Thus, if n, is the parent node of n, the entry for n in node n, also includes the
value of d(O"»! OIM).

When the metric space is the space of strings over an alphabet X' equipped
with deqst, €ach object corresponds to a string. Figure 2 shows an example of (a
part of) an M-tree indexing strings: Strings in each node are connected to the
routing string of that node with a line whose length is proportional to the edit
distance between them.

o

(spare,5,0), (shakespeare,5,0) ...
r
ny / n, \4

{ (pier,1,4) (parse,3,2) ... J J

AN

{ (pier,0) (tier,1) (spier,1) M (parse,0) (spore,3) (fare,2) }

(pie, 1) (piper,1) (peer,1) || (spire,3) (paris,2)

Fig. 2. An example of an M-tree and regions associated to each node. For each entry
in an internal node, the routing object, the covering radius, and the distance from the
parent object are shown, whereas entries in leaf nodes only contain a data string and
its distance to the routing object.

Given a query string g and a search radius r, the M-tree is recursively de-
scended and sub-trees are accessed iff the region associated with their root node
overlaps the query region (see Figure 3). For a given node n with routing object
O and covering radius 71"}, this amounts to check if d(g, O™) < 747"l holds,
since from the triangle inequality it follows:

d(q, 0"y > r 4" — d(q,0) > r YO € Reg(n) (2)

In the example of Figure 3, where ¢ = "spire" and r = 1, node n3 can be
pruned since it is deq;:("spire", "pier") =3 > r + risl = 141 = 2. The dis-
tance d(O["P], O[”]) can be used to prune out nodes without actually computing
d(q, O["])7 since the triangle inequality guarantees that:

ld(q, Ol")y — d(Oe) o) > 4 +IM — d(q,0) >r VYO € Reg(n) (3)

Note that, since the tree is recursively descended, d(g, O"»!) has been already
calculated, thus in Equation 3 no new distance is computed. In the exam-
ple of Figure 3, we can avoid to compute d.q;:("spire", "pier"), since it is
|deait("spire", "spare") — deqit("spare","pier")| = |1 -4 =3 > 1+1 =
2. Thus, the internal complexity for solving the query with the given tree is
3-costq,,,,, since we have to compare "spire" with the routing strings "spare",
"shakespeare", and "parse", whereas the external complexity is 4 - costq,,,,
since candidate strings are those contained in node n4, except for "parse"
which can again be eliminated using Equation 3. Result strings are "spire"

and "spore".?

{ (spare,5,0), (shakespeare,5,0) ... J

w L a N\

{ (pier,1,4) (parse,3,2) ... }]

W N

{ (pier,0) (tier,1) (spier,1) H (parse,0) (spore,3) (fare,2) }
(pie,1) (piper,1) (peer,1) (spire,3) (paris,2)

Fig. 3. Solving a range query with an M-tree: Highlighted nodes are those accessed
during the search. Nodes n2 and ng are pruned since their regions do not overlap the
query region.

2 Note that routing objects do not necessarily belong to the data set [9], as it is the
case for "spare" in Figure 2.

3 Proposed Solution

The internal complexity for solving range queries with metric indices is usually
very low. On the other hand, when using the edit distance, the external complex-
ity, expressed by Equation 1, can be too high due to costq,,,,. Thus, to reduce
the external complexity, we need a way to decrease the number of strings for
which d.q4;; has to be computed. The solution we propose here is to use another
distance d., which approximates dgg4;;, to quickly filter out candidates. All the
strings remaining after this filtering phase are then checked, using d.4;¢, against
q to see if they qualify for the result. The test to filter out a candidate string X
is:

de(¢, X) >r (4)

All the strings satisfying Equation 4 are discarded without further processing.
In order to guarantee that no string which should be included in the result is
filtered out (no false dismissals are allowed), we need a constraint over d.:

d(,(X7Y) < dedit(X7 Y) VX7Y S (5)

i.e. d. should be a lower bound for d.4;;. If this is not the case, in fact, it could
be degit(q, X) < r, thus X satisfies the query, yet d.(q, X) > r, thus X is filtered
out by d..

In order to keep costs low, d. should be also very cheap to compute. A good
candidate for approximating d.q;; is the “bag distance” (also called “counting
filter” in [12]), which is defined as follows.

Definition 1 (Bag Distance). Given a string X over an alphabet X, let x =
ms(X) denote the multiset (bag) of symbols in X. For instance, ms("peer") =
{{e, e,p, r}}. The following can be easily proved to be a metric on multisets:

dpag (7, y) = max{|z —yl, [y — =[}

where the difference has a bag semantics (e.g. {{a, a,a,b}} — {{a,a,b, ¢, c}} =
{{a}}), and |-| counts the number of elements in a multiset (e.g. |{{a, a}}| = 2).
In practice, dyag(x,y) first “drops” common elements, then takes the maximum
considering the number of “residual” elements. For instance:

dpag({{a, a,a,b}} = {{a, a,b, ¢, c}}) = max{[{{a}}], {{e, c}}[} = 2

It is immediate to observe that dpeg(X,Y) < deqit(X,Y), VXY € 3
Further, since computing dpag(X,Y) is O(|X| + |Y]), dbag can indeed be ef-
fectively used to quickly filter out candidate strings.* In the example of Fig-
ure 3, the filtering step would exclude the candidate string "fare" since it is

3 For the sake of brevity, here and in the following, we will replace the bag ms(X) of
symbols in a string with the string X itself, with a slight abuse of notation.

4 Other distances can be used to approximate dedit [11}; dpag has, however, the ad-
vantage that it does not require further processing of strings and is very fast to
compute.

dpag("spire", "fare") = 3, whereas the string "paris" cannot be excluded
since dpqq("spire", "paris") = 1. Thus, deq;("spire", "paris") =4 has to be
computed to exclude the string from the result. The external complexity now is
4 - costg,,, + 3 - costy

edit ®

3.1 How Much Do we Save?

In order to compute the reduction in the external complexity obtained by using
dbag, we need to know the probability that the filter condition of Equation 4
succeeds for a string X . To this end, we use the distance distribution of objects,
which has been profitably adopted several times to predict performance of metric
structures [10, 16,7, 17]. Formally, for a generic distance d over a domain U, we
denote with Fy(-) the distance distribution of d, that is:

Fq(xz) =Pr{d(0;,0;j) <z} = Pr{d < z} z € [0,d"]

where O; and Oj are randomly chosen objects of U, d* is a finite upper bound on
distance values, and d = d(Oj, O;) is a random variable with distribution Fy(-).
Figure 4 shows two sample distance distributions. Of course, since dpaq(X,Y) <
deait(X,Y), VX, Y € X*, it is also Fa,,, () > Fa.4, (), Vo € [0,d7].

,
/
,
y
/
// d ,,,,,,,
/ bag
/
/ Dodit
/
/
/
F, T /
dbag() -
/
/
/
/
F, T !
dogil™ %
/
/
//
0 _
+
0 r d

Fig. 4. Distance distributions for dy.g and degst-

The probability that a random string X is not filtered away by dy.4 can be,
therefore, computed as:

Pr{diag(q,X) <7} = Fapog(r) (6)

We are now ready to compute the overall cost for solving a query. For each
candidate string X, dpaq(q, X) has to be computed, with a cost of costg,,,. Only if
the test of Equation 4 fails, which happens with probability given by Equation 6,

we have to compute deq::(q, X), paying costy The overall external complexity

is therefore given as:

edit ®

a(r)- N - costdy,, + Fdpa, (r)-a(r) - N - costq,,,, (7)

Comparing Equation 7 with Equation 1, we obtain a saving in search time when-
ever it is:

a(r) - N (costq,,, + Fay., (1) - costa,,,) < a(r) - N - costg

edit

that is when: ;
costq,
F, ry<l-—>% 8
diag (1) <1 = — o (8)

The saving S in search time can be computed as:

g a(r) - N -costq,,,, — (a(r) - N - costa,,, + Fap., (1) -a(r) - N - costded“) B
~ a(r) - N - costy N

edit

cost
= 1= Fay (r) = =

costq, .,

(9)

where the approximation is due to the fact that, in Equation 9, the internal
complexity is ignored.® Finally, if Fa,,, is invertible, we can obtain the maximum
search radius 7,4, for which it is convenient to use dpqg:

R costq,,,
Tmax — deag (1 — m (10)

3.2 Generalizing the Approach

In the previous Section we showed how we can reduce the external complexity
for solving a query by filtering out objects using an approximate distance. In line
of principle, nothing would prevent to use not only a single distance, but several
ones. However, one should consider the fact that each filtering step requires the
computation of some distances. As an example, consider the case where two
approximate distances, d., and d.,, are present, with d., (X,Y) < d.,(X,Y) <
deqit(X,Y). We can first use d., to prune out some candidate strings, and then
use d., to discard some of the remaining ones. Finally, dcq;:(g, X) is computed
for strings not filtered out by the second step. The external complexity for this
solution can be computed as (see Figure 5):

a(r)-N (costdc1 + Fa,, (1) - costq,, + Fa,, (7) - costded“) (11)

Now, one can compare the cost obtained from Equation 11 with that given
by Equation 7 (by replacing dy,, with either d., or d.,) to choose whether it
is convenient to use both distances or only one of them. Of course, it can be
expected that costq,, < costq,,, since d, is a better approximation of degi:.

5 We will experimentally validate this assumption in Section 4.

Fy ()

Fy, (1)

Fig. 5. Distance distributions for d.,, dc,, and edit.

d+

It is now easy to generalize the above discussion to the case where m dis-
tances, d.,,...,d.,, each lower-bounding d.gq;:, are present. Possible relations
existing among the d.;s allow for a variety of scenarios:

= Ifitis d., (X,Y) < d.,,,(X,Y) (i = 1,...,m—1), then each distance can be
used to filter out a fraction of candidate objects. Equation 11 can be easily

extended to deal with m different distances, obtaining:

a(r)- N (costdc1 + Fa,, (1) - costq,, + ...+ Fa,_(7)" costd, ..,)

(12)

— A second scenario is obtained whenever it is d., (X,Y) < d.,,,(X,Y), yet

d

Cit1

(X,Y) can be incrementally obtained from d.,(X,Y). As an example,

this is the case we get considering the bag distance as computed only on the
first ¢ symbols of the X alphabet: This can be easily obtained starting from
the distance computed considering only the first ¢ — 1 symbols. Of course, in
computing costq,,, , We should not take into account the cost already payed

for computing costq, .

— The more general case is obtained when it is d¢,(X,Y) < deqit(X,Y), yet
de,(X,Y) £ dc;(X,Y),i # j. In this case, the external complexity can still
be computed from Equation 12, but now an important optimization issue

regards the order in which the m distances should be considered.

It has to be noted that, even if in this paper we only use dp.4 to approximate
the edit distance, any function that lower bounds d.4;; can do the job, since it

is not required that d. is a metric, but only that Equation 5 holds.

4 Experimental Results

In this Section we experimentally evaluate the solution proposed in Section 3.
To this purpose, we provide results obtained from the following real data sets:

BibleWords: This data set consists of all the 12,569 distinct words occurring
in the English King James version of the Holy Bible (as provided by [1]).

BibleLines: The 74,645 variable-length lines of the Holy Bible.

BibleLines20: We took the Holy Bible and segmented it into lines of length
20, which resulted in a total of 161,212 lines.

For each data set, we used a sample of the data (approximately 1% of the
whole data set in size) as query objects and built the tree using the remaining
strings. In order to predict the time saving when using dyq4, in Figure 6 distance
distributions for the three data sets are shown, whereas Table 1 presents the
average time needed to compute dpqg and deqs; for the three data sets.

1 — 1 - 1
P) 7
bag bag
0.8 7 0.8 Fgw 0.8
_ 06 06 _ 06
T / T / T
& & &
04 0.4 0.4
02 0.2 0.2
oy —= 0 0 -
0 2 4 6 8 10 12 14 16 0 5 10 15 20 0 10 2 30 40 50 60
d d d
(a) (b) (c)

Fig. 6. Distributions of deq;+ and dpqg for the BibleWords (a), BibleLines20 (b), and
BibleLines (c) data sets.

Data set costay,, (8)| costa,y, (s)
BibleWords |[7.78 x 107 °| 26.1 x 107 °
BibleLines20|17.7 x 107%]231.6 x 10~°
BibleLines [66.1 x 107%| 1300 x 10~°

Table 1. Distance computation times for data sets used in the experiments.

We ran all the experiments on a Linux PC with a Pentium III 450 MHz
processor, 256 MB of main memory, and a 9 GB disk. The node size of the M-
tree was set to 8 Kbytes. In Figure 7, we show average search times for solving a
range query as a function of the query radius r. The graphs indeed demonstrate
that search times rapidly increase for long strings (see Figures 7 (b) and (c)),
but also that, for a sufficiently wide interval of query radius values, the use of
an approximate distance is very effective in reducing search costs. In particular,
for the BibleLines data set, when r = 10 (0.1% of the data set is retrieved),
the average search time when dpqg is not used is 64 seconds, which obviously
makes this solution unaffordable, whereas the cost can be reduced to less than
8 seconds by using dpag-

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

time (s)

time (s)
time (s)

o
10 12 14 0 5 10 15 20 25 30 35 40 45

r r r

(a) (b) (c)

Fig. 7. Search times when dyqg is used or not for the BibleWords (a), BibleLines20
(b), and BibleLines (c) data sets.

In Figure 8 we compare the saving in search time obtained through the exper-
iments with the value predicted using Equation 9. As the graphs show, the actual
searching performance can be very well estimated. The accuracy of Equation 9
is only slightly reduced for low values of the query radius, i.e. when the inter-
nal complexity for searching in the M-tree cannot be neglected wrt the external
complexity. In Figure 8 the maximum search radius for which is convenient to
use dpqg, obtained through Equation 10, is also shown. In particular, using val-
ues for distance computation times in Table 1 and the corresponding distance
distributions (Figure 6), we obtain:

~ Tmas(BibleWords) = Fy ' (1 —7.78/26.1) ~ Fy! (0.703) ~ 6,
~ Tmas(BibleLines20) = Fy ' (1 —17.7/232) ~ Fy ' (0.924) ~ 11, and
~ Tias(BibleLines) = Fy' (1 —66.1/1300) ~ Fg' (0.949) ~ 39.

saving (%)

Experimental

Predicted

saving (%)

100
90
80
70
60
50
40
30
20
10

-10

... Experimental

. Predicted -

Tmax\

10 12 14

saving (%)

100

90 |

80
70
60
50
40
30
20
10

Experimental
Predicted -~

Tmax

"0 5 10 15 20 25 30 35 40 45

r

(a) (b) (c)

Fig. 8. Real and predicted time saving for the BibleWords (a), BibleLines20 (b), and
BibleLines (c) data sets. Also shown are the rmqs values which limit the usefulness
of using dpag.

The graphs indeed demonstrate the accuracy of Equation 10 that can, there-
fore, be used to reliably predict whether, for a given query, it is worth using
an approximate distance or not. The values of 7,,,, are high enough to allow
efficient search performance over a wide interval of values of the query radius.

It is also worth noting that even if, for the BibleLines20 and the BibleLines
data sets, deqis is not very well approximated by dpqg (see Figure 6), we can still
obtain significant performance improvements (see Figure 8). This is due to the
fact that, in such cases, dyqq is very cheap to compute compared to deq;:, because
of the increased strings length (see Table 1), and this indeed allows to reduce
search times, as also demonstrated by Equation 9.

5 Conclusions

In this paper we considered the problem of searching in a string database for
those strings which are similar, according to the edit distance, to a given one.
Metric trees, as the M-tree [9], can be used to efficiently reduce the time needed
to solve such queries. However, metric trees do not always succeed in consistently
reducing the number of strings that have to be directly compared to the query, a
fact that can indeed abate search performance, particularly when long strings are
used. To solve this problem we proposed the use of the approximate and cheap
bag distance, to quickly get rid of irrelevant strings. We also used the distribution
of distances to predict the effectiveness of this pre-filtering step, showing how
the saving in search times can be analytically computed, thus one can decide in
advance if it is worth to use an approximate distance. Experimental results with
large real data sets demonstrate that our approach achieves savings up to 90%
with respect to the case when the approximate distance is not used, and that
analytical predictions are very accurate.

Even if in this paper we concentrated on the M-tree, our solution and results
apply to any other metric index, e.g. the recent Slim-tree [17] or the main memory
structures considered in [2]. Moreover, we would also point out that our approach
allows different functions to be used for approximating the edit distance, since
we only require the former to lower bound the latter. Together, these two facts
indeed broaden the applicability of our approach.

An issue not covered in this work is that of local string alignment, where the
longest common substrings between a query and a database string are searched
[11]. Since, however, such problem can be reduced to that of string matching,
we believe that the use of a cheap function to approximate the edit distance can
be effective also in this case. We leave this research topic as future work.

Finally, we would like to point out that in this paper we did not consider
other techniques that are commonly used to reduce the complexity of the online
problem, e.g. cutoff heuristics that can reduce the complexity of computing the
edit distance to O(r-|X|) [18], where r is the query radius and | X| is the length of
a string in the data set. We plan to investigate in the future how such techniques
can be embedded in our approach to further improve its efficiency. Moreover,
we also plan to compare our approach with other state-of-the-art main memory
solutions [13].

References

1. Project Gutenberg official home site. http://www.gutenberg.net/.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Baeza-Yates and G. Navarro. Fast approximate string matching in a dictionary.
In Proceedings of the 5th String Processing and Information Retrieval Symposium
(SPIRE’98), Santa Cruz, Bolivia, Sept. 1998.

S. Berretti, A. Del Bimbo, and P. Pala. Retrieval by shape similarity with percep-
tual distance and effective indexing. IEEE Transaction on Multimedia, 2(4):225—
239, Dec. 2000.

T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for similarity search
queries. ACM Transactions on Database Systems, 24(3):361-404, Sept. 1999.

S. Brin. Near neighbor search in large metric spaces. In Proceedings of the 21st
International Conference on Very Large Data Bases (VLDB’95), pages 574-584,
Zurich, Switzerland, Sept. 1995.

W. A. Burkhard and R. M. Keller. Some approaches to best-match file searching.
Communications of the ACM, 16(4):230-236, Apr. 1973.

E. Chévez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin. Proximity searching
in metric spaces. ACM Computing Surveys, 33(3):273-321, Sept. 2001.

W. Chen and K. Aberer. Efficient querying on genomic databases by using metric
space indexing techniques. In st International Workshop on Query Processing and
Multimedia Issues in Distributed Systems (QPMIDS’97), Toulouse, France, Sept.
1997.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for simi-
larity search in metric spaces. In Proceedings of the 23rd International Conference
on Very Large Data Bases (VLDB’97), pages 426-435, Athens, Greece, Aug. 1997.
P. Ciaccia, M. Patella, and P. Zezula. A cost model for similarity queries in metric
spaces. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS’98), pages 59-68, Seattle, WA, June
1998.

T. Kahveci and A. K. Singh. An efficient index structure for string databases.
In Proceedings of the 27th International Conference on Very Large Data Bases
(VLDB 2001), pages 351-360, Rome, Italy, Sept. 2001.

G. Navarro. Multiple approximate string matching by counting. In Proceedings of
the 4th South American Workshop on String Processing (WSP’97), pages 125-139,
Valparaiso, Chile, Nov. 1997.

G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31-88, Mar. 2001.

G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for
approximate string matching. IEEE Data Engineering Bulletin, 24(4):19-27, Dec.
2001. Special Issue on Text and Databases.

S. Santini. Ezploratory Image Databases: Content-Based Retrieval. Series in Com-
munications, Networking, and Multimedia. Academic Press, 2001.

C. Traina Jr., A. J. M. Traina, and C. Faloutsos. Distance exponent: A new concept
for selectivity estimation in metric trees. In Proceedings of the 16th International
Conference on Data Engineering (ICDE 2000), page 195, San Diego, CA, Mar.
2000.

C. Traina Jr., A. J. M. Traina, C. Faloutsos, and B. Seeger. Fast indexing and
visualization of metric data sets using Slim-trees. IEEE Transactions on Knowledge
and Data Engineering, 14(2):244-260, Mar. 2002.

E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms,
6(1):132-137, Mar. 1985.

R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168-173, Jan. 1974.

