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We present a consistency condition for 8d N = 1 supergravity theories with non-trivial global
structure G/Z for the non-Abelian gauge group, based on an anomaly involving the Z 1-form center
symmetry. The interplay with other Swampland criteria identifies the majority of 8d theories with
gauge group G/Z, which have no string theory realization, as inconsistent quantum theories when
coupled to gravity. While this condition is equivalent to geometric properties of elliptic K3 surfaces
in F-theory compactifications, it constrains the unexplored landscape of gauge groups in other 8d
string models.

I. INTRODUCTION

One of the important lessons from string theory is that
consistency conditions of quantum gravity are highly re-
strictive. In the low-energy limit, they result in a small
and possibly finite subset of effective descriptions, leav-
ing behind a vast “Swampland” of seemingly consistent
quantum field theories coupled to gravity [1]. Recent at-
tempts to specify the Swampland’s boundary (cf. [2] for
reviews) have reinforced the idea of String Universality:
every consistent quantum gravity theory is in the string
landscape.
Prototypical examples of String Universality appear in

eleven and ten dimensions, where low energy limits of M-
and string theory give rise to the only consistent super-
gravity theories. In ten dimensions (10d), this requires
more subtle field theoretic arguments [3], or the incorpo-
ration of extended dynamical objects in the theory [4],
to “drain” the 10d supergravity Swampland.
In lower dimensions, one observes a broader spectrum

of string-derived supergravity theories, but these never-
theless show some intricate structures not naively ex-
pected from field theory considerations. For example, the
rank rG of the gauge group in known string compactifi-
cations is bounded by rG ≤ 26− d in d dimensions, and
satisfies rG ≡ 1 mod 8 and rG ≡ 2 mod 8 in d = 9 and
d = 8, respectively. Likewise, not all gauge algebras have
string realizations. In particular, there are no string com-
pactifications to 8d with so(2n + 1) (n ≥ 3), f4 and g2.
Again, novel Swampland constraints [5, 6] and refined
anomaly arguments [7] reproduce these restrictions, thus
downsizing the 9d and 8d Swampland considerably.1

The goal of this work is to provide similar constraints
for the global structure of the gauge group of 8d N = 1
theories, by deriving a field theoretic consistency con-
dition for the gauge group to take the form G/Z, with
Z ⊂ Z(G) a discrete subgroup of the center of G. Tak-
ing inspiration from F-theory [8], where the gauge group
structure is encoded in the Mordell–Weil group of the

1 As g2 does not suffer similar anomalies, it remains an open ques-
tion if it truly belongs to the 8d Swampland.

elliptically-fibered compactification space [9–11], it ap-
pears that the allowed gauge groups G/Z are heavily re-
stricted. For example, there are no 8d string compacti-
fications, including constructions beyond F-theory, that
have gauge group SU(n)/Zn, whereas SU(n) groups are
ubiquitous.
These restrictions are mathematically well known from

the classification of elliptic K3 surfaces [12, 13] (see also
[14]). Focusing on G a simply-connected non-Abelian Lie
group2, the geometry restricts Z; e.g., when Z ∼= Zℓ, then
ℓ ≤ 8. Moreover, for each of the cases ℓ = 7, 8, there is
exactly one elliptic K3 on which F-theory compactifies to
an 8d theory withG = SU(7)3/Z7 and [SU(8)2×SU(4)×
SU(2)]/Z8, respectively. Analogous restrictions on gauge
groups also appear in heterotic compactifications [15].
A natural question is, whether these restrictions re-

flect limitations of string theory, or previously unknown
consistency conditions of quantum gravity in 8d.
In this work, we show that the latter is the case. The

key is to realize a non-simply-connected group G/Z by
gauging the Z 1-form center symmetry [16, 17]. Thus,
charting the Swampland of gauge groups G/Z (in any
dimension) can be equivalently tackled by studying con-
sistency conditions for gauging Z in gravitational theo-
ries. As we will discuss below, in 8d N = 1 theories, one
such condition is the absence of a mixed anomaly be-
tween the center 1-form symmetries and gauge transfor-
mations of higher-form supergravity fields, which would
obstruct the gauging of Z. This rules out a vast set of
seemingly acceptable 8d N = 1 theories without known
string constructions, and, in particular, reproduce the ge-
ometric restrictions in models with F-theory realization,
thus providing further evidence for String Universality in
8d.
The anomaly originates from a generalization of the

familiar θ-term, θTr(F 2), in 4d. There, the fractional

2 More precisely, the most general gauge group is G×U(1)r

Z×Zf

, with

Z ⊂ Z(G), i.e., Z ∩ U(1)r = {1}. In this work we consider con-
straints for Z exclusively, leaving a more detailed study including
Zf ⊂ Z(G × U(1)r) ∼= Z(G) × U(1)r , based on [11], for future
work.

http://arxiv.org/abs/2008.10605v3
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shift of the instanton density Tr(F 2), due to the presence
of a background field for the Z 1-form symmetry, breaks
the 2π-periodicity of θ [16–19]. In higher dimensions,
Tr(F 2) couples to higher-form fields (e.g., to vector fields
in 5d and tensors in 6d), which themselves possess gauge
symmetries. These can lead to mixed anomalies with the
Z 1-form center symmetry [20, 21].3

The analogous coupling in 8d involves a 4-form B4.
Crucially, while such a term is absent in a pure 8d su-
persymmetric gauge theory (as there are no appropri-
ate fields B4 in the N = 1 vector multiplet), the cou-
pling

∑

i miB4 ∧Tr(F 2
i ) necessarily exists if one includes

a gravity multiplet, which contains a unique tensor B2

that is dual to B4 [24]. Supersymmetry further demands
that mi 6= 0, [25]. A mixed anomaly involving the sym-
metries of B4, which must be gauged, and the center
1-form symmetry Z can, therefore, obstruct the gauging
of the latter. The vanishing of this anomaly is, hence,
a necessary condition to obtain a non-simply-connected
gauge group G/Z. Remarkably, in models with mi = 1
this condition turns out to reproduce geometric proper-
ties of elliptic K3 manifolds! In combination with other
Swampland criteria that constrain the coefficients mi,
this anomaly restricts possible combinations of simply-
connected G =

∏

i Gi and Z ⊂ Z(G) in 8d. With this,
we can consequently “drain” large portions of the 8d
Swampland, and make predictions in corners of theory
space where the global gauge group structure in corre-
sponding string models is yet to be explored.

II. MIXED ANOMALY FOR CENTER

SYMMETRIES IN 8D SUPERGRAVITY

Let G =
∏

i Gi be a non-Abelian group, where Gi are
simple simply-connected Lie groups with algebra gi. In
8d N = 1, the gauge potential Ai, with field strength
Fi, of the gi gauge symmetry comes in a vector multi-
plet with adjoint fermions. There are no other massless
charged matter states, so at low energies one expects a
discrete Z(G) =

∏

i Z(Gi) 1-form symmetry [17]. More-
over, since the only massless fermions transform in a real
representation, there are no pure gauge anomalies [26].
Besides the vector multiplets, 8d N = 1 supergravity

contains the gravity multiplet with a 2-form gauge field
B2 as one of its component fields [25]. The field strength
H3 of this 2-form field obeys a modified Bianchi identity
involving the gauge fields of the theory,

H3 = dB2 +
∑

i

miCS(Ai) . (1)

Here, CS(Ai) are the Chern–Simons functionals for the
gauge factor Gi.

3 See also [22] for recent treatments of higher-form symmetries in
higher-dimensional setups and [23] for an analysis of the global
gauge group in 6d SCFTs.

The positive integers mi associated with each gauge
factor Gi, which we will refer to as the “level” of Gi,
are a priori free parameters of the supergravity theory.
They can be interpreted as the magnetic charge of gauge
instantons under B2 — more apparent in the dual for-
mulation, with B2 replaced by its magnetic-dual 4-form
B4. The most general Lagrangian contains the coupling
[24]

∫

M8

∑

i

B4 ∧mi Tr(Fi ∧ Fi) =:

∫

M8

∑

i

B4 ∧mi I4(Gi) ,

(2)

where the trace is normalized such that the instanton
density I4(Gi) = 1 for a one-instanton configuration of a
Gi-bundle on a 4-manifold M4.
The center 1-form symmetry of Gi can be coupled to a

2-form background field C
(i)
2 which takes values in Z(Gi).

When C
(i)
2 is non-trivial, it twists the Gi-bundle into

a Gi/Z(Gi)-bundle with second Stiefel–Whitney class

w2(Gi/Z(Gi)) = C
(i)
2 [16, 17] that contributes to (2),

I4(Gi/Z(Gi)) ≡ αGi
P
(

C
(i)
2

)

mod Z , (3)

with P the Pontryagin square. This contribution is, in
general, fractional due to the coefficients αGi

derived in
[18], which we reproduce here:

Gi Z(Gi) αGi

SU(n) Zn
n−1
2n

Sp(n) Z2
n
4

Spin(2n+ 1) Z2
1
2

Spin(4n+ 2) Z4
2n+1

8

Spin(4n) Z
(L)
2 × Z

(R)
2

(

n
4 ,

1
2

)

E6 Z3
2
3

E7 Z2
3
4

Analogous to the situation in 6d [20], the coupling (2)
combines the fractional instanton configuration with a
large gauge transformationB4 → B4+b4, with b4 a closed

4-form with integer periods, into a phase 2πiA(b4, C
(i)
2 )

for the partition function

A(b4, C
(i)
2 ) =

∑

i

miαGi

∫

M8

b4 ∪P(C
(i)
2 ) . (4)

While
∫

M8

b4 ∪ P(C
(i)
2 ) ∈ Z for arbitrary b4, the whole

expression is, in general, fractional due to αGi
. By gen-

eralizing the arguments presented in [20, 27], the elec-
trically charged objects for B4 would acquire a frac-
tional charge if this anomalous phase is non-trivial. Since
this violates charge quantization, the fractional shift (4)
cannot be compensated and can be understood as an
anomaly between the large gauge transformations of B4
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and the center 1-form symmetries. As the former sym-
metry is gauged, one cannot allow for background fields

C
(i)
2 where (4) is non-trivial. Similar to the 6d setting

[20], we expect that the violation of charge quantization
is tied to the lack of counterterms that could absorb this
anomaly. Moreover, we expect that arguments developed
in [19] suggest that there cannot be a topological Green–
Schwarz mechanism that cancels the above anomaly.4

In general, while the individual centers Z(Gi) are
anomalous, there can be a non-trivial subgroup Z ⊂
∏

i Z(Gi) that is anomaly-free. Assuming that there are
no other obstructions to switch on a background for this
subgroup Z of the center, or other breaking mechanisms,
this combination should be gauged, in line with common
lore that in quantum theories of gravity no global sym-
metries (including discrete and higher-form symmetries)
are allowed [2, 28]. In turn, this leads to the gauge group
G/Z.

A. Condition for Anomaly-Free Center Symmetries

In the following, we will discuss how to determine sub-
groups Zℓ

∼= Z ⊂ Z(G), for which a 1-form symmetry
background has no fractional contribution (4) — a nec-
essary condition to gauge Z.
Let Z(G) =

∏s

i=1 Zni
, and (k1, ..., ks) ∈

∏s

i=1 Zni
be

the generator for Z ∼= Zℓ. This means that ℓ is the
smallest integer such that kiℓ ≡ 0 mod ni for all i. The
generic background for the Z(G) 1-form symmetry con-

sists of fields C
(i)
2 for each Zni

factor of Z(G). Specifying
a specific background for a subgroup then amounts to

correlating the a priori independent C
(i)
2 ’s [18]. In par-

ticular, the background C2 for Z ∼= Zℓ corresponds to

setting C
(i)
2 = kiC2.

For concreteness, let G =
∏s

i=1 SU(ni). Then, the
anomalous phase (4) in a non-trivial C2 background of
the subgroup Z ⊂ Z(G) is

A(b4, C
(i)
2 ) =

(

s
∑

i=1

ni − 1

2ni

k2imi

)

∫

M8

b4 ∪P(C2) , (5)

where we used P(kC) = k2P(C). Thus, the anomaly
vanishes if the coefficient is integral.
Note that the anomaly contribution of non-SU groups

can be written as a sum of contributions from SU(n)-
subgroups [18]. Therefore, by further restricting our-
selves to rank(G) ≤ 18 (which is the 8d bound for the
total gauge rank [6]), we can exhaustively scan for all
possible groups G that have an anomaly-free Zℓ ⊂ Z(G)
with given ℓ, by finding s triples of integers (ni, ki,mi)

4 Note that [19] discusses precisely the 4d analog of the anomaly
(4) involving the θ-angle instead of B4.

such that

s
∑

i=1

ni − 1

2ni

k2imi ∈ Z , with ki · ℓ ≡ 0 mod ni . (6)

Clearly, the levels mi play an important role. From
an effective field theory perspective, these are free pa-
rameters that define the theory. However, these param-
eters themselves are constrained by Swampland crite-
ria. By the Completeness Hypothesis [29], the 2-form
field B2 couples to strings which carry localized degrees
of freedom sensitive to the gauge group. These left-
moving, charged excitations on the string have to cancel
the worldvolume anomalies arising due to anomaly inflow
[4, 30]. However, in d dimension the left-moving central
charge for such a string is bounded by cL ≤ 26−d. While
each U(1) gauge factor contributes to cL with cU(1) = 1,
each non-Abelian simple gauge factor Gi with level mi

contributes ci = mi dim(Gi)
mi+hi

, with hi the dual Coxeter
number of Gi. Hence, we have

∑

i

mi dim(Gi)

mi + hi

+ nU(1) ≤ 18 . (7)

Combined with the constraint that the rank of the total
gauge group of the 8d supergravity theory can be only 2,
10, or 18 [6], the mi are considerably restricted. In par-
ticular, it is easily shown that in the rank-18 case, all mi

must be 1 and all non-Abelian factors must have simply-
laced algebras (see appendix A for more details). This
is well-known in string compactifications, where mi are
the levels of the worldsheet current algebra realizations of
spacetime gauge groups, and are all mi = 1 on the rank-
18 branch of the N = 1 moduli space. As we will see
now, the anomaly matches known geometric limitations
in the F-theory realization of 8d rank-18 theories, which
restricts the possible global gauge group structures. In
the lower-rank cases these conditions can constrain gauge
groups, whose algebras and levels fit in constructions such
as the CHL string [31], but whose global structure is yet
to be explored.

B. Anomaly-Free Centers in Theories of Rank 18

All rank-18 N = 1 supergravity theories with a known
string origin have a construction via F-theory [8], where
physical features, including the global gauge group struc-
ture, are encoded in the geometry of elliptically-fibered
K3 surfaces [26, 32, 33]. In particular, there are beautiful
arithmetic results [12] which asserts that F-theory com-
pactifications with non-Abelian gauge group G/Z, where
G consists only of SU(ni) factors, must satisfy

s
∑

i=1

ni − 1

2ni

k2i ≡ 0 mod Z . (8)

with (k1, ..., ks) ∈
∏

i Z(SU(ni)) the generator of any
Zℓ ⊂ Z subgroup.
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While we defer a more detailed explanation of the geo-
metric origin to this formula to appendix B, it is obvious
that it fully agrees with the cancellation condition for ev-
ery Zℓ subgroup of the center 1-form symmetry (6), as for
rank-18 theories all levels are fixed to mi = 1. We there-
fore find a deep connection between the mixed anomaly
of the supergravity theory and the geometrical properties
of F-theory compactifications.
The constraint is particularly powerful when the order

ℓ of the gauged center subgroup is the power of a prime
number. For such ℓ ≥ 9, one can show that there are no
possible sets {(ni, ki)} for which the anomaly vanishes
with gauge groups of rank ≤ 18. For ℓ = 7, there is
exactly one configuration with three simple non-Abelian
factors, n1 = n2 = n3 = 7 and (k1, k2, k3) = (1, 2, 3),
corresponding to an SU(7)3/Z7 theory. This agrees
with the classifications of K3 surfaces [12] for F-theory
constructions as well as possible heterotic realizations
[15]. Likewise, in the case ℓ = 8 = 23, the 1-form
anomaly (8) allows for only G = SU(8)1 × SU(8)2 ×
SU(4)× SU(2), into which the Z8 sub-center embeds as
(k1, k2, kSU(4), kSU(2)) = (1, 3, 1, 1). Furthermore, if we
also take inspiration from geometric properties of K3 sur-
faces — there always is one SU(ni) factor with ℓ dividing
nj — we can show that there are no possible configura-
tions (ni, ki) for all ℓ ≥ 10. This also matches the dual
heterotic constructions [15].

C. Predictions for Simple Groups

To further showcase the constraining power of the field-
theoretic anomaly argument, we use (4) to rule out 8d
N = 1 theories with gauge group G/Z, where G is a sim-
ple Lie group and Z ⊂ Z(G) a non-trivial subgroup. For
G with m = 1 and rank(G) ≤ 18, any G/Z is inconsistent
except

SU(16)

Z2
,

SU(18)

Z3
,

Spin(32)

Z2
, (9)

Sp(4)

Z2
,

Sp(8)

Z2
,

SU(8)

Z2
,

SU(9)

Z3
, (10)

Spin(16)

Z2
,

Sp(12)

Z2
,

Sp(16)

Z2
. (11)

The groups (9) indeed correspond to the only cases with
simple G realizable via F-theory on elliptic K3’s. The
groups in (10) are subgroups of Sp(10), which at m = 1
can be constructed from the CHL string [31]. Note that
this rules out all other Sp(k)/Z2(k < 10) theories, which
seemed consistent based on the perturbative CHL spec-
trum [34]. As we are not aware of any systematic study
of the global gauge group structure in CHL compactifi-
cations, we view this as a prediction based on the 1-form
anomaly (4), which is also consistent with other Swamp-
land arguments [6]. Groups in (11) have no known 8d
string realization at m = 1. However, while Sp(12)/Z2

and Sp(16)/Z2 are excluded at any m due to the bound

(7)5, Spin(16)/Z2 does arise at m = 2 as a Wilson line
reduction of the E8 CHL string.
More generally, at level m = 2, the center anomaly

in conjunction with the bound (7) can rule out all G/Z
theories with simple G except for

SU(4)

Z2
,

SU(8)

Z2
,

SU(9)

Z3
,

Sp(2)

Z2
,

Sp(4)

Z2
,

Spin(8)

Z2
,

Spin(16)

Z2
, SO(2n) with 2 ≤ n ≤ 9 ,

(12)

all of which could, in principle, arise in CHL compacti-
fications [34]. We will leave an explicit verification and
analysis of the global gauge group in these types of 8d
string models for future works. Note that SO(2n) (n
odd) and Sp(2)/Z2 seem to be ruled out in 8d by in-
dependent Swampland arguments [6], indicating mech-
anisms beyond the anomaly (4) that break the 1-form
center symmetry. It would be interesting to find an ex-
plicit description for these breaking mechanisms.

III. DISCUSSION AND OUTLOOK

Using a mixed anomaly (4), we have presented a nec-
essary condition for an 8d N = 1 theory with given non-
Abelian gauge algebras gi at level mi to have a non-
simply-connected gauge group [

∏

iGi]/Z. In combina-
tion with a set of Swampland criteria that restrict the
gauge rank and the levels mi, this condition rules out
a vast set of possible gauge groups for 8d theories. The
constraints are especially powerful for theories of rank 18,
where they reduce to known geometric properties of el-
liptic K3 surfaces. As these properties control the global
gauge group structure in F-theory compactifications, the
anomaly provides a purely physical explanation for the
intricate patterns of realizable gauge groups in F-theory.
The anomaly can further make predictions for inconsis-
tent models in lower-rank cases, where the global gauge
group structure in the corresponding string compactifi-
cations is yet to be explored systematically.
We stress that the absence of the anomaly (4) is only a

necessary, but not sufficient condition for the gauge group
to be G/Z. Indeed, for F-theory constructions of the non-
simply-connected gauge groups (9), there also exist K3
surfaces that realize the simply-connected versions in F-
theory [13]. There are also other instances where both G
and G/Z are realized in different compactifications; this
is also confirmed in the heterotic picture [15]. As the
center Z in all these cases is non-anomalous, this is con-
sistent with our findings. At the same time, it is pointing
toward additional breaking mechanisms, e.g., in terms of

5 In particular, (7) provides a physical explanation to the limita-
tion k ≤ 10 for sp(k) gauge algebras known in 8d string construc-
tions.
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massive states charged under Z. It would be interesting
to investigate if these mechanisms are captured by an ef-
fective description involving the 1-form center symmetry.

There are also non-anomalous cases that have no real-
ization in known classes of 8d string models. A particu-
lar set of such cases are products G1

Z1
× G2

Z2
of anomaly-

free factors, which would again be anomaly-free. For
example, the anomaly-free gauge group [SU(5)2/Z5] ×
[SU(2)4/Z2] = [SU(5)2 × SU(2)4]/Z10 as the non-
Abelian part of a rank-18 theory (and, thus, all mi = 1)
has no string realization. As we have mentioned above,
the F-theory geometry would forbid this case, because
there is no SU(n) factor with 10 dividing n. Currently,
we do not know an adequate physical argument provid-
ing the same restriction. In terms of identifying gauged
Zℓ center symmetries, one plausible possibility is the ex-
istence of some mechanism that forces the presence of
a U(1) gauge factor into which, similarly to the hyper-
charge in the Standard Model, that Zℓ embeds. Such a
theory would not be in contradiction to F-theory models,
as center symmetries embedded in U(1)s have a different
geometric origin [11] (see [35] for direct implications for
4d particle physics models) not subject to the restric-
tion (8). Moreover, in 8d F-theory, there are additional
sources for U(1) factors (harmonic (1, 1)-forms on K3’s
that are not algebraic), whose center-mixing with non-
Abelian gauge factors needs further investigation. To
complete the geometric picture from the field-theoretic
side, one must also extend the discussion of anomalies
to include U(1) gauge sectors, which we defer to future
studies.

We further suspect that other discrete symmetries of
the theory can interact non-trivially with 1-form cen-
ter symmetries, leading to further constraints on the
gauge group structure. For example, it has been pointed
out [36] that the gauge symmetry of the E8 × E8 het-
erotic string should be augmented by an outer automor-
phism Z2 exchanging the E8 factors, so that the gauge
group is (E8 × E8) ⋊ Z2. In fact, the 9d CHL string
arises as the S1-reduction with holonomies in this Z2.
Such an identification would also be possible for, e.g.,
[SU(2)4/Z2] × [SU(2)4/Z2], all at mi = 1, which in 8d
is free of the anomaly (4), but not realized in terms of a
string compactification. If one could establish other field
theory / Swampland arguments for why the Z2 outer au-
tomorphism must be gauged in this case, there could be
other mixed anomalies involving the 1-form symmetries
such that only a diagonal Z2 center survives, leading to
the realizable [SU(2)8]/Z2 theory.

Finally, to fully classify the global gauge group struc-
ture in 8d N = 1 theories based on the 1-form anomaly
(4), it will be important to have more stringent con-
straints on the possible levels mi for given simple gauge
factors Gi. While for rank-18 theories, (7) fixes all
mi = 1, they cannot be fully determined by this method
alone for rank-10 or -2 theories, and will require new tools
and concepts to predict these independently from con-
crete string realizations. Perhaps, new ideas can arise by

establishing a connection between higher-form anomalies
and the Swampland ideas [6] that also rule out certain
non-simply-connected gauge groups. These insights can
hopefully lead to a complete understanding of the global
gauge group structure, and prove full String Universality
for non-simply-connected groups in 8d.
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Appendix A: Bounds on Coefficients

In this appendix we briefly explain how anomaly inflow
arguments can restrict the integer coefficients mi in (2).
From [6] one knows that consistent theories in 8d have
a gauge group with rank ∈ {18, 10, 2}. This means, that
for a fixed rank the non-Abelian part of the gauge group
captured by G has to be supplemented by

nU(1) = rank− rank(G) , (A1)

Abelian U(1) factors. With the gauge algebra specified,
one then has to restrict the prefactors mi such that the
bound on the left-moving central charge (7) is satisfied.

1. Rank 18

For the case of a gauge group of rank 18, we note that
the anomaly contribution is bounded from below by the
rank of the corresponding group factor

mi dim(Gi)

mi + hi

≥ rank(Gi) , (A2)

with the inequality satisfied for simply-laced groups at
mi = 1. This implies

cL ≥ 18 ≥
∑ mi dim(Gi)

mi + hi

+ nU(1) ≥ rank = 18 , (A3)

from which we see that for rank-18 cases the only gauge
factors allowed are simply-laced Gi with

mi = 1 , (A4)
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i.e., the prefactors are fixed uniquely.
For reference, the values of h and dim(G) for allowed

simple Lie groups G in 8d are:

G SU(n ≥ 2) Spin(n ≥ 8) Sp(n) E6 E7 E8

dim n2 − 1 n(n−1)
2 n(2n+ 1) 78 133 248

h n n− 2 n+ 1 12 18 30

(A5)

2. Lower Ranks

For lower ranks the possibilities for (Gi,mi) combina-
tions increase since now the right-hand side of (A3) is
smaller than 18. In particular, for smaller gauge groups
or the case rank = 2 the combinatorics become more
involved, which requires a case by case analysis beyond
the scope of this work, that will be treated in more de-
tail elsewhere. Here, we make some simple observations
about rank-10 cases that saturate the bound, which are
also known to arise from the CHL string in 8d.
For the first example we consider the CHL string with

non-Abelian gauge group E8 ×U(1)×U(1). This model
has an E8 current algebra at level 2, and therefore

m dim(G)

m+ h
+ nU(1) =

35
2 , (A6)

which basically saturates the bound of 18, as there are no
possible group/level contributing with 1/2. Higher levels
of the current algebra with m ≥ 3 are forbidden in this
case. Note that for the typical product subgroups with
non-trivial quotient structure, such as [E7 × SU(2)]/Z2

or [E6×SU(3)]/Z3, the anomaly (4) of the gauged center
is indeed trivial.
In the second example we consider the CHL string with

its maximal symplectic group, which is Sp(10). The cur-
rent algebra is at level 1, and one finds

m dim(G)

m+ h
= 35

2 , (A7)

again saturating the allowed upper bound and prohibit-
ing m ≥ 2. 8d theories with level 1 groups in (10) can
potentially arise as subgroups, and will be investigated
in detail in future work.

Appendix B: Mordell–Weil Torsion and the Gauge

Group in F-theory

8d N = 1 string compactifications with total gauge
rank 18 can be described by F-theory compactified on
elliptic K3 surfaces. We refer to reviews [26, 32, 33] for a
broader introduction, and focus in the following on two
aspects key to discussion of global gauge group struc-
ture and center anomalies. First, the non-Abelian gauge

algebras gi (associated to simply-connected groups Gi)
are captured by reducible Kodaira-fibers of ADE-type
gi [8]. Second, the global structure of the gauge group,
[
∏

i Gi]/Z, is determined by the torsional part Z of the
Mordell–Weil group of sections [9] (see especially [33] for
a pedagogical introduction for this).

In general, the notation G/Z requires a specification
of the subgroup Z ⊂ Z(G) =

∏

i Z(Gi) of the full center
Z(G). In F-theory, this is determined by the intersection
pattern between the generating sections of the Mordell–
Weil group and the components of the gi-Kodaira fiber
that form the affine Dynkin diagram of gi [10, 11].

For definiteness, we restrict ourselves to compactifica-
tions with gi = suni

, i = 1, ..., s, realized by K3 surfaces
with only Ini

fibers. Each reducible Ini
fiber consists

of ni irreducible components that form a loop, reflecting
the structure of the affine suni

Dynkin diagram. Start-
ing with the affine node (determined by intersection with
the zero-section) we label the components by 0, ..., ni− 1
as we go around the loop of the i-th fiber. Then, an ℓ-
torsional section τ is uniquely characterized by the tuple
(k1, ..., ks) which labels the ki-th component in the i-th
fiber met by τ [12]. Moreover, one has kiℓ ≡ 0 mod ni.

As explained in [10, 11], τ = (k1, ..., ks) corresponds
precisely to the order ℓ element (k1, ..., ks) ∈

∏

i Zni
=

Z(
∏

i SU(ni)). This element acts trivially on all matter
states of the F-theory compactification, hence giving rise
to the gauge group G/〈τ〉 ∼= G/Zℓ.

The allowed combinations of G and Zℓ is heavily con-
strained geometrically by the following fact pertaining
to intersection patterns between torsional sections and
fiber components. For a K3 X with only Ini

fibers,
the non-affine components of each fiber span a sublat-
tice R ⊂ H2(X,Z) with rank(R) ≤ 18. Then, one can
associate to R a so-called discriminant-form group [12]

GR
∼= Zn1

× ...× Zns
. (B1)

This group inherits from the lattice structure ofH2(X,Z)
a quadratic form

q : GR → Q/Z , (x1, ..., xs) 7→
s
∑

i=1

1− ni

2ni

x2
i mod Z .

(B2)

Notice that GR =
∏s

i=1 Z(SU(ni)) = Z(G). Then, by
regarding a torsional section τ = (k1, ..., ks) as an element
of GR, it can be shown [12] that

q(k1, ..., ks) =

s
∑

i=1

1− ni

2ni

k2i ≡ 0 mod Z . (B3)

This precisely reproduces the constraint for the absence
of the anomaly (4) involving the Zℓ center 1-form sym-
metry with mi = 1 for all Gi.
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