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String method for the study of rare events
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We present an efficient method for computing the transition pathways, free energy barriers, and transition
rates in complex systems with relatively smooth energy landscapes. The method proceeds by evolving strings,
i.e., smooth curves with intrinsic parametrization whose dynamics takes them to the most probable transition
path between two metastable regions in configuration space. Free energy barriers and transition rates can then
be determined by a standard umbrella sampling around the string. Applications to Lennard-Jones cluster
rearrangement and thermally induced switching of a magnetic film are presented.
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The dynamics of complex systems is often driven by rareminimal energy path§MEP’s) connecting these states. By
but important eventgfor a review see, e.g., Ref).1Well-  definition, a MEP is a smooth curwg* connectingA andB
known examples include nucleation events during phasahich satisfies
transitions, conformational changes in macromolecules, and
chemical reactions. The long time scale associated with these (VV)*(¢*)=0, 2
rare events is a consequence of the disparity between the
effective thermal energy and typical energy barrier of thewhere (VV)" is the component oWV normal to ¢*. The
systems. The dynamics proceeds by long waiting period¥EP’s are the most probable transition pathways for &.
around metastable states followed by sudden jumps from orince with exponentially high probability it is by these paths
state to another. that the system switches back and forth between sfatexl

Sophisticated numerical techniques have been deve|op@ under the action of a small thermal norsk.is interesting
to find the transition pathways and transition rates betweefp note that the solutions of Eq2) also provide relevant
metastable states in complex systems for which the mecha2formation about the Langevin equation:
nism of transition is not known beforehafd With the ex- _ _
ception of the transition path sampling techniduapst of a=p, p=-VV(q)—yp+£&t). ©)]
these methods seem to require that the energy landscape be
relatively smooth. One typical example of such techniques igndeed, the metastable regions for Efs.and(3) coincide,
the nudged elastic ban@EB) method* The NEB method and the transition pathways for Eq8) can be easily deter-
connects the initial and final states by a chain of states. Th&ined from the transition pathways for Ed) because they
states move in a force field which is a combination of thetraverse the same sequence of critical points. As a result the
normal component of the potential force and the tangentialransition rates for Eqs(3) for an arbitrary friction coeffi-
component of the spring force connecting the states. Theienty can be obtained by considering the high friction evo-
spring force helps to evenly space the states along the chaiftion equation(1)—see Eq(10) below.

In this paper we propose an alternative approach for com- Let ¢ be a string(but not necessarily a MBRonnecting
puting transition pathways, free energy barriers, and transiA and B. A simple method to find the MEP is to evolve
tion rates. We sample the configuration space with stringsaccording to
i.e., smooth curves with intrinsic parametrization such as arc
length or energy-weighted arc length which connect two ut=—(VV)(e), 4
metastable statder regions A andB. The string satisfies a N ) ) )
differential equation which by construction guarantees that if¥hereu” denotes the normal velocity @f, since stationary
evolves to the most probable transition pathway connecting®!utions of Eq(4) satisfy Eq.(2). For numerical purposes it
A andB. One can then perform an umbrella sampling of the!S convenient to have a parametrized version of E,
equilibrium distribution of the system in the hyperplanes nor-<€€ping in mind, however, that the parametrization can be

mal to the string and thereby determine free energy barrierd/Pitrarily chosen since both Eqg2) and (4) are intrinsic.
and transition rates. Denote byg¢(«,t) the instantaneous position of the string,

Consider the example of a system modeled by wh_erea is some suitable parametrization. Then we can re-
write Eq. (4) as

yq=—VV(q)+&(t), (1)

where y is the friction coefficient and(t) is a white noise . . .

with (£(t) £(0))=2ksT 8, 8(t). The metastable states are where for convenience we . renormall|zed tiniéy—t,
localized around the minima of the potentiglq). Assuming  (VV)'=VV—(VV-1)t, and t is the unit tangent vector
V(q) has at least two minima and B, we look for the along ¢, t=¢,/|¢,|. The scalar fieldr=r(a,t) is a

@=—[VV(e)]* +rt, (5)
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Lagrange multiplier uniquely determined by the choice of A B C D
parametrization. The simplest example is to parametgize

by arc length normalized so that=0 atA, «=1 atB. Then (2L3)
Eq. (5) must be supplemented by the constraint (:1 )

(leal)a=0 (6)

which determines.® Other parametrizations can be straight-
forwardly implemented by modifying the constraii®. For
instance, a parametrization by energy-weighted arc length
which increases the resolution at the transition states is
achieved using the constraiff (V(¢))|¢./1,=0, where
f(z) is some suitable monitor function satisfyirig(z) <O.

In addition, the end points of the string need not be fixed and
other boundary conditions can be used.

Because of the intrinsic description of the string, it is very
simple to implement an efficient algorithm which solves Eq.
(5) using a time-splitting scheme. The string is discretized
into a number of points which move according to the first
term —[VV(¢)]* at the right-hand side of Ed5). After a

Potential energy V(q) of the cluster

. ) -13 : : : :
number of steps depending on the accuracy for the constraint 0 0.2 0.4 o 0.6 0.8 1

(6), a reparametrization step is applied to reinforce .

This costsO(N) operations wheré\ is the number of dis- FIG. 1. Top figure: a transition pathway by which the central

cretization points along the string. At the reparametrizatioratom migrates to the surface in a seven-atom hexagonal Lennard-
step it is also convenient to chanljeaccording to the accu- Jones cluster in the plane. The pictures show successive configura-
racy requirement for the representation of the string. tions corresponding to local minima of the potential energy along
The method certainly bears some similarities with thethe path. Bottom figure: the potential energy along the path in natu-
NEB method since one can think of the introduction of theral units. The solid line corresponds to a simulation witk: 200
spring force in the NEB method as a way of ensuring equa|discretization points along the string and the dashedNire20.
distance parametrization by a penalty method—the NEB ) ) L . L
method gives an evolution equation which, in the continuunf?ot working with any explicit object function to minimize.
limit, is similar to Eq. (5) but with r given byr = ke, -t We can use advanced numerical techniques for solving non-

wherek is the artificial spring constant. As in other penalty linear equatioristo accelerate convergence to the MEP. We

methods, this numerical procedure introduces stiffness intgave developed a limited memory version of Broyden's

the problem if the penalization parameter, here the eIastiEnethOd where Eq(5) is replaced by

constant, is large and this limits the size of the time step. -

By using an intrignsic description, we eliminate this proble?n ei=—G[VV(e)]"+rt. @)

and speed up convergence. Furthermore, we gain the abilitjere G' is a matrix determined on the fly during the com-

of using other parametrizations in a simple and flexible Wanputations to approximate the inverse of the Hessian in the

Finally, there is no simple way to change the number ofperpendicular hyperplane; the approximation is based on the

discretization pOiﬂtS along the chain in the NEB method. past history oqu and does not require one to actua”y com-
Itis natural to ask how the string method compares to theyyte the Hessiatfor details, see Ref.)8In Fig. 2, we com-

NEB method in terms of performance. However, an objecpare the convergence history of the steepest descent method

tive comparison does not seem straightforward since thergnd the Broyden-accelerated method applied to the seven-

are several different angles, such as the accuracy dependeng@m cluster problem. The Broyden-accelerated method con-

on the number of discretization points and rate of converyerges much faster.

gence, which have to be examined. We therefore postpone Once the MEP¢*(@) has been determined using the

this discussion to Ref. 8. Broyden-accelerated string method, free energy barriers and
As a first example we look at the dynamics of seven attransition rates can be computed by standard umbrella sam-

oms interacting via the Lennard-Jones potential on the plangyjing of the equilibrium distribution of the system 8f(«),

This example has been studied in detail in Ref. 7. In equilibthe hyperplane normal t*(). Consider first the free en-

rium the seven atoms form a hexagon. We are interested igrgy difference along the string defined E¢a)—F(0)
the process in which the atom at the center migrates to an. ~y T |n[Z(«)/Z(0)] where

external position. The MEP’s are not unique for this prob-
lem. One example of an MEP obtained via the string method
is shown in Fig. 1; the critical points along this path coincide Z(a)= f . e Vg (8)
with the ones obtained in Ref. 7 by transition path sampling. S'(a)

The string equatiori5) essentially amounts to finding the is the partition function ang3=1/kgT. Using the identity
MEP’s by the method of steepest descent except that we afe) In Z/dada=In Z(«), we obtain from Eq(8)

052301-2



BRIEF REPORTS PHYSICAL REVIEW B56, 052301 (2002

TABLE I. The rates for the various subprocesses in the transi-
tion shown in Fig. 1 in the seven-atom cluster problem. We use
natural units and the same parameters as in Rébravhich, e.g.,
kg T/AEa_g=0.033 andy/2\|\{ = 0.012—low friction limit). The
ratesk,_.g, Kg_.a, andkg_,c correspond, respectively, to the rates
for the subprocesse8)— C7, C1—C9, andC7— C? identified in
Ref. 7. The values labeled “string” were obtained by the noisy
string method using Eqg9), (11), and (10). The values labeled
“exact” were obtained using Eqs10) and (13), by identifying
minima and saddle points along the transition path, computing the
corresponding energy barriae, and evaluating all the eigenvalues
of the Hessian at the minima and the saddle points from the Hessian

itself.
L —,__—_—,,__,—,,—,,—,Y,Y—Y,e, ka_g=k ks_.a=k ks_c=k
10 0 200 400 600 800 1000 1200 1400 1600 1800 2000 AzB TD-C BoA 7CoD BmC TCB
number of iterations String 502% 1013 1.425¢10°%  1.211x10°°
FIG. 2._The convergence h_|story of the st?epest descent_ metholgxact 4.96% 10~ 13 1.423¢10" % 1.206¢10°
(a) and a limited memory version of Broyden's methid applied

to the seven-atom cluster problem witki=200 discretization
points. We use max.4|(VV)*| to measure accuracy. N .
along the transition path,, and\ ¢ are given by ¢ | 2F ..
a R A evaluated atv=0 anda= ag, respectively, wherey is the
F(a)—F(O)zf ((t-VV)[(t*- ¢*) p —1%-q])de’. value at which the maximum in Eql1) is attained:
0 The transition rates along the MEP obtained earlier for the
©) seven-atom cluster were evaluated by the string method and
Here(-) is the ensemble average with respect to the equilibare summarized in Table I.
rium distribution restricted in the hyperplaS¢a) andt* is The string method can easily be generalized to infinite-
the unit tangent vector along*. Equation(9) is similar to  dimensional dynamical systems by introducing an appropri-
the standard thermodynamic integrafibhut is better suited ate norm in phase space. As an example, we consider the
for numerical purposes. In practice, we use ergodicity andProblem of thermally induced switching of a magnetic film.
replace the ensemble average in E®). by a time average This problem is of great current interest in the magnetic re-
over the solution of an equation similar to Ed) but re-  cording industry‘.5 (For an introduction to micromagnetism,
stricted in the hyperplan8(«). Following Kramers' original ~ see, €.9., Refs. 13,15; thermally induced switching is studied
argument(see, e.g., Chap. 9 in Ref. Jithe transition rate in Ref. 14. Landau-Lifshitz theory of micromagnetism pro-
can be expressed in terms of the free energy as vides an energy for a ferromagnetic samflewhich, after
suitable nondimensionalization, reads
23Nl

Ka_g= = e PAF, (10
m(y+Vy*+4|\g)) E[m]=AJ |Vm|2d3x+J ¢(m)d3x+J L VulPdx,
Q Q R
whereAF is free energy barrier along*, (12)
herem is the magnetization distribution normalized so that
AF= max [F(a)—F(0)], 1 w [ gnetization distributi iz

0ot |m|=1. The three terms represent, respectively, energies due
to exchange, anisotropy, and stray field. The potentiale-
and\ ,, and\ are the(inverse square githaracteristic time  fined everywhere in space, solvé® (—Vu+m)=0, where
scales at the minimum and maximum of the free energynis extended as 0 outside.
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FIG. 3. (Color) Two of the pathga) and(b) followed by the magnetization vectorduring a switching. The pictures show the succession
minimum-saddle-- - -saddle-minimum. The out-of-plane componeninofs very small(less than 10?) during the switching and we only

plot its in-plane component with color coding: blue right, red = left, yellow = up, green= down. For both paths, we uséd=_80
discretization points along the string.
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FIG. 4. The magnetic energy along the two patAsand (b)
shown in Fig. 3.

Various switching pathways for Eq12) were obtained
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and the energy along these paths is shown in Fig. 4. These
paths illustrate two generic mechanisms for switching in
magnetic films. Patla), which is more favorable in thin
samples, proceeds by domain wall motion, interior rotation,
and switching of the edge domains. P&bh, which is more
favorable for thicker films, proceeds by vortex nucleation,
invasion of the sample, and vortex expulsion.

In conclusion, transition pathways and transition rates for
complex systems with a relatively smooth energy landscape
can be determined efficiently by evolving strings instead of
points in configuration space. The intrinsic parametrization
of the string leads to a simple and efficient algorithm for the
numerical solution of its evolution equation and permits one
to sample the configuration space in regions that otherwise
would be practically inaccessible by standard Monte Carlo
methods. In addition, our method does seem to have one
distinct advantage over the NEB method; that is, it can be
readily extended to situations when the energy landscape is
rough(see Ref. 16
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using the string method: two examples are shown in Fig. No. DMS01-30107.
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