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Abstract

We study the fundamental issue of decidability of satisfiability
over string logics with concatenations and finite-state transducers
as atomic operations. Although restricting to one type of opera-
tions yields decidability, little is known about the decidability of
their combined theory, which is especially relevant when analysing
security vulnerabilities of dynamic web pages in a more realis-
tic browser model. On the one hand, word equations (string logic
with concatenations) cannot precisely capture sanitisation func-
tions (e.g. htmlescape) and implicit browser transductions (e.g. in-
nerHTML mutations). On the other hand, transducers suffer from
the reverse problem of being able to model sanitisation functions
and browser transductions, but not string concatenations. Naively
combining word equations and transducers easily leads to an unde-
cidable logic. Our main contribution is to show that the “straight-
line fragment” of the logic is decidable (complexity ranges from
PSPACE to EXPSPACE). The fragment can express the program
logics of straight-line string-manipulating programs with concate-
nations and transductions as atomic operations, which arise when
performing bounded model checking or dynamic symbolic execu-
tions. We demonstrate that the logic can naturally express con-
straints required for analysing mutation XSS in web applications.
Finally, the logic remains decidable in the presence of length, letter-
counting, regular, indexOf, and disequality constraints.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Logics of Programs

Keywords String analysis, XSS, word equations, transducers

1. Introduction

The past decade has witnessed a significant amount of progress in
constraint solving technologies, thanks to the emergence of highly
efficient SAT-solvers (e.g. see [15, 42, 46]) and SMT-solvers (e.g.
see [11, 24, 42]). The goal of SAT-solvers is to solve constraint
satisfaction problem in its most basic form, i.e., satisfiability of
propositional formulas. Nowadays there are numerous highly ef-
ficient solvers including Chaff, Glucose, Lingeling, and MiniSAT,
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to name a few (e.g. see [3] for others). Certain applications, how-
ever, require more expressive constraint languages. The framework
of satisfiability modulo theories (SMT) builds on top of the basic
constraint satisfaction problem by interpreting atomic propositions
as a quantifier-free formula in a certain “background” logical the-
ory, e.g., linear arithmetic. Today fast SMT-solvers supporting a
multitude of background theories are available including Boolector,
CVC4, Yices, and Z3, to name a few (e.g. see [4] for others). The
backbones of fast SMT-solvers are usually a highly efficient SAT-
solver (to handle disjunctions) and an effective method of dealing
with satisfiability of formulas in the background theory.

In the past seven years or so there have been a lot of works
on developing robust SMT-solvers for constraint languages over
strings (a.k.a. string solvers). The following (incomplete) list of
publications indicates the amount of interests in string solving
(broadly construed): [7, 8, 16, 21, 23, 28-31, 34, 35, 38, 43, 48,
53, 55, 57, 65-69, 71-76]. One main driving force behind this re-
search direction — as argued by the authors of [8, 23, 29, 35, 38,
38, 48, 48, 57, 65-69, 75, 76] among others — is the application
to analysis of security vulnerabilities in web applications against
code injections and cross-site scripting (XSS), which are typically
caused by improper handling of untrusted strings by the web appli-
cations, e.g., leading to an execution of malicious JavaScript in the
clients’ browsers.

Despite the amount of recent progress in developing practical
string solvers, little progress has been made on the foundational is-
sues of string solving including decidability, which is particularly
important since it imposes a fundamental limit of what we can ex-
pect from a solver for a given string constraint language (especially
with respect to soundness and completeness). Perhaps the most im-
portant theoretical result in string solving is the decidability of sat-
isfiability for word equations (i.e. string logic with the concatena-
tion operator) by Makanin [45] (whose computational complexity
was improved to PSPACE by Plandowski [51, 52]). It is known
that adding regular constraints (i.e. regular-expression matching)
preserves decidability without increasing the complexity [25, 52].
Very few decidability results extending this logic are known.

For such an application as detecting security vulnerabilities in
web applications in a realistic browser model (e.g. see [70]), word
equations with regular constraints alone are insufficient. Firstly,
browsers regularly perform implicit transductions. For example,
upon innerHTML assignments or document.write invocations,
browsers mutate the original string values by HTML entity decod-
ing, e.g., each occurrence of &#34; will be replaced by ". [Mod-
ern browsers admit some exceptions including the HTML entity
names &amp;, &1t;, and &gt; (among others), which will not
be decoded.] Since such transductions involve only conversions
of one character-set encoding to another, they can be encoded as
finite-state (input/output) transducers, as has already been noted in



[23, 35, 66, 70] (among others). Secondly, in an attempt to pre-
vent code injection and XSS attacks, most web applications will
first sanitise untrusted strings (e.g. obtained from an untrusted ap-
plication) before processing them. Common sanitisation functions
include JavaScript-Escape and HTML-Escape (an implementation
can be found in The Closure Library [5]). HTML-Escape converts
reserved characters in HTML such as &, <, and ' to their respec-
tive HTML entity names &amp;, &1t; and &#39;. On the other
hand, JavaScript-Escape will backslash-escape certain metacharac-
ters, e.g., the character ' and " are replaced by \' and \". Again,
such sanitisation functions can be encoded as finite-state transduc-
ers, as has been noted in [35] (among others).

Example 1. The following JavaScript code snippet adapted from
a recent CACM article [37] is a simple example that uses both
concatenations and finite-state transducers (both explicitly and im-
plictly):

var x = goog.string.htmlEscape(cat);

var y = goog.string.escapeString(x);

catElem.innerHTML = '<button onclick=
"createCatList(\'' + y + '\')">' + x + '</button>';

The code assigns an HTML markup for a hyperlink to the DOM el-
ement catElem. The hyperlink creates a category cat whose value
is provided by an untrusted third party. For this reason, the code
attempts to first sanitise the value of cat. This is done via The Clo-
sure Library [5] string functions htmlEscape and escapeString
(implementing JavaScript-Escape). Inputting the value Flora &
Fauna into cat gives the desired HTML markup:

<button onclick="createCatList('Flora &amp; Fauna')">
Flora Fauna</button>

On the other hand, inputting the value ') ;alert (1) ;// to cat,
results in the HTML markup:

<button onclick="createCatList('&#39;);alert(1);//')">
) ;alert(1);//')</button>

When this is inserted into the DOM via innerHTML, an implicit
browser transduction will take place, i.e., first HTML-unescaping
the value inside the onclick attribute and invoking the attacker’s
script alert (1) after createCatList. This subtle XSS bug (a
type of mutation XSS [32]) is due to calling the appropriate escap-
ing functions in the wrong order. O

It is well-known (e.g. see [8, 57, 75]) that string solving can
be applied to detecting security vulnerabilities against a given in-
jection and XSS attack pattern' P in the form of a regular ex-
pression. After identifying certain “hot spot” variables in the pro-
gram where attacks can be performed (e.g. possibly via taint anal-
ysis), a string constraint will be generated that is satisfiable iff
the program is vulnerable against a given attack pattern. In the
above example, to analyse security vulnerabilities in the variable
catElem.innerHTML against the following attack pattern (given
in JavaScript regex notation; blank space inserted for readability):

el = /<button onclick=
"createCatList\(' C ' | [~'Ix[~"\\1 ' ) \);
[~'I*%[~"\\1" )">.*<\/button>/

one would express the program logic as a conjunction of:
* z = Ri(cat)
*y = Ra(x)

* z=w: Y- w2z ws for some constant strings w1, wa, w3,
e.g., wi is <button onclick="createCatList ('

! Attack patterns are identified from previous vulnerabilities, some of which
have been well-documented, e.g., see [2, 6].

* catElem.innerHTML = R3(z)
* catElem. innerHTML matches el.

Here, Ry and R, are, respectively, transducers implementing
htmlEscape and escapeString, while R3 is a transducer im-
plementing the implicit browser transductions upon innerHTML
assignments. Note that the above string constraint cannot be writ-
ten as word equations with regular constraints alone since the
finite-state transducers replace each occurrence of a substring (e.g.
&#39;) in a string by another string (e.g. the single character "). To
the best of our knowledge, there is no known decidable logic which
can express the above string constraint.

Contribution: We study the decidability of satisfiability over
string logics with concatenations, finite-state transductions, and
regex matching as atomic operations. Naively combining concate-
nations and transducers easily leads to an undecidable logic (e.g.
see [10, 16]). In fact, it was shown in [10] that restricting to string
constraints of the form z = y - z A ¢ = R(z), where R ranges
over finite-state transducers, is undecidable. [Actually, R can be
restricted to a relatively weak class of finite-state transducers that
express only regular relations (a.k.a. automatic relations [18]).]
Our main contribution is to show that the “straight-line fragment”
of the logic is decidable (in fact, is EXPSPACE-complete, but
under a certain reasonable assumption the complexity reduces to
PSPACE). In fact, our decidability results provide an upper bound
for the maximum size of solutions that need to be explored to
guarantee completeness for bounded-length string solvers when-
ever the input constraint falls within our straight-line fragment. The
fragment can express the program logics of straight-line string-
manipulating programs with concatenations and transductions as
atomic operations. This includes the program logic of Example
1. In fact, straight-line programs naturally arise when performing
bounded model checking® or dynamic symbolic executions, which
unrolls loops in the programs (up to a given depth) and converts
the resulting programs into static single assignment form (i.e. each
variable defined once). Please consult [26, 42, 65] for more details.

Example 1 is one example of analysis of mutation XSS vulnera-
bilities that can be expressed in our logic. In this paper, we provide
three other mutation XSS examples that can be expressed in our
logic (adapted from [32, 37, 62]).

Finally, the case study of [57] suggested that the use of length
constraints (comparing lengths of different strings) and IndexOf
constraints (IndexOf(x,y) outputs the position of an occurrence
of a given string = in another string y) is prevalent in JavaScript
programs. To this end, we show that our logic is still decidable
(with the same complexity) when extended with:

1. (linear) arithmetic constraints whose free variables are inter-
preted as one of the following: integer variables in the program,
length of a string variable, or the number of occurrences of a
certain letter in a string variable.

2. IndexOf constraints of the form h = IndexOf(w, y), where w
is a constant string and h is an integer variable. This is the most
frequent usage of IndexOf operator in JavaScript.

All the examples in the benchmark examples of [57] were observed
to belong to a class called solved forms [30], which is a subset
of our string logic with linear arithmetic constraints. Lastly, we
can also add unrestricted disequality constraints between string
variables, while still preserving decidability.

Organisation:  Section 2 fixes general mathematical notations
and reviews the necessary concepts on automata and transducers
that will be used throughout the paper. In Section 3, we define a

2 Note that this does not mean restrictions to strings of bounded length.



general string constraint language that combines concatenations,
finite-state transductions, and regex matching. The language is un-
decidable even after imposing various restrictions that have been
proposed in the literature. In Section 4, we recover decidability for
the straight-line fragment. In Section 5, we show that decidability
can be retained even when length and IndexOf constraints are in-
corporated. We conclude with the related work and possible future
works in Section 6. Additional material can be found in the full
version [44].

2. Preliminaries

General notations: Given two integers ¢, j, we write [i, j] to
denote the set {i,...,j} of integers in between ¢ and j. For each
integer k, we write [k] to denote [0, k]. Given a binary relation
R C Sx Sandaset A C S, we use R(A) to denote the set
{s" € S| (s,s") € Rforsome s € A}. In other words, R(A) is
the post-image of A under R. We use R~ to denote the reverse
relation, i.e., (s,s’) € R™Viff (s',s) € R for each 5,5’ € S.
Notice then that R™*(A) is the pre-image of A under R. The term
DAG stands for directed acylic graphs.

Regular languages: Fix a finite alphabet Y. Elements in X"
are interchangeably called words or strings. For each finite word
w=w... w, €Y%, we write w[i, j], where 1 < i < j < n, to
denote the segment wj . . . w;. We use w[i] to denote w(i, ] = w;.
In addition, the symbol |w| denotes the length n of w, while the
symbol |w|, (a € X) denotes the number of occurrences of a in w.
Recall that a nondeterministic finite-state automaton (NFA) is
atuple A = (X,Q,9,q, F), where @ is a finite set of states,
0 C @ x ¥ x @ is the transition relation, go € @ is the initial state,
and F' C ( is the set of final states. A run of A on w is a function
p: {0,....,n} — Q with p(0) = go that obeys the transition
relation 0, i.e., (p(4), ws, p(i+1)) € d foreachi € {0,...,n—1}.
We write Ajg 41 to denote A but the initial state (resp. set of final
states) is replaced by q (resp. {q’}). We may also denote the run p
by the word p(0) - - - p(n) over the alphabet Q. The run p is said
to be accepting if p(n) € F, in which case we say that the word
w is accepted by A. The language L(A) of A is the set of words
in X" accepted by .A. Such a language is said to be regular. Recall
that regular languages are precisely the ones that can be defined
by regular expressions. In the sequel, when the meaning is clear
from the context, we will sometimes confuse an NFA or a regular
expression with the regular language that it recognises/generates.

Transducers and rational relations: A transducer (short for
“finite-state input output transducer”) is a two-tape automaton that
has two heads for the tapes and one additional finite control; at ev-
ery step, based on the state and the letters it is reading, the automa-
ton can enter a new state and move some (but not necessarily all)
tape heads. Each transducer generates a binary relation over strings
called rational relation.

We will now make this definition more precise. A transducer
over the alphabet Y is a tuple A = (T, Q, 8, go, F), where I" := X2
and X. := X U {e}, such that A is syntactically an NFA over I.
The transducer A is said to be synchronised if A (viewed as an
NFA) does not accept words w = (a1,b1)--- (an,bs) € (X2)*
such that there exist ¢, € [n] with ¢ < j such that one of the
following conditions holds: (1) (a;, b;) € X x {€} and b; € %,
(2) (ai, b)) € {e} x X and a; € X. Intuitively, as soon as the
two heads go out of sync, the head that is lagging behind is no
longer allowed to move forward. The relation R C (X*)? that A
recognises consists of all tuples w for which there is a run

a1 a2 In
Ti=go gL T g

of A (treated as an NFA) such that w = 01 0 02 0 - - - © 0, Where
the string concatenation operator o is extended to tuples over words

component-wise (i.e. (vi,v2)o (w1, w2) = (viwi,v2w2)). Arela-
tion is said to be rational if it is recognised by a transducer. A rela-
tion is said to be synchronised rational (a.k.a. regular or automatic;
see [10, 16, 17]) if it is recognised by a synchronised transducer.
Rational relations satisfy some nice properties (e.g. see [14, 54]):
(1) closure under union and concatenation, and (2) the pre/post im-
age of a regular language under a rational relation is regular. The
transducers/automata witnessing the above two properties can also
be constructed efficiently: taking union can be done in linear-time,
while taking concatenation and pre/post image of a regular lan-
guage can be done in quadratic time (e.g. see [12-14]). Synchro-
nised rational relations are adequate for certain applications (e.g.
see [9, 17, 64, 74]), while also satisfying effective closure under
intersection and complementation (cf. [17]).

Example 2. The operator replace-all replaces all occurrences
of subwords matched by a regular expression e by a word in a
regular expression e’, which in a Vim-like notation can be written
as s/e/e’/g. There are various matching strategies that are used
by real-world programming languages, e.g., first match, longest
match, etc. They can all be encoded as transducers (e.g. see [55]).
One particular use of replace-all is to replace words that match
a regular language L by e (i.e. an erase operation). Such usage of
replace-all can be found in sanitisation of PHP scripts, e.g., see
[8,28,29,73,75]. For example, to thwart XSS attack patterns of the
form <script>X*</script> from a string variable x, one could
erase each occurrence of < from x (e.g. see [8, 73, 75]).

Let y = replace-all(z, ¢/A) denote the operation of erasing
each occurrence of letters a € A (e.g. A = {<}) from z and assign
it to y. The transducer 7" for this is simple. It has one state ¢, which
is both an initial and final state. It has | A| transitions, i.e., for each
a € A the transducer T has the transition (g, (a, €), q). |

Computational complexity: In this paper, we study not only de-
cidability but also the complexity of string logics. Pinpointing the
precise complexity of verification problems is not only of fun-
damental importance, but also it often suggests algorithmic tech-
niques that are most suitable for attacking the problem in prac-
tice. In this paper, we deal with the following computational com-
plexity classes (see [61] for more details): P (problems solvable
in polynomial-time), PSPACE (problems solvable in polynomial
space and exponential time), and EXPSPACE (problems solvable
in exponential space and double exponential time). Verification
problems that have complexity PSPACE or beyond — see [39, 60]
for a few examples — have substantially benefited from techniques
like symbolic model checking [47]. As we shall see later, our com-
plexity upper bound also suggests the maximum lengths of words
that need to be explored to guarantee completeness.

3. The Core Constraint Language

We start by defining a general string constraint language that sup-
ports concatenations, finite-state transducers, and regex matching.
The language is a natural generalisation of three decidable string
constraint languages: word equations, finite-state transducers, and
regex matching. The generality of the language, however, quickly
makes it undecidable. To delineate the border of undecidability, we
shall show that the undecidability already holds for various restric-
tions that have been proposed in the literature (e.g. restricting finite-
state transducers to replace-all). We will recover decidability in
the next section.

3.1 Language Definition

We assume a finite alphabet > and countably many string vari-
ables x,y, z, ... ranging over ¥.*. We start by defining relational
constraints.



Definition 1 (Relational constraints). An atomic relational con-
straint over X is an expression o defined by the following grammar:

p = y=aio---ozu(n€N)|y=uw|R(y)

where y, x; are string variables, w € ¥ is a constant word, and R
is a rational relation over X given as a transducer. Here, o is used
to denote the string concatenation operator, which we shall often
omit (or simply replace by -) to avoid notational clutter. A relational
constraint is a conjunction of atomic relational constraints.

In other words, an atomic relational constraint allows us to
test equality of a string variable y with either a concatenation of
string variables or a constant string, or whether the transducer R
can transform x into y. Notice that the atomic constraint y =
Z1 0 --- 0 xy, cannot be defined as a rational relation R(x,y) (or
in fact any binary relation) when n > 1. We now define regular
constraints (i.e. regex matching constraints), which check whether
a word belongs to a boolean combination of regular languages.

Definition 2 (Regular constraints). An atomic regular constraint
over X is an expression of the form P(x), for P a regular language
over % given as an NFA and x a variable. A regular constraint over
Y is a boolean combination of atomic regular constraints over 3
defined by the following grammar:

pu= PE)pAploVe|p

We finally define the class of string constraints by taking the
conjunction of relational and regular constraints.

Definition 3 (String constraints). A string constraint over finite
alphabet 3. is a conjunction of a relational constraint and a regular
constraint over .

String constraints allow us to express general word equations
(i.e., x1...Tn = Y1...Yn for not necessarily distinct variables)
by a conjunction of y = x1 ...z, and y = y1 ... y,. In addition,
when the word equation asserts that one of the x;’s or y;’s is the
constant string w € X, we simply add a regular constraint that
enforces the variable to belong to the language {w}.

An assignment for a string constraint ¢ over X is simply a
mapping ¢ from the set of string variables mentioned in ¢ to 3*.
It satisfies o if the constraint ¢ becomes true under the substitution
of each variable x by ¢(x). We formalise this for atomic relational
and regular constraints (boolean connectives are standard):

1. ¢ satisfies the relational constraint y = x1 - - -y, for string
variables y, 1, . .., Zn, if and only if ¢(y) = (1) - - - t(zn).

2. ¢ satisfies the relational constraint y = w, for string variable y
and word w € ¥*, if and only if ¢(y) = w.

3. ¢ satisfies the relational constraint R(z,y), for a rational rela-
tion R, if and only if the pair (¢(x), t(y)) belongs to R.

4. ¢ satisfies the atomic regular constraint P(z), for P a regular
language, if and only if «(z) € P.

A satisfying assignment for ¢ is also called a solution for . If
 has a solution, then it is said to be satisfiable.

Example 3. In Introduction, we have expressed the program logic
of the script in Example 1 and the attack pattern as a conjunction of
four atomic relational constraints and one regular constraint. O

3.2 The Satisfiability Problem

The definition of the problem is given as follows.

PROBLEM :  SATISFIABILITY.
INPUT : A string constraint ¢ over 2.
QUESTION :  Is ¢ satisfiable?

The generality of the constraint language makes it undecidable,
even in very simple cases.

Proposition 1. SATISFIABILITY is undecidable.

This is because checking satisfiability of constraints of the form
R(z,x) is already undecidable by a simple reduction from the Post
Correspondence Problem (PCP), e.g., see [49, Proof of Proposition
2.14]. For this reason, an acyclicity constraint is often imposed
(e.g. see [10, 12, 13]) to obtain decidability for formulas that are
conjunctions of constraints of the form P(z) or R(z,y), where P
is aregular language and R is a rational constraint. This condition is
defined as follows. Let ¢ be a formula of the form above and G(¢)
the undirected graph whose nodes are the variables in ¢ and there
is an edge {z,y} if R(z,y) is a constraint in ¢. Further, let AC be
the class of those formulas ¢ such that G(¢) is acyclic. Then:

Proposition 2 ([10]). Checking satisfiability of formulas in AC is
PSPACE-complete. In fact, if a formula ¢ € AC is satisfiable, then
it has a solution of size at most exponential in |p|.

The authors of [10] refer to this problem as the generalised in-
tersection problem with acyclic queries (see Theorem 6.7 in [10]).
[Decidability (in fact, in exponential time) of such a restriction al-
ready follows from the classic result by Nivat in the study of ratio-
nal relations (e.g. see the textbook [14]) that the pre/post images of
regular languages under a rational transducer is effectively regular
and the complexity analysis in [12, 13].]

Unfortunately, the positive result in Proposition 2 cannot be eas-
ily extended to our constraint language, as taking the conjunction
of a formula in AC (in particular, of a single rational constraint
R(z,y)) with the very simple word equation = = y turns the satis-
fiability problem undecidable. This is because the undecidable con-
straint R(x, z) can be expressed as: ¢ = y A R(zx,y). Restricting
R to synchronised rational relations does not help either: satisfia-
bility of string constraints of the form z = yz A R(x, z), where R
is a synchronised rational relation, is undecidable [10].

Another option is to restrict the use of finite-state transduc-
ers to the replace-all operators. As we have argued in Exam-
ple 2 this might be sufficient to model some sanitisation functions
that arise in practice. In fact, some string constraint languages that
have been proposed in the literature (e.g. see [65, 75]) permit the
use of the replace-all operator, but not finite-state transduc-
tions in general. It turns out that this restriction is still undecid-
able even for the very restricted use of replace-all of the form
replace-all(z,€/A) (defined in Example 2) which erase all oc-
currences of characters a € A in x. The proof (see full version) is
via a simple but tedious reduction from PCP.

Proposition 3. Checking satisfiability of a constraint of the form
T = yz N\ p, where @ is a formula in AC that only mentions trans-
ducers R(x,y) of the form replace-all(x,e/A), is undecidable.

4. The Straight-Line Fragment

In Section 3, we have explored various syntactic restrictions of
the core constraint language that still permit both concatenation
and transducers, and saw that undecidability still held. In this sec-
tion, we will show that the “straight-line fragment” of the lan-
guage is decidable (in fact, solvable in exponential space). This
straight-line fragment captures the structure of straight-line ma-
nipulating programs with concatenations and finite-state transduc-
tions as atomic string operations. Note that straight-line programs
naturally arise when verifying string-manipulating programs using
bounded model checking and dynamic symbolic executions (e.g.
see [26, 42, 65]), which unrolls loops in the programs (up to a given
depth) and converts the resulting programs into static single assign-



ment form (i.e. each variable defined only once). For applications
to detecting mutation XSS [32], we will see that the formula for
analysing mutation XSS from Example 1 in Introduction can be
expressed in the straight-line fragment. We will also see other such
examples in this section.

Convention. In the sequel, we will treat an atomic relational
constraint of the form y = w, for a word w € X%, as an atomic
regular constraint, i.e., simply treat w as regular expression and
asserty € L(w).

To define the straight-line fragment of the core constraint lan-
guage, we first write R(x,y) as y = R(z). This notation is quite
natural since R can be viewed as a string transformation from the
input z to the output y. [However, a word of caution is necessary:
it is important to remember that R is a relation that need not be a
function in general.] We also say that a variable x is a source vari-
able in the relational constraint ¢ if there is no conjunct in ¢ of the
form x = z1 -+ -z or x = R(y) for some transducer R.

Definition 4 (Straight-line constraints). A relational constraint ¢
is said to be straight-line if it can be rewritten (by reordering the

conjuncts) as a relational constraint of the form \* x; = P;
such that:
(SL1) z1,...,xm are different variables

(SL2) Each P; uses only source variables in y or variables from
{x17...,xi,1}

We say that a string constraint is straight-line if it is a conjunction
of a straight-line relational constraint with a regular constraint. Let
SL be the set of all straight-line string constraints.

An example of a straight-line string constraint is y = R(z) A
z = yyz'. Another example is the constraint from Example 1.
Straight-line restrictions also rule out all the undecidable con-
straints from Section 3, e.g., formulas of the form z = y A R(zx,y)
and x = yz A R(z,x).

The literal definition of straight-line constraints does not give
an efficient algorithm for checking whether a constraint is straight-
line. This, however, can be done efficiently.

Proposition 4. There is a linear-time algorithm for checking
whether a relational constraint ¢ can be made a straight-line con-
straint (by reordering equations) and, if so, outputs the reordered
constraint \[~ | x; = P; satisfying (SLI) and (SL2).

=1

The proof of this proposition is standard. Straight-line relational
constraints can be visualised by drawing a “dependency graph”
of the variables in the constraints. Formally, given a relational
constraint ¢, the dependency graph G(p) of ¢ is the directed graph
whose nodes are the string variables appearing in ¢ and there is an
edge from variable x to y iff (a) ¢ contains a conjunct of the form
R(z,y), for arational relation R, or (b) an equation of the form y =
Z1...xp for some string variables 1 . .. x, which include x. It is
easy to see that straight-line constraints have acyclic dependency
graphs. In fact, the converse is also true provided that the relational
constraint ¢ is uniquely definitional (i.e. there are no two conjuncts
2z = Pand x = P’ in ¢ with the same left-hand side variable).
A linear-time algorithm for Proposition 4, then, first checks if the
given constraint ¢ is uniquely definitional by sequentially going
through each conjunct while maintaining m bits in memory (one
for each variable in the left-hand side of an equation). Once unique
definitionality has been checked, the algorithm checks whether the
directed graph G () is acyclic and, if so, output a topological sort,
which is well-known to be solvable in linear-time (e.g. see [22]).
The topological sort corresponds to a reordering of the conjuncts in
 so that (SL1) and (SL2) are both satisfied.

Our main result states that satisfiability for SL is decidable.

Theorem 5. SATISFIABILITY for the class SL is EXPSPACE-
complete.

Recall that EXPSPACE problems require double-exponential
time algorithms in the worst case. An important corollary of the
proof of Theorem 5 is a bounded model property.

Theorem 6. If a string constraint o in SL is satisfiable, then it

. . (e
has a solution with each word of length at most 22"%

polynomial p(x).

, for some

In Theorem 10 and Theorem 11 below, we identify a natural
restriction of SL that yields an upper bound for satisfiability —
PSPACE (i.e., a single-exponential time) and satisfying models of
size at most single-exponential — and seems sufficiently expressive
in practice (e.g. it subsumes all our examples).

Remark. The reader might be wondering whether Theorem 5 and
Theorem 6 immediately follow from Proposition 2? This is not
the case since AC does not permit equalities and concatenations
(therefore, expressions of the form x = y.z cannot be expressed).
Similarly, the theorems also do not immediately follow from the
effective closure of regular languages under (1) pre/post images
under rational relations (see discussion below Proposition 2), and
(2) concatenation. For example, consider the constraint t = yy N\
y € L(a™ +b") Az € L(ab) over the alphabet ¥ = {a, b}. This
is unsatisfiable. Instead, naively applying the two aforementioned
closure, we would deduce that x matches (a* + b*).(a™ + b*),
which can be matched by ab, i.e., a false positive. As we shall
see later, multiple occurrences of variables in an assignment yield
constraints with “dimensions” > 1 (definition below), instances of
which include all the mutation XSS examples in the paper.

4.1 Application to Detecting Mutation XSS

Before proving Theorems 5 and Theorem 6, we will mention that
the logic SL is sufficiently powerful for expressing string con-
straints that arise from analysis of mutation XSS vulnerability in
web applications. By Theorem 5, such a vulnerability analysis can
be performed automatically. We have seen one such example (i.e.
Example 1). We will now provide other examples of mutation XSS
attacks that can be expressed within the framework of SL.

Example 4. We have seen that the script in Example 1 contains an
XSS bug. As suggested in [37], the corrected version of the script
swaps the order of the sanitisation functions escapeString and
htmlEscape resulting in the following script:

var x = goog.string.escapeString(cat);

var y = goog.string.htmlEscape(x);

catElem.innerHTML = '<button onclick=
"createCatList(\'' + y + '\')">' + x + '</button>';

This script is no longer vulnerable to the attack pattern el provided
in Example 1. The program logic of the corrected script can be
expressed in SL using the same formula as for Example 1 (see
Introduction) except that the transducers R; and Ry are swapped.
The algorithm from Theorem 5 will be able to automatically point
out that the script is secure against the attack pattern el. O

Example 5. This example is an adaptation of vulnerable code
patterns from [32, Listing 1.12] applied to the previous example.
After the JavaScript from Example 1 has been corrected in Example
4, suppose now that a programmer wishes to introduce a new
“title” HTML element into the HTML document in which the new
catalogue category name will be displayed. The following code
snippet contains two lines in this HTML file:

<h1>New catalogue category:
<span id="nodel">TBA</span></h1>
<div id="node2"></div>



The following JavaScript code snippet is a modification of the
JavaScript from Example 4 which additionally puts the new cat-
alogue category name in the title (i.e. ID node1l):

var titleElem = document.getElementById("nodel");
var catElem = document.getElementById('"node2");

var x = goog.string.escapeString(cat);

titleElem.innerHTML = x;

var y = goog.string.htmlEscape(titleElem.innerHTML);

catElem.innerHTML = '<button onclick=
"createCatList(\'' + y + '\')">' + x + '</button>';

This JavaScript now contains a subtle mXSS vulnerability. Con-
sider the value cat = '&#39;);alert(1);//'. The value x
will be the same as cat since the metacharacters ' and " do
not occur in cat. The value of titleElem.innerHTML is, how-
ever, ') ;alert(1);// since an implicit browser transduction oc-
curs upon writing into the DOM via innerHTML. HTMLescap-
ing ') ;alert(1);// results in the string &#39;) ;alert(1);//,
which is the value of y. Another implicit browser transduction takes
place when assigning a value to catElem.innerHTML. The DOM
element catElem now contains the HTML markup:

<button onclick="createCatList('');alert(1);//')">
');alert(1);//')</button>

Upon clicking the button, the browser executes the attacker’s script
alert (1) after createCatList has been invoked. The XSS bug
is due to the programmer’s wrong assumption that the value of
titleElem. innerHTML is the same as x after the assignment.

Let us now encode the program logic of the above JavaScript
as a straight-line string constraint. Let el be the attack pattern
from Example 1. As in Example 1, let R, and R2 be transducers
implementing htmlEscape and escapeString, and let R3 be the
transducer implementing the implicit browser transductions upon
innerHTML assignments. The desired formula can now be written
as a conjunction of

* £ = Ra(cat)

* titleElem. innerHTML = R3(x)

* y = Ri(titleElem.innerHTML)

* z=wi -y w2 -x- w3 for some constant strings w1, w2, w3
* catElem.innerHTML = R3(z)

* catElem. innerHTML matches el.

Observe that this is a straight-line string constraint. Therefore, the
algorithm from Theorem 5 will be able to automatically detect a
vulnerability against the attack pattern el. O

In the full version, we will provide another example of mXSS
bug from adapted from [62] and show how it can be analysed within
the framework of SL.

Remark. Ar this stage, the reader might be wondering about
the security implication when the above formulas ¢ are satisfi-
able or unsatisfiable. Unsatisfiability rules out specific vulnera-
bility pattern. In the case of satisfiability, since attack patterns
(including el) generally overapproximate a set of bad strings, a
solution to @ might not correspond to an actual attack. There
are multiple proposals to address this problem (e.g. see [8, 75]).
One method (e.g. see [8]) is to supply each attack pattern (e.g.
¥ <seript>X™) with a set of test cases in the form of actual
strings (e.g. <script>alert(1);</script>). Replacing el by
a specific test case, p can be checked again for satisfiability.

4.2 Proofs of Theorem 5 and Theorem 6

We start by proving the upper bound of Theorem 5. Then we
explain how Theorem 6 follows from it. Finally, we sketch the
proof of the lower bound of Theorem 5.

4.2.1 Upper Bound of Theorem 5

Let SL, denote the restriction of SL to formulas which do not in-
volve any concatenation, i.e., constraints of the formy = y1 ... yn.
The crux of the algorithm witnessing Theorem 5 is that we trans-
form the input constraint ¢ in SL into one in the class SL,.. After
this, in Step 3 we will apply a classic result in the theory of rational
relations to obtain decidability (or a recent result [10] for a better
complexity). We now provide the details of our algorithm for the
satisfiability problem for SL.

Step 1: simplification of regular constraints Recall that a regu-
lar constraint is a boolean combination of constraints of the form
P(x), where P is a regular language given as an NFA over a finite
alphabet 3. Given a regular constraint 1), there exists an equiv-
alent constraint in disjunctive normal form (DNF) of exponential
size, where each disjunct 6 is a conjunction of literals involving
the atoms from 1) of the form P(z) (so 6 has size linear in |¢|).
From propositional logic, we know that there is a standard enumer-
ation of these disjuncts, i.e., enumerate satisfying assignments of
1 treated as a propositional formula (i.e. each atom P(x) is now
a proposition). Such an enumeration runs in polynomial space and
exponential time.

Next, each disjunct 0 in the aforementioned enumeration can
now be converted into a conjunction

P1(:E1)/\~~~/\Pn(xn) (1)

of positive literals, where each string variable z; is constrained only
by precisely one atomic regular constraint P;. This can be done
by complementing each NFA that occurs as a negative literal in
0, and by computing a single NFA for the intersection of regular
languages by a standard product automata construction in the case
when a string variable is constrained by several literals in 6. This
construction runs in exponential time.

Let ¢ be the given constraint in SL, consisting of the conjunc-
tion of a relational constraint x and a regular constraint ¢. In order
for ¢ to be satisfiable, it is sufficient and necessary that x A 6 is
satisfiable, for some disjunct 6 in the enumeration of disjuncts of
1) in DNF. In this step, our algorithm simply guesses such disjunct
0 (which is of polynomial size). The remaining steps of the algo-
rithm then check whether x A 6 is satisfiable. From our previous
remarks, we may assume then that 6 is of the form (1), where each
string variable x; is uniquely constrained by a literal P;(z;). We
also assume, without loss of generality, that each variable y in x is
constrained by some literal P(y) in 6. Otherwise, we simply add to
0 a literal which states that y belongs to >*.

Step 2: Removing concatenation For this step, we will transform
a given constraint ¢ in SL into a constraint ¢’ that uses only
atomic string constraints of the form z = R(y), i.e., all string
constraints of the form z = y; ...y, are removed. Since word
equations of the form w = yy cannot in general be expressed as
a transducer, our transformation cannot possibly express the same
property that o expresses, i.e., it is impossible that ¢ and ¢’ have
the same set of satisfying assignments in general. However, as we
shall see later, by introducing extra variables and allowing both
conjunctions/disjunctions for our string constraints it is possible
to produce the formula ¢’ without concatenation operators whose
satisfying assignments can be easily transformed into satisfying
assignments of ¢ and vice versa (see Lemma 7 below).

The structure of the straight-line relational constraint ¢ imme-
diately gives us a topological sort 1 < ... < Zm on G(p). We
may assume without loss of generality that all the source nodes are
at the beginning of the topological sort, i.e., it is not the case that
x; < x;4+1 for some non-source node x; and some source node
Zi4+1 (which might happen if they are incomparable in G(¢) con-
strued as a partial order). Next, for each variable y in ¢, we will



define a relational constraint Ay (y) involving only rational rela-
tions (but with conjunctions and disjunctions), a regular constraint
Areg(y), and fresh variables y(1), ..., y(max,), where max, is a
positive integer. We will define these by induction on the position
of y with respect to the order <.

Base cases: A source node y with a regular constraint P(y).
For this, we set Arei(y) := T and Aweg(y) := P(y). We also set
max, = 1 and define a fresh variable y(1).

First inductive case: A non-source node y with an assign-
ment y = yi1...yn and a regular constraint P(y), for some
Y1,...,Yn < y. By induction, we assume that max,, € Zso
and new string variables y;(1), ..., y;(max,,) have all been de-
fined (for each 1 < ¢ < n). The main idea behind our construction
is to interpret each assignment for y; (1 < ¢ < n) as the “concate-
nation” of an assignment for y;(1), . .., y;(maxy, ), respectively.

Formally, let max, = » ", maxy; and S = {1,..., maxy}.
We define a selector function v : S — 72, as follows: For
each k € S it is the case that v(k) is a pair of numbers (3,1),
where i is the smallest number 4 such that & < >%_, max,; and

l:= k:—z;:l maxy, . Intuitively, if v(k) = (i,1), then v “‘selects”
the variable y; for the fresh variable y(k), and [ further “refines”
this selection to y;(1).

In the set Arei(y) we “define” the fresh variables y(k), for each
k € S. We do so by setting Arei(y) to be the conjunction of all
formulas of the form y(k) = y;(l), where k € S and (3,1) = v(k).
Notice that we can express each such conjunct as a transducer
R(y:i(l),y(k)), where R is the identity transducer, i.e., the one that
outputs its input without modification.

We now define Areg(y). To this end, we first observe that an
accepting run of the automaton P on a word w = wi ---wn,
can be split into N subruns. To make this notion more precise, we
define an N-splitting o of an automaton A with states ) to be a
sequence qo, . . . ,gn € @ such that each state ¢; (¢ € {1,...,N})
is reachable from the state ¢; 1 in A. Recall that A, ] is the NFA
A whose initial (resp. set of final states) is replaced by g (resp.
{q'}). Then Areg(y) is defined as:

V' Paoad WD) A APl 1 gman, ) ((max,),

0=q0,---,qmax,

where o ranges over maxy-splittings of P. That is, Areg(y) states
that there is some max,-splitting qo, . .., Gmax, of P such that
each y(k) (1 < k < max,) is accepted by Py, , q.1- This
amounts to y being accepted by P (since y is interpreted as the
“concatenation” of y(1), ..., y(max,), respectively).

Second inductive case: A non-source node y with an assign-
ment y = R(x) and a regular constraint P(y), for some z < y.
By induction, we assume that max, € Z-o and new string vari-
ables z(1),...,x(max.) have all been defined. The crux of the
construction is to replace y = R(z) by “splitting” it into max,
different constraints. This is achieved by splitting the transducer R
(syntactically seen as an NFA over ¥. X X.). More precisely, let
max, = max,. Then Ara(y) is:

maxy
\/ /\ y(l) = R[pifl,pi](x(i))v
0=P0,--»Pmax, =1
where o ranges over all max,-splittings of R. We may define
Areg(y) precisely in the same way as in the first inductive case.

The output formula ¢’:  We have now defined Ara(y) and

Areg(y) for each node y in G(¢). The output of our transforma-
tion is the formula

¢ = N\Ova(y) Adee(v)),

Yy

where y ranges over all variables in ¢.

Notice that ¢’ is not necessarily a string constraint, as Arei(y)
might be a disjunction of relational constraints for some y’s. The
notion of satisfiability extends to this class of formulas in the
standard way. In particular, an assignment ¢ for the variables in
Arel(y) satisfies this formula iff it satisfies one of its disjuncts. The
formula ¢’ is satisfiable iff there is an assignment ¢ for the variables
of ¢’ that satisfies Aret () A Areg(y) for each string variable y in ¢.

Correctness: The following lemma shows that our transforma-
tion is satisfiability preserving; in fact, there is an easy way to ob-
tain satisfying assignments for (o from those of ¢’ and vice versa.

Lemma 7 (Correctness).  is satisfiable iff @' is satisfiable.

The proof is done by induction on the position of nodes in the
topological sort < of G(y). To this end, given a node y in G(p),
we define ¢, to be the set of conjuncts in ¢ involving only y and
variables that precede y in <. That is, the conjuncts in ¢, are the
ones that only mention variables in the set Z, := {z : < y}. For
example, if ¢ contains the constraint z = yy, then this constraint
cannot be a conjunct of ¢, (but it is a conjunct of ). Similarly,
we define ¢y, := Niez, Ara(2) A Areg(x). That is, oy is the set
of conjuncts in ¢’ of the form Arer(z) A Areg(z) involving only
variables in the set Z, = {z(i) : # € Z,,1 < i < maxs}.
We will prove the following technical lemma, which is a stronger
formulation of Lemma 7.

Lemma 8. For each node y in G(p) and every assignment t :
Zy — X* of variables in py, the following are equivalent:

(i) ¢ is a satisfying assignment for the formula @,.
(i) There is a satisfying assignment \" : Z,, — 5 for oy, such that
v(z) =t (z(1)) o ot (z(maxy)) for each x < y.

The proof of Lemma 8 is by induction on the position of y in the
topological sort < of G(p). Due to lack of space we relegate this
proof to the full version. Since Lemma 8 is a stronger formulation
of Lemma 7, the correctness of our construction in Step 2 follows.

Step 3: Solving the final formula After applying the transfor-
mation from Step 2, the size of the resulting formula ¢’ could be
exponential in |¢| due to repeated applications of constraints of the
form y = y1...yn, where some variable y; occurs several times
on the right-hand side of the equation. In particular, there are expo-
nentially many conjuncts of the form Are1(z) A Areg(7) in ', More
precisely, the resulting formula ¢’ is a conjunction of multiple for-
mulas of two types:

* conjunctions of atomic formulas of the form R(z,y), for some
transducer R, or a disjunction of several such formulas.

* atomic formulas of the form P(x), for some regular language
P, or a disjunction of several such formulas.

So, except for the disjunctions, the formula ¢’ satisfies the shape
of the fragment SL, of SL. In fact, it is not difficult to remove
these disjunctions without too much additional computational over-
head. Recall that disjunctions were caused by splitting automata or
transducers. Although in this case a conjunct can have exponen-
tially many disjuncts, we may simply nondeterministically guess
one of the disjuncts (in effect, guessing one of the splittings of the
automata/transducers). Nondeterministic algorithms can be deter-
minised at the cost of quadratically extra space [56]. The resulting
formula ¢’ is now a conjunction of atomic formulas of the form
R(z,y) or P(z). Moreover, it is easy to prove that the undirected
graph G(¢"') defined in Section 3 is acyclic:

Lemma 9. G(y") is acyclic. Thus, ¢’ € AC.



Proof. By construction of ¢" = A (Are(y) A Areg(y)), for each

variable y in ¢’ there is at most one = such that Ara(y) (and,
therefore, ¢’) contains an atom of the form y = R(z), for R a
rational transducer. From this it is clear that G(¢") is acyclic. O

Decidability in EXPSPACE can now be easily obtained by
Proposition 2, i.e., we apply Proposition 2 on the formula ¢" of
size at most exponential in |¢| and so our resulting algorithm runs
in exponential space, as desired.

4.2.2 Proof of Theorem 6

Suppose that ¢ € SL is satisfiable. The previous algorithm com-
putes a formula ¢” in AC such that ¢ is satisfiable iff " is satisfi-
able (cf. Lemma 7). This implies that ¢’ is satisfiable and, so by the
bounded model property from Proposition 2, ¢’ has a solution of
size at most exponential in |¢” |. Now, the size |¢" | is O(Dim(¢) X
l]), where Dim(¢) is the dimension of ¢ which is defined to be
the maximum max, over all string variables x in . The value
Dim(¢) is at most exponential in |p|. This implies that ¢’ has a
o(1

solution of size at most F'(|y|) := 2(Pim(¢) x| O _ 921¥! ( ).
Then, by Lemma 8, ¢ has a solution of size Dim(yp) X F(|¢|) =

; o) ll@M .
2(Pim(e)xe) = 22" , giving us the desired upper bound
on the maximum solution size for ¢ that we need to explore.

4.2.3 Lower Bound of Theorem 5

In order to prove that checking satisfiability of string constraints in
SL is EXPSPACE-hard, we reduce from the acceptance problem
for a deterministic Turing machine M that works in space 2", for
¢ > 1. That is, we provide a polynomial time reduction that, given
an input w to M, it constructs a constraint ¢(w) in SL such that w
is accepted by M if and only if ¢(w) is satisfiable. Due to lack of
space, the complete proof is relegated to the full version. We only
sketch the main ideas below.

The reduction starts by constructing a regular constraint of the
form Pi(z) A - -+ A Pn(z), in such a way that a word w satisfies
this constraint if and only if it codifies a sequence of configura-
tions of M, the first such configuration corresponds to the initial
configuration of M on input w, and the final such configuration
corresponds to a final configuration of M. The we only require to
check that each non-initial configuration in w is obtained from its
preceding configuration by applying the transition function of M.
This is done by adding a set of relational constraints that creates
an exponential number of copies of x (with equations of the form
y = zxx), but deletes certain distinguished parts of each such copy
(with suitable transducers).

4.3 A PSPACE Restriction

We mention a natural restriction of SL that yields a PSPACE upper
bound and seems to be sufficiently expressive in practice. Recall
that the dimension of a string constraint ¢ is the maximum max
over all string variables x in (. [Incidentally, this notion is closely
related to the notion of dimension from the study of context-free
grammars (e.g. see [27]).]

Theorem 10. For any fixed k € N, satisfiability for the class of
Sformulas in SL of dimension k is PSPACE-complete.

The lower bound follows since our logic can easily encode in
dimension one the PSPACE-complete problem of checking empti-
ness of the intersection of m regular languages given as NFA [41].
[In fact, when k = 1, the logic still subsumes SL,..] An easy corol-
lary of the proof of Theorem 6 is the following improved bound.

Theorem 11. For any fixed k € N, if a formula ¢ of dimension
k is satisfiable, then it has a solution with each word of length at
most 2PU4D for some polynomial p(z).

This bound can be derived by noticing from the proof of The-
orem 6 that the maximal solution size of ¢ that one needs to ex-
plore is F(z) := 2Pm(¥)x M)o(l), which is exponential in || if
Dim(¢) is a fixed constant. Note that the dimension of the scripts
in all our examples is 2 (in fact the dimensions of the examples in
the benchmark of [72] are all 1, except for one with dimension 4).

5. Adding Integer and Character Constraints

In this section we extend the language SL from Section 4 with
integer and character constraints, and show that the satisfiability
problem remains decidable in EXPSPACE. We also show that this
bound continues to hold in the presence of two other important
features: the IndexOf constraints and disequalities between strings.

Our language will use two types of variables, str and int. The
type str consists of the string variables we considered in the pre-
vious sections. In particular, a constraint in SL only uses variables
from str. On the other hand, a variable of type int (also called an
integer variable) ranges over the set N of all natural numbers. The
choice of omitting negative integers is only for simplicity, but our
results easily extend to the case when int includes negative inte-
gers. For each T' € {str,int}, we use V(T) to denote the set of
variables of type 7.

We start by defining integer constraints, which allow us to
express bounds for linear combinations of lengths or number of
occurences of symbols in words.

Definition 5 (Integer constraints). An atomic integer constraint
over X is an expression of the form

aiti + -+ anty, < d7

where a1, ...,an,d € Z are constant integers (represented in
binary) and each t; is either (i) an integer variable u € V(int),
(ii) |z| for a string variable x € V(str), or (iii) |z|, for z €
V(str) and some constant letter a € X. Here, |x| (resp. |x|a)
denotes the length of x (resp. the number of occurrences of a in x).
An integer constraint over Y is a Boolean combination af atomic
integer constraints over .

Character constraints, on the other hand, allow us to compare
symbols from different strings. They are formally defined below.

Definition 6 (Character constraints). A atomic character constraint
over ¥ is an expression of the form x[u] = y[v], where: (1)
x and y are either a variable in V(str) or a word in ¥*, and
(2) w and v are either integer variables in V(int) or constant
positive integers. Here, the interpretation of the symbol x|u] is
consistent with our notation from Section 2, i.e., the u-th letter in x.
A character constraint over X is a Boolean combination af atomic
character constraints over 3.

Next, we define the extension of the class SL with integer and
character constraints.

Definition 7 (The class SL®). The class SL® consists of all formu-
las © N Ot N Ochar such that (i) p is a constraint in SL, (ii) O is
an integer constraint, and (iii) Ochar is a character constraint.

Since constraints in SL® are two-sorted, we have to slightly
refine the notion of assignment. Formally, an assignment for a
constraint ¢ in SL® is a mapping ¢ from each variable z € V(7))
in ¢ to an object of type T’ (i.e. either a string or an integer). We
also assume for safety that for each term of the form z[u] in ¢
it is the case that ¢(u) < |u(x)| (i.e., ¢t(u) is in fact a position
in ¢(x)). [If this assumption is not met, we can simply define
that the assignment does not satisfy the formula ¢.] As before, ¢
satisfies o if the constraint ¢ becomes true under the substitution
of each variable x by ¢(z). We formalise this for atomic integer and
character constraints (as Boolean connectives are standard):



1. ¢ satisfies the atomic integer constraint Z?:l ait; < dif and
only if >°7_ ait(t:) < d, where for each 1 < i < n we
have that (1) ¢(t;) = [¢(z)], if t = |x| for z € V(str), and (ii)
u(ti) = |e(z)]a, if t = |x|a for z € V(str) and a € X.

2. ¢ satisfies the atomic character constraint z[u] = y[v] if and
only if ¢(z)[e(uw)] = (y)[t(v)], where (i) t(z) = = (resp.,
(y) = y), if = (resp., y) is a constant word over X, and (ii)
t(u) = u (resp., t(v) = v), if u (resp., v) is a positive integer.

The constraint ¢ is satisfiable if there exists a satisfying assign-
ment for it. The satisfiability problem for SL® is the problem of
deciding if ¢ is satisfiable, for a given constraint ¢ in SL®.

5.1 The Satisfiability Problem for SL°®

In this section, we will show that our EXPSPACE upper bound for
the satisfiability of SL extends to SL®.

Theorem 12. The satisfiability problem for the class SL® is solv-
able in EXPSPACE. Furthermore, if SL® has a solution, then it has

, , (z) ,
a solution of size at most 2*°" ", for some polynomial p(z).

The rest of the section is dedicated to proving the theorem. Let
SL; be the extension of SL, with integer constraints and character
constraints. Given a formula ¢ € SL°, we first transform ¢ into
a constraint ¢’ in SL by using (an extension of) the satisfiability-
preserving transformation from Section 4.2. We will then show that
the formula ¢’ has a bounded model property (cf. Lemma 13 be-
low). More precisely, if ¢’ is satisfiable, then it has a satisfying as-
signment of size at most exponential in |¢’|. This immediately pro-
vides a decision procedure for checking satisfiability of ¢, though a
naive algorithm only yields a triple-exponential procedure. We will
show, however, that this yields a polynomial-space procedure for
checking satisfiability of ¢’, and hence a single exponential space
procedure for checking satisfiability for .

5.1.1 Transforming SL® into SL;.

Suppose that © = Ystr A Vint A Pehar A Preg € SLE, where g is a
relational constraint in SL, ¢reg a regular constraint, iy an integer
constraint, and char a character constraint.

We apply the transformations from Step 1 and 2 in Section
4.2 on the formula ¢ := @ur A @reg € SL, yielding an acyclic
string/regular constraint 1" = A, Ara(y) A Areg(y) With no con-
catenation (but possibly some disjunctions), where each variable
x in 1 is replaced by several variables x(1), ..., z(max;) in 9.
Recall that Lemma 7 states that 1) is satisfiable iff ¢’ is satis-
fiable. In fact, following the notation in Step 2 of Section 4.2,
Lemma 8 shows that for each node y in G(¢) and every assign-
ment ¢ : Zy — X of (string) variables in the constraint ¢, (asso-
ciated with the node y in G(v))), the following two conditions are
equivalent:

* ¢ is a satisfying assignment for the formula 1),,.

* There exists a satisfying assignment " : Z, — X* for the
formula ¢, = A Arel (Y) A Areg(y) such that for each
T <Xy

YyEZy

t(z) =1 (2(1)) oo (z(max,)). *)

Handling the integer constraint is now easy. Because of (*),
we simply replace each occurrence of |y| (resp. |y|a, Where a €
%) in @i by S0 Jy(i)] (resp. S [y(i)]a). Let i be
the resulting formula. [Note that y is not a variable in 2)’.] This
transformation preserves satisfiability, even in the above stronger
sense.

Let us now show how to deal with the character constraint ¢char-
Without loss of generality, we may assume that the term ¢ which

occurs on left/right hand side of atomic character constraint is of
the form z[u] (for an integer variable u), which denotes the u-th
character in z. [If ¢ is a string variable x, we can replace x by
z[u], where w is a fresh int variable, and add the integer constraint
|z] = 1 Aw = 1. Similarly, if ¢ is of the form z[c]|, where c is
an integer constant, we could simply replace this by x[u], for a
fresh int variable u, and add the integer constraint v = c.] Now
the u-th character x[u] in = must fall within precisely one of the
word segments x(1), ..., z(max,). Therefore, we simply make a
nondeterministic guess on which segment z(7) the position z[u]
belongs to, and replace every occurrence of z[u] by z()[u'], where
u’ is a fresh int variable, and add an integer constraint of the form
u = u + 23;11 |z(5)|. Observe that the constraint 6 that we
generate from @enar involves both integer constraint and character
constraints. Then, the formula ¢ is satisfiable iff, for some formula
6 obtained from the aforementioned nondeterministic construction,
the formula )" A 1) A 0 is satisfiable.

Note, however, that v still has some disjunctions and so strictly
speaking it is not a formula in SL,.. So, to complete our transforma-
tion of ¢ into SL¢, we use Step 3 from Section 4.2 on 1)’ to make
further nondeterministic guesses to eliminate the disjunctions. Let
us call a possible resulting formula 1" . Therefore, ¢ is satisfiable
iff, for some +)" and 0, the formula 1)"" A 1) A 0 is satisfiable.

5.1.2 Bounded Model Property for SL;.
We will prove a bounded model property for SL;.

Lemma 13 (Bounded Model). Given a formula o in SLy, if it
is satisfiable, then there exists a satisfying assignment of whose
strings are of length at most exponential in || and whose integers
are of size (in binary) at most polynomial in ||.

Before proving this lemma, we will first show how this can be
used to obtain Theorem 12.

5.1.3 Lemma 13 Implies Theorem 12

As mentioned in Section 5.1.1, the problem of checking whether
an SL° formula ¢ is satisfiable can be reduced in nondeterministic
exponential time to checking whether an SL{ formula ¢’ is satis-
fiable. Next we construct an algorithm that solves this problem in
PSPACE in the size of ', and, therefore, in EXPSPACE in the size
of ¢ (since ¢’ might be exponentially bigger than ¢). Theorem 12
then follows from the fact that nondeterministic exponential time is
contained in EXPSPACE and EXPSPACE computable functions
are closed under composition.

In order to do this, the first step is to restate a stronger form of
Proposition 2. To this end, we first recall the standard generalisation
of the notion of transducers to allow an arbitrary number of tracks
(e.g. see [20]). An m-track (rational) transducer over the alphabet
Yisatuple A = (I,Q,0,q0, F), where I' := X" and X, :=
3 U {€}, such that A is syntactically an NFA over I'. In addition,
we define the m-ary relation R C (3*)™ that A recognises to
consist of all tuples w for which there is an accepting run

o1 oo on
mT:=q — q1 —> *** —> (n

of A (treated as an NFA) such that w = o1 0 02 0 --- 0 Oy,
where the string concatenation operator o is extended to tuples
over words component-wise (i.e. (vi,...,vx) o (w1,...,wk) =
(viwn, ..., vpwg)). An m-ary relation is said to be rational if it
is recognised by an m-ary transducer. To avoid notational clutter,
we shall confuse an m-ary transducer and the m-ary relation that it
recognises. In the following proposition, the set of solutions (i.e.
satisfying assignments) to a formula ¢ in SL® — i.e. mappings
from variables x in ¢ to strings, integers, or characters depending
on the type of x — is interpreted as a relation (i.e. a set of tuples)
by fixing any ordering to the variables occuring in .



Proposition 14 ([10]). There exists an exponential-time algorithm
for computing an m-track transducer A = (I',Q, 0, qo, F') for
the set of solutions of an input formula ¢ € SL, with variables
Z1,...,Tm, where each state in Q is of size polynomial in |p|.
Furthermore, there exists a polynomial space algorithm for:

1. Computing qo.

2. Checking whether a string is a state of Q.

3. Checking whether a state q belongs to F'.

4. Checking whether (q,a,q’) € 6, for some given states q and q'
and a symbol a € T'.

This proposition is a stronger version of Proposition 2, which
follows from the proof of Theorem 6.7 in [10].

Obtaining a PSPACE algorithm for checking satisfiability of a
given formula ¢’ in SL¢ is now almost immediate. Our nondeter-
ministic algorithm guesses an assignment to each character vari-
able in , whose size is linear in |p|. By virtue of Lemma 13, our
algorithm needs to guess an assignment to each integer variable in
© of size polynomial in |¢]| (i.e. numbers represented in binary).
In effect, if |z| (resp. |x|a) appears in the integer constraint of ¢,
our algorithm also guesses the length of (resp. number of occur-
rences of a in) the string variable x. Our algorithm now checks that
the integer constraints and character constraints in ¢ are satisfied.
Next our algorithm guesses assignments to the string variables in (.
However, since they are of exponential size in the worst case, our
algorithm will have to construct the assignment on the fly. By using
Proposition 14, we will have to simultaneously construct the string
assignments to all string variables in ¢. To this end, for each string
variable z, we keep track of |X| 4 1 extra integer counters (count-
ing in binary) I(z) and lo(z), respectively, for each a € X. The
counter [(z) (resp. o) keeps track of the length of (resp. number of
occurrences of a in) the partially constructed string assignment for
x. Putting this all together, if A = (T, Q, , qo, F') is the m-track
transducer for the set of solutions for ¢ (as in Proposition 14), our
algorithm first computes go and let ¢ = qo. It then repeats the fol-
lowing step until (i) ¢ € F, and (ii) I(z) = |z| and l,(x) = |z]a,
for each string variable = and letter a € 3::

1. Guess a state ¢’ of Q and a symbol @ € I' = X" of A, and
check that (g, @, q’) € & in polynomial space.

2. Ifa= (a1,...,am), thensetl(x;) := l(x;) + 1 and I (z;) :=
la(zi) + 1 for each i € {1,...,m} and a € X satisfying
a; = a.

3. Setq:=¢

This is a nondeterministic algorithm that uses polynomial space.
Nondeterministic algorithms can be determinised at the cost of
quadratically extra space [56]. As for the bounded model property
part of Theorem 12, it can be derived in precisely the same way as
Theorem 6.

5.1.4 Proving Lemma 13

Our proof idea goes as follows. Given a satisfiable formula ¢ €
SLy with m variables, we suppose that ¢ is a satisfying assignment
of . It assigns each character variable x[u] to a certain character
t(z[u]) € X. So, we will only have to ensure the existence of a sat-
isfying assignment that assigns each string (resp. integer) variable
to a small enough string (resp. integer). To this end, Proposition 14
gives an m-track transducer A = (T', Q, d, qo, F') that recognises
the set of solutions of ¢. The number of states in A is exponential
in |¢|. Next we erase the input tape of A, while equipping it with
nonnegative integer-valued counters that cannot be decremented.
The resulting machine is a monotonic (Minsky’s) counter machine,
whose set of final configurations captures the set of solutions for .
Monotonic counter machines are restrictions of reversal-bounded

counter machine [36] (i.e. counter machines whose counters can
switch between non-incrementing and non-decrementing modes
only for a fixed » € N number of times). [In the case of monotonic
counter machines, we have » = 0]. Such a computation model is
not Turing-complete. In fact, their sets of reachable configurations
are effectively semi-linear, as was first shown in [36]. We will use a
recent result from [40, 63] to analyse the size of the smallest reach-
able configuration, which will give us the bounded model property
of SL.

We now formalise the notion of monotonic counter machine
with £ € N counters. A monotonic counter machine is a tuple
A = (Q,0,q0, F, P), where: (1) Q is a finite set of states, (2)
go € @ is an initial state, (3) F' C (@ is a set of final states,
4) P = {p1,...,pr} is a set of k counters, and (5) 6 C (Q X
Consp) x (Q x {0,1}*) is the transition relation, where Consp
is the set of counter tests of the form /\f:1 pi ~; 0 such that
~; € {=,>}foreach 1 < i < k. A vector o € {0,1}" such
that (g,%,q’,v) € 8, for q,¢' € Q and v € Consp, is called an
update vector. In the sequel we shall also denote this vector by its
characteristic set, i.e., the one which consists of all counters p; € P
such that o[i] = 1.

A configuration of A is a pair (¢, ), where ¢ € Q and 7 € N*.
A run 7 of A is a sequence of the form

(90,0), (q1,01), .-, (Gn, Vn)
such that:
*qi € Qforeach1 <i<mn,
* o = (0,...,0) (i.e., counters are initially empty),

* foreach 1 < ¢ < nthere exists a transition (gi—1, ¥ (%), ¢, ¢) €
0 such that ¢ (;—1) is true, and 9; = T;—1 + C.

The configuration (gn, Ur) is said to be accepting if g» € F. The
set of accepting configurations of .4 is denoted by £L(.A).

From our transducer A = (T', @, J, qo, F'), we construct our
monotonic counter machine B = (Q, ', qo, F, P), where P con-
sists of the following counters:

* C|z|, for each string variable x in ¢ and each letter a € X;
* ¢, for each integer variable u in (;

* Yalu) and 2, for each x[u] occuring in a character constraint
of .

The counter ¢, records the number of a’s seen so far in in the
transducer’s track corresponding to the variable x. The counter ¢,
records the guessed value for the variable u. To avoid notational
clutter, we shall confuse c|;|, (resp. c.) with |z|, (resp. u). The
counter ¥/,,] records a guess for the position of v in , which has
to be recorded separately due to the different tracks in .A. The value
of 2z, is a boolean variable (i.e., either O or 1) that acts as a flag
whether the guess for the variable y,, is complete.

We now specify the transitions in §’. In doing so, we will ensure
that once a variable of the form 2, is set to 1, the value of y, [y
can no longer be incremented. Let W be the set of all character
variables x[u] in . For each Y C W, let ¢y denote the formula
of the form /\x[u]EY Zpiu] = 0 A /\x[u]EW\Y Zp[u) > 0. Then:

1. If (q,a,q') € 6, where @ = (ax, - .., am), then for each subset
Y C W we add to & each transition of the form

(q7 wY7 ql7 Z)7

where Z consists of: (1) each |z],, with a; # €, (2) Yz, for
each z[u] € Y, and (3) if z,,[,) = 0 and a; = v(z:[u]), the set
Z may (nondeterministically) contain z, [,

2. (¢, T, q, {u}) for each integer variable u in (.



In other words, the first transition above simply simulates a transi-
tion of A, while the second transition nondeterministically incre-
ments the integer counter u.

Recall that ¢ is our initial formula in SL; and ¢ is a satisfy-
ing assignment for it. Now, let in¢ be the conjunct of ¢ contain-
ing the integer constraint. We use ¢, to denote a conjunction of
(i) the constraint ¢in¢ but substituting every occurrence of |z| by
> acs [7a. (i) a conjunction of constraints of the form u = Y,y
for each x[u] € W (i.e. all positions ¥, equal u), and (iii) a con-
junction of constraints of the form z,[,; = 1 for each z[u] € W
(i.e. all y,[,) have been completely guessed). The following lemma
is immediate from our construction and Proposition 14.

Lemma 15. Given a configuration (q,v) of B, the following are
equivalent:

* (q,9) € L(B) and v satisfies Piyy.
* There exists a satisfying assignment . of p whose integer values
agree with v and whose character values agree with .

‘We now use the following proposition, which is a result of [40]
(see the proof of [63, Proposition 7.5.5]):

Proposition 16. Given a monotonic k-counter machine A with
n states, the set of reachable configurations can be represented
as a disjunction of existential Presburger formulas, each of size
polynomial in k 4 log(n) and at most O(k) variables.

Indeed, in the above proposition the number of disjuncts is poly-
nomial in n, but this is not important for our purpose. It is now easy
to obtain a satisfying assignment for ¢ given our original satisfying
assignment ¢. By the above proposition, the set of reachable config-
urations of the monotonic counter machine B that we constructed is
a disjunction of existential Presburger formulas each of size poly-
nomial in k + log(n) and with O(k) variables, where £ = O(|¢|)

and n = 21¢1°", By Lemma 15 and our assumption that ¢ is
satisfiable with assignment ¢, it follows that one of these disjuncts
1) is satisfiable. Scarpellini [59, Theorem 6(a)] proved that a sat-
isfiable existential Presburger formula 6 with ¢ variables has so-
lutions where each variable is assigned a number that is at most

2(101+e) 0 (and thus can be represented with at most (|0] 4 ¢)°V)
bits). Applying Scarpellini’s result on ¥ now gives us a satisfying
assignment of ¢ which assigns numbers of polynomially many bits
to integer variables of ¢ and lengths of string variables. This com-
pletes the proof of Lemma 13.

5.2 Extensions with Disequalities and IndexOf

Finally, we show that two important features can be added to the
language while retaining decidability in EXPSPACE: Disequalities
between strings and IndexOf constraints.

Disequalities: Assume that constraints in SL® are now extended
with disequalities of the form = # y, for x,y € V(str), which state
that = and y are interpreted as different strings. The disequality
relation is regular, and thus can be expressed as a transducer y =
R(x). The problem is that the addition of this transducer may yield
a constraint that is no longer uniquely definitional. To solve this,
we use integer and character constraints; in fact, the disequality
x # y is equivalent to (Jz| # |y|) V (z[u] # ylu]), for a
fresh variable v € V(int). More formally, if ¢ is a constraint
in SL® and © # y is a disequality between string variables, then
@ A (z # y) is satisfiable if and only if either the SL® constraint
© A (Jz] # |y|) or the SL® constraint ¢ A (z[u] # ylu]) is
satisfiable. Checking if any of these constraints is satisfiable can
be solved in EXPSPACE from Theorem 12. Clearly, adding more
disequalities does not increase the computational cost if we use a

nondeterministic algorithm that chooses to check either |z| # |y|
or z[u] # y[u] for each disequality = # y.

Expressing the IndexOf method: One reason we introduced the
character constraints is, besides the use of the JavaScript string
method charAt (which is used rather frequently in JavaScript
according to the benchmark [57]), they can also be used to define
IndexOf(w), x) for any word w € X*, which is the most standard
usage of IndexOf method in practice. We consider both the firsz-
occurrence semantics (i.e., for an integer variable u, the constraint
u = IndexOf(w, x) says that w is the first position in z where w
occurs), or the anywhere semantics (i.e., v = IndexOf(w, x) says
that u is any position in « where w occurs).

Formally, an IndexOf constraint is a conjunction of expressions
of the form v = IndexOf(w,x), where w € X%, x is a string
variable/constant, and w is either an integer variable or a positive
integer. The satisfaction of an expression of this form (under any of
the two semantics) with respect to an assignment of the variables
is the expected one (following the intuition given in the previous
paragraph). The next proposition states that IndexOf constraints do
not increase the “expressiveness” of SL°.

Proposition 17. Let ¢ be the conjunction of a constraint in SL®
and the IndexOf constraint u = IndexOf(w, z). The satisfiability
of  can be checked in EXPSPACE.

Proof. Letw = ai ...a, € ¥*. For the anywhere semantics, every
occurrence of u = IndexOf(w, x) in ¢ is replaced by the formula

zlur]l = a1 A+ Azfup] = ap
u=urAuz=ur +1A---ANup =up_1+1,

where u1,...,u, are fresh integer variables. The resulting for-
mula is an SL® constraint whose satisfiability can be checked in
EXPSPACE from Theorem 12.

The first-occurrence semantics could be handled by replacing
u = IndexOf(w, z) with a relational constraint * = zix2z3
and regular constraints stating that w does not occur in x; and
w = x2. This would allow us to use the anywhere semantics to

express © = IndexOf(w, z2), which can be done as before. The
problem with this approach is that the introduction of the word
equation £ = x1x2x3 may yield a constraint that is no longer

uniquely definitional. To avoid this, we make a nondeterministic
guess (as we did for formula @enar in Section 5.1.1) as to how
x1 overlaps with z(1),...,z(max), e.g., it might overlap with
x(1)z(2)x(3). We will then simply assert that z(1)z(2)x(3) € L,
where L is the regular language of words v that contains no w
as a (contiguous) subword. We then have to apply the splitting
technique for the regular constraint just as in Step of Section 4
to express z(1)z(2)x(3) € L as A’_, (i) € L;. This can
all be done by nondeterministic guesses while incurring only a
polynomial blowup.

6. Related Work and Future Work

In this section, we mention a few related works and discuss their
connections with our work in more detail. Roughly speaking, they
can be classified into three categories: (1) decidability results, (2)
heuristics and string solver implementations, (3) benchmarking
examples. We shall also mention a few possible research avenues
in passing.

Decidability results: In §Introduction, we have mentioned the
results of Makanin’s and Plandowski’s [45, 50-52] on the decid-
ability and complexity of satisfiability for word equations (a con-
junction of equations of the form v = w, where v and w are a



concatenation of string constants and variables). We should also re-
mark that the decidability (with the same PSPACE complexity) ex-
tends to quantifier-free first-order theory of strings with concatena-
tions and regular constraints [19]. Since extending word equations
with finite-state transducers yields undecidability (see Section 3),
the straight-line fragment SL of our core string constraint language
is incomparable to word equations with regular constraints (neither
subsumes the other). The fragment SL is, in a sense, more complex
since its computational complexity is EXPSPACE, though for con-
straints of small dimensions the complexity reduces to PSPACE
(cf. Theorem 10). In addition, it is still a long-standing open prob-
lem whether word equations with length constraints is decidable,
though it is known that letter-counting (i.e. counting the number of
occurrences of Os and the number of occurrences of 1s separately)
yields undecidability [19]. On the other hand, the extension SL® of
our straight-line fragment SL is decidable (with the same complex-
ity) and yet admits general letter-counting.

In our decidability proof of Theorem 5, we have also used the
result of Barcelo et al. [10] (see Proposition 2) that acyclic con-
junctions of rational relation constraints (with regular constraints)
is decidable in PSPACE. Their logic AC, however, supports nei-
ther string concatenations nor letter-counting constraints. In fact, it
is easy to show by a standard pumping lemma argument that the
constraint x = y - y cannot be expressed in AC. For this reason, our
logics SL and SL® are not subsumed in AC.

Abdulla et al. [7] studied acyclic constraints over systems of
word equations with a length predicate (without transducers) and
disequality constraints, for which they showed decidability. Our
decidable logics are incomparable to their logic. On the one hand,
SL® supports finite-state transducers, letter-counting, and Index0f
constraints, which are not supported by their logic. Our logic also
supports unrestricted disequality constraints, whereas their logic
supports only restricted (acyclic) disequalities. On the other hand,
the string logic of [7] supports string equations of the form x - y =
z - 2’ (i.e. both sides of the equations contain different variables),
which they showed could be reduced to a boolean combination of
regular constraints. Using this reduction, we can incorporate this
feature into SL®, yielding a more expressive decidable string logic.

Heuristics and string solver implementation: In §Introduction,
we have mentioned the large amount of works in the past seven
years or so towards developing practical string solvers (e.g. [7, 8,
16, 21, 23, 28-31, 34, 35, 38, 43, 48, 53, 55, 57, 65-69, 71-76]).
We are not aware of existing string solvers that support both con-
catenations and finite-state transductions. However, string solvers
that support concatenations and the replace-all operator (i.e. a
subset of finite-state transductions) are available, e.g., [16, 65, 75].

Since the focus of our work is on the fundamental issue of decid-
ability, we consider our work to be complementary to these works.
In fact, our results may be construed as providing some complete-
ness guarantee for existing string solvers. Practical string solvers
do not implement Makanin’s or Plandowski’s algorithms, but in-
stead rely on certain heuristics (e.g. bounding the maximum length
k of solutions [16, 38, 57]). For this reason, none of the above
solvers have a completeness guarantee for the entire class of word
equations. However, when the input string constraint ¢ falls within
the logic SL®, the bounded model properties of SL and SL® (e.g.

Theorem 6 and Theorem 12) imply that string solvers need only

. . (e .
look for solutions of size at most 22"~ for some polynomial

p(x). Double exponential size is of course only an extremely crude
estimate, so in practice one could devise an algorithm for comput-

ing a better estimate f(¢) < g2e(lel by looking at the structure
of the formula ¢. A rough estimate of f(¢) could, for example, be
obtained by first computing the dimension of ¢ (which could be
computed quickly); as we have seen in Theorem 11, when the di-

mension is small the double exponential bound actually reduces to
exponential size.

Future Work 1. Give a better algorithm for computing a better
estimate f(p) of the maximum size of the solutions for straight-
line formulas ¢ that need to be explored.

Veanes et al. (e.g. see [23, 33, 35, 66]) have observed that, in
practice, the number of transitions of finite-state transducers for en-
coding web sanitisation functions could become large fairly quickly
(due to large alphabet size, e.g., utf-8). For this reason, they intro-
duce extensions of finite-state transducers that allow succinct rep-
resentations by allowing transitions to take an arbitrary formula in
a decidable logical theory, while taking advantage of state-of-the-
art SMT solvers for the theory. As a simple example, consider the
finite-state transducer that converts a sequence of digits (over the
alphabet X = {0,...,9}) to its HTML character numbers (over
the alphabet &' = {&, ;,#,0,9}). The general formula for this is
that a digit 1 is converted to &#(48+1) ;. Using the standard finite-
state transducers, we would require about 2 + 10 x 3 = 32 states,
whereas representing using symbolic finite-state transducers only
~ 4 states and ~ 4 transitions are required. There are real-world
examples where this compression would be enormous (e.g. see the
encoding of HTMLdecode in [66] as a symbolic transducer). For
this reason, for future work, it would make sense to consider an ex-
tension of our work that uses symbolic finite-state transducers (or
extensions thereof) both from practical and theoretical viewpoints.

Future Work 2. Study the extension of SL and SL® with symbolic
(finite-state) transducers.

In order to be able to apply string solvers to analyse injec-
tion and XSS vulnerabilities, it is paramount to develop realistic
browser models, which would model implicit browser transduc-
tions. Preliminary works in this direction are available (e.g. see
[58, 70]). We believe that an interesting (but perhaps extremely
challenging) line of future work is to develop a formal and pre-
cise browser transductions and their transductions (e.g. for a par-
ticular version of Firefox) as finite-state transducers (or extensions
thereof). Although some such transducers are already available
(e.g. see [1, 23, 35, 66]), much work remains to be done to de-
velop full-fledged browser models that can capture all the subtlety
of browser behaviors (e.g. those that can be found in [6, 32]).

Benchmarking examples: In this paper, we have provided four
examples of analysis of mutation-based XSS vulnerabilities that
can be expressed in SL. A few other interesting XSS vulnerabil-
ity examples from [32, 62] and [6] can actually be expressed in
our logic, though the vulnerabilities only exist in older browsers
(e.g. IE8). We also note that the five benchmarking examples of
PHP programs from [72] that exhibit SQL injection and XSS vul-
nerabilities (cf. http://www.cs.ucsb.edu/"vlab/stranger/)
can also be expressed in SL. As we have argued in §Introduction,
the benchmarking examples from Kaluza [57] are in solved forms,
and therefore expressible in SL®. To the best of our knowledge, the
benchmarking examples from [72] and [57] do not contain muta-
tion XSS test cases.
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