
String Similarity Joins: An Experimental Evaluation

Yu Jiang† Guoliang Li† Jianhua Feng† Wen-Syan Li‡
†Department of Computer Science, Tsinghua University, Beijing, China

‡SAP Lab, Shanghai, China
y-jiang12@mails.tsinghua.edu.cn; {liguoliang, fengjh}@tsinghua.edu.cn; wen-syan.li@sap.com

ABSTRACT
String similarity join is an important operation in data in-
tegration and cleansing that finds similar string pairs from
two collections of strings. More than ten algorithms have
been proposed to address this problem in the recent two
decades. However, existing algorithms have not been thor-
oughly compared under the same experimental framework.
For example, some algorithms are tested only on specific
datasets. This makes it rather difficult for practitioners to
decide which algorithms should be used for various scenarios.
To address this problem, in this paper we provide a compre-
hensive survey on a wide spectrum of existing string simi-
larity join algorithms, classify them into different categories
based on their main techniques, and compare them through
extensive experiments on a variety of real-world datasets
with different characteristics. We also report comprehen-
sive findings obtained from the experiments and provide new
insights about the strengths and weaknesses of existing simi-
larity join algorithms which can guide practitioners to select
appropriate algorithms for various scenarios.

1. INTRODUCTION
Given two collections of strings, e.g., products and movie

names, the string similarity join problem is to find all similar
string pairs from the two collections. The similarity between
two strings can be quantified by similarity metrics (see Sec-
tion 2). String similarity join can play an important role in
many real-world applications, e.g., data cleansing and inte-
gration, and duplicate detection. The brute-force algorithm
that enumerates every string pair and checks whether the
two strings in the pair are similar is rather expensive. To
alleviate this problem, many algorithms have been proposed
in the recent two decades [1–5,8,13,14,17–20,22–25,27,28].
One widely-adopted technique employs a filter-verification

framework, which includes two steps: (1) Filter step: devis-
ing effective filtering algorithms to prune large numbers of
dissimilar pairs and generating a set of candidate pairs; and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 8
Copyright 2014 VLDB Endowment 2150-8097/14/04.

(2) Verification step: verifying each candidate pair by com-
puting the real similarity and outputting the final results.
Filtering algorithms in the first step play an important role
in the framework. Most of existing filtering algorithms em-
ploy a signature-based technique, which generates signatures
for each string such that if two strings are similar, their sig-
natures must have overlaps. Thus the signature-based tech-
nique can prune string pairs that have no common signature.
Recently many filtering techniques have been proposed,

e.g., count filtering [8,13,18], length filtering [8,14], posi-
tion filtering [25,27], prefix filtering [4] and content filter-
ing [25]. As prefix filtering is the most effective filtering tech-
nique, many algorithms have been proposed to optimize pre-
fix filtering for different similarity metrics, e.g., AllPair [2],
PPJoin [27], EDJoin [25], QChunk [17], VChunk [24], AdaptJoin [23].
There are also many other signature schemes, e.g., PartEnum [1],
PassJoin [14], FastSS [20]. In addition, there are some algo-
rithms which directly compute join results using tree-based
index structures, e.g., TrieJoin [22].
However these algorithms have not been thoroughly com-

pared under the same experimental framework. For ex-
ample, some algorithms [20,22] are tested only on specific
datasets, e.g., datasets with short strings. Some algorithms [14,
17] are effective for some specific similarity metrics while ex-
pensive for other similarity metrics. Some fast algorithms,
e.g., PassJoin, FastSS, and QChunk, are never compared.
This makes it rather difficult for practitioners to decide
which algorithms should be used for various scenarios.
To address this problem, in this paper we thoroughly com-

pare existing similarity join algorithms on the same exper-
imental framework. We make the following contributions.
(1) We provide a comprehensive survey on a wide spectrum
of existing string similarity join algorithms and classify them
into different categories based on their main techniques. Fig-
ure 1 summarizes these algorithms. (2) We compare exist-
ing algorithms through extensive experiments on a variety of
real-world datasets with different characteristics. (3) We re-
port comprehensive findings obtained from the experiments
and provide new insights about the strengths and weak-
nesses of existing algorithms which can guide practitioners
to select appropriate algorithms for various scenarios.

2. PRELIMINARIES
Given two collections of strings, the string similarity join

problem is to find all the similar pairs from the two collec-
tions. The criterion used to judge whether two strings are
similar is called a similarity metric. We can broadly classify
existing similarity metrics into two categories: character-
based similarity metrics and token-based similarity metrics.

625

Signature-based Algorithms

Prefix Filtering

Partition
Filtering

Neighborhood
Filtering

SSJoin

AllPair

PPJoin EDJoin

QChunk VChunk

AdaptJoin

PartEnum

PassJoin

FastSS

Tree-based Algorithms

TrieJoin

M-Tree

!"#$%$"&'($)%*+$&,
#-(($.'($)%*+$&,

!"#$%$"&'($)%*+$&,
/"&%*&%'($)%*+$&,

0,+12#'3
0/4-&5#

678

191!%$:*'!+*($.

ListMerger ;+*($.<&9*.$&,

;+*($.

Count Filtering

GramCount
B -tree
ed

Disk Algorithms

ListMerger
ed

B -tree

Figure 1: Overview of Similarity Join Algorithms.
Character-based Metrics. These metrics quantify the
similarity between two strings based on character transfor-
mations. They are fit for capturing typographical errors.
One representative character-based metric is edit distance.
The edit distance between two strings is the minimum num-
ber of edit operations required to transform one string to
the other, where the allowed edit operations include inser-
tion, deletion, and substitution. For example, consider two
strings “vldb” and “pvldb” . Their edit distance ED(“vldb” ,
“pvldb”) = 1, since the first one can be transformed to the
second one by inserting a character “p”. Two strings are sim-
ilar w.r.t. the edit distance metric if their edit distance is
not larger than a given threshold τ .
Token-based Metrics. These metrics first transform strings
into sets of tokens and then use the set-based similarity met-
rics to quantify their similarity. The token-based metrics are
suitable for long strings, e.g., documents. Two strategies are
widely used to transform strings into sets: (1) tokenization
and (2) q-grams. The former one tokenizes strings based on
special characters, e.g., white-space characters. The latter
one uses a string’s substrings with length q to generate the
set, where the substring with length q is called a q-gram. For
example, the 2-gram set of “pvldb” is {“pv” , “vl” , “ld” , “db”}.
For simplicity, each element in the set (token or gram) is
called a token and we also use string s to denote its corre-
sponding token set, if there is no ambiguity. The well-known
token-based metrics include Overlap, Jaccard, Cosine,
and Dice, defined as below.

Overlap: Olp(r, s) = |r ∩ s|;
Jaccard: Jac(r, s) = |r∩s|

|r∪s| ;

Cosine: Cos(r, s) = |r∩s|√
|r|∗|s|

;

Dice: Dice(r, s) = 2|r∩s|
|r|+|s| .

where r and s are two string sets.
Two strings are similar w.r.t. the token-based similarity

metrics if their similarity is not smaller than a threshold δ.

Problem Formulation. Based on these similarity metrics,
we formulate the string similarity join problem.

Definition 1 (String Similarity Join). Given two
sets of strings R,S and a similarity metric, the string simi-
larity join problem is to find the set {(r, s) | r ∈ R, s ∈ S, r
and s are similar w.r.t. the similarity metric}.
For example, consider the strings in Table 1. Suppose

we use Jaccard and the threshold is 0.4. We tokenize the

Table 1: An Example String Set.
ID String
s1 database concepts system
s2 database large-scale techniques
s3 programming concepts oracle
s4 programming techniques oracle
s5 database system illustration

Table 2: Algorithms and Supported Metrics
(Token={Olp,Jac,Cos,Dice},All={ED}∪Token).

Techniques Algorithms Parameters Metrics

Signature

Count GramCount q (for ED) All
ListMerger q (for ED) All

Prefix

AllPair q (for ED) All
PPJoin N/A Token
EDJoin q ED
QChunk q ED
AdaptJoin q (for ED) All
VChunk rules ED

Partition PartEnum N1, N2 All
PassJoin N/A All

Neighbor FastSS N/A ED

Tree
Tree M-Tree N/A ED
Trie TrieJoin N/A ED
B-Tree Bed-tree q ED

string to generate a set using white spaces. The Jaccard
similarity of s3 and s4 is 0.5, thus (s3, s4) is a similar pair.
Here the similarity-join result is {(s1, s5), (s3, s4)}.
Figure 1 classifies existing similarity join algorithms into

different categories. Algorithms in the same rectangle be-
long to the same category. Each edge A C→ B denotes that
algorithm B improves algorithm A by introducing new tech-
nique C. More details of these algorithms will be discussed
later. Table 2 illustrates their supported similarity metrics.

3. FILTER-VERIFICATION FRAMEWORK
In this section, we introduce the filter-verification frame-

work. We first discuss the filter step (Section 3.1) and then
introduce the verification step (Section 3.2).

3.1 Filter Step
The filter step aims to devise effective filtering algorithms

to prune dissimilar pairs. Since the filtering algorithm itself
has overhead, it is a tradeoff between filtering power and
filtering cost. In other words, the filtering algorithm should
be “light-weight” while pruning large numbers of dissimilar
pairs. In addition, for exact similarity joins, the filtering
algorithms should not involve any false negative. To meet
these requirements, one widely-used technique in the filter
step is the signature-based technique, which generates a set
of signatures for each string such that if two strings are
similar they must share at least one common signature (and
prunes the dissimilar pairs that have no common signature).
We will introduce various signature schemes in Section 4.
To facilitate utilizing signatures to do pruning, existing

algorithms usually build an inverted index, where entries
are signatures and each signature is associated with an in-
verted list of strings that contain the signature. Then for
each string, to find its candidates that share common sig-
natures with the string, these algorithms first generate the
signatures of this string and then the strings in the inverted
lists of these signatures will be the candidates of this string.
Self-Join. We first discuss the algorithm for the self-join
case, i.e., R = S. Algorithm 1 illustrates the pseudo code of
the filter-verification algorithm. It iteratively builds the in-
verted index. First it initializes an empty index (line 2).

626

Algorithm 1: Signature-based Framework (Self-Join)
Input: String set S
Output: The similarity join result set A

1 A← Φ;
2 Initialize an empty index I; // a map from a

signature to a list of string IDs
3 for each s ∈ S do
4 Generate the signature set Ss of string s;
5 for each sig ∈ Ss do
6 for each c ∈ I[sig] do
7 verify(c, s);
8 if c is similar to s then A = A ∪ {(c, s)};
9 append s to I[sig];

10 return A;

Then for each string s, it generates s’s signature set Ss
(line 4). For each signature sig ∈ Ss, it retrieves the in-
verted list I[sig]. Each string c in the list is a candidate of
s and it verifies candidate pair (c, s) (line 7). If c and s are
similar, it adds the pair into the result set (line 8). Notice
that it requires to append s into the list I[sig] (line 9).
R-S Join. The above techniques can be easily extended to
support the case of R 6= S. It first builds the inverted index
for strings in one set, e.g., R, and then scans strings in the
other set S and uses the index on R to compute the results.
For example, consider the strings in Table 1. Suppose we

use Jaccard and the threshold δ is 0.4. According to the
definition of Jaccard, if the similarity between two strings
is larger than 0, they should share at least one common to-
ken. Thus we can take the token set as the signature set. For
example, the signature set of s1 is {“database”, “concepts”,
“system”}. Using this signature scheme, it generates the fol-
lowing candidate pairs: (s2, s1), (s4, s2), (s4, s3), (s5, s1), (s5, s2).
Obviously, the number of candidate pairs is reduced from 10
to 5. In the verification step, it verifies each candidate pair
by computing their real similarity. For example, we will
eliminate pair (s2, s1) since their similarity (0.2) is smaller
than the threshold (0.4). Similarly, we can prune (s4, s2)
and (s5, s2). Here we get two results: (s4, s3) and (s5, s1).

3.2 Verification Step
The verification step aims to verify each candidate pair

by computing the real similarity.
Token-based Metrics. The token-based similarity metrics
rely on the overlap of two string sets and string set sizes to
compute the similarity. It is easy to get the string set sizes,
and we discuss how to compute the overlap. It first sorts
the tokens in the set (e.g., by alphabetical order) and then
uses a merge-based algorithm to compute the overlap.
Character-based Metrics. The dynamic programming
algorithm is used to compute the edit distance. Given two
strings r and s, a matrix M with |r|+1 rows and |s|+1
columns is used to compute their edit distance, where |r|(|s|)
is the length of r(s). M [i][j] is the edit distance between the
prefix of r with length i and the prefix of s with length j.
Initially M [i][0] = i and M [0][j] = j for 0 ≤ i ≤ |r| and
0 ≤ j ≤ |s|. Then each value of the matrix can be computed
using the following equation,

M [i][j] = min(M [i−1][j]+1,M [i][j−1]+1,M [i−1][j−1]+γ),

where γ = 0 if the i-th character of r is equal to the j-th
character of s; γ = 1 otherwise. Obviously, the complexity
of this algorithm is O(|r||s|).
To avoid unnecessary computations, given an edit-distance

threshold τ , only valuesM [i][j] for |i−j| ≤ τ are required to
compute since M [i][j] > τ for |i− j| > τ . Thus in each row
(or column), only 2τ +1 values are required to compute and
the complexity can be improved toO((2τ+1)·min(|r|, |s|)) =
O(τ · min(|r|, |s|)). Moreover, the early termination tech-
niques [14] can be used to further improve the performance.

4. SIGNATURE-BASED ALGORITHMS
In this section, we discuss signature-based filtering algo-

rithms. We first introduce the count filtering (Section 4.1)
and length filtering (Section 4.2). Then we discuss the prefix
filtering (Section 4.3). Finally we introduce other signature-
based algorithms (Section 4.4).

4.1 Count Filtering
Count filtering is proposed in GramCount [8]. The basic

idea is that if two strings are similar, their signatures must
share at least T common signatures. In other words, if the
number of shared signatures between two strings is smaller
than T , the string pair can be pruned. GramCount utilizes
this property to support edit distance. ListMerger extends
GramCount to support token-based metrics in [13,18].
Computing T . GramCount generates q-grams for each string
and takes q-grams as signatures. Suppose edit-distance thresh-
old is τ . As one edit operation destroys at most q grams and
string s has |s|+ 1− q grams, if strings r and s are similar,
their signature sets share at least T = max(|r|, |s|)+1−q−qτ
signatures. ListMerger takes each token as a signature.
Suppose the overlap threshold is δ. Two strings are simi-
lar w.r.t. the overlap similarity, they must share at least δ
common signatures, and T = δ. Other token-based metrics
can be converted to overlap. We take Jaccard as an ex-
ample. If |r∩s||r∪s| = |r∩s|

|r|+|s|−|r∩s| ≥ δ, it is easy to deduce that
|r ∩ s| ≥ dδ|s|e and T = dδ|s|e. Similar techniques can be
applied to Cosine and Dice. Thus if string r is similar to
s, r shares at least T signatures with s, where

T =


|s|+ 1− q − qτ ED
δ Olp
dδ|s|e Jac
dδ2|s|e Cos
d δ

2−δ |s|e Dice

(1)

Pruning with T . ListMerger builds inverted indexes for
signatures. For each string s, ListMerger generates its sig-
natures and retrieves inverted lists of its signatures. For
each string r on these lists, ListMerger computes its count
number, which is the number of lists that contain r. Obvi-
ously if the count number of string r is small than T , it can
prune the pair (r, s). This is called the T-occurrence prob-
lem. Five efficient algorithms have been proposed to solve
this problem by merging inverted lists [13,18] and the two
heap-based algorithms MergeOpt [18] and DivideSkip [13]
achieved better performance.

4.2 Length Filtering
Length filtering is proposed in GramCount [8]. The basic

idea is that if two strings are similar, their length difference

627

cannot be large. Formally, if a string r is similar to s, then

ED : |s| − τ ≤ |r| ≤ |s|+ τ

Jac : δ|s| ≤ |r| ≤ |s|
δ

Cos : δ2|s| ≤ |r| ≤ |s|
δ2

Dice :
δ

2− δ |s| ≤ |r| ≤
2− δ
δ
|s|

(2)

To utilize the length filtering, one can partition the strings
into different groups Gl1 , Gl2 , · · · , Gln and strings in each
group have the same length. The string pairs between two
groups Gli and Glj can be pruned, if the string lengths of
the two groups do not satisfy Equation 2.

4.3 Prefix Filtering
4.3.1 Prefix Filtering
The prefix filtering is proposed in SSJoin [4] which fo-

cuses on enabling similarity joins inside DBMS. AllPair [2]
extends the idea and proposes a prefix filtering based frame-
work. We first use the Overlap similarity to illustrate how
prefix filtering works and then apply it to other metrics.
Overlap. Assume we have a global ordering on all tokens
in the string sets, e.g., the alphabetical order or inverse doc-
ument frequency (idf) order. For each string, the prefix
filtering sorts its tokens based on the given token ordering.
Given the overlap threshold δ, for each string s, the prefix
filtering selects the first |s| − δ + 1 tokens as the signatures,
denoted by sp. It is easy to prove that if two strings r and s
are similar, then sp∩rp 6= φ. For example, consider the first
two strings “database concepts system” and “database large-
scale techniques” in Table 1. Suppose the overlap threshold
is 2. The prefix size is 3-2+1=2. Assume the tokens are
sorted by idf in the descending order. The prefix filtering se-
lects “concepts system” and “large-scale techniques” as their
prefixes. As their prefixes have no overlap, the pair can be
pruned. Existing methods use idf in descending order and
take tokens with large idf (infrequent tokens) as signatures.
Edit Distance. The gram-based method [8] is used to
support the edit distance. It generates the q-gram set for
each string, sorts the grams based on a global ordering, and
selects the first qτ + 1 grams as its signatures. It is easy to
prove that if r and s are similar, their prefixes must have
common signatures. This is because each edit operation
can only destroy at most q q-grams, and if more than qτ + 1
grams are destroyed, it requires at least τ+1 edit operations.
For example, consider strings “sigmod” and “sigir” with
edit-distance threshold τ = 1. It sorts the q-grams by idf
in descending order and generates their prefixes (underlined
grams): {gm, mo, od, ig, si} and {gi, ir, ig, si}. Since they
do not share any common signature, this pair will be pruned.
Based on Equation 1, for string s, the prefix filtering sorts

its tokens and selects its first p tokens as signatures, where

p =


qτ + 1 ED
|s| − δ + 1 Olp
b(1− δ)|s|c+ 1 Jac
b(1− δ2)|s|c+ 1 Cos
b(1− δ

2−δ)|s|c+ 1 Dice

(3)

4.3.2 Optimizations on Edit Distance
EDJoin [25]. The EDJoin algorithm proposes two optimiza-
tion techniques to improve prefix filtering for edit distance.

(1) Position Filtering. EDJoin removes unnecessary signa-
tures from the prefix to further reduce the prefix length. For
example, consider string “sigmod” with q = 2 and τ = 1.
Suppose the signatures are “si”, “gm” and “od” in the prefix
filtering. EDJoin proves that it can remove the last signature
“od” safely since it requires at least τ + 1 edit operations to
destroy both “si” and “gm”. EDJoin devises effective algo-
rithms to detect and remove unnecessary signatures.
(2) Content Filtering. The position filtering prunes dissimi-
lar pairs using grams’ positions. It is effective for mismatch
grams scattered in different positions in the string but in-
effective for consecutive grams. To alleviate this problem,
EDJoin proposes the content filtering to do further pruning.
For example, consider the following two strings: sigmod and
sigkdd. Consider the underlined substrings. Suppose the
edit-distance threshold is τ = 1. As the two substrings is
rather different, EDJoin can prune this pair. To achieve this
goal, EDJoin uses the L1 distance as a bound of edit dis-
tance to do pruning, where L1 distance between two strings
is the total number of different characters. EDJoin proves
that the edit distance cannot be smaller than half of the L1

distance. For example, the L1 distance of the two substrings
is 4 so the edit distance between the two strings is at least
2. Therefore, this pair can be pruned safely.
QChunk [17]. The QChunk algorithm contains two types of sig-
natures: q-grams and q-chunks. The q-chunks are q-grams
with starting positions at i ∗ q+ 1 for 0 ≤ i ≤ l−1

q
where l is

the string length. To guarantee the last q-chunk has exactly
q characters, it appends several special characters, e.g., $.
For example, the q-chunks of “vldbj” are {“vl”, “db”, “j$”}.
Let gq denote the q-gram set and cq denote the q-chunk set.
Given two strings r and s, QChunk proves if they are similar,

(1) |gq(r) ∩ cq(s)| ≥ d |s|q e − τ , and
(2)|cq(r) ∩ gq(s)| ≥ d |r|q e − τ .

To use the two properties, QChunk devises two strategies
to prune dissimilar pairs. The first one is to index q-grams of
r and use q-chunks of s to generate candidates. The second
one is to index q-chunks of r and use q-grams of s to generate
candidates. Both of the two strategies can be applied into
the prefix filtering framework. Moreover, QChunk devises
effective techniques to decrease the number of signatures to
the lower bound τ + 1 which are similar to those in EDJoin.

4.3.3 Optimizations on Jaccard, Cosine, Dice
PPJoin [27]. The PPJoin algorithm proposes two optimiza-
tion techniques for Jaccard, Cosine, and Dice.
(1) Position Filtering. It is similar to the first optimization
of EDJoin, by using positions of signatures to prune dissimi-
lar pairs. For example, consider the following two sets sorted
by the alphabetical order: {B,C,D,E, F}, {A,B,C,D, F}.
Suppose the Jaccard threshold is 0.8. The prefix filter-
ing selects the first 5-0.8*5+1=2 tokens as the signatures
(underlined). As the two prefixes have overlaps, the prefix
filtering cannot prune the pair. However, from two pre-
fixes, one can easily estimate the lower bound of the union
size (3+3=6) and the upper bound of the intersection size
(1+3=4). Thus the upper bound of the Jaccard similar-
ity can be computed (4

6
). Since the upper bound is smaller

than the threshold, the position filtering can prune this pair.
Similar ideas can be applied to Cosine and Dice.
(2) Suffix Filtering. It probes tokens in the suffix to estimate
a tighter upper bound. For example, consider the following

628

two sets (“?” stands for unknown signatures):

{A,B,D,E, ?, ?, ?, ?, ?, ?, Q, ?, ?, ?, ?, ?, ?, ?}
{A,C,D,E, ?, ?, ?, ?, Q, ?, ?, ?, ?, ?, ?, ?, ?, ?}

This pair cannot be pruned by the first optimization tech-
nique since the upper bound is 17

19
> 0.8. It chooses the

middle token in the suffix of the first set and uses it to do
a binary search in the second set. By using the searching
result position, it can estimate a tighter upper bound of the
Jaccard similarity. In the example, the upper bound of
the intersection size is 3+4+1+7 = 15, the lower bound of
the union size is 5 + 6 + 1 + 9 = 21, and the upper bound of
the Jaccard similarity is 15

21
< 0.8. Then this pair can be

pruned by the suffix filtering. PPJoin iteratively estimates
much tighter upper bounds [27].

4.3.4 The AdaptJoin Algorithm
The AdaptJoin algorithm aims to improve the prefix fil-

tering fundamentally for all similarity metrics [23]. All the
aforementioned algorithms select fixed-length prefix for strings
with same length (different content), and they take the string
pairs which have common signatures as candidate pairs.
However, it is worth noting that if l more tokens in the set
are selected into the prefix, called l-prefix scheme, two sim-
ilar strings should share at least l + 1 signatures. Thus the
filtering power is enhanced while it involves more filtering
cost. Thus there is a tradeoff and the AdaptJoin algorithm
proposes an adaptive framework to choose the best prefix
scheme to achieve high performance.

4.4 Other Signatures
4.4.1 The VChunk Algorithm
The VChunk algorithm [24] is designed for the edit dis-

tance. The signatures of VChunk are variable-length chunks,
called “vchunk”. The key part of the signature generation is
the chunk boundary dictionary (CBD) which is a set of rules
used to split the strings into chunks. For example, “vl” can
be a rule. For each string, if it contains a substring “vl”,
VChunk cuts the string just after the substring. For example,
the string “pvldb” will be split into two chunks: “pvl” and
“db” by this rule. VChunk proposes the tail-restricted CBD
which is a subset of all the CBDs and proves that if using a
tail-restricted CBD to split strings, any edit operation will
destroy at most 2 chunks. Thus the gram-based technique
can be applied to the chunks split by CBDs. Next we define
the tail-restricted CBD. It divides the character alphabet Σ
in the strings into two disjoint subsets: the prefix character
set P and the suffix character set Q (i.e., P ∪ Q = Σ and
P∩Q = φ). All the rules in the CBD can be described by reg-
ular expression [P]*[Q] which denotes strings with arbitrary
numbers of characters from P and a single character from
Q. For example, {“vl”, “v”} is an invalid tail-restricted CBD
and {“vl”, “d”} is a valid tail-restricted CBD. If this CBD is
used to split string “pvldb”, it will get three chunks {“pvl”,
“d”, “b”}. VChunk adopts similar techniques of EDJoin to do
the similarity join using the CBD. The most important part
of this algorithm is to select a proper method to generate
the CBD. More details are referred to [24].

4.4.2 The PassJoin Algorithm
The PassJoin algorithm [14] employs a partition-based

framework. We will first introduce how to support the edit

distance and then extend the idea to other metrics. The
basic idea is based on the pigeon-hole principle. Given an
edit-distance threshold τ , for each string s, PassJoin splits
the string into τ + 1 segments and if another string r is
similar to the string s, r must contain a substring which
is equal to one of the segments of string s. For example,
consider the following two strings with threshold τ = 2:
{si|gm|od, pvldb}. As the second string does not contain
any substring that matches a segment of the first one, their
edit distance must be larger than 2.
Intuitively, one should enumerate all substrings to check

the condition, and this process is obviously rather expensive.
To alleviate this problem, PassJoin proposes themulti-match-
aware selection technique to select the minimum number of
substrings. The number of selected substrings can be re-
duced to b τ

2−∆2

2
c+ τ + 1, where ∆ = ||r|− |s|| is the length

difference between two strings. For example, suppose τ = 3
and ∆ = 1. PassJoin selects only 8 substrings.
For Jaccard, Cosine and Dice, PassJoin can convert

them to Edit Distance. Take Jaccard as an example.
First, PassJoin sorts all the tokens in the set based on a
global ordering. Next it converts the Jaccard threshold to
Overlap and then to Edit Distance. Notice that how to
convert Jaccard to Overlap has been discussed in Sec-
tion 4.1. Here we discuss how to convert Overlap to Edit
Distance. Suppose the Overlap threshold is τ . Then the
corresponding edit-distance threshold is at most l1 + l2− 2τ
where l1 and l2 are the numbers of tokens in the two sets
respectively. This is because one string can be transformed
to another string by l1 − τ deletions and l2 − τ insertions.
Since l2 is unknown when building the index, one can use
the maximum possible length b l1

δ
c (see Equation 2) to re-

place l2. Thus given a string with length l, the Jaccard
threshold δ can be converted to the edit-distance thresh-
old τ = b 1−δ

δ
lc. For Cosine and Dice, the thresholds are

respectively τ = b 1−δ2
δ2

lc and τ = b 2(1−δ)
δ

lc.

4.4.3 The PartEnum Algorithm
The PartEnum algorithm [1] is designed for hamming dis-

tance which is the minimum number of substitutions re-
quired to change one string to the other. The signature of
the PartEnum algorithm is a combination of “partition” and
“enumeration”. There are two parameters in the PartEnum
algorithm: N1 and N2. Given a hamming distance thresh-
old τ , in the first level, it partitions the string into N1 parts.
According to the pigeon-hole principle, there should exist at
least one partition and the corresponding partitions of the
two strings have hamming distance no larger than τ2 = b τN1c.
In the second level, it partitions each part into N2 parti-
tions and generates the enumeration signatures: all possible
combinations of selecting N2− τ2 parts from N2 parts (i.e.,(N2
N2−τ2

)
combinations). Obviously if two strings are similar,

they must share a common signature.
Next we introduce how to convert the Jaccard thresh-

old δ to the hamming distance threshold. Suppose all strings
are with the same length l. If the Jaccard similarity of two
strings is not smaller than δ, then their Overlap should be
not smaller than 2δl

1+δ
. Thus the hamming distance between

their vectors should be no larger than 2l−2∗ 2δl
1+δ

= 2(1−δ)l
1+δ

.
Similarly, both thresholds of Cosine and Dice can be con-
verted to 2l

1−δ . To deal with strings with different lengths,
it splits all the strings into groups based on string lengths,

629

applies the techniques to strings in the same group, and uses
the length filtering to do pruning between different groups.
Finally, we discuss how to convert the ED threshold τ to the
hamming distance threshold. It also uses the q-gram based
method. Since an edit operation can at most destroy q q-
grams, the ED threshold τ can be converted to the hamming
distance threshold 2qτ .

4.4.4 The FastSS Algorithm
The FastSS algorithm [20] is designed only for the edit

distance, which uses a neighborhood-based method. The
basic idea is that if two strings are similar, their neigh-
bors must have overlap. Thus it takes neighbors as sig-
natures. Formally, suppose the edit-distance threshold is
τ . Given a string s, let Di(s) denote the set of s’ sub-
strings by deleting i characters. Obviously, |Di(s)| =

(|s|
i

)
.

For example, D2(“pvldb”) = {ldb, vdb, vlb, vld, pdb,
plb, pld, pub, pvd, pvl}. Let D̄τ (s) = ∪τi=0Di(s). It
can be proved that if two strings r and s are similar within
threshold τ , then D̄τ (r) ∩ D̄τ (s) 6= φ. Based on this prop-
erty, for each string s, FastSS takes the substrings (called
neighborhoods) in D̄τ (s) as the signatures of s. Then it can
use the filter-verification framework to compute join results.
FastSS also devises effective verification algorithms to verify
the candidate pairs based on the deleted characters. Obvi-
ously FastSS is ineffective for long strings since it involves
larger numbers of signatures.

5. OTHER ALGORITHMS
5.1 The TrieJoin Algorithm
The TrieJoin algorithm [22] uses a trie structure to cal-

culate the similarity join result directly. Each trie node is
associated with a character and the path from the root to a
leaf node corresponds to a string. Two strings with a com-
mon prefix will share a common ancestor.
TrieJoin relies on an important concept “active nodes”. A

node is called an active node for string s if the edit distance
between s and the string w.r.t. the node is not larger than a
given threshold τ . For self join, TrieJoin first builds a single
trie structure and computes all the active nodes of the leaf
nodes. Then given a leaf node, the strings corresponding
to active nodes must be similar to the string corresponding
to the leaf node. Thus TrieJoin can easily obtain the join
result based on active nodes of leaf nodes. TrieJoin devises
three efficient algorithms to compute the active nodes. The
main idea is to traverse the trie index in pre-order and use
the active nodes of the parent node to compute those of the
child nodes. In other words, TrieJoin can share the com-
putations among sibling nodes when computing their active
nodes. TrieJoin also proposes a partition-based method to
improve the algorithm. It partitions strings into two parts,
and thus can decrease the threshold to τ

2
. Then it builds

two tries for the two parts and utilizes the two tries to find
join results. More technical details can be found in [22].

5.2 The M-Tree Algorithm
The M-Tree algorithm [5] is devised to support metric

space similarity functions, which satisfy: (1) d(x, y) ≥ 0;
(2) d(x, y) = 0⇔ x = y; (3) d(x, y) = d(y, x); and (4) d(x, z) ≤
d(x, y) + d(y, z), where d is a similarity function. We can
see that M-Tree can be used for Edit Distance since it is
a metric. The basic idea of M-Tree is to use the triangle
inequality to prune dissimilar pairs. To this end, it builds a

tree structure, called M-Tree, where each leaf node contains
a group of similar strings and each internal node is used for
pruning. An internal node N in an M-Tree stores a land-
mark string Nm and a radius Nr, which denotes that all the
strings under the node have distance to Nm no larger than
Nr and vice versa. Based on this property, for each string s,
it traverses the M-Tree from the root node. Consider a node
N . If d(Nm, s) > Nr+τ , the node can be pruned; otherwise,
it accesses each of its children. If the node is a leaf, it visits
each string in the node and computes its similarity to the
string. It is important to construct an effective M-Tree with
high pruning power and more details are referred to [5].

5.3 Other Related Works
Similarity Joins inside DBMS. Gravano et. al. [8] stud-
ied how to enable similarity joins inside DBMS using database
functionalities. SSJoin [4] proposed prefix filtering and in-
corporated the techniques into DBMS.
Parallel Similarity Joins. Vernica et. al. [21] studied
parallel similarity joins using MapReduce by extending pre-
fix filtering based techniques. Metwally et. al. [16] studied
the parallel set similarity join problem using count filtering.
Top-k Similarity Joins. Given two sets of strings, the
top-k similarity join problem is to find top-k similar pairs
with the largest similarity. Xiao et. al. [26] extended prefix
filleting to support top-k similarity join. Zhang et. al. [28]
extended B-tree to support top-k similarity search problem.
Lee et. al. [11,12] studied the similarity join size estimation
problem which can also be utilized to compute top-k similar
pairs. Kim et. al. [10] studied parallel top-k string similarity
join problem using MapReduce.
Jestes et. al. [9] and Lian et. al. [15] studied the problem

of similarity joins on probabilistic data. Satuluri et. al. [19]
studied the problem of approximate similarity joins (which
may miss results) and proposed a Bayesian algorithm by
extending traditional locality-sensitive hashing.
Similarity Search. Similarity search has been extensively
studied [6,7,13,18], which finds the similar strings of the
query string from a set of data strings. Similarity joins based
techniques can be extended to support similarity search [17,
23]. Disk-based similarity search was studied in [3,28]. Dif-
ferent from similarity joins, the indexing time can be ex-
cluded in similarity search, and thus in similarity joins we
need to consider the indexing cost which cannot be expensive
but in similarity search we can build sophisticated indexes.
Recently EDBT/ICDT 2013 organized a competition on

string similarity search and join1. The competition used two
datasets: the city-name dataset with short strings and the
Genome dataset with long strings. It allowed participants to
use parallel algorithms. For similarity search, PassJoin won
the champion on the city-name dataset and the partition-
based method with sophisticated graph indexes won the
champion on the Genome dataset. For similarity join, PassJoin
won the champion on both of the two datasets. Our work
had the following differences from the competition. First,
the competition only considered the edit-distance functions
and our work discussed both edit-distance functions and
token-based functions. Second, in the competition, different
authors implemented different algorithms while we imple-
mented all the algorithms by ourselves. Third, we evaluated
on more datasets, varied the dataset distributions, and com-
pared disk-based algorithms.
1www2.informatik.hu-berlin.de/∼wandelt/searchjoincompetition2013/

630

 100

 1000

 3 4 5 6 7 8

T
im

e
(s

)

q

τ=1
τ=2
τ=3
τ=4

(a) AllPair, DBLP

 100

 1000

 2 3 4 5 6 7 8

T
im

e
(s

)

q

τ=1
τ=2
τ=3
τ=4

(b) EDJoin, DBLP

 100

 1000

 2 3 4 5 6

T
im

e
(s

)

q

IndexGram
IndexChunk

(c) QChunk, τ = 2, DBLP

 50

 100

 150

 200

 250

 300

 2 3 4 5 6

T
im

e
(s

)

q

Gram
IndexGram

IndexChunk

(d) AdaptJoin, τ = 2, DBLP

 100

 1000

 4 5 6 7 8 9

T
im

e
(s

)

q

τ=1
τ=2
τ=3
τ=4

(e) ListMerger, DBLP

 10

 100

 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

)

scale

τ=1
τ=2
τ=3
τ=4

(f) VChunk, DBLP

 40

 60

 80

 100

 120

 140

 160

 3 4 5 6 7 8 9

T
im

e
(s

)

N2

N1=2
N1=3
N1=4

(g) PartEnum, τ = 2, DBLP-50K
Figure 2: Evaluation on Parameter Selection (ED).

6. EXPERIMENTS
We conducted extensive experiments to compare existing

string similarity join algorithms. Our experimental goal was
to evaluate running time, candidate size, memory usage and
scalability of different algorithms. The running time was
the total time to compute the join results, including sorting
tokens, generating signatures, indexing signatures, filtering
and verification (if necessary). The candidate size was the
number of candidates generated in the filtering step. The
memory usage was the peak memory used during the algo-
rithm execution. We compared the following algorithms.
Character-based Metrics. ListMerger [13,18], AllPair [2],
EDJoin [25], QChunk [17], AdaptJoin [23], VChunk [24], PassJoin
[14], PartEnum [1], FastSS [20], TrieJoin [22], BiTrieJoin
[22], M-Tree [5]. BiTrieJoin was the improved version of
TrieJoin by using two tries as discussed in Section 5.1. We
implemented the best algorithm DivideSkip [13] for ListMerger.
Token-based Metrics. ListMerger [13,18], AllPair [2], PPJoin
[27], PPJoin+ [27], AdaptJoin [23], PassJoin [14], PartEnum
[1]. As discussed in Section 4.3.3, we used PPJoin to de-
note the algorithm which only contained the first optimiza-
tion (position filtering) and PPJoin+ to denote the algorithm
which used two optimizations (position & suffix filtering).
All the algorithms were implemented by ourselves using

C++, compiled by GCC 4.8.2 with -O3 flag. All the exper-
iments were conducted on a Ubuntu server with two Intel
Xeon E5420 CPUs (8 cores, 2.5GHz) and 32GB memory.
Datasets. We used a variety of datasets with different char-
acteristics which were also widely used in previous works.
Tables 3-4 showed the details of the datasets. For Edit
Distance we used the following datasets.
Short Strings: Word [22] was a set of real English words and
its average string length was 8.7. Querylog [14,22,23] was
a set of query log strings2 and the average length was 18.9.
These datasets can be used in data cleansing applications.
Middle-Length Strings: DBLP [1,2,14,17,23–25,27] included
publication titles3 and the average string length was 70.3.
It can be used in duplicate detection applications.
Long Strings: Genome was a dataset of human gene se-
quences4 and the average length was 100. It can be used
2http://www.gregsadetsky.com/aol-data/
3http://dblp.uni-trier.de/xml/
4http://www.1000genomes.org/

Table 3: Datasets for ED.
Dataset Cardinality Avg Len Max Len Size Type

Word 122,823 8.7 29 1.2M Short
Querylog 500,000 18.9 500 9.7M Short

DBLP 1,000,000 70.3 766 69M Middle
Genome 250,000 100 100 25M Long

Table 4: Datasets for Jac, Cos and Dice.
Dataset Cardinality Avg Tok Max Tok Size Type

Trec 347,949 75 273 103M Small
Enron 245,567 135 3162 129M Middle
Wiki 4,000,000 213 36907 3.2G Large

in data integration applications.
For Jaccard, Cosine and Dice, we used the following

datasets. We used white spaces to tokenize each string.
Small Token Number: Trec [2,17,24,25,27] was a set of doc-
uments from the well-known benchmark in information re-
trieval5 and the average token number was 75. It can be
used in data cleansing applications.
Middle Token Number: Enron [2,23,27] included a set of
emails with titles and bodies6 and the average token number
was 135. It can be used in data integration applications.
Large Token Number: Wiki [19] included a set of English
wikipedia webpages7 and the average token number was 213.
It can be used in document clustering applications.
Global Ordering. Algorithms for token-based metrics re-
quired the tokens to be sorted in a global ordering. Some
algorithms for Edit Distance needed to sort grams using
a global ordering. We used the best order for all algorithms.
For PartEnum and PassJoin, the best order is random order.
For other algorithms, the best order is idf order.

6.1 Experiments on Edit Distance
Parameter Selection. Many existing algorithms required
to tune parameters to achieve the best performance. The q-
gram based algorithms, e.g., ListMerger, AllPair, EDJoin,
QChunk and AdaptJoin, required to tune parameter q. VChunk
required to tune parameter scale. PartEnum required to tune
parameters N1 and N2. Figure 2 shows the results. As
PartEnum was slow, we ran it on a small dataset DBLP-50K
(by randomly selecting 50K string from DBLP) and other al-
gorithms were run on the DBLP dataset.
5http://trec.nist.gov/data/t9_filtering.html
6http://www.cs.cmu.edu/~enron/
7http://dumps.wikimedia.org/

631

http://www.gregsadetsky.com/aol-data/
http://dblp.uni-trier.de/xml/
http://www.1000genomes.org/
http://trec.nist.gov/data/t9_filtering.html
http://www.cs.cmu.edu/~enron/
http://dumps.wikimedia.org/

 0.1

 1

 10

 100

 1 2 3 4

T
im

e
(s

)

Threshold

AdaptJoin
BiTrieJoin

TrieJoin
AllPair

EDJoin
PartEnum
PassJoin
QChunk
VChunk

ListMerger
FastSS

Figure 3: Evaluation on DBLP-50K (ED).
Table 5: Best parameter values for Figure 3.

Method ED = 1 ED = 2 ED = 3 ED = 4
AdaptJoin q =2 q =2 q =3 q =3

AllPair q =3 q =4 q =5 q =5
EDJoin q =2 q =3 q =3 q =3

PartEnum N1/N2=3/6 N1/N2=3/3 N1/N2=2/4 N1/N2=2/5
QChunk q =2 q =3 q =3 q =4
VChunk scale =1 scale =2 scale =3 scale =3

ListMerger q =6 q =7 q =8 q =7

We have the following observations. First, different pa-
rameter choices indeed had effect on the performance, thus
it is very important to select an appropriate parameter. For
example, consider EDJoin in Figure 2(b). The performance
on q = 2 was much worse than that on q = 3. Second, for the
gram-based methods, q should be neither too large nor too
small, because a large q involved large numbers of signatures
(the number of signatures is related to q, e.g., qτ + 1) and a
small q leaded to low pruning power (short grams had large
probabilities to match). Thus we should carefully choose an
appropriate parameter q. Third, QChunk had two strategies
to build indexes: (1) indexing q-grams; and (2) indexing q-
chunks, and AdaptJoin had three strategies, (1) traditional
q-gram based method; (2) indexing q-grams; and (3) index-
ing q-chunks. We can see that it was rather hard to select
the best strategy and the two methods required to tune dif-
ferent strategies to achieve the best performance, and this
was coincided with the findings in the original papers.
In the following experiments, for each threshold τ , we

tuned the parameters for every algorithm and reported the
best performance each algorithm can achieve.
Small Dataset. As PartEnum and M-Tree were rather inef-
ficient, we first compared all algorithms on the small dataset
DBLP-50K. Figure 3 shows the results and Table 5 shows the
best parameters. (Since there are many experiment figures,
we cannot show the best parameter values for the following
experiments due to the space constraints.) We also eval-
uated the M-Tree algorithm but it failed to report results
within 2 hours. In the rest of the experiments, we do not
show the result in the figure if the corresponding algorithm
cannot return results within 2 hours.
We have the following observations. First, PartEnum were

much worse than other algorithms because PartEnum was
designed for hamming distance and had low pruning power
for other similarity metrics. Thus we excluded it in the re-
mainder of the experiments. Second, FastSS can only com-
pute the results for small thresholds, e.g., 1 and 2. This
is because it was designed for short strings, and for long
strings it involved exponential numbers of signatures. We
will compare it deeply on datasets with extremely short
strings later. Third, TrieJoin was efficient for small thresh-
olds but inefficient for large thresholds. This is because, for
large thresholds, it involved large numbers of active nodes
which was rather expensive to calculate. BiTrieJoin could

alleviate such problems as it can decrease the threshold
by half. Fourth, PassJoin achieved the best performance
since it had large pruning power using the partition-based
strategy which was effective for both long strings and short
strings. Fifth, some q-gram based algorithms, e.g., AllPair,
EDJoin, QChunk, achieved similar results. As these algo-
rithms relied on q, their signatures were usually short and
leaded to low pruning power.
Datasets with Short Strings. Since FastSS only achieved
high performance on datasets with short strings, we con-
ducted an experiment on the Word dataset with average
string length of 8.7. We compared with other two algo-
rithms PassJoin and BiTrieJoin which were also efficient
for short strings. Figure 4 shows the results. FastSS was
faster than both PassJoin and BiTrieJoin. This is because
the signatures of FastSS have much stronger pruning power.
However FastSS had rather large space overhead to main-
tain the signatures as it generated exponential numbers of
signatures. In terms of candidate sizes, as BiTrieJoin did
not involve false positives, its candidate number was the
minimum. FastSS had smaller numbers of candidates than
PassJoin which implied it had larger pruning power.
Large Datasets. We evaluated the algorithms on large
datasets. As many algorithms cannot return results in 2
hours on the Genome dataset, we used Genome-100K (by ran-
domly selecting 100K strings from Genome). Figure 5 shows
the results. We have the following observations. First,
PassJoin was nearly the best among all the algorithms. On
the Genome dataset with long strings, PassJoin was much
faster than other algorithms, even by an order of magnitude.
Similar results can be achieved on the DBLP dataset with
middle length strings. On the datasets with short strings,
PassJoin and BiTrieJoin achieved similar results and out-
performed other algorithms. Second, similarity joins were
hard for datasets with short strings using large thresholds,
since there were many similar pairs and it was rather hard
to select appropriate signatures to prune dissimilar pairs.
Scalability. We evaluated the scalability of different al-
gorithms, including running time, candidate numbers, and
memory usage. Figure 6 shows the result. We can see that
BiTrieJoin and PassJoin outperformed other algorithms.
This is consistent with results on the large datasets. More-
over, with the increase of dataset sizes, PassJoin nearly
achieved the linear results, and this was also attributed to its
effective pruning techniques. PassJoin involved less mem-
ory than other algorithms, because the number of signatures
in the q-gram-based methods depended on the string length,
while that of PassJoin relied on threshold τ . BiTrieJoin
and TrieJoin had the smallest number of candidates as they
directly computed the answers.
R-S Join. We evaluated the R-S join on the Word dataset.
We randomly divided the original dataset into two sets with
cardinalities ratio of 1:4. We compared FastSS, PassJoin,
and BiTrieJoin. For each algorithm, we tested two strate-
gies: indexing the smaller set or indexing the larger set. Fig-
ure 7 shows the results. We can see that these algorithms
can efficiently support R-S join and the running time of the
different choices of which part to index was similar.
Algorithm Selection. We report our findings from the
results and discuss how to select appropriate algorithms
(Table 6). On the datasets with short strings, FastSS >
PassJoin ∼ BiTrieJoin > AdaptJoin > TrieJoin > QChunk ∼

632

 1

 10

 100

 1 2 3

T
im

e
(s

)

Threshold

BiTrieJoin
PassJoin

FastSS

(a) Running Time

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1 2 3

N
u

m
b

e
r

o
f

c
a

n
d

id
a

te
s

Threshold

BiTrieJoin

PassJoin

FastSS

(b) Candidate Number

 0.01

 0.1

 1

 1 2 3

M
e

m
o

ry
(G

B
)

Threshold

BiTrieJoin
PassJoin

FastSS

(c) Memory Usage
Figure 4: Evaluation on the Word Dataset with Very Short Strings (ED).

 1

 10

 100

 1000

 10000

 1 2 3 4

T
im

e
(s

)

Threshold

AllPair
EDJoin

QChunk
AdaptJoin
ListMerger

VChunk
TrieJoin

BiTrieJoin
PassJoin

(a) Querylog (Short)

 10

 100

 1000

 10000

 1 2 3 4

T
im

e
(s

)

Threshold

AllPair
EDJoin

QChunk
AdaptJoin
ListMerger

VChunk
TrieJoin

BiTrieJoin
PassJoin

(b) DBLP (Middle)

 0.1

 1

 10

 100

 1000

 10000

 1 2 3 4

T
im

e
(s

)

Threshold

AllPair
EDJoin

QChunk
AdaptJoin
ListMerger

VChunk
TrieJoin

BiTrieJoin
PassJoin

(c) Genome-100K (Long)
Figure 5: Evaluation on Large Datasets (ED).

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

50K 100K 150K 200K 250K

T
im

e
(s

)

Number of records

AllPair
TrieJoin
QChunk
EDJoin

ListMerger

AdaptJoin
VChunk

BiTrieJoin
PassJoin

(a) Runing Time

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

50K 100K 150K 200K 250K

N
u

m
b

e
r

o
f

c
a

n
d

id
a

te
s

Number of records

AllPair
TrieJoin
QChunk
EDJoin

ListMerger

AdaptJoin
VChunk

BiTrieJoin
PassJoin

(b) Candidate Number

 0.01

 0.1

 1

50K 100K 150K 200K 250K

M
e

m
o

ry
(G

B
)

Number of records

AllPair
TrieJoin
QChunk
EDJoin

ListMerger

AdaptJoin
VChunk

BiTrieJoin
PassJoin

(c) Memory Usage
Figure 6: Evaluation on Scalability on the Genome Dataset (ED, τ = 3).

 1

 10

 100

 1 2 3

T
im

e
(s

)

Threshold

BiTrieJoin-small
BiTrieJoin-large
PassJoin-small
PassJoin-large

FastSS-small
FastSS-large

Figure 7: Evalution on R-S Join (Word, ED).
Table 6: Algorithm Selection for ED.

Datasets Suggested Algorithms
Short Strings FastSS & PassJoin
Middle-length Strings PassJoin
Long Strings PassJoin

EDJoin > ListMerger > VChunk > AllPair � PartEnum �
M-Tree, where ∼ denotes similar performance, > denotes
better, and � denotes significantly better. On the datasets
with long strings, PassJoin > BiTrieJoin > EDJoin >
AdaptJoin > QChunk > VChunk > ListMerger ∼ AllPair >
TrieJoin� PartEnum ∼ FastSS� M-Tree. On the datasets
with middle-length strings, PassJoin > VChunk > BiTrieJoin >
TrieJoin > AdaptJoin > QChunk > EDJoin > AllPair >
ListMerger� PartEnum ∼ FastSS� M-Tree.

6.2 Experiments on Jaccard, Cosine and Dice
Among algorithms for Jaccard, Cosine and Dice, only

PartEnum required parameters and we tuned its parameters

as discussed in Section 6.1. Due to space constraint, we
omitted the details to tune its parameters.
Large Datasets. We compared the algorithms on large
datasets. As many algorithms cannot return results in 2
hours on the Wiki dataset, we used Wiki-400K (by ran-
domly selecting 400K strings from Wiki). Figure 8 shows
the results. Since PassJoin and PartEnum are very slow for
Cosine and Dice, we only showed their results on Jac-
card. We make the following observations. First, different
token-based similarity metrics had no large effect on the per-
formance of different algorithms. In other words, these algo-
rithms nearly achieved the same results on different metrics.
Second, AllPair, PPJoin, PPJoin+ and AdaptJoin achieved
similar results and outperformed PartEnum and PassJoin.
Third, PPJoin and PPJoin+ were better than AllPair be-
cause the two filtering techniques (position and suffix filter-
ing) can prune more dissimilar pairs. For large thresholds
(≥ 0.8), PPJoin+ was better than PPJoin because the suf-
fix was long and the suffix filtering can significantly prune
dissimilar pairs. For small similarity thresholds (< 0.8),
PPJoin was better than PPJoin+, because the suffix was
short and the suffix filtering was more expensive than calcu-
lating overlap directly. Fourth, on large similarity thresholds
(≥ 0.8), PPJoin+ was the best. On small thresholds (< 0.8),
AdaptJoin outperformed AllPair, PPJoin, PPJoin+. This is
because for small thresholds, similarity join algorithms took
longer time and AdaptJoin had opportunity to select adap-

633

 1

 10

 100

 1000

 10000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

PartEnum
PassJoin

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(a) Trec, Jac

 1

 10

 100

 1000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

PartEnum
PassJoin

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(b) Enron, Jac

 10

 100

 1000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

PartEnum
ListMerger

AllPair
PPJoin

PPJoin+
AdaptJoin

(c) Wiki-400K, Jac

 1

 10

 100

 1000

 10000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(d) Trec, Cos

 1

 10

 100

 1000

 10000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(e) Enron, Cos

 10

 100

 1000

 10000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(f) Wiki-400K, Cos

 1

 10

 100

 1000

 10000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(g) Trec, Dice

 1

 10

 100

 1000

 10000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(h) Enron, Dice
Figure 8: Evaluation on Large Datasets (Token-based Metrics).

 100

 1000

1M 2M 3M 4M

T
im

e
(s

)

Number of records

AllPair
PPJoin

PPJoin+
AdaptJoin

(a) Runing Time

 1e+008

 1e+009

 1e+010

1M 2M 3M 4M

N
u

m
b

e
r

o
f

c
a

n
d

id
a

te
s

Number of records

AllPair
PPJoin

PPJoin+
AdaptJoin

(b) Candidate Number

 10

1M 2M 3M 4M

M
e

m
o

ry
(G

B
)

Number of records

AllPair
PPJoin

PPJoin+
AdaptJoin

(c) Memory Usage
Figure 9: Evaluation on Scalability on the Wiki Dataset (Jac, δ = 0.75).

tive prefix lengths to improve performance. Fifth, different
from Edit Distance, different string lengths had no much
effect on performance for token-based similarity metrics.
Scalability. We evaluated the scalability of different al-
gorithms. Figure 9 shows the results on the large dataset
Wiki. We only showed the results of Jaccard since the
results of Cosine and Dice are similar. We can see that
when the number of strings was large, AdaptJoin was al-
ways the fastest one. This is because for large datasets,
similarity join algorithms took long time to find similar pairs
and AdaptJoin had large potential to select variable-length
prefixes to improve the performance. AdaptJoin involved
slightly larger indexes than PPJoin+ as AdaptJoin required
to build additional index structures.
R-S Join. We evaluated the R-S join on the Wiki dataset.
We randomly selected 2 million strings as one set and other
2 million strings as another set. We compared AllPair,
PPJoin, PPJoin+ and AdaptJoin. For each algorithm, we
tested two strategies, indexing the small set or indexing the
large set. Figure 10 shows the results. We can see that
AdaptJoin still achieved the best performance. Moreover,
AdaptJoin-small (indexing the small set) was slightly better
than AdaptJoin-large (indexing the large set) because index-
ing small/large datasets will not affect the pruning power
but indexing the large set will take longer time.
Algorithm Selection. We report our findings and discuss
how to select an algorithm (Table 7). On large datasets,
for large thresholds, AdaptJoin > PPJoin+ > PPJoin >
AllPair � ListMerger � PassJoin > PartEnum; for small
thresholds, AdaptJoin > PPJoin > PPJoin+ > AllPair �

 100

 1000

 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

AllPair-small
AllPair-large

PPJoin-small
PPJoin-small

PPJoin+-small
PPJoin+-large

AdaptJoin-small
AdaptJoin-large

Figure 10: Evalution on R-S Join (Wiki, Jac).
Table 7: Algorithm Selection for Jac, Cos, Dice.
Datasets Thresholds Suggested Algorithms
Large Token No. Large/Small AdaptJoin
Small Token No. Large PPJoin+ & PPJoin
Small Token No. Small AdaptJoin

ListMerger � PassJoin > PartEnum. On small datasets,
for large thresholds, PPJoin+ > PPJoin > AdaptJoin >
AllPair � ListMerger � PassJoin > PartEnum; for small
thresholds, AdaptJoin > PPJoin > PPJoin+ > AdaptJoin >
AllPair� ListMerger� PassJoin > PartEnum.

6.3 Other Experiments
6.3.1 Similarity Search
We extended the similarity join algorithms to support

similarity search and compared them with the similarity
search algorithm ListMerger. We randomly selected 10K
queries and reported the average search time. Figure 11
shows the results. Note that TrieJoin and BiTrieJoin re-
lied on dual subtrie pruning to achieve high performance
and they cannot utilize this feature for similarity search
and thus they were inefficient for similarity search. In addi-
tion, AllPair was always slower than EDJoin. Thus we did

634

 0.01

 0.1

 1

 10

 1 2 3 4

T
im

e
(m

s
)

Threshold

ListMerger
EDJoin

QChunk
AdaptJoin
PassJoin

(a) ED, DBLP

 0.01

 0.1

 1

 10

 100

 0.8 0.85 0.9 0.95

T
im

e
(m

s
)

Threshold

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(b) Jac, Wiki
Figure 11: Evalutaion on Similarity Search.

 0

 5

 10

 15

 20

 1 2 4 8

T
im

e
(s

)

Threads

EDJoin
QChunk

AdaptJoin
PassJoin

(a) ED, DBLP

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 4 8

T
im

e
(s

)

Threads

Allpair
PPJoin

PPJoin+
AdaptJoin

(b) Jac, Wiki
Figure 12: Evalutaion on Parallel Algorithms

not show TrieJoin, BiTrieJoin and AllPair for Edit Dis-
tance. We can see that the extended algorithms were better
than ListMerger as they shorten the signatures using effec-
tive signature-based techniques (e.g., prefix filtering) and ac-
cessed smaller numbers of signatures. On Edit Distance,
the average search time was under 1 ms and PassJoin out-
performed other methods; and on Jaccard, the average
search time was also under 1 ms and PPJoin and PPJoin+
outperformed other algorithms. AdaptJoin was slower than
PPJoin and PPJoin+ as AdaptJoin had additional overhead
to select high-quality signatures.

6.3.2 Evaluation on Parallel Algorithms
We parallelized existing similarity join algorithms and eval-

uated the parallel algorithms. We used R-S joins as an ex-
ample. We evenly split each dataset into two parts. We first
indexed strings in one dataset and then performed search on
strings in another dataset in parallel. Figure 12 shows the
results. We showed the running time of the index step and
search step separately where the lower bar denoted the in-
dexing time and the upper bar denoted the search time. We
did not show ListMerger since it was too slow. We can see
that the parallel algorithms can improve the performance.
For example, PassJoin can improve the join time to 2 sec-
onds on 8 nodes from 9 seconds on 1 node. We find that the
speedup cannot reach the optimal value as we can parallelize
the search step but cannot parallelize the indexing step. It
is still challenging to devise efficient parallel algorithms.

6.3.3 Evalutaion on Dataset Distribution
We evaluated different dataset distributions. We gener-

ated four datasets with different distributions as follows.
We first generated N = 400K distinct tokens and then
constructed each string by randomly selecting tokens. The
probability to select the i-th token ti is p(ti) = score(ti)∑

1≤j≤N score(tj)
,

where score(ti) = 1
i
for Zipfian distribution, score(ti) =

1
N

for uniform distribution, score(ti) =
∫ i
i−1

1

σ
√

2π
e
− (x−µ)2

2σ2

for normal distribution. We generated two datasets using
normal distribution with N (0, (N

3
)2) (µ = 0, σ = N

3
) and

N (N
2
, (N

10
)2)(µ = N

2
, σ = N

10
). Each dataset contained 500K

strings and each string contained 50 tokens. Figure 13 shows
the results. We can see that in the traditional Zipfian distri-
bution, PPJoin, PPJoin+, and AdaptJoin achieved the best
performance. However, for some special distributions such
as uniform distribution, the performance for PPJoin and

 1

 10

 100

 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

PartEnum
PassJoin

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(a) Zipfian

 10

 100

 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

PartEnum
PassJoin

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(b) Uniform

 10

 100

 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

PartEnum
PassJoin

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(c) Normal, N (0, (N
3
)2)

 10

 100

 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

PartEnum
PassJoin

ListMerger
AllPair

PPJoin
PPJoin+

AdaptJoin

(d) Normal, N (N
2
, (N

10
)2)

Figure 13: Evalutaion on Distributions (Jac).
PPJoin+ were slightly worse. We got similar results for uni-
form distribution especially N (N

2
, (N

10
)2). The main reason

is that the high pruning power of PPJoin and PPJoin+ re-
lied on the low frequency of signatures in the prefix. In Zip-
fian distribution, the signatures in prefixes were tokens with
largest idf and their frequencies were small. Thus the match-
ing probability between different strings was low. However
in other distributions, the matching probability can be larger
than that in the Zipfian distribution. Instead, AdaptJoin
can adaptively selected the high-quality prefixes and thus it
still achieved higher performance in different distributions.

6.3.4 Evaluation on Disk-based Algorithms
We extended similarity join algorithms to support really

large datasets and compared them with ListMerger [3] and
Bed-tree [28], which were specially designed for disk-based
settings in order to support similarity search using disk-
based indexes. We implemented two types of methods to
support large datasets that cannot be loaded into the mem-
ory. The first built the disk-based indexes on strings in one
dataset and performed search on strings in another dataset
by utilizing the disk-based indexes (denoted by EDJoin-d,
PPJoin-d). The second partitioned each dataset into several
small groups and performed join algorithms on the small
groups which can be loaded into the memory (denoted by
EDJoin-p, PPJoin-p). For Edit Distance, we set the mem-
ory buffer as 64MB and for Jaccard, we set the buffer
as 512MB, which were about 5% of memory used by in-
memory algorithms EDJoin and PPJoin respectively. Fig-
ure 14 shows the results. Our extended algorithms using the
first strategy outperformed Bed-tree but were worse than
ListMerger as Bed-tree involved large numbers of random
accesses and ListMerger avoided unnecessary disk accesses
using a novel physical layout for inverted indexes. Our ex-
tended algorithms using the second strategy outperformed
ListMerger, as we loaded the data into memory, used in-
memory methods to compute results, and avoided randomly
accessing disk-based indexes. Thus for similarity search the
disk-based methods were better but for similarity joins the
partition-based methods achieved higher performance.

6.3.5 Comparision with Approxiamte Algorithms
We compared with approximate similarity join algorithms,

BayesLSH-lite [19], which approximately computed the re-
sults and may miss results. We set the expected recall of

635

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 3 4

T
im

e
(s

)

Threshold

B
ed

-tree
ListMerger

EDJoin-d
QChunk-d

PassJoin-d
EDJoin-p

QChunk-p
PassJoin-p

(a) ED, DBLP

 100

 1000

 10000

 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold

AllPair-d
PPJoin-d

PPJoin+-d
AdaptJoin-d

AllPair-p
PPJoin-p

PPJoin+-p
AdaptJoin-p

(b) Jac, Wiki
Figure 14: Evalutaion on Disk-based Algorithms.

BayesLSH-lite to 97%. Figure 15 shows the results. In the
figure, we illustrated the actual recall of BayesLSH-lite.
We can see that BayesLSH-lite indeed missed some re-
sults. For larger τ , BayesLSH-lite achieved worse perfor-
mance than exact similarity join algorithms. There are two
main reasons. First, exact similarity join algorithms can
generate high-quality signatures for larger thresholds. Sec-
ond, BayesLSH-lite was expensive to implement the LSH
functions and took very long time to build the index. For
very small thresholds (e.g., ≤0.4), BayesLSH-lite was bet-
ter, because there were large numbers of candidates and
BayesLSH-lite can effectively prune these candidates. Thus
for large thresholds, we recommended exact similarity join
algorithms; and for small thresholds (e.g., ≤0.4), we sug-
gested approximate similarity join algorithms.

7. CONCLUSION
This paper provides a comprehensive survey on a wide

spectrum of existing string similarity join algorithms, in-
cluding, ListMerger, PartEnum, AllPair, PPJoin, EDJoin,
QChunk, VChunk, AdaptJoin, PassJoin, TrieJoin, FastSS,
and M-Tree, and compares them through extensive experi-
ments on seven real-world datasets with different character-
istics. We provide the following experimental findings.
(1) For Edit Distance, PassJoin is the best choice and it
outperforms other algorithms in terms of both running time
and memory usage. On datasets with very short strings,
FastSS is an alternative choice as it achieves better perfor-
mance than PassJoin but with higher memory overhead.
(2) For Jaccard, Cosine, Dice, AdaptJoin and PPJoin+
are the best choices. On large datasets, AdaptJoin outper-
forms other algorithms. On small datasets, for large simi-
larity thresholds, PPJoin+ outperforms other algorithms; for
small thresholds, AdaptJoin beats other algorithms.
(3) For Edit Distance, the similarity join problem is hard
for datasets with short strings as there are large numbers of
results and it is hard to devise effective filtering techniques.
(4) For the q-gram based methods, parameter q has effect
on the performance and it is not easy to select an appropri-
ate parameter q to achieve high performance. Generally q
should be neither too small nor very large.
(5) Most of existing algorithms cannot achieve high perfor-
mance for really large datasets and it calls for new disk-based
algorithms and parallel algorithms for really large datasets.
Acknowledgement. This work was partly supported by
NSF of China (61272090 and 61373024), 973 Program of
China (2011CB302206), Beijing Higher Education Young
Elite Teacher Project (YETP0105), Tsinghua-Tencent Joint
Laboratory, “NExT Research Center” funded by MDA, Sin-
gapore (WBS:R-252-300-001-490), and FDCT/106/2012/A3.

8. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In VLDB, pages 918–929, 2006.
[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs

similarity search. In WWW, pages 131–140, 2007.

 1

 10

 100

 1000

 0.5 0.6 0.7 0.8 0.9

T
im

e
(s

)

Threshold

87% 93%

97% 97%

98%

AllPair
PPJoin

PPJoin+
AdaptJoin

BayesLSH-lite

(a) Jac, Trec

 1

 10

 100

 1000

 0.5 0.6 0.7 0.8 0.9

T
im

e
(s

)

Threshold

99% 97%
98%

98%

99%

AllPair
PPJoin

PPJoin+
AdaptJoin

BayesLSH-lite

(b) Jac, Enron
Figure 15: Comparision with Approxiamte Methods
[3] A. Behm, C. Li, and M. J. Carey. Answering approximate

string queries on large data sets using external memory. In
ICDE, pages 888–899, 2011.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, page 5, 2006.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In VLDB,
pages 426–435, 1997.

[6] D. Deng, G. Li, and J. Feng. A pivotal prefix based filtering
algorithm for string similarity search. In SIGMOD, 2014.

[7] D. Deng, G. Li, J. Feng, and W.-S. Li. Top-k string similarity
search with edit-distance constraints. In ICDE, pages 925–936,
2013.

[8] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string joins
in a database (almost) for free. In VLDB, pages 491–500, 2001.

[9] J. Jestes, F. Li, Z. Yan, and K. Yi. Probabilistic string
similarity joins. In SIGMOD Conference, pages 327–338, 2010.

[10] Y. Kim and K. Shim. Parallel top-k similarity join algorithms
using mapreduce. In ICDE, pages 510–521, 2012.

[11] H. Lee, R. T. Ng, and K. Shim. Power-law based estimation of
set similarity join size. PVLDB, 2(1):658–669, 2009.

[12] H. Lee, R. T. Ng, and K. Shim. Similarity join size estimation
using locality sensitive hashing. PVLDB, 4(6):338–349, 2011.

[13] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, pages
257–266, 2008.

[14] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: A
partition-based method for similarity joins. PVLDB,
5(3):253–264, 2011.

[15] X. Lian and L. Chen. Set similarity join on probabilistic data.
PVLDB, 3(1):650–659, 2010.

[16] A. Metwally and C. Faloutsos. V-smart-join: A scalable
mapreduce framework for all-pair similarity joins of multisets
and vectors. PVLDB, 5(8):704–715, 2012.

[17] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin. Efficient exact
edit similarity query processing with the asymmetric signature
scheme. In SIGMOD Conference, pages 1033–1044, 2011.

[18] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD Conference, pages 743–754, 2004.

[19] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive
hashing for fast similarity search. PVLDB, 5(5):430–441, 2012.

[20] B. S. T. Bocek, E. Hunt. Fast Similarity Search in Large
Dictionaries. Technical Report ifi-2007.02, Department of
Informatics, University of Zurich, April 2007.
http://fastss.csg.uzh.ch/.

[21] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In SIGMOD Conference,
pages 495–506, 2010.

[22] J. Wang, G. Li, and J. Feng. Trie-join: Efficient trie-based
string similarity joins with edit-distance constraints. PVLDB,
3(1):1219–1230, 2010.

[23] J. Wang, G. Li, and J. Feng. Can we beat the prefix filtering?:
an adaptive framework for similarity join and search. In
SIGMOD Conference, pages 85–96, 2012.

[24] W. Wang, J. Qin, C. Xiao, X. Lin, and H. T. Shen. Vchunkjoin:
An efficient algorithm for edit similarity joins. IEEE Trans.
Knowl. Data Eng., 25(8):1916–1929, 2013.

[25] C. Xiao, W. Wang, and X. Lin. Ed-join: an efficient algorithm
for similarity joins with edit distance constraints. PVLDB,
1(1):933–944, 2008.

[26] C. Xiao, W. Wang, X. Lin, and H. Shang. Top-k set similarity
joins. In ICDE, pages 916–927, 2009.

[27] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity
joins for near duplicate detection. In WWW, pages 131–140,
2008.

[28] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava.
Bed-tree: an all-purpose index structure for string similarity
search based on edit distance. In SIGMOD Conference, pages
915–926, 2010.

636

	Introduction
	Preliminaries
	Filter-Verification Framework
	Filter Step
	Verification Step

	Signature-Based Algorithms
	Count Filtering
	Length Filtering
	Prefix Filtering
	Prefix Filtering
	Optimizations on Edit Distance
	Optimizations on Jaccard, Cosine, Dice
	The AdaptJoin Algorithm

	Other Signatures
	The VChunk Algorithm
	The PassJoin Algorithm
	The PartEnum Algorithm
	The FastSS Algorithm

	Other Algorithms
	The TrieJoin Algorithm
	The M-Tree Algorithm
	Other Related Works

	Experiments
	Experiments on Edit Distance
	Experiments on Jaccard, Cosine and Dice
	Other Experiments
	Similarity Search
	Evaluation on Parallel Algorithms
	Evalutaion on Dataset Distribution
	Evaluation on Disk-based Algorithms
	Comparision with Approxiamte Algorithms

	Conclusion
	References

