
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

String Matching with Mismatches by Real-valued
FFT

Baba, Kensuke
Kyushu University Library

http://hdl.handle.net/2324/16818

出版情報：Lecture Notes in Computer Science (Computational Science and Its Applications -
ICCSA 2010, Part IV). 6019, pp.273-283, 2010-03. Springer
バージョン：
権利関係：

String Matching with Mismatches by Real-valued FFT∗

Kensuke Baba†

Abstract

String matching with mismatches is a basic concept of
information retrieval with some kinds of approxima-
tion. This paper proposes an FFT-based algorithm
for the problem of string matching with mismatches,
which computes an estimate with accuracy. The al-
gorithm consists of FFT computations for binary vec-
tors which can be computed faster than the compu-
tation for vectors of complex numbers. Therefore, a
reduction of the computation time is obtained by the
speed-up for FFT, which leads an improvement of the
variance of the estimates. This paper analyzes the
variance of the estimates in the algorithm and com-
pares it with the variances in existing algorithms.
Keywords: string matching with mismatches, FFT,
randomized algorithm.

1 Introduction

Similarity on strings is one of the most important con-
cepts in applications of information retrieval which
cannot be explained completely by modeling in terms
of sequences and the exact matching on it, such as,
mining on a huge data base and homology search in
biology. The problem of string matching is to find
the occurrences of a (short) string called a pattern in
a (long) string called a text. The problem of string
matching with mismatches is to compute the vector
whose element is the number of the matches between
the pattern and every substring of the text whose
length is equal to the pattern. Namely, the vector for
the problem of string matching with mismatches solves
generally the problem of string matching which allows
substitutions of a character to introduce the variations
of a pattern. It is useful for many applications of in-
formation retrieval to develop an efficient algorithm
for the problem of string matching with mismatches.

For the problem of string matching with mismatches
with a pattern of length m and a text of length n,
there exists an O(n logm) algorithm which is based on
the fast Fourier transformation (FFT), while the naive
∗An edited version of this report was published in: Lec-

ture Notes in Computer Science (Computational Science and
Its Applications - ICCSA 2010, Part IV), 6019, pp.273–283,
Springer, Mar, 2010.
†Research and Development Division, Kyushu University Li-

brary, baba@lib.kyushu-u.ac.jp

comparison-based algorithm takes O(mn) time. This
approach was essentially developed by Fischer and Pa-
terson [6]. In this algorithm, two strings are converted
into binary strings with respect to each character in
the alphabet for the numerical computation of FFT.
Hence, the computation of the algorithm is the σ-times
iteration of the O(n logm) computation of FFT for
the alphabet size σ. Atallah et al. [1] introduced a
randomized algorithm to reduce the iteration number
by a trade-off with the accuracy of the estimates for
the vector. In the algorithm, a text and a pattern are
converted into two sequences of complex numbers by
a function chosen randomly from the set of size σσ.

The aim of this paper is to improve the accuracy of
the estimates in the randomized algorithm for string
matching with mismatches. Schoenmeyr and Yu-
Zhang [10] modified the previous algorithm such that
the functions which convert characters into complex
numbers are restricted to the bijective functions, and
therefore the size of the set is σ!. The upper bound
of the variance of the estimates decreases and it is no-
table for small alphabets. Nakatoh et al. [8, 9] reduced
the size of the set of functions which covert characters
into complex numbers to 2σ−2 [8] and σ−1 [9]. Since
the sizes of the sets are small compared with those in
the previous two algorithms, the variance decreases
greatly in the case where the sampling of the function
is operated without replacement.

The main idea of our method is an improvement
of the variance of the estimates by reducing the com-
putation time of the O(n logm) computation of FFT.
By converting strings to vectors of binary numbers in-
stead of complex numbers, the practical computation
time of a single operation of FFT can be reduced [11].
Therefore, the iteration number in a given time, that
is, the number of the samples for an estimate increases,
which implies an improvement of the variance since the
variance is inverse proportion to the number of sam-
ples. Baba et al. [2] proposed a randomized algorithm
as an improvement of the algorithm in [1]. In this al-
gorithm, each character is converted into 1 or −1 and
the number of the possible functions from Σ to {−1, 1}
is 2σ. In this paper, we propose an algorithm in which

• input strings are converted to vectors on {−1, 1},
• the upper bound of the variance of the estimates

is explicitly lower than that in the algorithm in
[2],

1

Baba Lab. Technical Report 2

• the size of the population for samples is σ − 1 if
σ is a power of two.

Therefore, the accuracy of the estimates of the propos-
ing algorithm is better than [2], and expected to be
better than the other existing algorithms if some fast
algorithms are applied to the computation of FFT for
binary vectors.

2 Preliminaries

Let N be the set of non-negative integers. Let Σ be
an alphabet and Σn the set of the strings of length
n ∈ N over Σ. The size of a set S is denoted by |S|.
The j-th character of a string s ∈ Σn is denoted by sj
for 1 ≤ j ≤ n. The j-th element of an n-dimensional
vector v is denoted by vj for 1 ≤ j ≤ n.

Let δ be the Kronecker function from Σ×Σ to {0, 1},
that is, for a, b ∈ Σ, δ(a, b) is 1 if a = b, and 0 other-
wise. Then, for t ∈ Σn and p ∈ Σm, the j-th element
of the score vector C(t, p) between t and p is

cj =
m∑

k=1

δ(tj+k−1, pk)

for 1 ≤ j ≤ n−m+1. The problem of string matching
with mismatches is to compute the score vector for two
strings.

Example 1 The score vector between t = adcbabac
and p = abac is C(t, p) = (1, 0, 2, 0, 4).

The discrete Fourier transformation (DFT) of an n-
dimensional vector v is the n-dimensional vector V of
which k-th element is

Vk =
n∑

j=1

vj · ω(j−1)(k−1)
n

for 1 ≤ k ≤ n, where ωn = e2πi/n and i2 = −1. Let u
and v be n-dimensional vectors and w the correlation
of u and v, that is, for 1 ≤ k ≤ n

wk =
n∑

j=1

uj · vj+k,

where vn+j = vj for 1 ≤ j ≤ n− 1. Let U , V , and W
be the DFTs of u, v, and w, respectively. Then, by
the basic property of DFT, for 1 ≤ j ≤ n

Wj = Uj · Vj ,
where c is the conjugate complex number of c. The
DFT and its inverse (IDFT) of an n-dimensional vec-
tor can be computed in O(n logn) time by FFT, re-
spectively. Therefore, w is computed from u and v in
O(n logn) +O(n) +O(n log n) = O(n log n) time [4].

Lemma 1 The correlation of two n-dimensional vec-
tors can be computed in O(n log n) time.

3 Deterministic Algorithm

Let Hn be an n-dimensional Hadamard’s matrix for
n ∈ N, that is, any element of Hn is −1 or 1 and

HT
nHn = nIn,

where MT is the transposed matrix of a matrix M and
In is the n-dimensional unit matrix. It is known that
Hn exists if n is a power of two.

Example 2

H8 =

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

.

Let σ = |Σ| and Σ = {a1, a2, . . . , aσ}. M(j, k) de-
notes the (j, k)-element of a matrix M . We assume
that Hσ exists for σ. For 1 ≤ ` ≤ σ, φ` is defined to
be the function from Σ to {−1, 1} such that

φ`(aj) = Hσ(j, `)

for 1 ≤ j ≤ σ. Then, by the property of Hadamard’s
matrix,

σ∑

`=1

φ`(aj)·φ`(ak) =
σ∑

`=1

Hσ(j, `)·Hσ(k, `) = σδ(aj , ak)

for any 1 ≤ j, k ≤ σ. Therefore, the score vector
between t ∈ Σn and p ∈ Σm is

cj =
m∑

k=1

δ(tj+k−1, pk)

=
m∑

k=1

(
1
σ

σ∑

`=1

φ`(tj+k−1) · φ`(pk)

)

=
1
σ

σ∑

`=1

m∑

k=1

φ`(tj+k−1) · φ`(pk)

(1 ≤ j ≤ n−m+ 1).

Let s` be the (n −m + 1)-dimensional vector such
that

s`j =
m∑

k=1

φ`(tj+k−1) ·φ`(pk) (1 ≤ j ≤ n−m+1) (1)

for 1 ≤ ` ≤ σ. Let τ be the n-dimensional vector
(φ`(tj)), and π the m-dimensional vector (φ`(pj)) for
each `. Then, s` is a part of the correlation of τ and π′

which is obtained by padding n −m 0’s to π. There-
fore, by Lemma 1, s` is computed from τ and π′ in
O(n logn) time.

Baba Lab. Technical Report 3

Additionally, the following standard technique [5] is
applied. We part τ into overlapping chunks each of size
(1 + α)m. One chunk and the (1 + α)m-dimensional
vector π′ with α 0’s yield αm + 1 elements of s`.
Since we have n/αm chunks and each chunk can be
computed in O((1 +α)m log ((1 + α)m)) time, the to-
tal time complexity is (n/αm) · O((1 + α)m log((1 +
α)m)) = O(n logm) by choosing α = O(m).

Thus, since a single correlation is computed for a
single φ` and 1 ≤ ` ≤ σ, the score vector C(t, p) is
obtained by repeating the O(n logm) computation σ
times. Even if we consider the assumption of the exis-
tence of the Hadamard’s matrix, the iteration number
is less than 2σ. The algorithm is summarized in Fig-
ure 1.

Theorem 1 The deterministic algorithm A computes
the score vector between t ∈ Σn and p ∈ Σm in
O(σn logm) time.

In the rest of this section, we analyze the number of
the O(n logm) computations in the iteration in terms
of σ in the strict sense.

By the argument of the existence of the Hadamard’s
matrix, the iteration number is at least σ and at most
2σ − 2. Moreover, if we construct Hσ by Sylvester’s
method, that is, H1 = [1] and for 1 ≤ k ≤ log σ

H2k =
[
H2k−1 H2k−1

H2k−1 −H2k−1

]

is applied recursively, then φ1(aj) = 1 for any 1 ≤
j ≤ σ. Therefore, we can skip a single O(n logm)
computation for ` = 1. Thus, the iteration number µ
is

σ − 1 ≤ µ ≤ 2σ − 3.

4 Randomized Algorithm

We assume that σ is a power of two. A sample of the
score vector is the (n−m+1)-dimensional vector s` in
Equation 1. An estimate of the score vector is defined
to be

ŝj =
1
h

∑

`∈L
s`j (1 ≤ j ≤ n−m+ 1), (2)

where L is a set of h integers which are chosen inde-
pendently and uniformly from {1, 2, . . . , σ}. The algo-
rithm is described in Figure 2.

The expectation of x is described by E[x] and the
variance by V [x]. For 1 ≤ j ≤ n−m+ 1,

E[ŝj] = cj

since E
[
s`j
]

= cj . By the definition of φ`, |φ`(aj) ·
φ`(ak)| = 1 and (φ`(aj))

2 = 1 for any 1 ≤ j, k, ` ≤ σ,

and hence −(m − cj) ≤ s`j − E[s`j] ≤ m − cj for any
1 ≤ ` ≤ σ and 1 ≤ j ≤ n−m+ 1. Therefore,

V [ŝj] =
1
h
V
[
s`j
]

=
1
h

(
1
σ

σ∑

`=1

(
s`j − E[s`j]

)2
)

≤ (m− cj)2

h
.

This upper-bound of the variance does not depend
on σ, and therefore the same result is obtained for any
Σ by considering Hν for a power of two ν ≥ σ instead
of Hσ.

Theorem 2 The randomized algorithm B computes
an estimate for the score vector between t ∈ Σn and
p ∈ Σm in O(hn logm) time for the number h of
samples. The expectation of the estimates is equal
to cj and the variance of the estimates is bounded by
(m− cj)2/h for 1 ≤ j ≤ n−m+ 1.

In the case where the Hadamard’s matrix is
Sylvester-type, the variance of the estimates of the
score vector decreases.

Let ν be the power of two such that σ ≤ ν < 2σ.
Then,

ν∑

`=2

φ`(aj) · φ`(ak) =
ν∑

`=1

Hν(j, `) ·Hν(k, `)− 1

= νδ(aj , ak)− 1

and hence the score vector is

cj

=
m∑

k=1

(
1
ν

ν∑

`=2

φ`(tj+k−1) · φ`(pk) +
1
ν

)

=
1

ν − 1

ν∑

`=2

(
ν − 1
ν

m∑

k=1

φ`(tj+k−1) · φ`(pk) +
m

ν

)

(1 ≤ j ≤ n−m+ 1).

An estimate (ŝj) of the score vector is defined by
Equation 2 for the following sample

s`j =
ν − 1
ν

m∑

k=1

φ`(tj+k−1) · φ`(pk) +
m

ν

(1 ≤ j ≤ n−m+ 1)

for 2 ≤ ` ≤ ν.
For 1 ≤ j ≤ n −m + 1, clearly E[ŝj] = cj and, by

the basic properties of variance,

V [ŝj] =
1
h
V
[
s`j
]

Baba Lab. Technical Report 4

A:
Input: a text t ∈ Σn and a pattern p ∈ Σm

Output: the score vector C(t, p) = (c1, c2, . . . , cn−m+1)

Let Hν be a ν-dimensional Hadamard’s matrix for ν ≥ σ = |Σ| and
φ`(aj) = Hν(j, `) for 1 ≤ ` ≤ ν and aj ∈ Σ.

1. For 1 ≤ ` ≤ ν,
1.1. compute T `i = φ`(ti) for 1 ≤ i ≤ n and P `i = φ`(pi) for 1 ≤ i ≤ m,

1.2. compute s`j =
m∑

k=1

T `j+k−1 · P `k for 1 ≤ j ≤ n−m+ 1 by FFT;

2. compute ci =
1
ν

ν∑

`=1

s`j for 1 ≤ j ≤ n−m+ 1.

Figure 1: The deterministic algorithm A for the problem of string matching with mismatches.

B:
Input: a text t ∈ Σn, a pattern p ∈ Σm, and the number h of the samples
Output: an estimate (ŝ1, ŝ2, . . . , ˆsn−m+1) of the score vector C(t, p)

Let Hν be a ν-dimensional Hadamard’s matrix for ν ≥ σ = |Σ| and
φ`(aj) = Hν(j, `) for 1 ≤ ` ≤ ν and aj ∈ Σ.

1. Make a set L of h integers randomly chosen from {1, 2, . . . , ν};
2. For ` ∈ L,

2.1. compute T `i = φ`(ti) for 1 ≤ i ≤ n and P `i = φ`(pi) for 1 ≤ i ≤ m,

2.2. compute s`j =
m∑

k=1

T `j+k−1 · P `k for 1 ≤ j ≤ n−m+ 1 by FFT;

3. compute ŝi =
1
h

∑

`∈L
s`j for 1 ≤ j ≤ n−m+ 1.

Figure 2: The randomized algorithm B for the problem of string matching with mismatches.

=
(ν − 1)2

ν2h
V

m∑

j=1

φ`(tj+k−1) · φ`(pj)

≤ (ν − 1)2

ν2h

m∑

j=1

√
V [φ`(tj+k−1) · φ`(pj)]

2

.

By the definition of φ`, V [φ`(a) · φ`(a)] = 0 for any
a ∈ Σ. In the case where a 6= b, since (φ`(a) · φ`(b))2 =
1,

V [φ`(a) · φ`(b)]
= E

[
(φ`(a) · φ`(b))2

]
− E [φ`(a) · φ`(b)]2

=
1

ν − 1

ν∑

`=2

1−
(
− 1
ν − 1

)2

=
ν(ν − 2)
(ν − 1)2

for any a, b ∈ Σ. Therefore, since ν ≤ 2σ − 2, the

variance of the estimates is bounded by

V [ŝj] ≤ (ν − 1)2

ν2h

(
(m− cj) ·

√
ν(ν − 2)
(ν − 1)2

+ cj · 0
)2

=
(ν − 2)(m− cj)2

νh

≤ (σ − 2)(m− cj)2

(σ − 1)h

for 1 ≤ j ≤ n−m+ 1.

Theorem 3 In the randomized algorithm B with a
Sylvester-type Hadamard’s matrix, the variance of the
estimates of the score vector is bounded by (σ−2)(m−
cj)2/(σ − 1)h for 1 ≤ j ≤ n−m+ 1.

Additionally, in the case where the sampling of ` is
operated without replacement, by the basic property
of the variance,

V [ŝj] ≤ ν − h− 1
ν − 2

· (σ − 2)(m− cj)2

(σ − 1)h

Baba Lab. Technical Report 5

=
(2σ − h− 3)(m− cj)2

2(σ − 1)h

for 1 ≤ j ≤ n−m+ 1.

5 Related Work

5.1 The Standard Algorithm

The main idea of FFT-based algorithms, which com-
putes the score vector as a correlation (or a convolu-
tion) of two numerical vectors in O(n logm) time for
strings of lengths m and n, was essentially developed
by Fischer and Paterson [6]. A generalized algorithm
on this idea is described simply in [7].

In the standard algorithm, two strings are converted
into binary strings with respect to each character in
the alphabet for the numerical computation of FFT,
and the score vector is the sum of all results of the cor-
relations. Namely, for the functions φx : Σ → {0, 1}
for x ∈ Σ such that

φx(a) = δ(x, a)

for any a ∈ Σ, it is clear that
∑

x∈Σ

φx(a) · φx(b) = δ(a, b)

for any a, b ∈ Σ. Therefore, the score vector between
t ∈ Σn and p ∈ Σm is

cj =
∑

x∈Σ

m∑

k=1

φx(tj+k−1) ·φx(pk) (1 ≤ j ≤ n−m+1).

Since
∑m
k=1 φx(tj+k−1) · φx(pk) for 1 ≤ j ≤ n−m+ 1

with respect to an x ∈ Σ is computed as a part of a
correlation of two vectors, an O(σn logm) algorithm
is obtained in the same way as the algorithm A in
Section 3.

5.2 Randomized Algorithms

The computation time of the standard algorithm is
not practical for strings over a large alphabet. As a
solution of this problem, Atallah et al. [1] introduced a
Monte Carlo-type algorithm in which the computation
time is reduced by a trade-off with the accuracy of the
estimates for the score vector. In this algorithm, an
estimate is the arithmetic mean of some samples, and
a sample is computed with respect to a function which
is chosen independently and uniformly from the set of
functions from Σ to the set of complex numbers.

Let Φ be the set of the functions from Σ to
{0, 1, . . . , σ − 1} and ωσ = e2πi/σ. Then, since∑σ−1
j=0 ω

j
σ = 0,

1
|Φ|

∑

φ∈Φ

ωφ(a)
σ · ωφ(b)

σ =
1
|Φ|

∑

φ∈Φ

ωφ(a)−φ(b)
σ = δ(a, b)

for any a, b ∈ Σ. Therefore, the score vector between
t ∈ Σn and p ∈ Σm is

cj =
1
|Φ|

∑

φ∈Φ

m∑

k=1

ω
φ(tj+k−1)
σ ·ωφ(pk)

σ (1 ≤ j ≤ n−m+1).

Thus, a randomized algorithm is obtained in the same
way as the algorithm B in Section 4. The expectation
of the estimate is equal to the score vector and the
variance of the estimates is bounded by (m − cj)2/h
for the number h of samples. (Strictly, if we regard
the real part of the output as the estimate, then the
upper bound is (m− cj)2/2h [10].)

Schoenmeyr and Yu-Zhang [10] modified the previ-
ous algorithm such that Φ is restricted to the set of
the bijective functions, and therefore the size of the
set is σ!. The authors claim that the upper bound
of the variance of the estimates in their algorithm is
σ(σ − 3)(m − ci)2/2(σ − 1)2h, that is, the variance
of the estimates decreases and it is notable for small
alphabets.

Nakatoh et al. [8, 9] reduced the size of the set of
functions which covert characters into complex num-
bers to 2σ − 2 [8] and σ − 1 [9]. The upper bounds of
the variance in the previous two algorithms are lower
than that in [1]. Moreover, since the sizes of the sets
are small compared with those in the previous two al-
gorithms, σσ and σ!, the algorithms by Nakatoh et al.
can be utilized as deterministic algorithms in the case
where σ is small, and the variance decreases greatly in
the case where the sampling of the function is operated
without replacement.

5.3 Algorithms by Binary Vectors

In the randomized algorithms in the previous sub-
section, the O(n logm) computation consists of two
DFTs and a single IDFT, and the DFTs are for vec-
tors of complex numbers which are converted from
input strings. If the vectors are expressed by vec-
tors of binary numbers such as vectors over {0, 1} or
{−1, 1}, some speed-up methods can be applied to the
O(n logm) computation of FFT. Generally, as to FFT
for vectors of real numbers, there exist efficient algo-
rithms [11].

First of all, the size of each vector is practically half
since a complex number is treated as a + ib for real
numbers a and b. Therefore, the computation time is
half in some standard FFT algorithms which treat a
vector of complex numbers as two vectors of real num-
bers. Next, the product of a complex number a + ib
and a real number d can be computed in a short time
compared with the product of a + ib and a complex
number a′+ib′, that is, the numbers of products of real
numbers are 2 and 4, respectively. (Note that even if
we consider vectors of real numbers, it remains compu-
tations with complex numbers in FFT.) Additionally,

Baba Lab. Technical Report 6

in the case where d is 1, −1, or 0, the products in the
computations of DFTs can be ignored, and hence the
number of products decreases greatly in a practical
sense.

The standard algorithm, in which input strings are
converted into binary vectors, can be randomized in
the same way as the algorithms in the previous subsec-
tion, however the limit of the variance of the estimates
as σ tends to infinity is infinity. Namely, the accuracy
of the estimates in a randomized version of the stan-
dard algorithm is not practical.

Baba et al. [2] proposed a randomized algorithm
as an improvement of the algorithm in [1]. In this
algorithm, each character is converted into 1 or −1
and the number of the possible functions from Σ to
{−1, 1} is 2σ. The upper bound of the variance of the
estimates is (m− ci)2/h.

5.4 Comparison

We compare the algorithm B in Section 4 with the ran-
domized algorithms referred in this section: the four
randomized algorithms [1, 10, 8, 9] in Subsection 5.2,
the randomized version of the standard algorithm, and
the other algorithm [2] in Subsection 5.3.

We focus on the computation time and the variance
of the estimates of the score vector. The result of the
comparison is summarized in Table 1.

In Table 1, (a) is the range of the functions which
convert characters into numbers for FFT, that is, the
domain of the elements of numerical vectors. As men-
tioned in Subsection 5.3, the practical computation
time of FFT for real-valued vectors, especially, for vec-
tors of 1, −1, or 0 is short compared with vectors of
complex numbers. This leads an improvement of the
accuracy of an estimate which is computed in a given
time, since the variance is inverse proportion to the
number of samples. (c) is the limit of the upper bound
of the variance as σ tends to infinity. If the computa-
tion time is reduced to be half by using vectors over
{−1, 1} instead of vectors over C, it compensates for
the double variance.

(b) is the upper bound of the variance of the esti-
mates. By Theorem 3, the upper bound of the vari-
ance in the algorithm B is explicitly lower than that
in the algorithm in [2].

(d) is the number of the functions which convert
characters into numbers, that is, the size of the pop-
ulation for samples in each randomized algorithms.
In the case where the sampling is operated without
replacement, the improvement of the variance is ob-
tained notably when the size is small. If we consider
the straightforward product for FFT, the lower bound
of the size is σ − 1 [3]. In the algorithm B, the size is
σ − 1 if σ is a power of two.

6 Conclusion

In this paper, we proposed a randomized algorithm
by FFT for the problem of string matching with mis-
matches. The algorithm consists of FFT computa-
tions for binary vectors which can be computed faster
than the computation for complex numbers. There-
fore, an improvement of the variance of the estimates
is obtained by speed-up for the computation of FFT.
We analyzed the variance of the estimates in the pro-
posed algorithm and compared it with the variances
in the existing algorithms. Our future work is some
experiments for practical data with specific speed-up
algorithms for FFT of binary vectors.

References

[1] M. J. Atallah, F. Chyzak, and P. Dumas. A ran-
domized algorithm for approximate string match-
ing. Algorithmica, 29(3):468–486, 2001.

[2] K. Baba, A. Shinohara, M. Takeda, S. Inenaga,
and S. Arikawa. A note on randomized algorithm
for string matching with mismatches. Nordic
Journal of Computing, 10(1):2–12, 2003.

[3] K. Baba, Y. Tanaka, T. Nakatoh, and A. Shi-
nohara. A generalization of FFT algorithms for
string matching. In Proc. International Sym-
posium on Information Science and Electrical
Engineering 2003 (ISEE 2003), pages 191–194.
Kyushu University, 2003.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms, Second Edition. MIT
Press, 2001.

[5] M. Crochemore and W. Rytter. Text Algorithms.
Oxford University Press, 1994.

[6] M. J. Fischer and M. S. Paterson. String-
matching and other products. In Complexity
of Computation (SIAM-AMS Proceedings), pages
113–125, 1974.

[7] D. Gusfield. Algorithms on Strings, Trees, and
Sequences. Cambridge University Press, 1997.

[8] T. Nakatoh, K. Baba, D. Ikeda, Y. Yamada, and
S. Hirokawa. An efficient mapping for scores of
string matching. Journal of Automata, Languages
and Combinatorics, 10(5/6):697–704, 2005.

[9] T. Nakatoh, K. Baba, M. Mori, and S. Hirokawa.
An optimal mapping for score of string matching
with FFT (in Japanese). DBSJ Letters, 6(3):25–
28, 2007.

Baba Lab. Technical Report 7

Table 1: A comparison of randomized algorithms by FFT for the problem of string matching with mismatches.
(a) is the domain of the elements of numerical vectors for FFT, (b) is the upper bound of the variance of the
estimates, (c) is the limit of (b) as σ tends to infinity, and (d) is the size of the population for samples. C is
the set of complex numbers and α = (m− ci)2/h.

(a) (b) (c) (d)
ACD01 [1] C α/2 α/2 σσ

SY05 [10] C α · σ(σ − 3)/2(σ − 1)2 α/2 σ!
NBIYH05 [8] C α · (σ − 2)/(2σ − 1) α/2 σ − 1 ∼ 2σ − 2
NBMH07 [9] C α · (σ − 3)/2σ α/2 σ − 1
(Standard) {0, 1} (σc2i − 1) (∞) σ
BSTIA03 [2] {−1, 1} α α 2σ

Proposed {−1, 1} α · (σ − 2)/(σ − 1) α σ − 1 ∼ 2σ − 3

[10] T. Schoenmeyr and D. Yu-Zhang. FFT-based al-
gorithms for the string matching with mismatches
problem. Journal of Algorithms, 57:130–139,
2005.

[11] H. V. Sorensen, D. L. Jones, M. T. Heideman, and
C. S. Burrus. Real-valued fast Fourier transform
algorithms. IEEE Trans. Acoust., Speech, Signal
Processing, ASSP-35(6):849–863, 1987.

