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ABSTRACT
A typical syntactic pattern recognition (PR) problem involves comparing a noisy string with

every element of a dictionary, H. The problem of classification can be greatly simplified if the

dictionary is partitioned into a set of sub-dictionaries. In this case, the classification can be

hierarchical -- the noisy string is first compared to a representative element of each sub-dictionary

and the closest match within the sub-dictionary is subsequently located. Indeed, the entire

problem of sub-dividing a set of strings into subsets where each subset contains "similar" strings

has been referred to as the "String Taxonomy Problem". To our knowledge there is no reported

solution to this problem (see footnote on Page 2). In this paper we shall present a learning-

automaton based solution to string taxonomy. The solution utilizes the Object Migrating

Automaton (OMA) whose power in clustering objects and images [33,35] has been reported. The

power of the scheme for string taxonomy has been demonstrated using random strings and

garbled versions of string representations of fragments of macromolecules.

Keywords : String Taxonomy, String Clustering, Dictionary Partitioning, Syntactic Pattern
Recognition.

I.  INTRODUCTION
Syntactic and structural pattern recognition (PR) are distinct from statistical PR because,

unlike in the latter, in the former two areas, the processing of the patterns is achieved by

representing them symbolically using primitive or elementary symbols. The PR system

symbolically models noisy variations of typical samples of the patterns, and these models are

utilized in both the training and testing phases of the system.

There are essentially two strategies utilized in statistical pattern recognition. In a non-

parametric scheme, the classifier is presented with a set of training samples from each class.

Typically, when a testing sample is encountered, the classifier compares the latter with every

training sample, and a decision is made based on the training samples which are its closest

neighbours. Clearly, this is a computationally expensive strategy1. The alternative strategy

                                               
+ The first author is a Senior Member of IEEE. Both authors were partially supported by the Natural Sciences and
Engineering Research Council of Canada. A preliminary version of this paper was presented at the 1994 International
Workshop on Syntactic and Statistical Pattern Recognition, Nahariya, Israel, October 1994.
1Nonparametric schemes are not necessarily computationally expensive. Given n data points the nearest neighbours can
be computed in Euclidean space in O(log n) time. However, the question of computing the nearest neighbours fast when
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involves modeling the class conditional densities parametrically. The parameters of the individual

densities are then estimated in the learning (training) phase. The testing phase involves utilizing

the features of the test sample in a computation which usually uses the estimated parameters of

the  individual class densities. Thus, though there may be thousands of training samples, the

testing phase does not compare the test sample with every one individually. Instead, it

"generalizes" the properties of the overall class by examining the features of the individual

samples. This "generalization" is achieved by the system learning the class densities, and the

"generalized" information is stored in terms of the functional form of the density and its estimated

parameters.

The problem in syntactic PR is quite similar except that the solutions are far more complex

because there is no known metric which can effectively cluster strings. A typical syntactic PR

problem involves comparing a noisy string with every element of a dictionary, H. Analogous to

the scenario in statistical PR, the problem of classification can be greatly simplified if the

dictionary is partitioned into a set of sub-dictionaries -- analogous to obtaining the various class

conditional densities. In this case, the classification can be hierarchical -- the noisy string can be

first compared to a representative element of each sub-dictionary and the closest match within the

various sub-dictionary can be subsequently located. The entire problem of sub-dividing a set of

strings into subsets where each subset contains "similar" strings is called the "String Taxonomy

Problem".

To our knowledge there is no reported solution to this problem. Indeed, in his plenary talk

at CPM 1992, The Third International Symposium on Combinatorial Pattern Matching, in

Tucson, Professor Ehrenfeucht from the University of Colorado, a pioneer in this field, spoke

elaborately about the problem [8]. He spoke about the complexity issues that shroud this problem

and challenged the audience to tackle it2. Apart from the other issues that the authors of this

paper learned from the talk,  it was also clear that a good taxonomic scheme would have to not

only utilize the dissimilarities between the strings as evaluated by an appropriate metric, but

additionally incorporate an effective learning mechanism which would infer the dissimilarity

between a string and a set of strings from the corresponding dissimilarities between the individual

strings themselves. The solution presented in this paper attempts to meet that goal.

One of the fields where string taxonomy will be very powerful is in molecular biology.

Currently, there is a great deal of research investigating the mutations of molecules such as those

seen in RNA sequences.  In their simplest forms, these molecules can be viewed as long strings of

letters which represent their component bases [3,27,39].  It is well known that these sequences
                                                                                                                                             
the data points are strings (i.e., non-Euclidean) is still an amazingly interesting research problem. We refer the reader
to [10] for an excellent review of classical clustering schemes.
2The first author is very grateful to Professor Ehrenfeucht for introducing him to this problem. We regret that there is
no published record of his plenary presentation at CPM-1992.
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mutate, over time, into different sequences.  In order to study these various sequences it is useful

to be able to associate them collectively. Hopefully,  a good algorithm will process a set of

sequences and partition them efficiently so that those which mutated from the same source, group

together. This could, in turn, assist a researcher to identify mutated sequences without an a priori

knowledge of the source molecule.  Furthermore, it could also help the researcher to quantify

how well a sequence fits into the grouping to which it is assigned.

1.1 Implications of Dictionary Modeling

On formulating the problem we observe that its complexity is closely related to the model

for the dictionary. First of all, observe that the first step in this modeling scenario involves

specifying the alphabet, which, in most cases, is finite. For example, the most restricted alphabet

is the binary set {0,1}, and the alphabet encountered for English text is the set of 26 characters

{a...z}. To distinguish between the words of a language, customarily, various punctuation marks

have been defined, the most common one being the "space" delimiter. In speech applications, the

individual symbols are the set of phonemes [2,39,44] and in the recognition of noisy macro-

molecules, the individual symbols are the underlying amino-acids [3,28,39].

Once the alphabet for a text processing problem (or application) has been defined, the next

question that is of importance is one of understanding the nature of the individual words or

strings that will be processed. We briefly catalogue each of the options reported in the literature.

In many real-life applications the dictionary used is finite. This is especially true in the case

of natural languages, telephone directories, and even the vocabulary used by hospitalized

handicapped individuals [20,21,25,26]. Indeed, even in the case of written English text, various

studies have been made which indicate that large proportions of the words used in English form a

very small subset of the possible English words. In fact, Dewey [6] has compiled such a collection

and claimed that this collection, consisting of 1023 words, comprises a very large proportion of

written English text. Thus, in both string processing and string recognition it is not uncommon to

represent the dictionary as a finite set of words, and using this model, string correction can be

achieved using a suitable similarity metric [14-18,31,32,37,39,41]. The advantages of using a

finite dictionary in text recognition applications are many. First of all, the accuracy of  the

recognition is very high. Secondly, a noisy string is never recognized as a word which is not in the

language, and thus, the question of "meaningless" decisions is irrelevant. Finally, the time

complexity of the computation involved in the text recognition process is typically quadratic per

word and is linear in the size of the dictionary. The complexity per word can often be decreased if

the dictionary is modeled using a trie [17], and if the alphabet size is decreased [1, 24, 41].

When the dictionary is prohibitively large, problem analysts tackle the problem by modeling

the dictionary differently. Typically, it is represented using a stochastic string generation
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mechanism. The most elementary model is the one in which only the unigram (single character)

probabilities of the dictionary are required [5,13,29,38,42]. This model is also referred to as the

Bernoulli Model. A word in the dictionary is then modeled as a sequence of characters, where

each character is independently drawn from a distribution referred to as the unigram distribution.

Typically, these unigram probabilities are chosen to be the probabilities of the letters occurring in

the original language. A generalization of this is the Markovian Model [2,5,13,20,21,25,26,29,

39-42,44] where the probability of a particular symbol occurring depends on the previous symbol.

Essentially, this model is identical to the one which uses the bigrams of the language. A word in
the dictionary is modeled as a sequence of symbols where two subsequent symbols xixi+1 occur

with the probability with which they occur in the language. Both the Bernoulli Model and the

Markovian Model have been used to analyze various pattern matching and keyboard optimization

algorithms and the associated data structures that are encountered, such as suffix trees and their

generalizations (See the references listed above). Models which utilize the positional bigrams (and

their variants) of the language have also been reported (See references in [37,41]).

In this paper, we shall present a solution which, to our knowledge, is the first reported

solution to the string taxonomy problem. In particular, we shall assume that we are dealing with a

finite dictionary, H ={X1,...XJ}. We intend to partition H into K equi-sized sub-dictionaries. The

problem of partitioning H into unequally sized sub-dictionaries is still open. Although the case

when H is modeled using a Bernoulli/Markovian model is open, we believe that these are

relatively simpler to tackle than the finite dictionary case because, in these cases, the

characteristics of the sub-dictionaries can be learned usingstatistical PR training methodologies.

We believe that in these cases the heart of the problem will involve systematic estimation

procedures, and we are currently working on characterizing and formulating how these

procedures can themselves be formalized.

II.   LEARNING AUTOMATA AND OBJECT PARTITIONING
Our solution to the string taxonomy problem involves Learning Automata (LA). LA have

been used to model biological learning systems and also to learn the optimal action which a

random environment offers.  Learning is achieved by interacting with the environment and

processing its responses to the chosen actions.  LA have various applications including parameter

optimization, statistical decision making and telephone routing [27,33,35,36,43].  An excellent

book by Narendra and Thathachar [27] contains a review of the families and applications of LA.

The learning process of the LA can be described as follows:  The LA is offered a set of

actions by the environment, and it is constrained to choose one of these actions.  On choosing an

action it is either rewarded or penalized by the environment with a certain probability.  A LA is
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one which learns the optimal action, which is the action that has the minimum penalty probability.

Hopefully, the automaton will eventually choose this action more frequently than other actions.

Stochastic LA can be classified into two main families : (a) Fixed structure stochastic LA

and (b) automata whose structures evolve with time.  Examples of the former type are the Tsetlin,

Krinsky and Krylov automata [27,36,43].  The latter automata are called variable structure

stochastic automata because their transition and output matrices are time varying, in practice, they

are merely defined in terms of action probability updating rules [27].

A FSSA is a quintuple (αα, ΦΦ, ββ, F, G) where :
(i) αα = {α1, ..., αR} is the set of actions that it must choose from.

(ii) ΦΦ = {φ1, ..., φS} is its set of states.

(iii) ββ = {0, 1} is its set of inputs where '1' represents a penalty and '0' a reward.

(iv) F is a map from ΦΦ x ββ to ΦΦ.  It defines the transition of the  state of the automaton on

receiving an input.  F may be stochastic.

(v) G is a map from ΦΦ to αα, and determines the action taken by the automaton if it is in
state φi.  With no loss of generality G is deterministic [27,36,43].

The selected action serves as the input to the environment which outputs a stochastic

response β(n) at time 'n'.  β(n) is an element of ββ = {0,1} and is the feedback response of the

environment to the automaton.  The environment penalizes (i.e., β(n) = 1) the automaton with the
penalty ci, which is action dependent.  On the basis of the response β(n), the state of the

automaton φ(n) is updated and a new action chosen at (n+1). Note that the {ci} are unknown

initially and it is desired that as a result of interaction with the environment the automaton arrives

at the action which presents it with the minimum penalty response in an expected sense.

In this paper we propose that the string taxonomy problem be solved by viewing the

problem not as a estimation or parameter-based training problem, but instead as one that falls in

the domain of object partitioning problems. The goal is not just to find strings in H that match

other strings, but to group all similar strings together so that subsequent searches will proceed

much faster. Thus, instead of using some classification method which stipulates the membership

of the strings into groups, the system adaptively decides the grouping by extracting information

about relative resemblances between the various elements when they are considered in pair-wise

comparisons. The algorithm uses previous sub-dictionary patterns to intelligently partition the

entire dictionary to obtain a superior partitioning.  Furthermore, the solution not only decides the

groupings but also quantifies the "closeness of fit" of how well the strings belong to this sub-

dictionary.

There are many advantages to this approach. Unlike estimation methods, the finite

dictionary can be quite general. Instead, the pairs of strings are individually compared to achieve

the learning. Also, the technique is adaptive. Furthermore, unlike heuristic methods [7,30] which
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can merely impose a user's criterion for closeness between two strings, we can now generalize a

closeness criterion to extrapolate whether a string belongs in a potential sub-dictionary.   Finally,

(and far from being insignificant -- especially when the strings are long and the dictionary is large)

there is no human intervention required to decide on a "best" string for each sub-dictionary. The

system automatically and adaptively stipulates its own "best" representative for every sub-

dictionary.

The strategy utilized in this paper utilizes the philosophy of the Object Migrating Automaton

(OMA) that is powerful in equi-partitioning [35,36,46]. In the interest of brevity, we omit the

description of the OMA here and refer the reader to [35,36] for its structural details and for a

review of the other reported solutions to equi-partitioning. In passing, we would like to mention

that the OMA is extremely accurate and fast -- experimentally, it converges to the true solution all

the time, and does so with a speed which is an order of magnitude faster than the scheme due to

Yu et. al. [46] especially when all the objects are initialized to be in the respective boundary

states.

III.  AUTOMATON-BASED STRING TAXONOMY
Note that we have assumed that H={X1,...XJ} is to be partitioned into K equi-sized sub-

dictionaries. To do this, we first specify how the strings themselves are to be compared. Various

numeric and non-numeric measures relating two strings have been reported in the literature. Some

of the numeric measures [1,9,11,12,14-17,19,22-24,28,31,32,37,39,41,45] include the

Generalized Levenshtein Distance, the Length of their Longest Common Subsequence (LLCS)

and the Length of their Shortest Common Supersequence. Indeed, in [14,15] a common basis for

all these numerical measures has been specified.  Although in this paper we shall quantify the

similarity between two strings using a function of their LLCS, by virtue of the results in [14,15]

we believe that any of the numeric measures catalogued there will yield comparable results.  We

define Sim(X,Y), the similarity between X and Y as the normalized LLCS defined as follows:

Sim(X,Y) =  
 2. LLCS(X,Y)

|X|+|Y|  

For example, if X= "AATGCC" and Y="ATGCA", their LLCS is 4, and Sim(X,Y) is 0.7273.

To make a scheme arrive at an efficient partitioning we require it to migrate pairs of strings

between the partitions based on this similarity metric ; we shall require that the automaton reckon

X and Y to be classified together if the Sim(X,Y) is greater than a user-defined threshold, θ.

Throughout the first part of this study we have set the threshold θ to be 0.5. In the latter part of

the study when we attempt to hierarchically partition the dictionary into sub-dictionaries and

partition each sub-dictionary into sub-sub-dictionaries, we have set θ to be 0.5 at the first level
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and to be 0.7 at the "leaf" level3. By computing the Sim(X,Y) between each pair of strings and by

systematically utilizing a table of similarities the automaton must adaptively learn how to partition

H effectively.

3.1 The String Taxonomy Learning Automaton

The LA presented here, called the String Taxonomy Learning Automaton (STLA), utilizes

the philosophy of the OMA and assumes that there is an underlying unknown grouping. When the

algorithm is initialized (i.e., before the partitioning algorithm is invoked) the elements of H may

be randomly scattered among the various sub-dictionaries. Hopefully, as the learning proceeds the

STLA will utilize the similarity between the strings intelligently and migrate them so that  similar

strings are associated together.

 We define the String Taxonomy Learning Automaton (STLA) as an 8-tuple as below :
( H , {φ1, φ2, ..., φKN},  {α1, α2, ..., αK},  ββ, Q, G , M, Z), where,

(i) H={X1,...XJ} is the set of strings.
(ii) {φ1, φ2, ..., φKN} is the set of states.

(iii) {α1, α2, ..., αK} is the set of K actions, each representing a certain sub-dictionary

into which  the elements of H must fall.

(iv) ββ = {0, 1} is its set of inputs where '1' represents a penalty and '0' a reward.

(v) Q, the transition function specifies how the strings should move between the various

states and is quite involved.  It will be explained in detail presently.

(vi) The function G partitions the set of states for the sub-dictionaries. For each action
αj, there is a set of states {φ(j-1)N+1, ..., φjN}, where N is the depth of memory. Thus,

G (φi) = αj            if     (j-1)N + 1  �  i  �  jN

(1)
This means that the string in the automaton chooses α1 if it is in any of the first N

states, it chooses α2 if it is in any of the states from φN+1 to φ2N, etc.  We assume φ(j-

1)N+1 to be the most  internal state of action αj, and φjN to be the boundary state.

These are called the states of MaximumCertainty MinimumCertainty respectively

(vii) M is the set of Similarity Measures4, Sim(X,Y) between all pairs in H.

(viii)  Z is the set specifying the strings deemed to be individually similar. It is stored as a
list in which the adjacent elements <zk,zk+1> (where k is odd) are strings whose

similarity index is greater than θ.

                                               
3The possibility of adaptively determining the value of θθ was suggested by an anonymous referee. Although this
promises to be an interesting avenue for further research, we are unsure about how such an updating rule for θ θ can be
devised. Indeed, we are not even sure how we can decide, at every iteration, whether θθ should be increased or
decreased.
4In clustering literature, M (or rather its "complement") is also called the "Dissimilarity" Matrix.
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As in the case of the OMA, we shall require that all the elements of H move around between
the states of the machine, and thus it is distinct from traditional learning automata.  Also, if Xi is

in action αj, it signifies that it is in the sub-dictionary whose index is j.  Observe too that if the

states occupied by the strings are given, the sub-dictionaries can be trivially obtained using (1) .

This will thus completely specify the set of sub-dictionaries dictated by the STLA.
Let ωi(n) be the index of the state occupied by Xi � H at the nth time instant. Based on

{ωi(n)} and (1) let us suppose that the STLA decides a current partitioning of H into sub-

dictionaries. Using this notation we shall later describe the transition map of the STLA.

First of all, observe that the different states within a given sub-dictionary quantify the

measure of certainty that the scheme has for a given string belonging to the sub-dictionary in

question. At system start-up all the strings are placed in the boundary state (of

MinimumCertainty) of their initially randomly chosen sub-dictionaries indicating that the scheme

is initially uncertain of the placement of all the strings. As the learning proceeds, similar strings

will be rewarded for their being together in the same sub-dictionary and they will thus migrate

towards their most internal state of the sub-dictionary -- their corresponding states of

MaximumCertainty. Likewise other strings will be penalized and are either moved towards their

boundary state or to another sub-dictionary, indicating the system's ambiguity in associating them

to the current sub-dictionary.

Initially, the STLA begins its learning process by evaluating the table of similar string pairs
Z as follows. Consider the strings Xu and Xv. First of all a function which computes the similarity

between them is invoked and the result is stored in the array M. Whenever the strings Xu and Xv

are reckoned similar (i.e., Sim(Xu, Xv) � θ), Xu and Xv are appended to Z.

The algorithm now moves into its main learning loop. The list Z is now traversed repeatedly
and consecutive similar elements Xu and Xv are processed. If they are both assigned to the same

sub-dictionary, the automaton (and in particular, Xu and Xv) is rewarded. However, if they are

both assigned to distinct sub-dictionaries, the automaton is penalized. This mode of penalizing is

called the PenalizeSimilarStrings mode, because, in this mode, strings which are actually similar

are assigned to distinct sub-dictionaries, and the partitioning is therefore to be penalized.

After the complete list Z has been processed, the algorithm moves into the second phase of

the learning which involves comparing each string to the best representative of its currently

assigned sub-dictionary. For each sub-dictionary, this string should be the one which is currently

most "certain" of its assignment. Typically, this string is the one which has received the most

rewards for being in that sub-dictionary. Since the state occupied by a string represents the

confidence of the automaton being in the current partitioning, for each sub-dictionary, we define

its representative as the one which is closest to its most internal state. The second phase of the

learning proceeds as follows. Every string that is dissimilar to the best representative of its current
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sub-dictionary  is stochastically penalized by attempting to migrate it to another sub-dictionary --

to the one whose best representative is most similar to the string in question. The stochasticity for

the transition will be explained presently. As opposed to the previous mode of penalizing, this

mode is called the PenalizeDissimilarStrings mode, since the penalizing is caused by dissimilar

strings being assigned to the same sub-dictionary.

The cycle then continues to the next iteration where both the algorithm's phases repeat.

We now describe the actual transitions described by Q for each of these operations.

(i) Transitions for Rewards
On being rewarded, since Xu and Xv are in the same sub-dictionary, say, αj, both of them

are moved toward the most internal state of that sub-dictionary, φ(j-1)N+1, one step at a time.  See

Figure I(a).

(ii) Transitions for Penalties : PenalizeSimilarStrings Mode
This is the case encountered when two similar strings, Xu and Xv, are located in distinct

sub-dictionaries. Let us assume that Xu and Xv lie in different sub-dictionaries, say αj and αm

respectively, (i.e. Xu is in state ωu, where ωu�{φ(j-1)N+1,.., φjN}, and Xv is in state ωv, where ωv �

{φ(m-1)N+1, ..., φmN}). Then they are moved away from φ(j-1)N+1 and φ(m-1)N+1 as follows:

a)  If ωu ð  φjN and ωv ð  φmN, then move Xu and Xv one state towards φjN and φmN

respectively.  (Move them towards the boundary states.) See Figure II(a).
b) If at least one of Xu or Xv is in the boundary state of MinimumCertainty, (i.e. either

ωu= φjN or ωv = φmN) , then move the string in the boundary state, say Xu, to φmN, the

boundary state of αm.  In this case, since this will result in an excess of strings in αm,

one of the strings in αm other than Xu is moved to φjN, the boundary state of αj.  We

choose to move the one closest to φmN.  See Figure II(b).

(iii) Transitions for Penalties : PenalizeDissimilarStrings Mode

In the second phase, every string, U, that is dissimilar5 to the best representative of its
current sub-dictionary, say αj,  is penalized stochastically with a probability which is initially set to

zero and incremented as the learning continues. This means that initially, the second phase will be

seldomly invoked, and as the learning proceeds, this phase will be invoked more frequently. Let
us suppose that the string U is in state ωU. If both U and Y are not in the boundary state,  they are

merely moved towards the boundary by one state. If, however, U is in the boundary state, the

scheme opts to migrate U to another sub-dictionary. In order to achieve this, the algorithm first of

all, searches for the best sub-dictionary to which it should be migrated. This is done by searching

among the sub-dictionaries for the one whose best representative is most similar to U. Let us

                                               
5In the experiments conducted, the definition of similarity was slightly modified for the second phase. In the first phase,
we reckoned X and Y to be similar if Sim(X,Y) was greater than ΘΘ. In this case, the strings were reckoned to be similar
if Sim(X,Y) was greater than or equal to ΘΘ-0.1. This was purely a subjective choice.
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suppose that this sub-dictionary is αSw. The string closest to the boundary state of αSw is now

moved to the sub-dictionary of U and U in turn is migrated to the sub-dictionary αSw. The

analogous migration is done if Y is in the boundary state but not U. See Figures III(a) and (b).

The actual algorithm for the STLA is formally presented in the Appendix.

Note that although the fundamental principles involved in the individual migrations are

based on the philosophy used in the OMA (namely, the Tsetlin-like transitions on being rewarded

and penalized), the algorithm is completely different. The primary differences are the following :

(i) Unlike the OMA where the migrations are done "on request" (i.e., when a user performs a

query), in the STLA the migrations are performed for all similar pairs in Z.

(ii) Unlike the OMA, which has no way of penalizing "non-accessed elements" the STLA has

a strategy of penalizing them by considering how similar the strings within the same sub-

dictionary are. Clearly, this cannot be done in the OMA because, in that case, the system is

absolutely dependent on the users' queries. In the present case the system can quantify

how fitting a string is for a sub-dictionary, because M is readily available.

(iii) Unlike the OMA, comparing elements to the best representative of a sub-dictionary has

been introduced for the first time in the STLA. In statistical PR this can be done because

the mean for a class can serve as its representative. In this case, although such a mean

does not exist, the string closest to the most internal state can be reckoned to be the string

that best represents that sub-dictionary. This has rendered the second phase of the loop

possible -- permitting the migration of a dissimilar word from its current sub-dictionary to

another.

(iv) Finally, the concept of stochastically migrating dissimilar elements is new to the STLA.

This has rendered the second phase of the algorithm to be rather irrelevant in the initial

stages of the algorithm and to be more frequently invoked once the strings tend to find

their rightful places. Of course, this concept cannot be used in the traditional OMA

because, in the latter, the question of comparing "dissimilar" elements never occurs.

Indeed, in the OMA, whenever the user requests two elements they are assumed to be

similar, and thus the objects migrated are fully controlled by the users' query stream.

 IV. EXPERIMENTAL RESULTS
The STLA has been rigorously tested and the results that we have received are quite

fascinating. The data which was used was obtained from three sources. In the first set of

experiments the data consisted of noisy strings obtained from English words. In the second set of

experiments, the data was obtained by using long noisy English sentences in which the delimiter

information (found in the locations of the spaces) was discarded. The final experiment consisted

of a dictionary of mutated noisy substrings of biochemical macromolecules. The results of each of
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these experiments is given in the following subsections. Before we describe the details of the

experimental results we first present  a short description about the noisy string generation

process.

4.1 Noisy String Generation

Let us suppose that we have to obtain a noisy version of a string U � A*, where A is the

alphabet under consideration. The generation process assumes the definition of three

distributions, G, R and S defined below. G is a distribution over the set of positive integers and

defines the number of insertions performed in the mutating process and it satisfies :

 ∑
z�0

   

 G(z)   = 1.

Examples of the distribution G are the Poisson and the Geometric Distributions.

The second distribution required is the distribution R, where the quantity R(a) is the probability

that a � A will be the inserted symbol conditioned on the fact that an insertion operation is to be

performed. Note that  R  has to satisfy the following constraint :

  ∑
a�A

   

 R(a)   = 1.

Finally, apart from G and R, the generation requires a probability distribution S over A x

(A≈{λ}), where λ is the null symbol. S is called the Substitution and Deletion Distribution. The

quantity S(b|a)  is the conditional probability that the given symbol a � A in the input string is

mutated by a stochastic substitution or deletion -- in which case it will be transformed into a

symbol b � (A ≈≈  {λ}). Hence, S(c|a) is the conditional probability of a � A being substituted by  c

� A, and analogously, S(λ|a) is the conditional probability of a � A being deleted. Observe that S

has to satisfy the following constraint for all a � A :

  Error!,   ,  S(b|a))  = 1.

Using the above distributions we now describe the garbling algorithm (the noisy string

generation process).  Let |U| = N. Using the distribution G, we first randomly decide on the

number of symbols to be inserted, say, k. The algorithm then determines the position of the
insertions  among the individual symbols of U. In this case,  each of the (N+k)! /(N! k!) possible

positions are assumed equally likely. The actual symbols of U which are not at the inserted

positions are now substituted or deleted using the distribution S. Finally, the individual symbols of

the alphabet are inserted using the distribution R at the inserted positions.

The above process has been shown to be stochastically consistent and functionally complete

[34] and is to our knowledge, the only reported method by which noisy strings with arbitrary

noise characteristics can be generated. Since our intention was to rigorously test the STLA for
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various mutations of strings, noisy strings were generated using this generation scheme and these

strings served as the input for the partitioning algorithm.

4.2 Experiment I : Short Noisy English Strings

The first set of experiments involved studying the partitioning ability of the STLA for noisy

English strings. Eight sets of strings (a total of eighty) were generated from an initial set of eight

root words. The number of insertions permitted was distributed geometrically and the

substitutions were generated using a confusion matrix based on the proximity of keys on the

typewriter keyboard. Some of the noisy strings generated are :

engineering ∅ { enneeriunjk, jngineeving, qagibmfring, sngdnegering}
psychology ∅ { psycfgholgy, psvholsgy, psychqfogy, psychocogr }
mathematics ∅ { mahematrcs, marhecatics, madhemaics, tathematiqs }

A complete list of the eight strings generated is given in Table I. The set of noisy strings was

then specified as the input to the STLA without the latter knowing their origin. The eighty strings

were randomly assigned to the eight sub-dictionaries and placed at the corresponding boundary

states. The STLA was then invoked and after the initial preprocessing which involved evaluating

the inter-string similarities, the various strings were migrated. Table Ia and Ib list the initial and

final partitionings respectively. Note that finally, all the eighty strings were correctly partitioned --

without individually comparing each of them to a "template" string as would have been the

strategy employed by a traditional syntactic PR environment. The power of the scheme is obvious

!!

4.3 Experiment II : Long Strings of English Characters

The second set of experiments involved studying the partitioning ability of the STLA for

long strings of English characters. Ten sets of noisy strings were generated from ten original

strings of length approximately 50. A typical original source string used was :

"some of the worlds best water skiers come from canada".

Since there is considerable information in the delimiter, space, the latter was removed, yielding

the corresponding source string to be :

"someoftheworldsbestwaterskierscomefromcanada"

The strings were then noisily garbled using the above described garbling mechanism, where, as

before, the number of insertions permitted was distributed geometrically and the substitutions

were generated using a confusion matrix based on the proximity of keys on the typewriter

keyboard. A typical noisy string obtained as a result of the garbling was :

"someofwhewcrmdsbestzbersjitrseomefsomcandds"

The set of one hundred noisy strings served as the input to the STLA. The strings were randomly

assigned to the ten sub-dictionaries and placed at the corresponding boundary states. The STLA
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then migrated the strings using its reward and penalty transition maps. Table II shows the final

partitioning in which all the hundred strings were correctly partitioned. Again, the power of the

scheme is clear especially when we realize that the system is absolutely unaware of the original

strings which generated the elements of the dictionary, and thus it did not have any "error-free"

fixed string to which it could compare the noisy strings to. Also note that the performance of the

STLA is not forfeited by extracting the crucial inter-word delimiter information.

4.4 Experiment III : Taxonomy of Mutated Macromolecules

In the final set of experiments we studied the power of the STLA to partition

macromolecules in a hierarchical fashion. Consider the following mutating process. Let us
suppose that we started the process with a set of macro-molecules {X1, X2, .., XJ}. Each Xi is

randomly mutated to yield a new set of molecules for the "next generation". For the string Xi we

refer to the latter set as {Xi1, Xi2, .., XiK}. Now, for the subsequent generation, each Xij is

further mutated to yield a set of new macromolecules {Xij1, Xij2, .., XijM}. The dictionary, H, in

this case consists of the entire set of strings,
H={X111,X112,..,X11M,...,X1K1,X1K2,..,X1KM,..Xij1,Xij2,..,XijM,..,XJK1,XJK2,.., XJKM}.

The task of partitioning is now much more complex than what was studied in the earlier two

experiments. By allowing a "tree" of STLA to process H, we intend to hierarchically partition H

not only in the respective sub-dictionaries, but also to partition each sub-dictionary into the

corresponding "sub-sub-dictionaries". Of course, the basic premise for the whole experiment is
that the tree of STLA is unaware of the original set of macro-molecules, {X1, X2, .., XJ}, and

consequently, the individual machines are constrained to partition them by just comparing noisy

strings with other noisy strings.

The data for the experiment was obtained from The Atlas of Protein Sequence and

Structure [3, page D81]. The task of the STLA at the lowest level (the level closest to the root)

was to partition the JKM elements into J sub-dictionaries. At the next level, each of these sub-

dictionaries was processed by another STLA whose task was to partition its  input (which was a

sub-dictionary) into K sub-sub-dictionaries.

In this set of experiments the strings used were substrings of the following proteins :

(i) myoglobin from the harbour seal,

(ii) the human hemoglobin gamma chain

(iii) ferradoxin obtained from spinach, and,

(iv) adrenodoxin obtained from bovine.

The composition of these proteins is given in Table IIIa.

These four long strings were first mutated by garbling approximately 25% of the string

through the mechanism described earlier.  Unlike the previous cases, where we worked with the
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English alphabet and the typewriter keyboard, in this case the noise generation was based on a

subjectively created "random" confusion matrix which caused the individual molecular symbols to

be substituted, inserted and deleted. For the first level, the fragment of the string (approximately

25%) which was mutated was randomly chosen. This was repeated for the four randomly chosen

quarters, and thus 16 mutated strings were obtained from the original four. At the next level each

of these sixteen were  further mutated, and in this case, to further accentuate the garbling process,

the entire string was rendered noisy. This yielded the total input set of 64 noisy strings.

The set of 64 strings were now classified at the "root" level into four sub-dictionaries using

a single STLA. For the initialization stage, they were first randomly distributed into the four sub-

dictionaries and assigned positions at the boundary states of these dictionaries. Subsequently, at

the "leaf level" four distinct STLA operated in parallel on the sub-dictionaries to further partition

them into sub-sub-dictionaries. At this level, the value of θ was set to be 0.7, and thus the STLA

asserted that two strings were similar only if their similarity index was greater than or equal to

0.7.

The hierarchy of STLA performed very elegantly. In this case, all the strings were correctly

partitioned into their respective sub-dictionaries, and the sub-dictionaries were also correctly

partitioned. Consequently, the scheme could correctly learn the entire pattern of the proteins

without a priori information of the molecular compositions of the original "source" proteins.

A subset of 16 of the 64 strings clustered in their sub-sub-dictionaries is given in Table III.

Observe that the clustering is achieved without comparing each of the strings to a template,

but by merely comparing them between themselves and migrating them using "similar-dissimilar

decisions" as dictated by the STLA. The power of the hierarchy of STLA is clear.

4.5 Drawbacks of the STLA

Although the STLA is powerful and, to our knowledge, is a pioneering contribution to the

entire area of string taxonomy, it still, unfortunately, has some noticeable drawbacks. The first

major disadvantage of the scheme is that it assumes that the dictionary can be equi-partitioned.

First of all notice that using techniques similar to those utilized in [35,36,46] this problem can be

shown to be NP-Hard. With a little insight it is easy to see that the equi-partitioning constraint

translates into the "equally likely" scenario for the a priori distributions of the classes traditionally

used in statistical PR.  The case when the sub-dictionaries are not equally sized, is yet open. If we

know the relative sizes of the sub-dictionaries, we believe that the problem is still tractable using

ideas similar to the STLA, because, the current size of a sub-dictionary would inform us whether

a new entry would require the migration of another element or not. But if the relative sizes of the

sub-dictionaries are themselves unknown, the problem is yet unsolved. We are currently
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investigating whether our solution to the underlying partitioning problem [36] can be adapted

here.

The second major drawback of the STLA is that it requires the computation of the pair-wise

similarity of all the strings in H. This is typical of all "nearest neighbour" type algorithms, and thus

usually, cannot be circumvented. However, in this case, since the string in the most internal state

of a sub-dictionary can be viewed as its most ideal representative,  we believe that we can merely

use a comparison between an element and the various "best representatives".

V. CONCLUSIONS
In this paper we have presented, to our knowledge, the first reported solution to the "String

Taxonomy Problem"  which can be utilized to enhance the capabilities of any syntactic PR system.

Typically, such a system compares a noisy string with every element of a dictionary, H. The

problem of classification can be greatly simplified if the dictionary is partitioned into a set of sub-

dictionaries, because, in this case, the classification can be hierarchical. In its generality,  the

"String Taxonomy Problem" involves the problem of sub-dividing a set of strings into subsets

where each subset contains "similar" strings. In this paper we have presented a learning-

automaton based solution to the problem. The solution is the String Taxonomy Learning

Automaton (STLA) which has been developed using the same philosophy as that used in the

Object Migrating Automaton (OMA) whose power in clustering objects and images [33,35] has

been reported. The power of the scheme for string taxonomy has been demonstrated using

random strings and garbled versions of string representations of fragments of macromolecules.
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Table I : String Taxonomy of Short Strings
Table Ia : List of Strings Prior to Taxonomical Analysis

Sub-dictionary : ωω1 Sub-dictionary : ωω2
String_index     State       String String_index    State       String
   0 9 qagibmfring 10 19 architecnure
    1 9 comelpfxity 11 19 photograpmy
    2 9       psychqfogy  12 19 cohjvlerity
    3 9       axcliwectur 13 19 engineaarrng
    4 9       sngdnegering 14 19 arkhitezturx
    5 9       engineerina 15 19 psgeochelogy
    6 9 eyginring 16 19 madhemaics

7 9       afgpritaamic 17 19 guohrafhijjq
8 9       engitzering 18 19 ensineerinq
9 9 pmvchomog 19 19 psychokogy

Sub-dictionary : ωω3 Sub-dictionary : ωω4
String_index     State       String String_index    State       String
   20 29 goraphicsleq 30 39 mahematrcs
    21 29 geogrpphical 31 39 algorichroc
    22 29 mathematics   32 39 gvograuhicap
    23 29 photigraphy  33 39 acgwtithmic
    24 29 irchatmcturi  34 39 marhecatics
    25 29 photogravhy  35 39 veograpaical
    26 29 marhematics 36 39 muthematzilo

27 29 arghitecjure 37 39 eogrophicalg
28 29 mayhematias 38 39 photography
29 29  psecholody 39 39 guographicah

Sub-dictionary : ωω5 Sub-dictionary : ωω6
String_index     State       String String_index    State       String
   40 49 zomplexipy 50 59 jngineeving
    41 49 gaographieac 51 59 psychojojy
    42 49 archytemtrre  52 59 ptotsogrdphy
    43 49 klotogrrpur  53 59 photagroihy
    44 49 abchiteptqrey  54 59 algorithmil
    45 49 complekity   55 59 geoeraphical
    46 49 architicjtge 56 59 olgorrtmic

47 49 engieeering 57 59 psychocogr
48 49 architqcture 58 59 geogcrgphiccl
49 49 enneeriunjk 59 59 algorivhmiz

Sub-dictionary : ωω7 Sub-dictionary : ωω8
String_index     State       String String_index    State       String
   60 69 tomplexahy 70 79 tathematiqs
   61 69 amroritwmic 71 79 mzsheiatice
   62 69 nrchitemthre 72 79 atgorithmic
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   63 69 psycfgholgy 73 79 yomplexity
   64 69 uathematics 74 79 algowithmic

65 69 argorimid 75 79 psvholsgy
   66 69 komplexity 76 79 cofplexisy
   67 69 phjcolocq 77 79 phsdtoygapy
   68 69 xhonogradhz 78 79 jkgplexgby
   69 69 phytograpsy 79 79 comolpity
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Table I : String Taxonomy of Short Strings
Table Ib : List of Strings After Taxonomical Analysis

Sub-dictionary : ωω1 Sub-dictionary : ωω2
String_index     State       String String_index    State       String
   70 5 tathematiqs 0 11 qagibmfring
   26 3 marhematics 5 11  engineerina
   22 2 mathematics 18 10 ensineerinq
   64 2 uathematics 49 10 enneeriunjk
   71 0 mzsheiatice 13 10 engineaarrng
   34 0 marhecatics 8 10 engitzering
   30 0 mahematrcs 6 10 eyginring
   28 0 mayhematias 4 10 sngdnegering
  16 0 madhemaics 47 10 engieeering
   36 0 muthematzilo 50 10 jngineeving

Sub-dictionary : ωω3 Sub-dictionary : ωω4
String_index     State       String String_index    State       String
   75 20 psvholsgy 17 39 guohrafhijjq
   57 20 psychocogr 20 31 goraphicsleq
   19 20 psychokogy 21 31 geogrpphical
    9 20 pmvchomog 32 31 gvograuhicap
   67 20 phjcolocq 39 31 guographicah
   51 20 psychojojy 55 31 geoeraphical
   29 20 psecholody 58 31 geogcrgphiccl
   15 20 psgeochelogy 35 31 veograpaical
    2 20 psychqfogy 41 30 gaographieac
   63 20 psycfgholgy 37 30 eogrophicalg

Sub-dictionary : ωω5 Sub-dictionary : ωω6
String_index     State       String String_index    State       String
   46 42 architicjtge 72 59 atgorithmic
   42 40 archytemtrre 7 51 afgpritaamic
   27 40 arghitecjure 74 50 algowithmic
   10 40 architecnure 59 50 algorivhmiz
   48 40 architqcture 56 50 olgorrtmic
   44 40 abchiteptqrey 54 50 algorithmil
   14 40 arkhitezturx 61 50 amroritwmic
   3 40 axcliwectur 33 50 acgwtithmic
   62 40 nrchitemthre 31 50 algorichroc
   24 40 irchatmcturi 65 50 argorimid

Sub-dictionary : ωω7 Sub-dictionary : ωω8
String_index     State       String String_index    State       String
   53 61 photagroihy 78 70 jkgplexgby
   77 61 phsdtoygapy 45 70 complekity
   69 60 phytograpsy 79 70 comolpity
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   38 60 photography 60 70 tomplexahy
   25 60 photogravhy 73 70 yomplexity
   23 60 photigraphy 12 70 cohjvlerity
   11 60 photograpmy 1 70 comelpfxity
   43 60 klotogrrpur 40 70 zomplexipy
  68 60 xhonogradhz 76 70 cofplexisy
   52 60 ptotsogrdphy 66 70 komplexity
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Table II : String Taxonomy of Long Strings after Analysis

String_index     Sub-dictionary String
52 1 someoftheworudsbestwateaskieryxomafromeanada

   41 1 shmeofthewrldsbestwaterskierscoxefromcfnada
   29 1 somooftheworldsyestoaterskixrocpmefromcanada
   28 1 someofwhewcrmdsbestzbersjitrseomefsomcandds
    9 1 someofmhwworldsbasxwaherskvmrswfmefrxmcanada
    7 1 domeoltjezorldsaebtwatwrsniecscomifrnmctgada
    4 1 sosemfthpworywsbestwaterskierscomeffomcansda
   72 1 soopofthewdrdsbestwaterstiersmomegrymcanafa
  53 1 someoftheworlvsbestwaeqrskierscomefromcanada
   73 1 iomeqftheworldsbestwateskiergcomefromdandda

String_index     Sub-dictionary String
1 2 nhvarinfylifehavqievrbeentonorthwettteruttorvs
0 2 nevgrinyeiselaveieverbeeqtongrthwimttedritopies

   81 2 ieverinmylieuhavpieixrbegntonojthwemqterritories
  70 2 revhrinmylbfelzveqevdrbefntonovtowesttlrritssves
   58 2 neverinmyofehavievzrbeektunortiwesttergitories
   84 2 neaerinmylifchavejenvrbeenbonortgwestterrimorpzk
   37 2 neveriemylifentleselerbecntonorrhwvstuerritories
   27 2 nevfribmyyieehaveuevnrbvntonozthaehtyyrritolkis
   18 2 keverinmgcikemayesevecfeentonortzwesttergigorien
   93 2 nzverinlylzfehaveiecerbeentonorthwestlerzitories

String_index     Sub-dictionary String
68 3 aachitecturalstabnwxunsyreajphiknyincdeqzate

   63 3 architeczuralstmiwhnspreadthtvlyisadzquate
   60 3 arcqitectfralstwpnbhenshreadthinlvisamequhte
  57 3 arcjilvcturalstainwhenseroadthislyisadequate
   55 3 xmhikccturalstaiqwhpnsxreadthjzlyisadeeuate
   30 3 architecxuralstainwyenspreadthenayisadequate
   22 3 architkctkralstainwzensfrearthjnkynsaoequate
   13 3 arcvitectjrrlstazndhenspreudthiwlyisaxequate
   90 3 arahiteorjralstainwhenspreadshinlyisadoquate
   76 3 architecturmlataindjenspreadthjnlyisadequaqe

String_index     Sub-dictionary String
80 4 haveyoilvrbefntoazodinwjxghquablgiraffebhbound

   94 4 haveyoeveybeenvlazooinwhichquaiogiraffezjbgunx
   79 4 haveyogeverjeentoazooinwhichquailgiraffeqglound
   38 4 javtyouevegbeznkoazoounwhicxqryiroirafuesaboucd
  89 4 naqeyoueverbhewtolzpoinwhichqqiilgiraffesabtund
   36 4 hsvgyoulverbeentoazoobnmhlctquailgirrffesacwund
   86 4 haveyouepubeentoszooinwhichqjailgirafftsabwund
   35 4 eavekoueverbeeytoafainahkchhuaiwfirtffesabound
   33 4 haveyoueverbetntoazoxtnwtichquaeltieaffesrbjunz
   21 4 haveyoueverseqntoazyjinwhichqdlilgiraffesbound

String_index     Sub-dictionary String
40 5 seapesostreesalvuseeulforprovicinfshadefoodqed

   17 5 peavesqnerzesareuseftlforprovzdixghhadgfvodbed
   25 5 lhavesontrmesareusefulforprovidijgxhasefonrbed
   71 5 loacesontrqesaredszfulforprovipibgshadefoodcei
   44 5 aavesontkeecxrnusetulfvrprovipscgshadefsodbed
   51 5 mhavesojtrehaarensefulforrrovidrjgshadefvodbdd
  32 5 leavesontrjesarhusefhlforprovidinishadeaoodved
   31 5 lepvezctrewkareusefxmforpjovidineshadefondbed
   46 5 lejvesonbreesaiehsefulflqprovidinkshaddfoodbed
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   48 5 leiveswtrhesaveusefulfouprovidingshadnaiodbed
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Table II : String Taxonomy of Long Strings after Analysis (Contd)

String_index     Sub-dictionary String
64 6 atriedanytruqmetqodofcpnwdcoptrokiszeargadowater

   14 6 ataieuandtruemethoqofcrowdfntrolrsteargasorwatur
   87 6 atriedaxdtruemethokkfcroddiontrdlisheargasorwter
   75 6 rkrhedandtrcemethodvhcrowbcontroyisleajasorrater
   56 6 utpihdandtruevethtdofcrswdcozsroligteargawowateo
   47 6 morimlamdteuebhnhodofcrowdcontnolfvuaargasorwatm
   69 6 avrietandoruemethodifcrvwdcoktrylisteargasorwater
   24 6 ftzptcandtruelethodofcrowucontrolisaeaugaworwater
   20 6 atriedapdfkmgmethouopcroidconbrolisteargwsorwater
   74 6 ytjiedandtruemethodofcroddcontrolisteargasorwater

String_index     Sub-dictionary String
77 7  orienteeringisawtyoflifpforlastuinnsscedjszogu
3 7 orienteerangnsarayoglureporosytfinnsszfmesoogs

   26 7 orienkuerqnjipawayoflvfeformostfinnsswedwsnogh
83 7 orienteeringwsawayofliueformostfinnsspedosnoos

   97 7 osiewteeringisawgfofliieformtctfinnsswidesnogs
   66 7 orienteeringisaiayoflifebormostfinnsswedesgodb
   85 7 iuienteqringilawayofqifeformultfinnsswedesnogg
  65 7 tricnteurdngifpwayvfljfeformostfinneswebesnogs
   54 7 orienteerfngistwayfflzferormostfinnssweyesnogs
   39 7 orienteerinucsawayiflifeformostficnssweselnpgs

String_index     Sub-dictionary String
92 8 thijisatestoverclongstrikgqollengmhmbotfifty
62 8 thidisatestofverylongsaringsoflengthaboutfifty
16 8 rhisioaeestoflerylongstringsoflengthaboctfifay
8 8 vhisiuatestofveryoongstrclusojlengthabvutfifta
6 8 hisqsatustmfverylongrtringsoflezgthabouteifiy
5 8 tnisisatestcfverylongstrinisofledgthaboutjtfti

   59 8 thisisatdstofveryfongstringscflengthabeutfifty
   78 8 qhisitztestofvesllongstrinjsoflegthaboutfisty
   2 8 thisiaatustofverylongstripgsoflenguhhboftfjjty
   34 8 khisisatestofverylongsaribmsoflekkgtuhabottfif

String_index     Sub-dictionary String
49 9 rowmanyskeepcanasleepsheacershearrfashwkpslecpw
45 9 howmanysteepcanbshrerohearersheafipasheepsleeps
43 9 hkwmanyshkepcahasheepsheareyhearifasheepsveeps
67 9 ygwnnysheepcanashvxpshearedszdarifasheepsfeeps
2 9 iormaxxshwepcanasheepstqarqrshearifasheegssoeps

   19 9 hozoanysheepyanasheepshekreqshearifasheepsgbeps
   11 9 iowmanysheepcabasheepsheasnrlhearmfashmepsleeps
   10 9 howjanycteepcanazreexsdeaietshearifasheypsmeeps
    2 9 hoemanysheepcanoshnopshlarershearifasheepsleeps
   88 9 howmanysheepcvnaszhepshearrruhearifashevpsleeps

String_index     Sub-dictionary String
95 10 frogstladsahvalamaqkerslbveundetrowksanqmiss
12 10 frogseadsandsplamanderslivqhnderrovksandooss
91 10 frxgstobpzandsalamandersliveunuerrocwsawdxofs

   96 10 grwgstoadsandfalamandmwsbiveundoarocksandmoss
   82 10 srogqdoadswndsalamddersliveuvdwrujnksandmass
   61 10 foogqiodsandyalamxnderbliveunqerrocksandmors
   50 10 foogchoedsandsalamanpeksleveunderrocksandmoss
   15 10 ajogstoadsabdmalambndorslileunderrocksandvoss
  99 10 frogstoadmandsalmmanuersliveunddkroiksnndmugs
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   98 10 frogstogdsaddsabakafdersbivehndeezocksaydmcss
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Table III : Hierarchical String Taxonomy of Biological Macromolecules
Table IIIa : List of the Four Original Protein Sequences

Protein source : harbour seal
Protein Name : myoglobin
Protein Structure :

glsdgewhlvlnvwgkvetdlaghgqevlirlfkshpetlekfdkfkhlkseddmrrsedlrkhgntvltalggilkkkghhe-
aelkplaqshatkhkipikylefiseaiihvlhskhpaefgadaqaamkkalelfrndiaakykelgfhg

Protein source : human
Protein Name : hemoglobin gamma chain
Protein Structure :

ghfteedkatitslwgkvnvedaggetlgrllvvypwtqrffdsfgnlssasaimgnpkvkahgkkvltslgdaikhlddlkgt-
faqlselhcdklhvdpenfkllgnvlvtvlaihfgkeftpevqaswqkmvtgvasalssryh

Protein source : spinach
Protein Name : ferradoxin
Protein Structure :

aaykvtlvtptgnvefqcpddvyildaaeeegidlpyscragscsscagklktgslnqddqsfldddqidegwvltcaaypvs-
dvtiethkeeelta

Protein source : bovine
Protein Name : adrenodoxin
Protein Structure :

sssqdkitvhfinrdgetlttkgkigdslldvvvzbnldidgfgacegtlacstchlifeqhifekleaitneennmbzlldlaygltd-
rsrlgcqicltkamdnmdtvrvpdavsda

Table IIIb : A subset of 16 of the 64 Protein Sequences which were partitioned
into sub-dictionaries and sub-sub-dictionaries

Sub-sub-dictionary : ωω1,1
Source : glsdgewhlvlnvwgkvetdlaghgqevlirlfkshpetlekfdkfkhlkseddmrrsedlrkhgntvltalggilkkkghheaelkplaqshatk
Mutated Strings :
houylesnxrqpwculgvonbqetjfkfaslfkshpetlekfdkfkhlkseddmrrsedlrkhgntvltalggilkkkghheaelkplaqshatk
glsdgewhlvlnvwgkvetdlaghgqevlirwfksryqlaqkhsovkglksesojrrsedlrkhgntvltalggilkkkghheaelkplaqshatk
glsdgewhlvlnvwgkvetdlaghgqevlirlfkshpetlekfdkfkhlkseddmrshdlekheohdptqeigecfkxghheaelkplaqshatk
glsdgewhlvlnvwgkvetdlaghgqevlirlfkshpetlekfdkfkhlkseddmrrsedlrkhgntvltalggilkkkdgheeyzfrewhgsiyc

Sub-sub-dictionary : ωω2,1
Source :  ghfteedkatitslwgkvnvedaggetlgrllvvypwtqrffdsfgnlssasaimgnpkvkahgkkvltslgdaikhlddlkgtfaqlselhcdklh
Mutated Strings :
dgjjxkovqqktkwopviveragyfgqghqglvypwtqrffdsfgnlssasaimgnpkvkahgkkvltslgdaikhlddlkgtfaqlselhcdklh
ghfteedkatitslwgkvnvedaggetlgrllvgatxdttkfxaqtntsihmangndkvkahgkkvltslgdaikhlddlkgtfaqlselhcdklh
ghfteedkatitslwgkvnvedaggetlgrllvvypwtqrffdsfgnlssasaimgnplvksagtjnltlhpjfbkvgddlkgtfaqlselhcdklh
ghfteedkatitslwgkvnvedaggetlgrllvvypwtqrffdsfgnlssasaimgnpkvkahgkkvltslgdaikhlmfggnfdhsmlhcmbkdlh

Sub-sub-dictionary : ωω3,1
Source : aaykvtlvtptgnvefqcpddvyildaaeeegidlpyscragscsscagklktgslnqddqsfldddqidegwvltcaaypvsdvtiethkeeelta
Mutated Strings :
naemckwkftknhrfftwmdvkmldpaeeegidlpyscragscsscagklktgslnqddqsfldddqidegwvltcaaypvsdvtiethkeeelta
aaykvtlvtptgnvefqcpddvyildaojfimqgipksgrevmnthtajklepkshnqddqsfldddqidegwvltcaaypvsdvtiethkeeelta
aaykvtlvtptgnvefqcpddvyildaaeeegidlpyscragscsscagklktgslnfbfjmoexolkypqcwksiwasdpdidvtiethkeeelta
aaykvtlvtptgnvefqcpddvyildaaeeegidlpyscragscsscagklktgslnqddqsfldddqidegwvltcaaypvsdrpckmkzdmtbta
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Sub-sub-dictionary : ωω4,1
Source :  sssqdkitvhfinrdgetlttkgkigdslldvvvzbnldidgfgacegtlacstchlifeqhifekleaitneennmbzlldlaygltdrsrlgcqi
Mutated Strings :
aerbzblrjvferyogiltbqrupgdstlnvvvzbnldidgfgacegtlacstchlifeqhifekleaitneennmbzlldlaygltdrsrlgcqi
sssqdkitvhfinrdgetlttkgkigdslldnlbxqtjyfvghabpvvxlryjtvpyofeqhifekleaitneennmbzlldlaygltdrsrlgcqi
sssqdkitvhfinrdgetlttkgkigdslldvvvzbnldidgfgacegtlacstchlifxfhlfelxejifttcyjbzlldlaygltdrsrlgcqi
sssqdkitvhfinrdgetlttkgkigdslldvvvzbnldidgfgacegtlacstchlifeqhifekleaitneennmketulrauylosnskdcbf
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 APPENDIX
THE STRING TAXONOMY LEARNING AUTOMATON

PROCEDURE   STLA_System
Input : The dictionary H = {X1,...XJ}, to be partitioned into K sub-dictionaries.

θ, θ2  parameters which are used to decide whether two strings are reckoned similar.
In our implementation θ2:= θ - 0.1.

The increment to the probability parameter ∆µ*. In our implementation ∆µ* := 0.05. µ is
increased in each loop to a maximum of µmax. To render it a valid probability µmax < 1.

Output : The system lists the J strings as they appear in the K sub-dictionaries and their
associated states.

Notation:(i) ωi is the state of the string Xi.  It is an integer in [1..KN], where,
if (j-1)N +1 � ωi � jN, then string X i is assigned to  the sub-dictionary αj.

(ii) Z is the list of strings whose adjacent elements <zk,zk+1> (where k is odd)
are reckoned to be similar.

Method
Initialize Z to be the empty list
Initialize Prob. parameter µ* to zero
For each  <Xi,Xj> Do

 Mi,j :=   
 2. LLCS(Xi,Xj)

|Xi|+|Xj|
   (*Build matrix of similarity measures *)

       If Mi,j � θ Then                                               (* Build list of similar string pairs *)
               Concatenate Xi and Xj to Z

EndIf
EndFor

       
Randomly initialize ωi for 1 � i � J,  to the boundary states of the sub-dictionaries,

each having J/K strings
Initialize pointer to the Head of Z
Repeat

For Xi and Xj  the next two elements of Z Do (* Process similar elements *)
   If ((ωi div N) = (ωj div N)) Then (*Reward partitioning *)
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Reward(Xi,Xj)
Else (* Penalize partitioning *)

                  PenalizeSimilarStrings(Xi,Xj)
EndIf

EndFor
For all U � H Do (* Entering Phase II *)

             Y := Representative string for current sub-dictionary of U
If Sim(U,Y) < θ2 Then

If (Random(0,1) < µ*) Then (* Randomly move U or *)
PenalizeDissimilarStrings(U,Y) (* Y from current  class*)

EndIf
EndIf

EndFor
If (µ* < µmax) Then

µ* := µ* + ∆µ* (*Increment prob. parameter*)
Initialize pointer to the Head of Z

       Until Satisfied
END  PROCEDURE   STLA_System
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PROCEDURE Reward
Input : Indices of  strings Xi and Xj to be rewarded.
Output : The new states of Xi and Xj.
Method

If ((ωi  mod N) � 1) Then    (* Move Xi  towards the internal state *)
ωi := ωi  - 1                  

EndIf
 If ((ωj  mod N) � 1) Then   (* Move Xj towards the internal state *)

ωj  := ωj  - 1                           
Endif

END PROCEDURE Reward

PROCEDURE PenalizeSimilarStrings
Input : Indices of  strings Xi and Xj to be penalized.
Output : The new states of Xi and Xj.
Method

If (((ωi mod N) � 0) and ((ωj mod N) � 0)) Then (* Both are in internal states *)
ωi := ωi + 1
ωj := ωj + 1

Else
If (ωi mod N � 0) Then   (* Xi  is in an internal state *)

ωi := ωi + 1 (* Update state of Xi *)
temp := ωj         (* Store the state of Xj *)
ωj := (ωi DIV N) * N          (* Move Xj  to same group as Xi *)
t :=  index of an word in sub-dictionary of Xi

where Xt � X i and is closest to boundary state of ωi
ωt := temp (* Move Xt to the old state of Xj  *)

Else
If (ωj mod N) � 0) Then (* Xi  has to be moved *)

ωj := ωj + 1 (* Update state of Xj *)
EndIf
temp := ωi         (* Store the state of Xi *)
ωi:= (ωj DIV N) * N          (* Move Xi  to same group as Xj *)
t :=  index of an word in sub-dictionary of Xj

where Xt � X j and is closest to boundary state of ωj
ωt := temp (* Move Xt to the old state of Xi  *)

EndIf
EndIf

END PROCEDURE PenalizeSimilarStrings
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PROCEDURE PenalizeDissimilarStrings
Input : Indices of  strings U and Y, the representative string for sub-dictionary chosen by U.
Output : The new states of U and Y. The original state of U is ωU and of Y is ωY.
Method

If (( ωU mod N) � 0 ) and ( ωY mod N) � 0 ) Then (* U & Y are in internal states *)
ωU := ωU + 1
ωY := ωY + 1

Else  (* U or Y is in a boundary state *)
If ( ωU mod N) � 0 ) Then (* Y is in a boundary state *)

ωU := ωU + 1

BestSimilarity := �
For all the sub-dictionaries k other than the one chosen by U Do

Yk := Representative string for current sub-dictionary
If Sim(U,Yk) < BestSimilarity Then

BestSimilarity := Sim(U,Yk)
BestSubDictionary := k (*Sub-dictionary k is superior *)

EndIf
EndFor
XSw := String Closest to boundary in sub-dictionary BestSubDictionary
temp := ωU         (* Store the state of U *)
ωU := (ωSw DIV N) * N          (*Move U to same group as XSw*)
ωSw  :=  temp (*Move XSw to old state of U  *)

Else
If ( ωY mod N) � 0 ) Then (* U is a boundary state *)

ωY := ωY + 1
EndIf
BestSimilarity := �
For all the sub-dictionaries k other than the one chosen by U Do

Yk := Representative string for current sub-dictionary
If Sim(Y,Yk) < BestSimilarity Then

BestSimilarity := Sim(Y,Yk)
BestSubDictionary := k (*Sub-dictionary k is superior *)

EndIf
EndFor
XSw := String Closest to boundary in sub-dictionary BestSubDictionary
temp := ωY         (* Store the state of Y *)
ωY := (ωSw DIV N) * N          (*Move Y to same group as XSw*)
ωSw  :=  temp (*Move XSw to old state of Y  *)

EndIf
EndIf

END PROCEDURE PenalizeDissimilarStrings
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Figure I : Reward transitions for the 2N-State STLA. Here Xu and Xv are similar and located
in the same sub-dictionary.
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Figure IIa: Penalty transitions for the 2N-State STLA -- PenalizeSimilarStrings Mode. Xu

and Xv are similar but located in the distinct sub-dictionaries. Neither of them is in
a boundary state.
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Figure IIb: Penalty transitions for the 2N-State STLA -- PenalizeSimilarStrings  Mode. Here
Xu and Xv are similar but located in the distinct sub-dictionaries. However of them
(Xv) is in a boundary state.
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Figure IIIa: Penalty transitions for the 2N-State STLA -- PenalizeDissimilarStrings  Mode.
Here U is dissimilar to Y, the best representative of its current sub-dictionary.
Neither of them is in a boundary state.
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Figure IIIb: Penalty transitions for the 2N-State STLA -- PenalizeDissimilarStrings  Mode.
Here U is dissimilar to Y, the best representative of its current sub-dictionary and
is in the boundary state. YSw is the best representative of the sub-dictionary to
which U should be migrated. XSw, the closest word here, and U swap sub-
dictionaries.


