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Abstract— In this paper, we present a novel modelling and
string stability analysis method for an interconnected vehicle
string in which information exchange takes place via wireless
communication. The usage of wireless communication intro-
duces time-varying sampling intervals, delays, and communica-
tion constraints of which the impact on string stability requires
a careful analysis. In particular, we study a Cooperative
Adaptive Cruise Control (CACC) system which regulates inter-
vehicle distances in a vehicle string and utilizes information
exchange between vehicles through wireless communication
in addition to local sensor measurements. The propagation
of disturbances through the interconnected vehicle string is
inspected by using the notion of so-called string stability which
is formulated here in terms of an L2-gain requirement from
disturbance inputs to controlled outputs. This paper provides
conditions on the uncertain sampling intervals and delays
under which string stability can still be guaranteed. These
results support the design of CACC systems that are robust
to uncertainties introduced by wireless communication.

I. INTRODUCTION

The ever increasing demand for mobility in today’s life
brings additional burden on the existing ground transporta-
tion infrastructure for which a feasible solution in the near
future lies in the more efficient use of currently available
means of transportation. For this purpose, the development
of Intelligent Transportation Systems (ITS) technologies
that contribute to improved traffic flow stability, throughput
and safety are needed. In particular, Cooperative Adaptive
Cruise Control (CACC), which is an extension of the cur-
rently available Adaptive Cruise Control (ACC) technology
with the addition of information exchange between vehicles
through wireless Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication, seems to be a promising
solution. Wireless information exchange between vehicles
provides means of overcoming sensory limitations of human
or ACC operated vehicles and, therefore, can contribute
significantly to improving the traffic flow, especially on
highways [1].

In this paper, we approach the problem of regulating inter-
vehicle distances in a CACC system from a Networked
Control Systems (NCS) perspective [3], [4]. In the scope of
CACC, control over a wireless communication network is the
enabling technology that makes CACC realizable; however,
very few studies of CACC consider the imperfections that
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are introduced by the network [2], [5], [6], [17]. This is
mainly due to the fact that systematic tools for the modelling
and analysis of NCS arose relatively recently. In [2], a
continuous-time transfer function analysis of constant time
delays was carried out which considers a time slotted token-
passing type network where each vehicle is assumed to
transmit within evenly separated and fixed time intervals.
Additionaly, they assumed that all shared information is
implemented at the same time. Here, we allow for uncertain
and time-varying sampling/transmission intervals and com-
munication delays and obtain bounds on maximum allowable
transmission intervals (MATI) and maximum allowable de-
lays (MAD) while string stability is still guaranteed.

Most works on NCS focus on the stability analysis of
closed-loop NCS consisting of a plant and controller inter-
connected by a wireless network [4], [7], [8], [9], [10], [11],
[12]. Relatively few works consider sensitivity of NCS to
perturbations, see e.g. [13], [15]. In the context of CACC,
this is highly relevant as firstly, wireless communications
take place between controlled vehicles and, secondly, string
stability relates to the attenuation of disturbances along the
string. Therefore, we employ Lp-stability results for NCS
developed in [13] using an emulation-based approach and
cast the interconnected vehicle string dynamics in a form
amendable for such analysis. As such, the main contributions
of this paper are the development of a novel modelling
method encompassing all these important issues, and the
analysis of string stability for vehicle platooning while taking
into account the effect of time-varying transmission intervals
and delays. The framework is set up in a general manner such
that the inclusion of scheduling constraints induced by the
wireless communication between vehicles can be envisioned
as well.

II. INTERCONNECTED VEHICLE STRING MODEL

The general objective of a Cooperative Adaptive Cruise
Control (CACC) system is to pack the driving vehicles
together as tightly as possible in order to increase traffic flow
while preventing amplification of disturbances throughout the
string, which is known as string instability [16], [19], [18].
Some other equally important requirements related to safety,
comfort, fuel consumption, etc., are outside the scope of the
present work.

A. Vehicle Following Objective

To model a wirelessly interconnected vehicle platoon, we
have to realize that the vehicles forming the platoon are
’interconnected’ through the vehicle following objective, as
implemented through CACC. Each vehicle is controlled to
follow its predecessor while maintaining a desired but not
necessarily constant distance. Here, we consider a constant
time headway spacing policy where the desired spacing
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Fig. 1. Control structure block diagram of a single CACC equipped vehicle.

(dr,i) between the front bumper of the i-th vehicle to its
predecessor’s (vehicle i − 1) rear bumper is given by

dr,i = ri + hd,ivi, (1)

where i is the vehicle index and ri is a constant term
that forms the desired gap between consecutive vehicles at
standstill, hd,i is the headway-time constant representing the
time that it will take the i-th vehicle to arrive at the same
position as its predecessor when ri = 0 and vi is the vehicle
velocity. Without loss of generality, ri = 0 is adopted in this
paper since it does not affect the dynamics of the platoon in
the scope of this work. For similar reasons, the car length
(Li) will also be taken as zero. The actual distance (di)
between two consecutive vehicles i and i − 1 is then given
by

di = qi−1 − (qi + Li) = qi−1 − qi, (2)

where qi is the absolute position of i-th vehicle in global
coordinates. The local vehicle following control objective can
now be defined as regulating the error

ei = di − dr,i

= qi−1 − qi − hd,ivi (3)

to zero.

B. CACC Control Structure

For the i-th vehicle in the string, the longitudinal dynamics
is given as

ȧi = −η−1
i ai + η−1

i ui, (4)

where ai is the longitudinal acceleration, ηi represents the
internal actuator dynamics and ui is the desired acceleration
for the i-th vehicle. The control structure for a single CACC
equipped vehicle (vehicle i) is as shown in Fig. 1. CACC op-
eration is introduced in a feedforward fashion as an addition
to the underlying ACC. The total control command for the
i-th vehicle, ui = ufb,i + uff,i, consists of feedback (ufb,i)
and feedforward (uff,i) components. The signal conditioning
block, Hi(s) = 1 + hd,is, is used to implement the spacing
strategy given in (1). The feedback controller, Ci,ACC(s) that
constitutes the ACC part is a PD-type controller that acts on
locally sensed data (e.g. using radar) to achieve the vehicle
following objective and is given as

ufb,i = kp,iei + kd,iėi,

= kp,iei + kd,i(vi−1 − vi − hd,iai), (5)

where kp,i and kd,i are respectively the proportional and
derivative gains of the ACC controller. The desired accel-
eration of the directly preceding vehicle (ui−1) is used in

a feedforward fashion to improve tracking performance and
forms the CACC part of the controller (Ci,CACC(s) in Fig.
1). Additional dynamics is introduced in the controller due
to the velocity-dependent spacing policy in (1), which gives
the following additional differential equation for the CACC
feedforward filter

u̇ff,i = −h−1
d,iuff,i + h−1

d,iui−1, (6)

to be used in the state-space representation of the CACC
vehicle model presented next. For more details on the control
structure, we refer the interested reader to [17], [18], [19].

C. Closed-Loop CACC Model

The general form of the closed-loop CACC vehicle model
is then obtained by combining the longitudinal dynamics in
(4) with the distance error equation in (3), the feedback
control law (5), and the feedforward control law (6) with
ui−1 replaced by ûi−1, where the notation ûi−1 is used to
denote that ui−1 is transmitted over the network. Note that
ûi−1 typically differs from ui−1 due to network-introduced
effects (sample-and-hold, delays, communication constraints,
etc.). By choosing the state variables as xT

i = [ei vi ai

uff,i] ∈ R
nx , the i-th CACC equipped vehicle dynamics in

an n-vehicle string is described by

ẋi = Ai,ixi + Ai,i−1xi−1 + Bs,iui
︸ ︷︷ ︸

ACCpart

+ Bc,iûi−1
︸ ︷︷ ︸

CACCpart

,

Ai,i =





0 −1 −hd,i 0
0 0 1 0
0 0 −η−1

i 0

0 0 0 −h−1
d,i



 , Bs,i =





0
0

η−1
i
0



 ,

Ai,i−1 =





0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0



 , Bc,i =





0
0
0

h−1
d,i



 , (7)

for 1 ≤ i ≤ n and where Bs,i is the input vector corre-
sponding to the input ui which is generated by using locally
available (sensed) data and Bc,i is the input vector for the
additional CACC input ûi−1. A time-domain representation
of the total feedback/feedforward control input with the given
spacing policy is given by

ui = ufb,i + uff,i, 1 ≤ i ≤ n,

= Ki,i−1xi−1 + Ki,ixi, (8)

Ki,i−1 =





0
kd,i

0
0





T

, Ki,i =





kp,i

−kd,i

−kd,ihd,i

1





T

.

A reference vehicle (denoted by index i = 0 and with
state x0) is introduced, which may either represent the rest
of the traffic as seen by the lead vehicle (with index i = 1)
in the string or a trajectory generator in the lead vehicle in
case there are no preceding vehicles and is described by

ẋ0 = A0x0 + Bs,0ur,

A0 =





0 0 0 0
0 0 1 0
0 0 −η−1

0 0
0 0 0 0



 , B0 =





0
0

η−1
0
0



 , (9)

where xT
0 = [eT

0 , vT
0 , aT

0 , uT
ff,0]

T , and ur is the reference
acceleration profile. In (9), state variables are chosen in
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Fig. 2. Schematic representation of the n-vehicle string.

accordance with the real vehicles in the string and, therefore,
redundant states exist. However, this choice results in a uni-
form representation for the upcoming vehicle string model.
Also, the lead vehicle (with state x1) in the string requires
special consideration. The CACC input is locally available to
this vehicle without any network-induced imperfection since
it is generated locally by this vehicle and, therefore, û0 = ur.

By considering these two special cases for the reference
and the lead vehicles and using the CACC vehicle model
in (7) for each operational CACC subsystem, an n-vehicle
string as in Fig. 2 is modeled by collecting n subsystems
together with the reference model to form the new state
vector x̄n = [xT

0 xT
1 xT

2 · · · xT
n ]T and use the input of

the reference vehicle model (ur) as the exogenous input to
the cascaded system which can now be represented as

˙̄xn = Ānx̄n + B̄s,nūn + B̄c,n ˆ̄un + Brur (10)

with

Ān =







A0 0 0 · · · 0
A1,0 A1,1 0 · · · 0

0 A2,1 A2,2 · · · 0
.
.
.

. . .
. . .

.

.

.
0 · · · 0 An,n−1 An,n







,

B̄s,n =









0 · · · · · · 0
Bs,1 0 · · · 0

0 Bs,2

.

.

.

.

.

.
. . . 0

0 · · · 0 Bs,n









, Br =







Bs,0
Bc,1

0
.
.
.
0







,

B̄c,n =







0 · · · 0 0
0 · · · 0 0

Bc,2 · · · 0 0
.
.
.

. . .
.
.
.

.

.

.
0 · · · Bc,n 0







,

where ūn = [u1 u2 . . . un]T and ˆ̄un = [û1 û2 . . . ûn]T . The
local ACC control defining ūn can be incorporated into (10)
by using (8), i.e. ui = [Ki,i−1 Ki,i][x

T
i−1 xT

i ]T , for each
sub-system i ∈ {1, 2, . . . , n}, to obtain

ūn =
[

uT
1 uT

2 · · · uT
n

]T
= K̄nx̄n, (11)

with

K̄n =






K1,0 K1,1 0 · · · 0
0 K2,1 K2,2 · · · 0
.
.
.

. . .
. . .

.

.

.
0 · · · Kn,n−1 Kn,n




 . (12)

In this interconnected vehicle string model, the wirelessly
communicated control commands in ˆ̄un are kept separate
for future analysis.

As a special case, the Network-free(NF)-CACC model is
obtained by assuming the CACC control inputs are perfectly
transmitted (i.e. no network effects) and therefore, ˆ̄un =

Fig. 3. NCS model.

ūn = K̄nx̄n can also be incorporated in (10) to yield

˙̄xn = (Ān + (B̄s,n + B̄c,n)K̄n)x̄n + Brur,

= ANF
x̄n

x̄n + Brur. (13)

The NF-CACC model will be used to perform analyses
which will serve as a reference for the evaluation of the
networked system performance.

III. CACC NCS MODEL

In the previous section, the interconnected vehicle string
was formulated such that the control inputs (namely, ūn for
ACC, and ˆ̄un for CACC) are kept separate according to their
way of being acquired by the host vehicle (i.e. through direct
measurement or through wireless communication). Also, the
model permits to express the CACC control commands that
are actually feedforward signals as state feedback control
laws. Now, by adopting the realistic assumption that a much
higher sampling rate is employed for the locally sensed data
that is used for the ACC functionality, we can consider the
ACC vehicle following controller as inherently continuous-
time dynamic coupling between vehicles. Continuous-time
plant and controller equations for the NCS setup depicted in
Fig. 3 can be obtained by substituting (11) into (10):

˙̄xn = ANCS
x̄n

x̄n + B̄c,n ˆ̄un + Brur,

y = ūn = K̄nx̄n,

ˆ̄un = ŷ, (14)

where ANCS
x̄n

= Ān + B̄s,nK̄n, y ∈ R
ny is the output of the

plant, and ur ∈ R
nr is the exogenous input.

At each transmission instant tk, k ∈ N, CACC control
commands are generated by using the sampled measurement
data which are subsequently sent over the network. They
arrive at the controller after a transmission delay of τk.
Therefore, the controller updates occur at tk + τk and
the control input is implemented through a zero-order-hold
(ZOH). The difference between the implemented piecewise
continuous control command (ˆ̄un) and the actual CACC
control command (ūn) is captured as the error introduced
by the network and is defined as

eu := ˆ̄un − ūn. (15)
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In between the control command updates, the network oper-
ates in a zero-order-hold (ZOH) fashion and, therefore,

˙̄̂un = 0. (16)

Now, the NCS model dynamics in between the control
command updates can be written in terms of plant and the
error states by using (15) and (16) in (14) as follows:

˙̄xn = f(x̄n, eu, ur) := A11x̄n + A12eu + A13ur, (17a)

ėu = g(x̄n, eu, ur) := A21x̄n + A22eu + A23ur, (17b)

with

A11 = ANCS
x̄n

+ B̄c,nK̄n, A12 = B̄c,n,

A13 = Br, A21 = −K̄n(ANCS
x̄n

+ B̄c,nK̄n),

A22 = −K̄nB̄c,n, A23 = −K̄nBr. (18)

At update instants tk + τk, the error is reset according to

eu((tk + τk)+) = ˆ̄un((tk + τk)+) − ūn((tk + τk)),

= ūn(tk) + h(k, eu(tk)) − ūn(tk + τk),

= h(k, eu(tk)) − eu(tk) + eu(tk + τk),
(19)

where h(k, eu(tk)) is related to the protocol that is employed
and determines which node gets access to the network at
each transmission instant, see [13], [14] for more details.
In this work, we consider the sampled-data (SD) protocol
with h(k, eu(tk)) = 0 in (19), although recently we have
shown that the presented framework can be used also to study
Round Robin (RR) type of protocols for CACC applications
in a similar way. The NCS model is transformed as in [13]
into the hybrid system framework as developed in [20] for
the upcoming stability and performance analysis. For this
purpose, we introduce the auxiliary variables s ∈ R

n, κ ∈ N ,
τ ∈ R≥0 and ℓ ∈ {0, 1} to reformulate the model in terms of
so-called flow equations and reset equations. The variable s is
used to store the error value (eu) according to (19) at the last
transmission instant to be used at the next control command
update instant, κ is the transmission counter, τ is a timer,
and l is a boolean logic operator that determines whether
the next event in the hybrid system will be a transmission or
an update reset. The hybrid system HNCS is now given by
the flow equations

˙̄xn = f(x̄n, eu, ur),

ėu = g(x̄n, eu, ur),

ṡ = 0, τ̇ = 1,

κ̇ = 0, ℓ̇ = 0, (20)

when (ℓ = 0 ∧ τ ∈ [0, τmati]) or (ℓ = 1 ∧ τ ∈ [0, τmad])
where τmati ≥ tk+1 − tk, k ∈ N, is the maximum allowable
transmission interval (MATI) and τmad ≤ τmati is the maxi-
mum allowable delay (MAD), hence τk ≤ min(τmad, tk+1−
tk), k ∈ N. This condition implies that an update will occur
before the next transmission instant. Transmission (ℓ = 0)
and update (ℓ = 1) reset equations are given, respectively, as

(x̄+
n , e

+
u , s

+
, τ

+
, κ

+
, l

+) = (x̄n, eu, h(k, eu)− eu, 0, κ + 1, 1),

(x̄+
n , e

+
u , s

+
, τ

+
, κ

+
, l

+) = (x̄n, s + eu,−s− eu, τ, κ, 0). (21)

For more details on this NCS hybrid system formulation, see
[13].

IV. PROBLEM FORMULATION AND ANALYSIS APPROACH

An important requirement in a CACC system is to avoid
amplification of disturbances throughout the string as the
vehicle index increases. For the evaluation of string stability,
one considers the amplification of the distance error, the
velocity, the acceleration or the control effort along the
vehicle string [16], [19], [18].

A. Problem Formulation
The CACC NCS model allows us to inspect the influence

of the exogenous input ur on a particular controlled output

zi = qi(x̄n), (22)

in terms of an induced Lp-gain. The hybrid model HNCS

expanded with the output (22) is denoted by Hz
NCS .

Definition 1: [13] Consider p ∈ N with p ≥ 1 and let
θ ≥ 0 be given. The hybrid system Hz

NCS is said to be
Lp-stable with gain smaller than or equal to θ, if there is
a K∞-function S such that for any 0 < δ ≤ τmati, any
exogenous input ur ∈ Lp, and any initial condition, each
corresponding solution to Hz

NCS satisfies

‖zi‖p ≤ S(|ξ(0)|) + θ ‖ur‖p , (23)

where ξ = (x̄T
n , eT

u , sT , κ, τ, ℓ)T denotes the state of the
hybrid system (20),(21).

Problem 1: Given the plant and controller in (14) which
was designed without the consideration of the network effects
(i.e. ˆ̄un = ūn), determine values of τmati and τmad so that
the CACC NCS model Hz

NCS still has a guaranteed Lp-gain
(i.e. θ in (23)).

In this paper, we consider the propagation of the control
effort, (i.e. ui, i ∈ {2, · · · , n}) as the particular output of
interest and require L2-gain from ur to ui to be less than
or equal to one (θ ≤ 1) to guarantee string stability. Control
commands of individual vehicles can be selected by using
zi = qi(x̄n) = Cz,ix̄n accordingly in (22).

B. Stability and Performance Analysis

An L2-gain analysis of a hybrid system requires condi-
tions on the flow (20) and jumps (21) during resets.

1) Conditions on Resets: We assume that there exists a
Lyapunov function W : N × R

ne → R≥0 which satisfies

αW |eu| ≤ W (κ, eu) ≤ αW |eu|, (24a)

W (κ + 1, h(κ, eu)) ≤ λW (κ, eu), (24b)

for constants 0 < αW ≤ αW and 0 < λ < 1. Additionally,
it is assumed that

W (κ + 1, eu) ≤ λW W (κ, eu), (25)

for some constant λW ≥ 1 for allmost all eu ∈ R
ne and all

κ ∈ N. Moreover, it is assumed that
∣
∣
∣
∣

∂W

∂eu

(κ, eu)

∣
∣
∣
∣
≤ M1, (26)

for some constant M1 > 0. For the SD protocol considered
here there is a W : N×R

ne → R≥0 that is locally Lipschitz
in its second argument and satisfies (24a), (25), (26) with
αW = αW = λW = M1 = 1 and (24b) for any λ ∈ (0, 1).
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Fig. 4. String stability analysis of the Network-Free (C)-ACC vehicle string for different headway-times (hd).

2) Conditions on Flow: The following growth condition
on the flow of the NCS model (17) is used:

|g(x̄n, eu, ur)| ≤ mx̄n
(x̄n, ur) + Meu

|eu|, (27)

where mx̄n
: R

nx ×R
nr → R≥0 and Meu

≥ 0 is a constant,
and, additionally, it is assumed that a storage function V :
R

nx → R≥0 exists which satisfies the condition

〈∇V (x̄n), f(x̄n, eu, ur)〉 ≤ −m2
x̄n

(x̄n, ur) + γ2W 2(κ, eu)

+ µ(θ2|ur|
2 − |zi|

2), (28)

for all i ∈ {1, 2, . . . , n}, where f(x̄n, eu, ur) is as in (17a),
with µ > 0, γ > 0 as constants, and the bounds

αV (|x̄n|) ≤ V (x̄n) ≤ αV (|x̄n|), (29)

for some K∞-functions αV and αV . Essentially, the condi-
tion above is a (slightly extended version of) dissipativity-
based formulation for the system ˙̄xn = f(x̄n, eu, ur) to have
an L2-gain smaller than or equal to θ between the exogenous
input ur and the output zi as in (22). Consider now the
differential equations

φ̇0 = −2L0φ0 − γ0(φ
2
0 + 1), (30a)

φ̇1 = −2L1φ1 − γ0(φ
2
1 +

γ2
1

γ2
0

), (30b)

where Lℓ ≥ 0 and γℓ > 0, ℓ = 0, 1, are the real constants

L0 =
M1Me

αW

; L1 =
M1MeλW

λαW

; γ0 = M1γ; γ1 =
M1γλW

λ
.

(31)
Based on these conditions, we can formulate the following
theorem guaranteeing upper bounds on L2-gain of Hz

NCS .
Theorem 4.1: [13] Consider the system Hz

NCS that satis-
fies the aforementioned conditions. Suppose τmati ≥ τmad ≥
0 satisfy

φ0(τ) ≥ λ2φ1(0) for all 0 ≤ τ ≤ τmati (32a)

φ1(τ) ≥ φ0(τ) for all 0 ≤ τ ≤ τmad (32b)

for solutions φ0 and φ1 of (30) corresponding to certain
chosen initial conditions φℓ(0) > 0, ℓ = 0, 1, with φ1(0) ≥
φ0(0) ≥ λ2φ1(0) ≥ 0, φ0(τmati) > 0 and λ as in (24b).
Then, the system Hz

NCS is L2-stable with gain θ.
By using a numerical search algorithm, quantitative num-

bers for τmati and τmad can be obtained with the help of
the above theorem by constructing the solutions to (30) for
various initial conditions. Computing the τ value of the
intersection of φ0 and the constant line λ2φ1(0) provides

τmati according to (32a), while the intersection of φ0 and φ1

gives a value for τmad due to (32b). Different values of the
initial conditions φ0(0) and φ1(0) lead to different solutions
of the differential equations in (30), and thus, to different
storage functions in (29). In this way, tradeoff curves between
τmati and τmad can be obtained that indicate when L2-
stability of the NCS is still guaranteed with gain θ.

V. STRING STABILITY ANALYSIS

A. Network-Free CACC String Stability Analysis

The NF-CACC model in (13) will be used to perform
analyses which will serve as a reference for the evaluation
of string stability of the networked system.

The control system (13) has an L2-gain from ur to output
zi = Cz,ix̄n less than or equal to θ if there exists a
positive definite and proper storage function V such that the
dissipation inequality

〈∇V (x̄n), f(x̄n, 0, ur)〉 ≤ θ2 ‖ur‖
2
− ‖Cz,ix̄n‖

2
, (33)

is satisfied, and the string stability condition requires θ ≤
1. Note that for the linear system (13), the L2-gain of the
system according to (33) equals the H∞-norm

∥
∥HCz,i

∥
∥
∞

=

supω∈R

∥
∥HCz,i

(jω)
∥
∥ of the transfer function

HCz,i
(s) = Cz,i(sI − ANF

x̄n
)−1Br. (34)

Therefore, the string stability requirement can also be inter-
preted as a condition on the maximal amplification of the
corresponding LTI system (13) to a sinusoidal input, i.e.,

|HCz,i
(jw)| ≤ 1,∀ω, i ≥ 1. (35)

To verify (33) a quadratic storage function V (x̄n) = x̄T
nPx̄n

was chosen to compute the L2-gain from ur to ui (e.g.
Cz,2 = [01×4 K2,1 K2,2 01×4 . . . 01×4]1×nx(n+1) for i = 2)
and we minimize θ subject to the LMIs

(

(ANF
x̄n

)T P + PANF
x̄n

+ CT
z,iCz,i PBr

BT
r P −θ2I

)

� 0, P ≻ 0. (36)

This analysis has been performed for various headway-time
values which yield the results presented in Fig. 4c for n = 2.
The analysis shows that the response of the ACC string
satisfies the condition (36) with θ = 1 only for relatively
large headway-time values (larger than 0.5 sec), whereas
the NF(ideal)-CACC system is string stable according to
(35) for all headway-time values that were considered. Also,
the L2-gains for corresponding headway-time values equal
the peak amplitude values of corresponding Bode plots in
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Fig. 4a-b due to the relation between the L2-gain and the
H∞-norm. This analysis sets the basis for the evaluation
of the CACC NCS model Hz

NCS by providing the ideally
achievable (no network) L2-gain in (28) and shows that θ
is lower bounded by θ∗ = 1. This lower bound of 1 on θ
is a direct consequence of the vehicle following objective
(achieved by the proposed (C)ACC controller).

B. MATI-MAD Analysis for Sampled-Data Setting

In the networked CACC setting considered here, we as-
sume that a single node samples and transmits all vehicle
data synchronously in the network (i.e. the protocol function
h = 0 in (19)) corresponding to the SD protocol. In practice,
this implies a synchronised sampling and transmission of
the wirelessly transmitted measurements, which could be
implemented using GPS-based clock-synchronisation. We
note that the framework set up here can also be applied to
more general Round-Robin protocols, for which conditions
(24-26) can also be shown to hold [13].

The flow conditions in (28) are checked for the system
Hz

NCS for the controlled output zi = ui = Cz,ix̄n by using
a quadratic storage function V (x̄n) = x̄T

nPx̄n, and taking
m(x̄n, ur) = |A21x̄n + A23ur|, and W (κ, eu) = |eu|. This
leads to the following LMIs:





Ωi PA12 AT
21A23 + PA13

AT
12P −γ2I 0

AT
13P + AT

23A21 0 AT
23A23 − µθ2I



 � 0, P ≻ 0,

(37)

where Ωi = AT
11P + PA11 + AT

21A21 + µCT
z,iCz,i. These

LMIs are solved for n = 2 to obtain tradeoff curves between
the L2-gain θ and γ in (28) with the controlled output
z2 = u2 = Cz,2x̄n for different headway-time constants
(hd) as presented in Fig. 5. Now, by selecting the string
stable pairs (θ, γ) = (1, γ∗) derived from the results in Fig.
5, we can obtain the constants given in (31) that are used to
solve the differential equations (30). Finally, from Theorem
4.1, quantitative numbers for τmati and τmad are obtained
which result in the confined region shown in Fig. 6, where
Hz

NCS is L2-stable with gain θ∗ = 1.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we presented a novel modeling and analy-
sis framework for string stability of interconnected vehicle
strings in the face of communication effects induced by the
wireless network in between the vehicles. Lp-stability results
for Networked Control Systems based on hybrid system
models were used to perform the string stability analyses
for the resulting Cooperative Adaptive Cruise Controller
(CACC) strategy. These analyses provided bounds on toler-
able transmission intervals and delays in face of scheduling
constraints requiring network protocols. Even though the
framework laid down in this paper can accommodate broader
classes of protocols, for illustrative purposes we focused
on the case of the sampled-data (SD) protocol. For more
general classes including the Round Robin (RR) protocol,
initial promising results are recently obtained based on the
provided framework, showing its potential in this context.
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