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String Stability and a Delay-Based Spacing
Policy for Vehicle Platoons Subject

to Disturbances
Bart Besselink and Karl H. Johansson, Fellow, IEEE

Abstract—A novel delay-based spacing policy for the
control of vehicle platoons is introduced together with
a notion of disturbance string stability. The delay-based
spacing policy specifies the desired intervehicular distance
between vehicles and guarantees that all vehicles track the
same spatially varying reference velocity profile, as is for
example required for heavy-duty vehicles driving over hilly
terrain. Disturbance string stability is a notion of string sta-
bility of vehicle platoons subject to external disturbances
on all vehicles that guarantees that perturbations do not
grow unbounded as they propagate through the platoon.
Specifically, a control design approach in the spatial
domain is presented that achieves tracking of the desired
spacing policy and guarantees disturbance string stability
with respect to a spatially varying reference velocity. The
results are illustrated by means of simulations.

Index Terms—Vehicle platoons, String stability, Cas-
caded systems, Stability of nonlinear systems.

I. INTRODUCTION

I
NTELLIGENT transportation systems have the potential

to increase the efficiency and safety of road transportation

through the use of increased automation. Platooning, which

amounts to the operation of vehicles in closely spaced groups,

is a particularly relevant example in which the reduced distances

between vehicles lead to a decreased aerodynamic drag and a

better utilization of the road infrastructure [42]. In particular,

experiments using heavy-duty vehicles have shown that the im-

proved aerodynamics of the group leads to a reduction of fuel

consumption of up to 10%, see [1] and [5].

Manuscript received March 30, 2016; revised October 7, 2016; ac-
cepted January 17, 2017. Date of publication March 15, 2017; date of
current version August 28, 2017. This work was supported in part by
the European Union Seventh Framework Programme under the project
COMPANION, in part by the Swedish Research Council, and in part by
the Knut and Alice Wallenberg Foundation. Recommended by Associate
Editor I. V. Kolmanovsky.

B. Besselink is with the Johann Bernoulli Institute for Mathematics and
Computer Science, University of Groningen, Groningen 9712 CP, The
Netherlands (e-mail: b.besselink@rug.nl). The research reported in this
work was performed when B. Besselink was at KTH Royal Institute of
Technology, Stockholm, Sweden.

K. H. Johansson is with the ACCESS Linnaeus Centre, and the De-
partment of Automatic Control, School of Electrical Engineering, KTH
Royal Institute of Technology, Stockholm 114 28, Sweden (e-mail:
kallej@kth.se).

Digital Object Identifier 10.1109/TAC.2017.2682421

In order to ensure the safe operation of such platoons of

closely spaced vehicles, automation of the longitudinal dynam-

ics is required. Early works on this topic are given by [6], [16]

and many results have appeared since, see, e.g., [3], [12], [21],

[35], [45]. Two fundamental aspects in the resulting behavior

are, first, the spacing policy, which specifies the desired (and

not necessarily static) intervehicular distance, and, second, the

influence of external disturbances on the platoon formation and

stability. The current paper focusses on these aspects by the

development of control strategies that rely on the introduction

of a novel delay-based spacing policy and a new definition of

platoon stability (which will be referred to as disturbance string

stability) that explicitly takes external disturbances into account.

The constant spacing policy and constant headway policy are

most commonly considered in the literature, where the former

requires a constant distance between two successive vehicles

[37]. The constant headway policy [10] relaxes this requirement

by including a dependence on the velocity of the follower vehi-

cle. A comparison can be found in [38], whereas nonlinear spac-

ing policies are given in [44]. However, these spacing policies

are typically employed under the implicit assumption that the

platoon should track a constant reference velocity. The tracking

of varying reference velocity profiles has received considerably

less attention, even though this is desirable in many practical

situations. An important example is given by a heavy-duty ve-

hicle traversing a road segment with varying road topography,

for which it is known that the fuel-optimal velocity profile is

generally varying [9]. For a platoon traversing a hilly road seg-

ment, it is desirable for each vehicle to track the same velocity

profile in the spatial domain (i.e., relative to the position on the

road). This is however incompatible with the constant spacing

and constant headway strategies, for which the specification on

the intervehicular distance might require vehicles to accelerate

while climbing a hill. As this is potentially infeasible due to lim-

ited engine power, this leads to unsatisfactory platoon behavior,

as has been recognized in experiments [1]. A delay-based spac-

ing policy is introduced in this paper that guarantees that all

vehicles track the same velocity profile in the spatial domain.

Stability analysis of interconnected systems such as vehicle

platoons generally relies on notions of string stability, which

characterizes the amplification (or, in fact, the lack thereof) of

disturbances through the group (string) of vehicles. A formal

definition is given in [36] by requiring uniform boundedness

of the states of all systems (see [24] for a generalization to-

0018-9286 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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ward higher spatial dimensions). Alternative definitions require

bounds on the amplification of perturbations as a measure of

string stability, e.g., [7], [8], [17], [25], [31], but these notions

are typically only defined for linear systems. For an overview of

string stability properties, see [28]. Note that these references

either consider autonomous systems or interconnected systems

in which only the lead vehicle in a platoon is subject to external

disturbances. The practically relevant case in which each vehicle

is subject to external disturbances is considered in [30], whereas

extensions are presented in [20] and [26]. However, the analysis

presented in these works relies on a transfer function approach

and is therefore only applicable to linear systems. Moreover,

in these works, only input disturbances are considered and the

effect of initial conditions is not taken into account.

In this paper, a definition of disturbance string stability for

interconnected systems is introduced that explicitly includes

the effects of initial condition perturbations and external distur-

bances on each vehicle. This notion provides a direct extension

of the definition in [36] by using the input-to-state stability

framework introduced in [32]. Specifically, disturbance string

stability can be regarded as a uniform (over the vehicle index)

input-to-state stability property and applies also to nonlinear

systems. It extends the notion of leader-to-formation stability in

[39] to platoons with external disturbances that are not limited

to the leader.

The main contributions of this paper are as follows. First, a

novel delay-based spacing policy is presented that guarantees

that all vehicles in a platoon track a desired (and spatially vary-

ing) reference velocity profile. Second, the notion of disturbance

string stability is introduced as a relevant stability property for

interconnected systems subject to external disturbances. Third,

on the basis of these definitions, a controller design method is

presented that guarantees the tracking of the delay-based spacing

policy and guarantees disturbance string stability with respect

to the varying reference velocity. This design is performed in

the spatial domain rather than the time domain, which leads to a

simple design procedure that avoids the use of delay-dependent

synthesis techniques. Using this controller design it is shown

that string stability follows from a suitable choice of the spacing

policy rather than the exact choice of the controller, which is the

fourth contribution of this paper. Preliminary results on platoon

control using a delay-based spacing policy can be found in [4].

The remainder of this paper is outlined as follows. In

Section II, existing spacing policies are discussed and a motiva-

tion is provided for the introduction of the delay-based spacing

policy used in this paper. Next, Section III introduces the notion

of disturbance string stability and provides results that guaran-

tee disturbance string stability of platoons on the basis of local

properties associated to single vehicles. A controller that tracks

the desired spacing policy is discussed in Section IV and its

disturbance string stability properties are shown. The results are

illustrated by means of an example in Section V before conclu-

sions are stated in Section VI.

Notation: The field of real numbers is denoted by IR, whereas

IN = {1, 2, . . .}. For a vector x ∈ IRn , its Euclidian norm is

given as |x| =
√

xTx. Given a signal x : T → IRn , ‖x‖T∞ de-

notes its L∞ norm defined as ‖x‖T∞ = supt∈T |x(t)|, where the

Fig. 1. Desired spacing policy sref, i (t) − si−1 (t) between automatically
controlled vehicles in a platoon.

Fig. 2. Velocities vi of ten follower vehicles (gray) as a result of a pre-
defined velocity profile of the lead vehicle (black) for a constant spacing
policy (top row), constant headway policy (middle row), and delay-based
policy (bottom row). The left column shows the velocity as a function
of time t, whereas the right column gives the velocity as a function of
space s.

shorthand notation ‖x‖∞ = ‖x‖[0,∞)
∞ is used when T = [0,∞).

A continuous function α : [0, a) → [0,∞) is said to be of class

K if it is strictly increasing and α(0) = 0. If, in addition, a = ∞
and α(r) → ∞ as r → ∞, it is of class K∞. A continuous func-

tion β : [0, a) × [0,∞) → [0,∞) is said to be of classKL if, for

each fixed s, the function β(·, s) is of class K and, for each fixed

r, β(r, ·) is decreasing and satisfies β(r, s) → 0 as s → ∞.

II. SPACING POLICIES AND MOTIVATION

The definition of the spacing policy has a crucial impact on

the dynamic behavior of platoons of closely spaced vehicles.

Fig. 1 illustrates the spacing between two vehicles i − 1 and i

in a platoon. In the literature, several different spacing policies

have been proposed, of which the constant spacing policy and

the constant headway policy are the most notable. These policies

are shortly reviewed in this section, providing a motivation for a

novel spacing policy as analyzed in the remainder of this paper:

the delay-based spacing policy.

Let si denote the longitudinal position of vehicle i and vi its

velocity. Naturally, they satisfy the kinematic relation

ṡi(t) :=
dsi

dt
(t) = vi(t). (1)

A spacing policy describes the desired behavior sref,i(t) of ve-

hicle i on the basis of its predecessor i − 1. Fig. 2 depicts the

velocity of all vehicles in a platoon for the constant spacing,

constant headway, and delay-based spacing policies. Here, it is
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assumed that the velocity of the lead vehicle v0(t) is prescribed

and all follower vehicles track the desired behavior perfectly,

i.e., si(t) = sref,i(t). The policies are further described next.

The constant spacing policy (e.g., [37]) takes the form

sref,i(t) = si−1(t) − d (2)

where d ≥ 0 is the desired intervehicular distance. By using

the assumption si(t) = sref,i(t) and (1), the policy (2) implies

that changes in velocity occur simultaneously in time (i.e.,

vi(t) = vi−1(t)). This is also apparent from the top left graph in

Fig. 2. If the change in velocity of the lead vehicle is the result of

a disturbance, it is clear that the effect of this disturbance is not

suppressed throughout the string. In fact, it has been shown in

[30] that disturbance attenuation cannot be obtained for any lin-

ear controller that only uses relative measurements with respect

to the preceding vehicle i − 1 for the control of vehicle i.

An alternative spacing policy that inherently attenuates the

effect of disturbances is given by the constant headway policy

(e.g., [10], [38]), which includes a dependence on the velocity

vi as

sref,i(t) = si−1(t) − (d + hvi(t)) (3)

with h > 0. By again using si(t) = sref,i(t) and (1), this can be

written as

hṡi(t) = −si(t) + si−1(t) − d (4)

which shows that the desired reference position is essentially

obtained by application of a first-order filter to the position of

the preceding vehicle. It is this filtering, which is also apparent

from the middle left graph in Fig. 2, that is responsible for

the inherent attenuation of disturbances for platoon controllers

based on the constant headway policy.

However, it is clear from the graphs in the right column of

Fig. 2 that, for the constant spacing and constant headway spac-

ing policies, the changes in velocity occur on different positions

in space for successive vehicles in the platoon. If the veloc-

ity change of the first vehicle was due to road properties such

as hills rather than small undesired disturbances, this is poten-

tially a large disadvantage. To illustrate this, consider a platoon

of heavy-duty vehicles climbing a hill. Due to limited engine

power, a large gradient can cause the lead vehicle of the platoon

to decrease velocity as in Fig. 2. In this case, follower vehicles

might be required to have a higher velocity on this hill (i.e., at

the same location in space) when they are subject to a constant

spacing or constant headway policy. This might be infeasible

due to limited engine power and leads to undesired platoon

behavior and increased fuel consumption, as recognized in [2]

and [40].

In this paper, a spacing policy is introduced that guaran-

tees that vehicles track the same velocity profile in space,

which avoids the aforementioned disadvantages. The delay-

based spacing policy is given as

sref,i(t) = si−1(t − ∆t) (5)

where vehicle i tracks a time-delayed version of the trajectory

of the preceding vehicle, with time gap ∆t > 0 (see also [22]).

The policy (5) indeed achieves equal velocity profiles in space,

as formalized in the following proposition.

Proposition 1: Consider the kinematics (1) and assume

si(t) = sref,i(t) and vi(t) > 0 for all t ∈ IR. Then, (5) holds

if and only if,1 for some function vref(·)
vi(s) = vi−1(s) = vref(s). (6)

Proof: In order to prove the proposition, let s be a point in

space and let ti(s) be the time instance when vehicle i passes

that point. Note that the assumption vi(t) > 0 for all t ∈ IR
guarantees that ti(s) is uniquely defined. Then, using si(t) =
sref,i(t), (5) can equivalently be written as

ti(s) = ti−1(s) + ∆t (7)

for all s ∈ IR. Next, the expression of the kinematic relation (1)

in spatial domain leads to

dti

ds
(s) =

1

vi(s)
(8)

after which integration yields

ti(s1) − ti(s0) =

∫ s1

s0

1

vi(s)
ds (9)

for some initial position s0 . When considering (9) for vehicles i

and i − 1, the subtraction of both results and use of (7) leads to
∫ s1

s0

1

vi(s)
− 1

vi−1(s)
ds = ∆t − ∆t = 0. (10)

As (10) holds for all s0 , s1 ∈ IR such that s1 ≥ s0 , it is clear

that vi(s) = vi−1(s) =: vref(s) for all s, proving the first part of

the proposition.

To prove the converse, assume that vi(s) = vi−1(s) = vref(s).
Subsitution of this in the left-hand term in (10) gives ti(s1) −
ti−1(s1) = ti(s0) − ti−1(s0) =: ∆t, finalizing the proof. �

Motivated by the discussion above, the objective of this paper

is the design of a controller that, first, achieves asymptotic track-

ing of a spatially varying common reference velocity vref(·) and

delay-based spacing policy (5), and, second, guarantees string

stability with respect to this desired trajectory and in the pres-

ence of external disturbances. In order to achieve the latter, the

notion of disturbance string stability is introduced in the next

section.

III. STRING STABILITY ANALYSIS WITH DISTURBANCES

Consider a platoon of automatically controlled vehicles as

represented through the autonomous cascaded interconnection

ẋ0 = f(x0 , 0),

ẋi = f(xi , xi−1), i ∈ IN (11)

where IN = {1, 2, . . . , N}. In the context of platooning,

IN represents the set of follower vehicles, whereas I0
N =

{0, 1, . . . , N} includes the lead vehicle with index 0. In (11),

xi ∈ IRn , i ∈ I0
N is the state of the system and the function

1The slight abuse of notation vi (t) and vi (s) will be used to indicate the
velocity of vehicle i as a function of time and space, respectively.
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f : IRn × IRn → IRn satisfying f(0, 0) = 0 is assumed to be

locally Lipschitz continuous in both arguments.

For such systems, the notion of string stability was introduced

in [36] according to the following definition.

Definition 1: The equilibrium xi = 0, i ∈ I0
N , of the platoon

(11) is said to be string stable if, for any ε > 0, there exists a

δ > 0, such that for all N ∈ IN

sup
i∈I0

N

|xi(0)| < δ ⇒ sup
i∈I0

N

|xi(t)| < ε, ∀t ≥ 0. (12)

Asymptotic string stability is defined in [36] as follows.

Definition 2: The equilibrium xi = 0, i ∈ I0
N , of the platoon

(11) is said to be asymptotically string stable if it is string stable

and δ can be chosen such that

sup
i∈I0

N

|xi(0)| < δ ⇒ lim
t→∞

sup
i∈I0

N

|xi(t)| = 0. (13)

Remark 1: Definitions 1 and 2 are similar to the standard

notion of Lyapunov stability, with the difference that, in the

former, perturbations from the equilibrium are measured as the

worst-case perturbation over all subsystems. Nonetheless, by ex-

ploiting this similarity, it follows directly that asymptotic string

stability can equivalently be expressed through the existence of

a function β̄ of class KL and a constant c̄ > 0, such that, for all

N ∈ IN

sup
i∈I0

N

|xi(t)| ≤ β̄

(

sup
i∈I0

N

|xi(0)|, t
)

, ∀ sup
i∈I0

N

|xi(0)| < c̄ (14)

and for all t ≥ 0, see, e.g., [13].

The notions of string stability in Definitions 1 and 2 apply to

autonomous interconnected systems of the form (11). However,

in many practical situations, vehicles are subject to external

disturbances. Therefore, the following nonautonomous platoon

dx0

dθ
= f(x0 , 0, w0),

dxi

dθ
= f(xi , xi−1 , wi), i ∈ IN (15)

is considered, where wi ∈ IRm , i ∈ I0
N , represent disturbances

influencing the system. Moreover, θ is taken as the independent

variable in (15), which is motivated by the observation that

vehicle dynamics can be expressed in either time domain or the

spatial domain. Consequently, θ can either represent time t or

the spatial variable s. The latter case will be further explored

in controller design in Section IV, as it provides a convenient

approach for the synthesis of controllers that track the delay-

based spacing policy (5).

The following definition of disturbance string stability is in-

troduced to address the effects of disturbances in interconnected

systems of the form (15).

Definition 3: The platoon (15) is said to be disturbance string

stable if there exist functions β̄ of class KL and σ̄ of class K∞
and constants c̄ > 0, c̄w > 0, such that, for any initial condition

xi(θ0) and disturbance wi , i ∈ I0
N , satisfying

sup
i∈I0

N

|xi(θ0)| < c̄, sup
i∈I0

N

‖wi‖∞ < c̄w (16)

the solution xi(θ), i ∈ I0
N , exists for all θ ≥ θ0 and satisfies

sup
i∈I0

N

|xi(θ)| ≤ β̄

(

sup
i∈I0

N

|xi(θ0)|, θ − θ0

)

+ σ̄

(

sup
i∈I0

N

‖wi‖[θ0 ,θ ]
∞

)

, ∀N ∈ IN. (17)

If c̄ and c̄w can be taken as c̄ = ∞, c̄w = ∞, then the platoon (15)

is said to be globally disturbance string stable.

In the absence of disturbances, the definition of disturbance

string stability in Definition 3 is equivalent to the notion of

asymptotic string stability in Definition 2. Moreover, it extends

the definition of string stability in [28] by allowing for distur-

bances on all vehicles rather than the lead vehicle only and

explicitly captures the effects of initial conditions.

It is noted that condition (17) in Definition 3 is required to

hold for any string length N ∈ IN, rather than for fixed N cor-

responding to the length of the platoon under consideration.

The invariance of the bounds under the string length is an im-

portant property, as it guarantees that the notion of disturbance

string stability is scalable and allows for the addition or removal

of vehicles from a string without affecting stability (see also

[28], [43]). In fact, it states that the state trajectories remain

bounded for any N ∈ IN, which prohibits the amplification of

disturbances as they propagate through the platoon.

The definition of disturbance string stability in Definition 3

is based on the properties of the entire platoon. The following

theorem allows for establishing disturbance string stability of

the basis of local properties and is the main result of this section.

Theorem 2: Consider the platoon (15) and let each vehicle

be input-to-state stable with respect to its inputs xi−1 and wi ,

i.e., there exist a function β of class KL, functions γ and σ of

class K∞ and constants c > 0, cw > 0, such that trajectories xi

satisfy

|xi(θ)| ≤ β
(

|xi(θ0)|, θ − θ0

)

+ γ
(

‖xi−1‖[θ0 ,θ ]
∞

)

+ σ
(

‖wi‖[θ0 ,θ ]
∞

)

, ∀θ ≥ θ0 (18)

for any |xi(θ0)| < c, ‖xi−1‖∞ < c, ‖wi‖∞ < cw and for all

i ∈ I0
N and N ∈ IN (with xi−1 = 0 for i = 0). If the function

γ satisfies γ(r) ≤ γ̄r for all r ≥ 0 and for some γ̄ < 1, then

the platoon (15) is disturbance string stable. If, in addition, the

function β in (18) satisfies

β(r, ωs) ≤ 1

ωq
β(r, s), ∀ r, s ≥ 0 (19)

for all ω, 0 < ω ≤ 1 and some q > 0, then the function β̄ in

(17) can be taken of the form β̄(r, s) = cβ β(α(r), s) for some

constant cβ > 0 and function α of class K∞. Finally, if c and

cw can be chosen as c = ∞, cw = ∞, then the platoon (15) is

globally disturbance string stable.

Proof: The proof is given in Appendix A. �

Remark 2: The result in Theorem 2 ensures that the influ-

ence of the initial condition does not vanish arbitrarily slow.

Roughly speaking, (19) characterizes functions β that have a

convergence rate slower than θ−q (for some q > 0) and it is
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shown that for such β the function β̄ in (17) has the same con-

vergence rate. Even though an upper bound satisfying (19) is

used when β has a faster convergence rate [see (74) in the proof

in Appendix A], this ensures that the function β̄ in (17) does not

have arbitrarily slow convergence, which is not a priori obvious

when the number of interconnected systems increases.

Remark 3: At first sight it might be surprising that a proof of

Theorem 2 is required, as it is well known that the cascade inter-

connection of input-to-state stable systems is itself input-to-state

stable. However, this standard result in, e.g., [15], [32], does not

guarantee a priori that the class KL and class K∞ functions

that bound the behavior of the cascaded system remain bounded

when the number of interconnected systems grows. For exam-

ple, a cascade of (linear) systems ẋi = −xi + 2xi−1 + wi is

clearly input-to-state stable, but it can be shown that pertur-

bations can grow unbounded as the number of subsystems N

grows (consider, e.g., the static behavior for wi = 1 for all i).

Theorem 2 explicitly addresses this aspect.

The result in Theorem 2 deals with subsystems that are con-

nected through their entire states xi . However, a practically

relevant case is given by systems of the form

dx0

dθ
= f(x0 , 0, w0),

dxi

dθ
= f(xi , yi−1 , wi), i ∈ IN (20)

in which the interconnection is achieved through outputs yi ∈
IRp defined as

yi = h(xi), i ∈ I0
N . (21)

The interconnection of the form (20)–(21) can be studied by

exploiting the notion of input-to-output stability [33]. This leads

to the following theorem, which can be regarded as a counterpart

of Theorem 2 for systems with interconnection through the

outputs.

Theorem 3: Consider the platoon (20)–(21) and let each ve-

hicle be input-to-output stable with respect to its inputs yi−1

and wi , i.e., there exist a function βy of class KL, functions γy

and σy of class K∞ and constants c > 0, cw > 0, such that the

outputs yi = h(xi) satisfy

|yi(θ)| ≤ βy

(

|xi(θ0)|, θ − θ0

)

+ γy

(

‖yi−1‖[θ0 ,θ ]
∞

)

+ σy

(

‖wi‖[θ0 ,θ ]
∞

)

, ∀θ ≥ θ0 (22)

for any |xi(θ0)| < c, any yi−1 = h(xi−1) with ‖xi−1‖∞ < c,

‖wi‖∞ < cw and for all i ∈ I0
N and N ∈ IN (with yi−1 = 0 for

i = 0). Moreover, let each vehicle in (20) be input-to-state stable

with respect to the same inputs, i.e., there exist a function βx of

class KL and functions γx and σx of class K∞ such that

|xi(θ)| ≤ βx

(

|xi(θ0)|, θ − θ0

)

+ γx

(

‖yi−1‖[θ0 ,θ ]
∞

)

+ σx

(

‖wi‖[θ0 ,θ ]
∞

)

, ∀θ ≥ θ0 (23)

for any |xi(θ0)| < c, any yi−1 = h(xi−1) with ‖xi−1‖∞ < c,

‖wi‖∞ < cw and for all i ∈ I0
N and N ∈ IN. If the function γy

satisfies γy (r) ≤ γ̄r for all r ≥ 0 and for some γ̄ < 1, then the

platoon (20)–(21) is disturbance string stable.

Proof: The proof can be found in Appendix B. �

At first sight, the conditions in Theorem 3 seem more restric-

tive than those in Theorem 2, as input-to-state stability of the

subsystems is required in both cases. However, the gain function

γy of the input-to-output stability property in (22) is required

to be bounded as γy (r) ≤ γ̄r for some γ̄ < 1, whereas the gain

function γx in (23) can be arbitrarily large. Thus, Theorem 3

shows that only the gain with respect to the interconnection

variables is relevant in proving disturbance string stability. In

addition, this input-to-output gain γy is typically smaller than

the input-to-state gain γx , providing less conservative results.

Remark 4: The condition (23) is required to provide a bound

on the state trajectories whenever the interconnection variables

yi remain bounded, which is of importance as disturbance string

stability is defined on the basis of state trajectories. Here, it is

remarked that input-to-state stability as in (23) can be implied by

input-to-output stability as in (22) when the subsystems satisfy

observability properties that are relevant in the input-to-state

stability framework. The notion of input/output-to-state stability

in [34] (see also [33]) provides such a property.

IV. PLATOON CONTROL FOR DISTURBANCE

STRING STABILITY

Vehicle platoons are considered in this section and a class

of controllers is synthesized that achieves tracking of the

delay-based spacing policy (5) and guarantees disturbance

string stability. Thereto, vehicle modeling is discussed in

Section IV-A, before presenting controller design in Section IV-

B. The resulting closed-loop stability properties are analyzed

in Section IV-C.

A. Platoon Modeling and Objectives

Consider a platoon of N + 1 vehicles, in which each vehicle

satisfies the longitudinal dynamics

ṡi(t) = h̃(ξi(t)),

ξ̇i(t) = f̃(ξi(t)) + g̃(ξi(t))ui(t) + p̃(ξi(t))wi(t) (24)

with i ∈ I0
N . Here, si(t) ∈ IR denotes the position of vehicle

i, such that the first equation in (24) represents the kinematic

relation with velocity vi(t) := h̃(ξi(t)). The second equation

with state ξ(t) ∈ IRn−1 is a general description of the remain-

ing dynamics, which can include engine or drive train dynam-

ics as well as low-level control systems. The input ui ∈ IR
is available for the platoon control developed in this section,

whereas wi ∈ IRm is the unmeasurable external disturbance. It

is assumed that the functions f̃ : IRn−1 → IRn−1 , g̃ : IRn−1 →
IRn−1 , p̃ : IRn−1 → IR(n−1)×m , and h̃ : IRn−1 → IR are suffi-

ciently smooth.

The dynamics (24) is taken to satisfy the following assump-

tion, which simplifies the developments (see, e.g., [13] for a

definition of relative degree).

Assumption 1: The dynamics (24) with input ui has relative

degree n with respect to the output si .
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Remark 5: Vehicle models commonly considered in the

analysis and control of vehicle platoons typically satisfy

Assumption 1. Specifically, the second-order models used in

[16], [19] as well as third-order models (e.g., including actuator

dynamics) considered in [10], [27], [38] are of the form (24)

and satisfy this assumption.

Remark 6: The disturbances wi in (24) are taken as external

disturbances, but they might as well result from modeling errors

or parameter uncertainties. Moreover, even though it is assumed

that all vehicles have identical dynamics (24), the results in

this paper have the potential to be extended to heterogeneous

vehicle platoons. Namely, the disturbance wi might be the result

of model inhomogeneity rather than external influences.

Motivated by the discussion in Section II, a controller will

be synthesized that, first, achieves the desired intervehicular

spacing according to the delay-based policy (5), second, ensures

tracking of a common velocity profile vref(·) in space, and,

third, guarantees disturbance string stability with respect to this

velocity profile. Here, it is recalled that the first two objectives

are aligned for positive velocities according to Proposition 1.

Therefore, the following assumption is made on the reference

velocity.

Assumption 2: The reference velocity vref(·) satisfies 0 <

vmin ≤ vref(s) ≤ vmax for all s ≥ 0 and for some constants vmin,

vmax. Moreover, vref(·) is at least n − 2 times continuously dif-

ferentiable.

Remark 7: In addition to allowing for expressing the spacing

policy (5) in the spatial domain as will be used in the remain-

der of this paper, the assumption vmin ≤ vref(s) for positive vmin

guarantees that the follower distance di(t) = si−1(t) − si(t)
remains positive as long as the reference velocity is perfectly

tracked. In fact, the follower distance satisfies vmin∆t ≤ di(t) ≤
vmax∆t, providing a bound on the follower distance during ma-

neuvers. Similarly, if the minimum velocity and nominal time

gap ∆t are chosen such that Lmax ≤ vmin∆t, with Lmax the max-

imum vehicle length, subsequent vehicles do not collide when

they perfectly track the reference velocity. It is recalled that the

main benefit of platooning for (heavy-duty) vehicles, i.e., re-

duced aerodynamic drag, is only obtained for significantly large

vehicle speeds, such that Assumption 2 is not too restrictive. In

practice, the reference velocity profile vref(·) should be designed

such that the actuation constraints (i.e., bounds on traction force

and braking capacity) of the vehicles are satisfied. Note that the

fact that all vehicles track the same velocity profile in the spatial

domain enables such design.

Under the assumption that all vehicles have a positive velocity

at all times, the delay-based spacing policy (5) can equivalently

be expressed in the spatial domain. Thereto, let the space s be

the independent variable and denote ti(s) as the time instance

at which vehicle i passes s. Then, the spacing policy (5) can be

represented as ∆i(s) = 0, where ∆i denotes the deviation from

the nominal time gap ∆t as

∆i(s) = ti(s) − ti−1(s) − ∆t, (25)

∆0
i (s) = ti(s) − t0(s) − i∆t (26)

for all i ∈ IN . Similarly, ∆0
i represents the deviation from the

nominal time gap with respect to the first vehicle in the platoon.

As the characterization in (25) does not require analysis of time-

delay systems as suggested by (5), it is beneficial to consider

controller synthesis in the spatial domain.

The vehicle dynamics (24) can be written in spatial domain

by exploiting the kinematic relation (1), which leads to

t̊i(s) = h(ξi(s)),

ξ̊i(s) = f(ξi(s)) + g(ξi(s))ui(s) + p(ξi(s))wi(s) (27)

with x̊(s) := dx
ds

(s) denoting the derivative with respect to space

and for all i ∈ I0
N . Moreover

h(ξi) =
1

h̃(ξi)
, f(ξi) =

f̃(ξi)

h̃(ξi)
,

g(ξi) =
g̃(ξi)

h̃(ξi)
, p(ξi) =

p̃(ξi)

h̃(ξi)
. (28)

Contrary to the description in (24), the disturbance wi is as-

sumed to be specified in space in (27). This does not pose any

limitations as this disturbance will later be characterized by its

norm ‖wi‖∞, which is independent from the choice of indepen-

dent variable.

B. Platoon Controller Design

The representation of the vehicle dynamics in the spatial do-

main (27) will be exploited in the current section to design a

class of controllers that achieve the desired objectives of track-

ing a (spatially varying) reference velocity and the delay-based

spacing policy while guaranteeing disturbance string stability.

To enable controller design, the platoon of vehicles (27) with

spacing policy (25) will be represented in time gap tracking error

coordinates, which will be based on a representation of the ve-

hicles in velocity tracking coordinates. Herein, an input–output

linearization approach will be exploited.

In order to achieve tracking of the reference velocity vref(·),
the velocity tracking error e1,i as well as its space derivatives

are defined, for any follower vehicle i ∈ IN , as

e1,i(s) := h(ξi(s)) −
1

vref(s)
, (29)

ek,i(s) := Lk−1
f h(ξi) −

dk−1

dsk−1

(

1

vref(s)

)

(30)

k = 2, 3, . . . , n − 1, where it is recalled that h(ξi(s)) = 1
v i (s)

due to (28). In (30), the notation Lf h(ξ) denotes the Lie deriva-

tive of h along f (albeit applied in spatial domain), see [13],

[23] for a definition.

By Assumption 1, there exists a controller

ui(s) =
1

LgL
n−2
f h(ξi)

(

− Ln−1
f h(ξi)

+
dn−1

dsn−1

(

1

vref(s)

)

+ ūi(s)

)

(31)
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that achieves input–output linearization of (27) with respect to

the output h(ξi) and the virtual input ūi , such that the dynamics

of (27) with (31) can be written as

t̊i(s) = e1,i(s) +
1

vref(s)
,

e̊i(s) = Aei(s) + Būi(s) + ρ(ξi)wi(s) (32)

for any vehicle i ∈ I0
N . Here, the linear dynamics for ei =

[ e1,i · · · en−1,i ]T is characterized by the matrices

A =

⎡

⎢

⎢

⎢

⎣

0 1 0
. . .

. . .

0 1

0 0

⎤

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎣

0
...

0

1

⎤

⎥

⎥

⎥

⎦

(33)

whereas the disturbance wi influences the dynamics (32)

through the function ρ = [ρT
1 · · · ρT

n−1 ]T defined as

ρk (ξi) = LpL
k−1
f h(ξi), k = 1, 2, . . . , n − 1. (34)

In (34), the argument ξi is maintained for ease of notation, but

it is noted that ξi can be related to the states ei and reference

velocity vref through (29) and (30).

Based on the velocity tracking error e1,i in (29), a charac-

terization of the required spacing policy for follower vehicle

i ∈ IN is introduced by defining the time gap tracking error

δ1,i(s) := (1 − κ0)∆i(s) + κ0∆
0
i (s) + κe1,i(s) (35)

with 0 ≤ κ0 < 1 and κ > 0 and where ∆i and ∆0
i are defined in

(25) and (26), respectively. It can be observed that δ1,i presents

a weighted combination of the timing error with respect to the

preceding vehicle and the first vehicle in the platoon. Moreover,

the additional term κe1,i allows for the relaxation of the spacing

policy when the vehicle (with index i) does not perfectly track

the desired velocity reference [see (29)] and will be shown to

ensure damping of perturbations similar to the case of a constant

headway strategy in (3). Namely, the inclusion of this term

induces the dynamics

κ∆̊i(s) = −∆i(s) + δ1,i(s) − κ0∆
0
i−1(s) − κe1,i−1 (36)

as can be observed by noting that ∆̊i = e1,i − e1,i−1 and

∆0
i = ∆i + ∆0

i−1 [see (25) and (26)]. For later reference, the

terms dependent on the preceding vehicle (with index i − 1) are

collected, for any i ∈ I0
N , as

yi(s) := −κ0∆
0
i (s) − κe1,i(s). (37)

Returning to the definition of δ1,i in (35), additional time gap

tracking error coordinates δk,i are defined accordingly as

δk,i(s) = (1 − κ0)(ek−1,i − ek−1,i−1)

+ κ0(ek−1,i − ek−1,0) + κek,i (38)

where k = 2, 3, . . . , n − 1 and for i ∈ IN . Then, the platoon

dynamics can be equivalently represented in the timing er-

ror coordinates xi = [∆i δT
i ]T , where ∆i represents the

desired delay-based spacing policy as in (25) and δi =

[ δ1,i · · · δn−1,i ]T is given through (35) and (38). In particu-

lar, after introducing the new virtual input ũi by substituting

ūi(s) = − κ−1(1 − κ0)(en−1,i − en−1,i−1)

− κ−1κ0(en−1,i − en−1,0) + ũi(s) (39)

into (32), it can be shown that the dynamics of the follower

vehicles i ∈ IN in timing error coordinates xi takes the form

x̊i(s) = F
(

xi(s), ũi(s), yi−1(s), ρ̄(ξi , ξi−1 , ξ0)w̄i(s)
)

,

yi(s) = H(xi(s)) (40)

with yi as in (37). By recalling the dynamics for ∆i in (36) and

by exploiting the definitions (35), (38) as well as the dynamics

(32), it follows that the vector field F is given as

F (xi , ũi , yi−1 , ωi) =

[

κ−1(−∆i + δ1,i + yi−1)

Aδi + κBũi + ωi

]

(41)

whereas the use of (35) and (37) yields the output equation

H(xi) = (1 − κ0)∆i − δ1,i . (42)

Finally, the rows ρ̄k in the matrix-valued function ρ̄ in (40) can

be obtained through the dynamics for δi and the definition (34),

leading to

ρ̄1(ξi , ξi−1 , ξ0) =

⎡

⎢

⎣

κρT
1 (ξi)

0

0

⎤

⎥

⎦

T

, (43)

ρ̄k (ξi , ξi−1 , ξ0) =

⎡

⎢

⎣

κρT
k (ξi) + ρT

k−1(ξi)

(κ0 − 1)ρT
k−1(ξi−1)

−κ0ρ
T
k−1(ξ0)

⎤

⎥

⎦

T

(44)

with k = 2, . . . , n − 1. Here, it can be observed that the def-

inition of the spacing policy δ1,i in (35) implies that the dis-

turbances on both the preceding vehicle and first vehicle in the

platoon affect the timing error of vehicle i. As a result, w̄i in

(40) is defined as w̄i = [wT
i wT

i−1 wT
0 ]T .

Remark 8: The timing errors ∆i and ∆0
i in (25) and (26),

respectively, as well as δi in (35), (38) are not defined for the

lead vehicle with index i = 0. Instead, take ∆0 := t0 −
∫

v−1
ref ds

as the deviation from a nominal trajectory and let ∆0
0 := ∆0 .

Then, δ1,0 can be defined according to (35) as δ1,0 = ∆0(s) +
κe1,0 . Similarly, δk,0 = ek−1,0 + κek,0 . It then follows from the

dynamics (32) that the first vehicle in the platoon satisfies

x̊0(s) = F
(

x0(s), ũ0(s), 0, ρ̄(ξ0 , 0, 0)w̄0(s)
)

,

y0(s) = H(x0(s)) (45)

with F and H as in (41) and (42), respectively. In (45), (37) is

used for i = 0 to obtain the latter equation and w̄0 = [wT
0 0 0 ]T .

It is clear that the dynamics (45) is of the same form as that of

the follower vehicles in (40).

Since the objective is to achieve the desired spacing policy

for vehicle i by the design of a controller that stabilizes δ1,i = 0,

the subspace Si is introduced as

Si :=
{

x ∈ IR(N +1)n
∣

∣ δi = 0
}

, i ∈ I0
N . (46)
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Here, x = [xT
0 xT

1 · · · xT
N ]T is the state of the platoon, where

it is recalled that xi = [∆i δT
i ]T satisfies the dynamics (40)–

(42). In order to render Si positively invariant in the absence

of disturbances, a controller ũi = k(xi) (i.e., a decentralized

controller) is sought that achieves input-to-state stability with

respect to the set Si as in (46), i.e., there exist functions βδ of

class KL and σδ of class K∞, such that the controlled system

satisfies

|x(s)|Si
≤ βδ

(

|x(0)|Si
, s − s0

)

+ σδ

(

‖w̄i‖[s0 ,s]
∞

)

(47)

where |x|Si
:= infz∈Si

|x − z| represents the distance to Si .

After introducing the set Xc ∋ 0 as

Xc :=
{

x ∈ IR(N +1)n
∣

∣ supj∈I0
N
|xj | ≤ c

}

(48)

it can be shown that a controller exists that locally achieves (47).

Lemma 4: Consider the platoon dynamics (40)–(42) result-

ing from the vehicle dynamics (27) and the spacing policy (35)

and let ũi = Kδi be a feedback controller in which K is chosen

such that the matrix A + κBK is Hurwitz, with A and B as

in (33). Then, there exists a constant c̄δ > 0 such that, for any

trajectory x(·) that satisfies x(s) ∈ Xc̄δ
for all s ≥ 0, (47) holds.

Proof: The proof can be found in Appendix C. �

Remark 9: In the absence of disturbances, the condition (47)

implies that the setSi is controlled invariant. Also, it is remarked

that the invariance of Si is independent of the control input for

other vehicles (with index different from i), which is the result

of the choice of δ1,i in (35). This choice also directly determines

the dynamics on the invariant set Si , which is given by the first

equation in (40).

Remark 10: The controller for vehicle i ∈ IN given by (31),

(39), and ũi = Kδi as obtained through Lemma 4 relies on state

information from the preceding vehicle (with index i − 1) and,

if κ0 > 0, from the lead vehicle with index 0. In particular,

this information is required for a given position s. As the lead

vehicle and preceding vehicle pass some time before vehicle i,

this control approach is inherently robust to (small) time delays

in wireless communication, which is typically used to share this

information.

Remark 11: Even though the controller designed in this sec-

tion is specified in the spatial domain, that does not prohibit the

practical implementation of such controller in the time domain.

To illustrate this, consider the computation of the timing error

∆i(s) in (25). Consider a vehicle i and let si(t) be its current po-

sition (specified in the time domain). Similarly, let si−1(·) be the

historical evolution of the position of the preceding vehicle that

can be obtained through wireless communication or from radar

measurements and of which a sampled version can be stored

onboard vehicle i with limited memory. Then, the timing error

∆i(s) (for s = si(t)) can be obtained by (numerically) solv-

ing the implicit equation si−1(t − ∆t + ∆i(s)) = si(t). Next,

if ξ̃i(t) represents the current state of vehicle i (again speci-

fied in the time domain), then ξi(s) = ξ̃i(t) with s = si(t) and

the state ξi−1(s) of the preceding vehicle at the same point in

space can be obtained from a time-domain specification ξ̃i−1(·)
of its state as ξi−1(s) = ξ̃i−1(t − ∆t + ∆i(s)). Finally, it is re-

marked that the controller synthesis procedure of this section is

constructive, allowing, in principle, for practical implementa-

tion. Future work will focus on this aspect.

C. Platoon Disturbance String Stability Analysis

The application of any controller that achieves (47) leads

to a controlled platoon that is disturbance string stable when

leader information is exploited, i.e., when κ0 > 0 in (35). This

is formalized for feedback controllers of the form ũi = Kδi in

the following theorem.

Theorem 5: Consider the platoon dynamics (40)–(42) result-

ing from the vehicle dynamics (27) and the spacing policy (35)

and let ũi = Kδi , i ∈ I0
N , be a feedback controller in which

K is chosen such that the matrix A + κBK is Hurwitz, with

A and B as in (33). Then, the closed-loop platoon system is

disturbance string stable if κ0 > 0.

Proof: The proof is given in Appendix D. �

The proof of Theorem 5 shows that (22) holds with γy (r) =
(1 − κ0)r and then employs Theorem 3 to guarantee disturbance

string stability. As the function γy is only dependent on κ0 , it is

clear that the result in Theorem 5 is independent of the specific

controller design. Instead, the result holds for any controller

that achieves (47) (i.e., that renders Si controlled invariant),

indicating that the disturbance string stability property is a result

of the choice of the spacing policy δ1,i in (35) rather than the

specific controller. It is also noted that Theorem 5 shows local

disturbance string stability. Global string stability cannot be

shown as the vehicle velocities vi = h̃(ξi) need to be strictly

positive to ensure that the dynamics (27) in the spatial domain

is well-defined, see (28).

Remark 12: The controller design achieving disturbance

string stability discussed in Lemma 4 and Theorem 5 is done

in the spatial domain in order to obtain a delay-independent

analysis of the delay-based spacing policy (5). Nonetheless, the

results obtained in this section are directly applicable to other

spacing policies when the vehicle dynamics (24) is considered

in time domain. Namely, the spacing errors can be defined as

∆i(t) := si(t) − si−1(t) + d,

∆0
i (t) := si(t) − s0(t) + id, i ∈ IN (49)

providing counterparts of (25) and (26). Then, after defining the

velocity tracking error as

e1,i(t) := h̃(ξi(t)) − vref(t) (50)

for a reference velocity vref (specified in time domain) and the

introduction of the spacing policy

δ1,i(t) := (1 − κ0)∆i(t) + κ0∆
0
i (t) + κe1,i(t) (51)

the results of Lemma 4 and Theorem 5 directly hold. Also, it is

noted that (51) represents the constant headway spacing policy

(3) for κ0 = 0.

In the absence of disturbance, i.e., wi = 0 for all i ∈ I0
N , the

sets Si in (46) are positively invariant, as follows from (47)

and the controller design in Lemma 4. Consequently, the set

S :=
⋂

i∈I0
N
Si is positively invariant as well. The dynamics on
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S is given by

κ∆̊0(s) = −∆0(s),

κ∆̊i(s) = −∆i(s) + (1 − κ0)∆i−1(s), i ∈ IN (52)

as follows from (40) and (45) for δi = 0 (i.e., on the invariant

set S). It is important to note that (52) is a direct consequence

of the choice of the spacing policy (35) rather than the details

of the designed controller. Then, on the set S, perturbations on

the timing error ∆i (e.g., when ∆0(0) �= 0) do not grow as they

propagate through the string, as formally stated as follows.

Proposition 6: Consider the dynamics (52) and initial condi-

tions satisfying ∆i(0) = 0 for all i ∈ IN . Then, for all i ∈ IN ,

the timing errors ∆i satisfy
∫ s

0

|∆i(θ)|2 dθ ≤ (1 − κ0)
2

∫ s

0

|∆i−1(θ)|2 dθ, ∀s ≥ 0. (53)

Proof: Let i ∈ IN and define the function V (∆i) := 1
2 κ∆2

i .

Then, the differentiation of V with respect to space and along

trajectories of (52) yields

V̊ (∆i) = − ∆2
i + (1 − κ0)∆i∆i−1 , (54)

= − 1
2 |∆i |2 + 1

2 |(1 − κ0)∆i−1 |2

− 1
2 |(1 − κ0)∆i−1 − ∆i |2 (55)

where the latter equality can be checked by completing the

squares. The integration of (55), hereby recalling that ∆i(0) = 0
and noting V (∆i(s)) ≥ 0, leads to the result (53). �

It is remarked that (53) essentially represents a string stability

property using L2 signal norms [29], albeit with space as the

independent variable. Contrary to the case of disturbance string

stability in Theorem 5, the stability property in Proposition 6

guarantees that perturbations do not grow unbounded even in

the case of absence of leader information (i.e., κ0 = 0).

V. EVALUATION

In order to evaluate the platooning controller design proce-

dure discussed in Section IV, the vehicle dynamics (in time

domain)

ṡi(t) = vi(t),

v̇i(t) = ai(t) + wi(t),

τ ȧi(t) = −ai(t) + ui(t) (56)

is considered. Here, si , vi , and ai represent the vehicle position,

velocity, and acceleration, respectively. It is easily seen that (56)

is of the form (24) with ξi = [ vi ai ]T and satisfies Assump-

tion 1. The model (56) extends the vehicle model considered

in, e.g., [27], [35], by the inclusion of external disturbance wi .

It is noted that the approach introduced in this paper allows for

more general nonlinear models that include, e.g., aerodynamic

effects and engine dynamics. Examples of such detailed vehicle

models can be found in [14] and [41].

Following the motivation in Section II, a delay-based spacing

policy is considered and a controller according to Section IV is

synthesized in the spatial domain. To this end, it is noted that

TABLE I
PARAMETER VALUES FOR THE EXAMPLE CONSIDERED IN SECTION V

Parameter Value Parameter Value

τ 1 ω0 0.05

∆t 1 ζ0 0.9

κ0 0.1 K 1 2ζ0 ω0

κ 2 K 2 ω 2
0

Fig. 3. Velocities vi for the lead vehicle (black) and N = 5 follower
vehicles (gray, with the last one in dashed black) for the delay-based
policy (35). The initial conditions are randomly generated, the reference

velocity reads vref(s) = 20 − 2(1 − cos(10−2π(s − 300))) m/s for 300 ≤
s ≤ 500 and vref(s) = 20 m/s otherwise.

the velocity tracking errors (29), (30) for the dynamics (56) in

spatial domain read

e1,i(s) =
1

vi(s)
− 1

vref(s)
, (57)

e2,i(s) = − ai(s)

v3
i (s)

− d

ds

(

1

vref(s)

)

. (58)

Here, it is noted that (58) is related to the acceleration of the ve-

hicle, albeit expressed in the spatial domain. Then, the feedback

linearizing controller in (31) is given as

ui(s) = ai(s) + 3τ
a2

i (s)

vi(s)

− τv4
i (s)

(

d2

ds2

(

1

vref(s)

)

+ ūi(s)

)

(59)

after which (39) and the feedback ũi = Kδi in Lemma 4 read

ūi(s) =
1

κ

ai(s)

v3
i (s)

− 1 − κ0

κ

ai−1(s)

v3
i−1(s)

− κ0

κ

a0(s)

v3
0 (s)

+ K1δ1,i(s) + K2δ2,i(s) (60)

with δi as in (35) and (38). The nominal parameters of the

vehicle model (56), spacing policy (35), and controller are given

in Table I. As κ0 > 0, vehicles exploit information from both

their predecessor and the platoon leader.

The tracking of a reference velocity profile vref satisfying

Assumption 2 is considered in Figs. 3–5, where initial conditions

are randomly generated perturbations of the equilibrium. By

control design, this equilibrium satisfies ∆i = 0 and δi = 0 for

all I0
N , as can be observed in (40) [see also (45) in Remark 8

for the lead vehicle]. By the definitions of ∆i in (25) and δi,1

in (35), it follows that the velocity error ei,1 satisfies ei,1 = 0 at
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Fig. 4. Timing errors ∆i as in (25) for the first follower vehicle (black)
and the remaining follower vehicles (gray) corresponding to the case in
Fig. 3.

Fig. 5. Control inputs ui for the lead vehicle (black) and the follower
vehicles (gray) corresponding to the case in Fig. 3.

this equilibrium, such that the desired velocity profile is tracked.

In the absence of disturbances (i.e., wi = 0), it follows from

Theorem 5 that this equilibrium is asymptotically stable. This

is also observed by the tracking of the reference velocity in

Fig. 3, whereas Fig. 4 shows that the desired spacing policy

is obtained. It is recalled that these objectives are compatible

through Proposition 1. Finally, it is clear from the input signals

in Fig. 5 that all vehicles have the same behavior in the spatial

domain.

In order to illustrate that the tracking of a spatially varying

reference velocity is a distinguishing feature of the delay-based

spacing policy, the constant headway policy is considered as an

alternative. In particular, the spacing policy (51) in Remark 12

is considered, even though (50) is replaced by e1,i(t) = vi(t) −
vref(si(t)) to target tracking of the spatially varying reference

velocity. For this spacing policy, a controller is synthesized in

time domain according to the discussion in Remark 12, where

the parameters in Table I are adapted to give the same time scales

as the controller used in Figs. 3 and 4 for a nominal velocity of

vnom = 20 m/s.

The results of this time domain controller using a constant

headway strategy are depicted in Figs. 6–8. It can be observed

that this controller indeed achieves the stabilization of the de-

sired equilibrium point as long as the reference velocity is con-

stant. However, it is clear from Fig. 6 that the vehicles do not

accurately track the desired reference velocity (defined in the

spatial domain). Moreover, the change in reference velocity

leads to a perturbation in the achieved spacing as well, as de-

picted in Fig. 7, with the control inputs in Fig. 8. Even though

emphasis can be put on either the tracking of the reference ve-

locity or the desired spacing through the choice of the parameter

Fig. 6. Velocities vi for the lead vehicle (black) and N = 5 follower
vehicles (gray) for the constant headway gap policy (51). The same case
as in Fig. 3 is considered. Moreover, the parameter values for (51) and
the controller are chosen such that the resulting time scales equal to
that of the controller for the delay-based policy in Fig. 3 when a nominal
velocity of vnom = 20 m/s is used.

Fig. 7. Spacing errors ∆i as in (49) for the first follower vehicle (black)
and the remaining follower vehicles (gray) corresponding to the case in
Fig. 6.

Fig. 8. Control inputs ui for the lead vehicle (black) and the follower
vehicles (gray) corresponding to the case in Fig. 6.

κ in (51), it is stressed that an increase in tracking performance

of the reference velocity will lead to a less accurate tracking of

the spacing policy (and vice versa). Namely, the tracking of a

spatially varying reference velocity is fundamentally incompati-

ble with the simultaneous tracking of a constant headway policy,

as discussed in Section II. Consequently, the use of alternative

control strategies will not mitigate this effect.

Returning to the case of the delay-based spacing policy, Fig. 9

shows the velocities vi of N + 1 = 51 vehicles subject to a

common disturbance, hereby again using the parameter values

in Table I. As the disturbance is bounded, the results of The-

orem 5 hold and the platoon is disturbance string stable as in

Definition 3. Consequently, there is a uniform (over the platoon

index) bound on the deviations from the equilibrium (given by

∆i = 0 and δi = 0, for which vi(s) = vref(s)), as can also be

observed in Fig. 9. Next, the maximum velocity errors e1,i for a



4386 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 9, SEPTEMBER 2017

Fig. 9. Velocities vi for the lead vehicle (black) and N = 50 follower
vehicles (gray, with the last one in dashed black) for zero initial conditions
and vref(s) = 20 m/s for all s ≥ 0. The disturbance is given as wi (s) =

sin(10−2 s) for all i ∈ I0
N

.

Fig. 10. Maximum velocity errors e1 , i as in (29) for κ0 ∈
{0, 0.05, 0.1, 0.15, 0.2} and disturbance wi (s) = sin(10−2 s) for i = IN

and w0 (s) = 0. As κ0 grows, ‖e1 , i‖∞ decreases, as indicated by the
dashed arrow.

platoon with N = 80 follower vehicles are depicted in Fig. 10

for varying values of κ0 . Here, the same disturbance as in Fig. 9

is considered. As stated in Theorem 5, there are uniform bounds

on the velocity errors when κ0 > 0, i.e., when information of the

lead vehicle is shared with all other vehicles in the platoon. It is

noted that the case κ0 = 0 indeed leads to unbounded velocity

errors for growing platoon size (i.e., an absence of disturbance

string stability). This indicates that the results of Theorems 3

and 5 are not conservative.

VI. CONCLUSION

The control of vehicle platoons was considered in this paper,

hereby exploiting a novel delay-based spacing policy that guar-

antees that all vehicles in the platoon track the same velocity

profile in the spatial domain. This property is particularly rele-

vant for vehicles that track a spatially varying velocity profile,

such as heavy-duty vehicles driving over hilly terrain. The influ-

ence of external disturbances was addressed by the introduction

of disturbance string stability. A controller was designed that

tracks a reference velocity profile, maintains the desired spac-

ing policy, and achieves disturbance string stability. In fact, it

was shown that string stability is the result of the spacing policy

rather than the specific controller design.

Even though homogeneous vehicle platoons were considered,

the controller design approach presented in this paper has the

potential to be applicable to heterogeneous vehicle platoon as

well. Apart from being supported by the notion of disturbance

string stability, the result that the details of controller design are

less crucial than the chosen spacing policy suggests that non-

identical vehicles can be considered as long as a common spac-

ing policy is adopted. Also, it is remarked that the space-based

control approach taken in this paper can be particularly relevant

for the lateral control of vehicles in a platoon, as road features

such as corners are specified in the spatial domain rather than

time domain. Future work will focus on these aspects as well

as on the practical implementation of controllers designed in

the spatial domain (and potentially in the presence of measure-

ment errors). Another interesting direction for future research is

the extension of the controller design to vehicle platoons with

general interconnection topology, as can be enabled by wireless

communication.

APPENDIX

A. Proof of Theorem 2

The theorem will be proven in two steps. First, it will be

shown that all xi(θ) are bounded for all θ ≥ θ0 and, second, the

bound of the form (17) will be shown.

In order to prove the boundedness of xi(θ), constants c̄ and

c̄w satisfying 0 < c̄ < c and 0 < c̄w < cw are introduced. A

specific choice for c̄ and c̄w will be made later. Now, taking

initial conditions |xi(θ0)| < c̄ and disturbances wi bounded as

‖wi‖[θ0 ,∞)
∞ < c̄w , it is noted that (18) gives

‖xi‖[θ0 ,θ ]
∞ ≤ β

(

|xi(θ0)|, 0
)

+ γ̄‖xi−1‖[θ0 ,θ ]
∞ + σ

(

‖wi‖[θ0 ,θ ]
∞

)

(61)

for all i ∈ IN whenever ‖xi−1‖∞ < c. Moreover, it is noted

that, due to the structure of the interconnection in (15), the

bound for system i = 0 reads

‖x0‖[θ0 ,θ ]
∞ ≤ β

(

|x0(θ0)|, 0
)

+ σ
(

‖w0‖[θ0 ,θ ]
∞

)

. (62)

Then, it can be concluded that the recursive application of (61)

and the use of (62) yields

‖xi‖[θ0 ,θ ]
∞ ≤

i
∑

j=0

γ̄i−jβ
(

|xj (θ0)|, 0
)

+

i
∑

j=0

γ̄i−jσ
(

‖wj‖[θ0 ,θ ]
∞

)

(63)

for all i ∈ I0
N . By the properties of the class KL function β, it

directly follows that β(|xj (0)|, 0) ≤ β(supk∈I0
N
|xk (0)|, 0) for

any j ∈ I0
N , so that a uniform bound is obtained on all terms

that depend on the initial condition. A similar bound can be

obtained on σ(‖wj‖[θ0 ,θ ]
∞ ). In addition

i
∑

j=0

γ̄i−j ≤
N

∑

j=0

γ̄N −j <

∞
∑

l=0

γ̄l =
1

1 − γ̄
(64)
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which follows from noting that the sum in (64) represents a

geometric series with 0 < γ̄ < 1. The use of these bounds in

(63) gives

‖xi‖[θ0 ,θ ]
∞ ≤ 1

1 − γ̄
β

(

sup
j∈I0

N

|xj (θ0)|, 0
)

+
1

1 − γ̄
σ

(

sup
j∈I0

N

‖wj‖[θ0 ,θ ]
∞

)

(65)

for all i ∈ I0
N and all N ∈ IN. Here, it is stressed that (65)

represents a uniform bound on state perturbations for all sys-

tems in a possibly (countably) infinite interconnection. More-

over, when the constants c̄ < c and c̄w < cw are taken to satisfy

β(c̄, 0) + σ(c̄w ) < (1 − γ̄)c, it is clear that ‖xi‖∞ < c for all

i ∈ I0
N and the derivation above is consistent with the assump-

tions in the statement of the theorem.

For future reference, the function δ and constant ∆[θ0 ,θ ] are

introduced as

δ(r) :=
1

1 − γ̄
β(r, 0), (66)

∆[θ0 ,θ ] :=
1

1 − γ̄
σ

(

sup
j∈I0

N

‖wi‖[θ0 ,θ ]
∞

)

(67)

such that (65) can be written as ‖xi‖[θ0 ,θ ]
∞ ≤ δ(supj∈I0

N

|xj (θ0)|) + ∆[θ0 ,θ ] . Note that the function δ is of class K.

It remains to be proven that there exists an estimate of the form

(17), in which the influence of the initial condition vanishes as

θ → ∞. To this end, consider system i ∈ I0
N and let {ϑi

j}i+1
j=0

be a sequence that satisfies

θ0 < ϑi
0 < ϑi

1 < . . . < ϑi
j < . . . < ϑi

i < ϑi
i+1 < θ. (68)

Then, consider the trajectories of systems with indices j ≤ i in

the time interval [ϑi
j+1 , θ] by applying (18), hereby using the

bound on its initial condition at ϑj . This yields the bound

‖xj‖
[ϑ i

j + 1 ,θ ]
∞ ≤ β

(

|xj (ϑ
i
j )|, ϑi

j+1 − ϑi
j

)

+ γ̄‖xj−1‖
[ϑ i

j ,θ ]
∞

+ σ
(

‖wj‖
[ϑ i

j ,θ ]
∞

)

(69)

for all j ≤ i ∈ IN , whereas the bound for j = 0 reads

‖x0‖[ϑ i
1 ,θ ]

∞ ≤ β
(

|x0(ϑ
i
0)|, ϑi

1 − ϑi
0

)

+ σ
(

‖w0‖[ϑ i
0 ,θ ]

∞
)

. (70)

Similar to before, the recursive application of (69) and the use

of (70) can be shown to lead to

‖xi‖
[ϑ i

i + 1 ,θ ]
∞ ≤

i
∑

j=0

γ̄i−jβ
(

|xj (ϑ
i
j )|, ϑi

j+1 − ϑi
j

)

+

i
∑

j=0

γ̄i−jσ
(

‖wj‖
[ϑ i

j ,θ ]
∞

)

. (71)

Here, it is recalled that the choice of the parameters c̄ and c̄w

guarantees that ‖xi‖∞ < c, enabling the repeated application

of (18).

In order to show that the first term on the right-hand side of

(71) can be bounded by a function of class KL, the sequence

{ϑi
j}i+1

j=0 is chosen as

ϑi
j = θ − (1 − ω̄)

1+i−j
∑

l=0

ω̄l(θ − θ0) (72)

such that

ϑi
j+1 − ϑi

j = (1 − ω̄)ω̄1+i−j (θ − θ0) (73)

for any 0 ≤ j ≤ i. Here, 0 < ω̄ < 1 is a parameter that will

be specified later. By this choice, (72) represents a geometric

series in which the time intervals (73) shrink as subsystems

further away from system i are considered. Moreover, it is clear

by the scaling with 1 − ω̄ that (68) holds for any i ∈ IN and

N ∈ IN.

Next, define a function φ as

φ(r, s) := sup
ω∈(0,1]

ωqβ(r, ωs) (74)

for some q > 0. From this definition it follows that φ is of class

KL and that φ(r, s) ≥ β(r, s) for all r, s ≥ 0, where equality

holds if β satisfies the condition (19). In fact, φ in (74) always

satisfies the condition (19). Namely, for any ω̃ such that 0 <

ω̃ ≤ 1, it follows from (74) that

ω̃qφ(r, ω̃s) = sup
ω∈(0,1]

ω̃qωqβ(r, ω̃ωs),

= sup
c∈(0,ω̃ ]

cqβ(r, cs),

≤ sup
c∈(0,1]

cqβ(r, cs) = φ(r, s). (75)

Using the fact that β(r, s) ≤ φ(r, s) for all r, s ≥ 0 and the

choice of the intervals (73), the first term on the right-hand side

of (71) can be bounded as

i
∑

j=0

γ̄i−jβ
(

|xj (ϑ
i
j )|, ϑi

j+1 − ϑi
j

)

≤
i

∑

j=0

γ̄i−jφ
(

|xj (ϑ
i
j )|, (1 − ω̄)ω̄1+i−j (θ − θ0)

)

, (76)

≤
i

∑

j=0

γ̄i−j

(

(1 − ω̄)ω̄1+i−j
)q φ

(

|xj (ϑ
i
j )|, θ − θ0

)

, (77)

=
i

∑

j=0

1

(1 − ω̄)q ω̄q

(

γ̄

ω̄q

)i−j

φ
(

|xj (ϑ
i
j )|, θ − θ0

)

(78)

where the property (75) is used to obtain (77). Here, it is noted

that 0 < (1 − ω̄)ω̄1+i−j < 1 for any 0 ≤ j ≤ i as ω̄ satisfies

0 < ω̄ < 1, such that (75) can indeed be applied. Even though

(78) provides a time-dependent upper bound, it is not yet of the

form (17) due to the appearance of the norm |xj (ϑ
i
j )|. Therefore,

it is recalled that this norm can be bounded through (65), which,
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by using the notation (66), (67), gives

|xj (ϑ
i
j )| ≤ ‖xj‖[θ0 ,θ ]

∞ ≤ δ

(

sup
k∈I0

N

|xk (0)|
)

+ ∆[θ0 ,θ ]. (79)

Next, it is remarked that the parameter ω̄ satisfying 0 < ω̄ < 1
can be chosen, such that γ̄ < ω̄q < 1, which follows from

the property 0 < γ̄ < 1. Using this choice, the function β̃

defined as

β̃(r, s) :=
1

(1 − ω̄)q

1

ω̄q − γ̄
φ(r, s) (80)

is well defined, of class KL, and satisfies

i
∑

j=0

1

(1 − ω̄)q ω̄q

(

γ̄

ω̄q

)i−j

φ
(

r, s
)

≤ β̃(r, s) (81)

where the inequality follows by noting that the sum at the left-

hand side of (81) represents a convergent series due to 0 < γ̄ <

ω̄q . Now, after the substitution of (79) in (78) and the use of

the upper bound (81), as well as the observation that |xi(θ)| ≤
‖xi‖

[ϑ i
i + 1 ,θ ]

∞ , it follows that (71) can be bounded as

|xi(θ)| ≤ β̃

(

δ

(

sup
j∈I0

N

|xj (θ0)|
)

+ ∆[θ0 ,θ ], θ − θ0

)

+ ∆[θ0 ,θ ] (82)

where the bound on the disturbance-dependent terms in (71)

follows from (67). It is noted that the bound (82) holds for any

i ∈ I0
N and all N ∈ IN and thus presents a uniform bound as in

the definition of disturbance string stability.

In order to address the appearance of ∆[θ0 ,θ ] in the argument

of the class KL function β̃ in (82), it is recalled that |xi(θ)| also

satisfies the bound (65). It is therefore natural to consider the

tightest of the bounds (65) and (82) through the introduction of

the function

κ(r,∆, θ − θ0) := min
{

β̃
(

δ(r) + ∆, θ − θ0

)

, δ(r)
}

(83)

where the subscript in ∆[θ0 ,θ ] is omitted for ease of exposition.

In particular, the function κ satisfies

κ(r,∆, θ − θ0) ≤ κ
(

r, α−1(r), θ − θ0

)

+ κ
(

α(∆),∆, θ − θ0

)

(84)

for any function α of class K∞ (see [11]). By selecting any of

the two terms in the minimum in the definition of κ in (83), the

inequality (84) leads to

κ(r,∆, θ − θ0) ≤ β̃
(

δ(r) + α−1(r), θ − θ0

)

+ δ ◦ α(∆) (85)

such that

|xi(θ)| ≤ β̄

(

sup
i∈I0

N

|xi(θ0)|, θ − θ0

)

+ σ̄

(

sup
i∈I0

N

‖wi‖[θ0 ,θ ]
∞

)

. (86)

Here, the function β̄ is defined as β̄(r, ϑ) := β̃(δ(r) +
α−1(r), ϑ) with β̃ as obtained through (80) and (74). As a

result, β̄ is of class KL. Moreover, by using the definition

of ∆ = ∆[θ0 ,θ ] in (67) it follows that σ̄ is given by σ̄(r) =
(id + δ ◦ α)((1 − γ̄)−1σ(r)) with δ as in (66) and where id de-

notes the identity function satisfying id(r) = r for all r ≥ 0.

Then, σ̄ is of class K∞.

It is recalled that the bound (86) applies to any initial condition

satisfying |xi(θ0)| < c̄ and disturbance wi satisfying ‖wi‖∞ <

c̄w and holds for all i ∈ I0
N and all N ∈ IN. As a result, the first

statement in Theorem 2 is proven. The second statement follows

by noting that (19) implies φ = β in (74) and the definition (80).

Finally, it can be easily observed that the results obtained in this

proof hold globally when c = ∞ and cw = ∞, proving the third

statement.

B. Proof of Theorem 3

The proof of this theorem will rely on the ideas developed in

the proof of Theorem 2.

Thereto, constants c̄ and c̄w are introduced satisfying 0 < c̄ <

c and 0 < c̄w < cw . Then, the recursive application of (22) for

θ = θ0 , hereby taking initial conditions |xi(θ)| < c̄ and distur-

bances ‖wi‖ < c̄w , yields

‖yi‖∞ ≤ 1

1 − γ̄
βy

(

sup
j∈I0

N

|xj (θ0)|, 0
)

+
1

1 − γ̄
σy

(

sup
j∈I0

N

‖wj‖∞
)

, (87)

for all i ∈ I0
N and N ∈ IN, analogous to (65) in the proof of

Theorem 2. Then, the substitution of (87) in (23) leads to a

bound on trajectories xi as

‖xi‖∞ ≤ δ

(

sup
j∈I0

N

|xj (θ0)|
)

+ ∆

(

sup
j∈I0

N

‖wj‖∞
)

(88)

where the functions δ and ∆ of class K∞ are given as

δ(r) := βx(r, 0) + γx

(

2

1 − γ̄
βy (r, 0)

)

, (89)

∆(r) := σx(r) + γx

(

2

1 − γ̄
σy (r)

)

. (90)

In the derivation of (89) and (90), the property γx(r1 + r2) ≤
γx(2r1) + γx(2r2) is used. Now, choosing the constants c̄ < c

and c̄w < cw to satisfy δ(c̄) + ∆(c̄w ) < c ensures that condi-

tions in the statement of the theorem hold.

In order to show that the effect of initial condition vanishes

as θ → ∞, the ideas in the proof of Theorem 2 are adopted.

Namely, analogous to (82) in Appendix VII, there exists a func-

tion β̃y of class KL such that

|yi(θ)| ≤ β̃y

(

δ

(

sup
j∈I0

N

|xj (θ0)|
)

+ ∆

(

sup
j∈I0

N

‖wj‖∞
)

, θ − θ0

)

+
1

1 − γ̄
σy

(

sup
j∈I0

N

‖wj‖∞
)

. (91)
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Here, (88) is used to bound estimates of the initial conditions.

As in the proof of Theorem 2, (91) is a uniform bound and it

holds for all i ∈ I0
N and all N ∈ IN.

Next, in order to combine the bounds (87) and (91), the func-

tion κ is introduced as

κ(r,∆(s), θ − θ0) := min
{

β̃y

(

δ(r) + ∆(s), θ − θ0

)

,

1
1−γ̄

βy (r, 0)
}

(92)

which is of the same form as (83). Consequently, a bound of

the form (84) holds, which allows for obtaining a bound of

the form

|yi(θ)| ≤ β̄y

(

sup
i∈I0

N

|xi(θ0)|, θ − θ0

)

+ σ̄y

(

sup
i∈I0

N

‖wi‖[θ0 ,θ ]
∞

)

. (93)

Here, β̄y (r, s) := β̃y (δ(r) + α−1(r), ϑ) and σ̄y (r) := (1 −
γ̄)−1(βy (∆(r), 0) + σy (r)), with δ and ∆ as in (89) and (90),

respectively.

Now, the proof can be finalized by noting that the substitution

of (93) in (23) leads to a bound of the form (17) through the use

of standard results on the cascade interconnection of input-to-

state stable systems (see, e.g., [15], [32]).

C. Proof of Lemma 4

In order to prove the lemma, it is first noted that |x|Si
= |δi |.

Then, after introducing the function V (x) = δT
i Pδi for some

P = PT ≻ 0, it is clear that α1(|x|Si
) ≤ V (x) ≤ α2(|x|Si

) for

some functions α1 , α2 of class K∞.

By asymptotic stability of the matrix A + κBK, it follows

that P can be chosen to satisfy

(A + κBK)TP + P (A + κBK) ≺ −I (94)

where it is noted that controllability of the pair (A,B) [see

(33)] ensures that an asymptotically stabilizing feedback matrix

K exist. Then, after substituting ũi = Kδi in (40), the space

differentiation of V along the trajectories of the resulting con-

trolled platoon system yields

V̊ (x) ≤ − |δi |2 + 2δT
i P ρ̄(ξi , ξi−1 , ξ0)w̄i , (95)

≤ − |δi |2 + 2|δi |‖P‖‖ρ̄(ξi , ξi−1 , ξ0)‖|w̄i |. (96)

At this point, it is noted that x ∈ Xc̄δ
for some c̄δ > 0 implies

that the velocity tracking errors e1,i are bounded for all i ∈
I0

N , as follows from their relation to the state in (35). In fact,

there exists c̄δ such that the velocities vi satisfy vi > 0 for all

x ∈ Xc̄δ
, as follows from (29) and Assumption 2. Then, the

functions in (28) are well defined and smooth, which implies

by the definition (34) that ρ̄ in (43) and (44) is smooth. As this

function is evaluated on the compact setXc̄δ
, it follows that there

exists a constant cρ > 0, such that ‖ρ̄(ξi , ξi−1 , ξ0)‖ < cρ . The

substitution of this bound in (96) yields, for any α satisfying

0 < α < 1

V̊ (x) ≤ −α|δi |2 − |δi |
(

(1 − α)|δi | − 2cρ‖P‖|w̄i |
)

(97)

which leads to the implication

|x|Si
= |δi | ≥

2cρ‖P‖
1 − α

|w̄i |

⇒ V̊ (x) ≤ −α|δi |2 = −α|x|2Si
. (98)

Following [18], (98) implies the result (47), finalizing the proof

of this lemma.

D. Proof of Theorem 5

In order to prove the theorem, it will first be shown that

any controller that achieves (47) guarantees disturbance string

stability. Then, a constant c̄δ and the set Xc̄δ
will be consid-

ered for which the feedback controller ũi = Kδi achieves (47)

through Lemma 4. In this case, it will be shown that there

exist a set of initial conditions and set of disturbances that

ensure that Xc̄δ
is invariant, thus satisfying the conditions of

Definition 3.

In order to obtain a tight upper bound on the input-to-output

gain of (40) with input yi−1 and output yi , the solution of

the dynamics for ∆i in (40) is written explicitly in order to

obtain

|∆i(s)| ≤
∥

∥e−κ−1 (s−s0 )
∥

∥|∆i(s0)|

+

∫ s

s0

∥

∥κ−1e−κ−1 (s−ϑ)
∥

∥|δ1,i(ϑ)| dϑ

+ ‖yi−1‖[s0 ,s]
∞ (99)

where the final term is obtained by using
∫ s

s0

∥

∥κ−1e−κ−1 (s−ϑ)
∥

∥|yi−1(ϑ)| dϑ ≤ ‖yi−1‖[s0 ,s]
∞ . (100)

Then, by noting that |δ1,i | ≤ |δi | = |x|Si
, it can be observed that

the use of a controller that satisfies (47) leads to a bound on ∆i

of the form

|∆i(s)| ≤ β∆

(

|xi(s0)|, s − s0

)

+ ‖yi−1‖[s0 ,s]
∞

+ σ∆

(

‖w̄i‖[s0 ,s]
∞

)

(101)

for some functions β∆ of class KL and σ∆ of class K∞. Next,

the output equation in (40) yields

|yi | ≤ (1 − κ0)||∆i(s)| + |δi(s)| (102)

such that the substitution of the bounds for ∆i in (101) and

δi in (47) implies input-to-output stability of (40) subject to

any controller that satisfies (47). Specifically, the disturbances

w̄i act as inputs and a bound of the form (22) holds with

γy (r) = (1 − κ0)r. Similarly, by noting that |xi | = |∆i | + |δi |,
input-to-state stability of (40) follows and a bound of the

form (23) holds. Then, by Theorem 3, the platoon given in

(40) with a controller satisfying (47) is disturbance string

stable.

Next, consider the specific feedback controller ũi = Kδi as in

the statement of Lemma 4. By this lemma, there exists a constant

c̄δ such that the controller achieves input-to-state stability with

respect to the set Si as in (47) for trajectories satisfying x(s) ∈
Xc̄δ

for all s ≥ 0. Consequently, the results on disturbance string
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stability in Theorem 3 hold for these trajectories, as shown in

the first part of this proof. However, it is noted that the constants

c (c < c̄δ ) and cw in the statement of Theorem 3 can be chosen

such that the constants c̄ and c̄w in (16) in the definition of

disturbance string stability satisfy β̄(c̄, 0) + σ̄(c̄w ) < c̄δ . In this

case, the set Xc̄δ
is invariant and the conditions in Lemma 4,

which are required for controller design, indeed hold. As a

result, the feedback controller ũi = Kδi (when implemented

for all i ∈ I0
N ) achieves disturbance string stability, proving the

theorem.
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[9] E. Hellström, M. Ivarsson, J. Åslund, and L. Nielsen, “Look-ahead control
for heavy trucks to minimize trip time and fuel consumption,” Control Eng.

Practice, vol. 17, no. 2, pp. 245–254, 2009.
[10] P. A. Ioannou and C. C. Chien, “Autonomous intelligent cruise control,”

IEEE Trans. Veh. Technol., vol. 42, no. 4, pp. 657–672, Nov. 1993.
[11] Z.-P. Jiang, A. R. Teel, and L. Praly, “Small-gain theorem for ISS systems

and applications,” Math. Control, Signals, Syst., vol. 7, no. 2, pp. 95–120,
1994.

[12] M. R. Jovanović and B. Bamieh, “On the ill-posedness of certain vehicular
platoon control problems,” IEEE Trans. Automat. Control, vol. 50, no. 9,
pp. 1307–1321, Sep. 2005.

[13] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[14] U. Kiencke and L. Nielsen, Automotive Control Systems for En-

gine, Driveline, and Vehicle, 2nd ed. Berlin, Germany: Springer-Verlag,
2005.
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