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One Sentence Summary: We combine nuclear equations of state constrained by chiral ef-

fective field theory with astrophysical observations of neutron stars to place the most stringent

limits on the radius of neutron stars to date.

The properties of neutron stars are determined by the nature of the mat-

ter that they contain. These properties can be constrained by measurements

of the star’s size. We obtain the most stringent constraints on neutron-star

radii to date by combining multimessenger observations of the binary neutron-

star merger GW170817 with nuclear theory that best accounts for density-

dependent uncertainties in the equation of state. We construct equations of
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state constrained by chiral effective field theory and marginalize over these

using the gravitational-wave observations. Combining this with the electro-

magnetic observations of the merger remnant that imply the presence of a

short-lived hyper-massive neutron star, we find that the radius of a 1.4M⊙

neutron star is R1.4M⊙
= 11.0+0.9

−0.6 km (90% credible interval). This constraint

has important implications for dense-matter physics and for astrophysics.

Neutron stars are arguably the most interesting astrophysical objects in the multimessenger

era. The gravitational waves, electromagnetic radiation, and neutrinos produced by a variety

of neutron-star phenomena carry information about the mysterious dense matter in their cores.

The nature of this matter contains important information needed to understand phases of matter

encountered in Quantum Chromodynamics—the fundamental theory of strong interactions. A

measurement of the neutron-star radius or its compactness is critical both to interpret multimes-

senger observations of neutron stars and to determine the equation of state of dense matter (1).

Until recently, measurement of neutron-star radii relied on X-ray observations of quiescent and

accreting neutron stars. These analyses typically obtained radii in the range 10–14 km and

with poorly understood systematics (2), although this situation is likely to improve with recent

observations by NICER (3). The multimessenger observation of the fortuitously close binary

neutron-star merger GW170817 (4) and its electromagnetic counterparts (5) provides informa-

tion that can independently and more accurately determine neutron-star radii.

We combine state-of-the-art low-energy nuclear theory, constrained by experimental data,

with multimessenger observations of the binary neutron-star merger GW170817 (4) to measure

the radii of neutron stars and to constrain the nuclear equation of state. Using conservative

assumptions on the nuclear physics and the properties of the electromagnetic counterpart, we

obtain the most stringent constraints on neutron-star radii to date. We find that the radius of a

1.4M⊙ neutron star is R1.4M⊙
= 11.0+0.9

−0.6 km.
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Previous analyses of GW170817 have either neglected constraints on the equation of state

from nuclear physics, or used a parameterization that was informed by a large number of nu-

clear physics models (4, 6–9). Neither approach properly accounts for the density-dependent

theoretical uncertainties in our current understanding of dense matter. We employ, for the first

time, a strategy that allows us to overcome this deficiency. At low density, chiral effective field

theory provides a description of matter in terms of nucleons and pions in which interactions

are expanded in powers of momenta and include all operators consistent with the underlying

symmetries of strong interactions (10–14). This expansion defines a systematic order-by-order

scheme that can be truncated at a given order and, most importantly, enables reliable theoreti-

cal uncertainty estimates from neglected contributions. Quantum Monte Carlo techniques are

then used to solve the many-body Schrödinger equation to obtain the equation of state (15).

The resulting equation of state is characterized by an uncertainty which grows with density in

a manner that can be justified from fundamental theory. We extend the equations of state to

higher densities where the low-energy effective-field-theory expansion breaks down in a gen-

eral way (16), while ensuring that the speed of sound is less than the speed of light and that

the equations of state support a two-solar-mass neutron star (17). The multimessenger obser-

vations of GW170817 are then used to constrain these equations of state to ensure that they

are consistent with: (i) the detected gravitational waves during the inspiral; (ii) the production

of a post-merger remnant that does not immediately collapse to a black hole (BH); and (iii) the

constraints that the energetics of the gamma-ray burst and kilonova place on the maximum mass

of neutron stars, Mmax.

In neutron matter, the limit of applicability of chiral effective-field-theory interactions has

been estimated to be around twice nuclear saturation density (18), nsat = 0.16 fm−3 = 2.7 ×

1014 g cm−3, although uncertainties grow quickly with density. To be conservative, we generate

two collections of nuclear equations of state that differ in the density range restricted by ab
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initio calculations: chiral effective-field-theory constraints are either enforced up to nuclear

saturation density or up to twice nuclear saturation density. These two sets of equations of

state are extended to higher densities as described earlier. For each of the two families, we

generate 2000 individual equations of state distributed so that the radius of a 1.4M⊙ neutron

star is approximately uniform for each set. The resulting prior on R1.4M⊙
is shown in the left-

most panel of Figure 1. For each set of equations of state, we use stochastic samplers (19) to

compute the posterior probability so that the tidal polarizability of GW170817 is consistent with

a specific equation of state. When generating model gravitational waveforms, the stochastic

sampler randomly draws the neutron-star masses from a uniform distribution between 1 and

2M⊙, and then randomly draws a specific equation of state to compute the tidal polarizability

of each star. The sky-position and luminosity distance of the source are fixed to those of the

electromagnetic counterpart (20, 21). This procedure allows us to directly constrain nuclear

effective field theories from the gravitational-wave observations and to compute marginalized

posterior probabilities for the star’s radii using a model-independent non-parametric approach.

The result of constraining nuclear theory with the gravitational-wave observations is shown

in the second panel of Figure 1. We find that the gravitational-wave observation GW170817

constrains the maximum radius of neutron stars, but is not informative at low radii, consistent

with previous analyses (6, 7). The lower limit on the radius is set by nuclear theory and the

requirement that the equation of state must support a neutron star of at least 1.9M⊙ (17). If one

assumes that the chiral effective-field-theory description is valid only up to nuclear saturation

density, it is possible to obtain large neutron stars that are not consistent with the tidal polariz-

ability constraint from GW170817. In contrast, if a description in terms of nuclear degrees of

freedom remains valid up to twice nuclear saturation density and the effective-field-theory ap-

proach can be applied, as suggested by earlier work (18), then nuclear theory predicts neutron-

star radii and tidal deformabilities that are consistent with GW170817. Simpler phenomeno-
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logical models for the equation of state that are uninformed by nucleon-nucleon scattering data

and which predict considerable stiffening of the equation of state between nsat and 2nsat are

excluded by GW170817.

Additional constraints on the equation of state can be obtained from the electromagnetic

counterparts to GW170817. Since modeling the counterparts is challenging, we use a conserva-

tive approach that relies only on qualitative inferences from the kilonova and gamma-ray burst

observations. The properties of these counterparts are inconsistent with either direct collapse

to a black hole or the existence of a long-lived neutron-star remnant (22, 23). This allows us to

place two further constraints on the allowed equations of state.

First, we discard samples from the posterior in which the total gravitational mass of the

binary exceeds the threshold for prompt collapse to a black hole. This threshold mass is deter-

mined for each equation of state in our sample using relations calibrated to numerical relativity

simulations, including uncertainties (24). The effect of this constraint on the neutron-star ra-

dius is shown in the third panel of Figure 1, and significantly constrains the lower limit on

R1.4M⊙
(23). Second, we apply an upper limit on the maximum mass of neutron stars implied

by the inconsistency of the electromagnetic counterparts with a long-lived neutron-star rem-

nant (22). We adopt a conservative estimate for this limit, Mmax < 2.3M⊙ (25), consistent also

with the 68.3% credible interval of the recently reported 2.17+0.11
−0.10 M⊙ pulsar (26). The result of

applying this constraint is shown in the fourth panel of Figure 1.

When constraining the allowed equations of state to those for which the maximum neutron-

star mass is less than 2.3M⊙, we find that the predicted range for R1.4M⊙
does not significantly

change for any prior we investigated. This implies that there is no correlation between R1.4M⊙

and Mmax. Such a correlation is typically found for smooth equations of state, e.g., equations

of state that assume a description in terms of nucleons to be valid in the whole neutron star. In

this case, limiting Mmax would also constrain R1.4M⊙
. The general sets of equations of state we
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use here, however, include those with phase transitions that generally break this correlation and

effectively decouple the high-density equation of state, which sets Mmax, from the low-density

equation of state, that determines R1.4M⊙
(16). As a consequence, we include equations of state

with the largest possible R1.4M⊙
but sufficiently small maximum masses, so that enforcing an

upper limit on Mmax has a negligible impact on the predicted radius range. This decoupling

highlights the importance of methods constraining the equation of state in different density

regimes.

The right-most panel of Figure 1 compares our results to previous analyses (6, 7). Our

constraint of R1.4M⊙
= 11.0+0.9

−0.6 km is the most stringent bound on the neutron-star radius to

date by a factor of ≃ 2. In Figure 2, we show the resulting mass-radius relation for our two

equation-of-state sets and the marginalized posterior distributions of the component masses and

radii for the two neutron stars in GW170817. In Table 1 we summarize our findings for the radii,

tidal polarizabilities, and maximum neutron-star masses for the two equation-of-state sets. In

addition, we present results for the maximum pressure explored in any neutron star, Pmax, and

the pressure at four times nuclear saturation density, P4nsat
.

Comparing the constraints summarized in Table 1 for both equation-of-state sets, i.e., equa-

tions of state constrained by chiral effective field theory up to nsat with those constrained up

to 2nsat, indicates that both effective-field-theory-based predictions for the equation of state are

consistent with each other and with observations. These findings suggests that, in the absence

of phase transitions in this density regime, the effective-field-theory description of neutron-rich

matter remains useful and reliable up to 2nsat and excludes a considerable stiffening of the

equation of state between (1 − 2) nsat. Despite the larger uncertainties in the equation of state

at higher densities, the electromagnetic and gravitational-wave observations can be combined

with effective-field-theory-based equations of state up to 2nsat—for the first time—to greatly

improve the constraint on the neutron-star radius. This has important implications for dense-
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matter physics and astrophysics.

For dense-matter physics, we are able to derive robust constraints on the pressure of matter

at moderate densities by combining our low density equations of state with the lower bound

on the neutron-star radius derived from electromagnetic observations, and the upper bound

from gravitational-wave observations. The pressure at 4nsat is found to be P4nsat = 161+58
−46

MeV/fm3. This, taken together with the lower pressures predicted by nuclear theory in the

interval (1 − 2) nsat, supports earlier claims that the speed of sound in massive neutron stars

must exceed c/
√
3 (27), where c is the speed of light. We also provide improved estimates of

the maximum pressure that can be realized inside neutron stars (28), Pmax ≤ 890 MeV/fm3.

Our constraints on the neutron-star radius and polarizability impact the ability of gravitational-

wave observations to distinguish between binary black-hole mergers and mergers containing

neutron stars (29). The gravitational-wave observations of GW170817 alone do not rule out the

possibility that one or both objects in the merger were black holes (30). If Advanced LIGO and

Virgo were to observe a source at comparable distance to GW170817 once they reach design

sensitivity its signal-to-noise ratio would be 100. Using simulated signals of this amplitude, we

find that the gravitational waves could easily distinguish between a binary black-hole merger

and the merger of two neutron stars governed by the SLy or AP4 equations of state with a Bayes

factor greater than 106.

Detecting the presence of matter from the inspiral of the compact objects is more chal-

lenging for neutron-star–black-hole binaries. We simulated a neutron-star–black-hole binary

containing 10M⊙ black hole and a 1.4M⊙ neutron star that has a dimensionless tidal polariz-

ability at the upper bounds of our 90% credible interval, Λ = 370. We place the source at the

same distance as GW170817 and assume that the detectors are at design sensitivity; this binary

has a signal-to-noise ratio of 190. We calculate the Bayes factor comparing a neutron-star–

black-hole model to a binary-black-hole model (i.e. zero tidal deformability for both compact
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objects). Even at this extremely large signal-to-noise ratio, we find that the Bayes factor is ∼ 1

meaning that the models are indistinguishable. The inspiral waveforms of binary black holes

and neutron-star–black-hole mergers become less distinguishable as the neutron-star mass in-

crease, the polarizability decreases, or the black-hole mass increases, and any effect of matter

becomes even harder to measure with gravitational waves alone. Electromagnetic counterparts

or post-merger signatures will therefore be critical to distinguish between binary black-hole and

neutron-star–black-hole mergers observed by Advanced LIGO and Virgo.

The composition and amount of ejecta from binary neutron stars and neutron-star–black-

hole binaries, which powers the electromagnetic emission, is sensitive to the neutron-star radius

(31–33). Our limits have implications for electromagnetic signatures and their observability.

This is especially true for mergers such as S190814bv, which was recently reported by the LIGO

and Virgo collaborations (34). A kilonova or gamma-ray burst counterpart is only expected if

the neutron star is tidally disrupted before the merger; a condition which depends crucially on

the neutron-star radius. Figure 3 summarizes the parameter space of neutron-star–black-hole

mergers where a mass ejection (and a corresponding electromagnetic counterpart) is expected

based on fits to numerical relativity simulations (35). Our novel constraints on R1.4M⊙
imply

that ∼ 1.4M⊙ neutron stars cannot be disrupted in such mergers by non-spinning black holes,

unless the black-hole mass is unusually low (< 3.4M⊙). More generally, our constraints on

neutron-star radii will be useful to predict and test correlations between electromagnetic and

gravitational-wave observations in the future (36).

We combined multimessenger observations of the binary neutron-star merger GW170817

and the best current knowledge of the uncertainties associated with the equation of state of dense

matter to determine the neutron-star radius. This also allows us to place stringent bounds on the

pressure of matter at moderate density where theoretical calculations remain highly uncertain.

Our robust upper bound on the neutron-star radius of R1.4M⊙
= 11.0+0.9

−0.6 km is a significant
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improvement, with important implications for multimessenger astronomy and nuclear physics.

To allow our results to be used by the community for further analysis we provide the equations

of state used as our prior and the full posterior samples from our analysis as supplemental

materials.
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Figure 1: Comparison of the estimated radius of a 1.4M⊙ neutron star, R1.4M⊙
, at different

stages of our analysis. In all panels, 1D marginal distributions are indicated by the shaded

regions, with the median and the plus/minus 95th and 5th percentiles indicated by the lines.

The left panel shows the marginalized prior on R1.4M⊙
, assuming chiral effective field theory

up to nsat (blue) and 2nsat (orange). Subsequent panels show the posterior on R1.4M⊙
from the

gravitational-wave analysis alone, the posterior with the constraint that the estimated total mass

Mtotal to be less than the threshold mass for prompt collapse Mthresh, and the posterior with

the additional constraint that the maximum NS mass Mmax supported by all equations of state

≤ 2.3M⊙. The right panel shows posteriors on R1.4M⊙
from De et al. (6), and R1 ≈ R1.4M⊙

from the equation-of-state-insensitive and parameterized equation-of-state analyses reported by

Abbott et al. (7) (labelled LVC). In all analyses, a uniform prior was used on the component

masses.
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Figure 2: Neutron-star mass-radius curves and marginalized posterior distributions of the source

component masses m1,2 and radii R1,2, assuming a prior uniform in component masses, with

chiral effective field theory enforced up to nsat (left) and 2nsat (right) and all additional ob-

servational constraints enforced. The dashed, horizontal red lines indicate the range of masses

spanned by the prior. The top dotted red line indicates the maximum neutron-star mass con-

straint. Any equation of state that has support above that line is excised. Each gray-black line

represents a single equation of state, which we sample directly in our analysis. The shading

of the lines is proportional to the marginalized posterior probability of the equation of state;

the darker the line, the more probable it is. The contours show the 50th and 90th percentile

credible regions (blue for the more massive component, orange for the lighter component). The

1D marginal posteriors are shown in the top and side panels; the corresponding priors (without

electromagnetic constraints) are represented by the dotted blue and orange lines. Quoted values

are the median plus/minus 95th and 5th percentiles.
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=1.4M
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=1M
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Figure 3: Parameter space of neutron-star–black-hole mergers delineating regions where the

neutron star is tidally disrupted before merger (upper-left), from those in which the merger

occurs without any mass ejection (lower-right). In the latter case, neither a gamma-ray burst

nor a kilonova electromagnetic counterpart would be expected. Each curve shows the minimal

black hole spin χBH required to disrupt a neutron star of a given mass (labeled) and as a function

of the black hole mass MBH, calculated following (35). The criterion depends sensitively on

the neutron-star radius. Our finding of R1.4M⊙
= 11.0+0.9

−0.6 stringently constrains this parameter

space and implies a narrow uncertainty width around each curve (shaded red/grey regions). For

comparison, the 1.4M⊙ curves for weakly-constrained neutron-star radii, 9 km < R1.4M⊙
<

15 km, span the entire yellow-shaded region, providing only weak predictive power. Our new

constraint on R1.4M⊙
implies that typical neutron stars cannot be disrupted by non-spinning

black holes, except possibly for unusually low black-hole mass. The grey curves show a rough

bound on the parameter space of allowed neutron-star masses, where Mns ≤ Mmax < 2.3M⊙

as described in the text, and the lower limit Mns > 1M⊙ is expected in standard astrophysical

neutron-star formation scenarios.
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Observable pr./po. nsat 2nsat

R1.4[km]

prior 12.1± 2.6 10.9± 1.4
+GW 10.5+1.8

−1.2 10.5+1.3
−1.0

+EM 11.2+1.2
−0.8 11.0+0.9

−0.6

Λ̃
prior 330+1780

−300 160+630
−130

+GW 180+340
−100 190+210

−100

+EM 270+260
−100 256+139

−75

Mmax [M⊙]

prior 2.39+1.09
−0.48 2.12+0.41

−0.21

+GW 2.01+0.33
−0.10 2.01+0.34

−0.11

+EM 2.07+0.20
−0.14 2.10+0.18

−0.17

Pmax[MeV/fm3]

prior 517+512
−371 644+437

−394

+GW 730+350
−380 730+350

−440

+EM 600+380
−330 570+320

−320

P4nsat
[MeV/fm3]

prior 170+182
−111 158+142

−101

+GW 123+107
−70 125+118

−68

+EM 154+58
−49 161+58

−46

Table 1: Summary of the radius of a 1.4M⊙ neutron star R1.4M⊙
, the tidal polarizability Λ̃, the

maximum neutron-star mass Mmax, the maximum pressure explored in neutron stars Pmax, and

the pressure at four times nuclear saturation density P4nsat
at different stages in our analysis. We

quote the prior values, values after applying gravitational-wave (GW) constraints, and finally

values when both constraints from electromagnetic (EM) observations are applied. Quoted

values are the median plus/minus 95th and 5th percentiles.
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Materials and Methods

Nuclear effective-field-theory methods (13, 14) represent a consistent and efficient way of con-

structing models for nuclear interactions while incorporating symmetries of the fundamental

theory for strong interactions, as well as low-energy constraints from nuclear experiments. This

is especially useful when extrapolating nuclear interactions to regimes where experimental data

is scarce or not available, in particular for neutron-rich systems. Among nuclear effective field

theories, chiral effective field theory starts from the most general Lagrangian containing both

pions and nucleons, consistent with all the fundamental symmetries for nuclear interactions.

Since this Lagrangian has an infinite number of terms, the separation of scales between typ-

ical momenta in nuclear systems and all heavier degrees of freedom is used to expand the

Lagrangian in powers of p/Λb. Here, p is the typical momentum scale of the system at hand

Λb ≈ 600Mev (37) is the breakdown scale, which determines when heavier degrees of free-

dom become important and the effective field theory breaks down. This expansion defines a

systematic order-by-order scheme for the interaction, that can be truncated at a given order and

enables the estimation of reliable theoretical uncertainties from neglected contributions. Chiral

effective field theory describes nuclear interactions in terms of explicitly included long-range

pion-exchange interactions and parameterized short-range contact interactions. These short-

range interactions depend on a set of unknown low-energy couplings, that absorb all unresolved

high-energy degrees of freedom, and are adjusted to reproduce experimental data.

To generate our families of equations of state, we start from microscopic quantum Monte

Carlo calculations of the neutron-matter equation of state using two different nuclear Hamil-

tonians from chiral effective field theory up to 2nsat (18). The two Hamiltonians used in this

work were fit to two-nucleon scattering data, the binding energy of the alpha particle, and the

properties of neutron-alpha scattering, and reliably describe these systems (38). They also have
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been benchmarked in calculations of nuclei up to 16O with great success (39, 40). In neutron

matter, the limit of applicability of these effective-field-theory interactions has been estimated

to be around twice nuclear saturation density (18). Each of the two Hamiltonians we employ

here has an associated theoretical uncertainty band stemming from the above-mentioned trun-

cation of the chiral series at a finite order. These bands serve as an estimate for the uncertainty

due to the limited description of nuclear interactions. The difference between the two Hamil-

tonians explores the remaining scheme and scale dependence of the chiral interactions. These

two sources of uncertainty dominate the neutron-matter calculations.

From these neutron-matter calculations, we then construct the neutron-star equation of state

by extending the pure neutron matter results to beta equilibrium and adding a crust (41). This

allows us to extend our neutron-matter uncertainties to the equation of state of neutron stars

up to 2nsat. At higher densities, chiral effective field theory breaks down because short-range

details that are not resolved in the chiral effective-field-theory description become important. To

be able to describe neutron stars up to the highest masses, we need to extend our calculations to

higher densities in a general and unbiased fashion, i.e., without making assumptions about the

properties of the equation of state or its degrees of freedom. To achieve this, we use the results

from our microscopic calculations where they remain reliable, up to a density ntr which we

choose to be either nsat or 2nsat. We then compute the resulting speed of sound, cS , in neutron-

star matter with its uncertainty band for the two Hamiltonians. For each Hamiltonian, we select

a cS curve up to ntr from the uncertainty band, by sampling a factor ferr ∈ [−1, 1] which

interpolates between upper and lower uncertainty bound. At densities above ntr, we sample a

set of points c2S(n) randomly distributed between ntr and 12nsat, and connect these points by

line segments. We only require the speed of sound to be positive and smaller than the speed of

light, c, i.e., the resulting curve has to be stable and causal. For each such curve, we construct

a related curve that includes a strong first-order phase transition, by replacing a segment with a
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random onset density and width with a segment with cS = 0. We then reconstruct the equation

of state from the resulting curve in the cS plane and solve the Tolman-Oppenheimer-Volkoff

equations. We have explored the sensitivity of neutron-star properties to the number of points

in the cS plane, and constructed extensions with 5-10 points. The differences between these

different extensions have been found to be very small. For the equations of state explored here,

we chose a 6-point extension. We repeat this procedure for equal numbers of equations of state

of O(10, 000) for the two microscopic Hamiltonians (42).

The resulting family of equations of state is constrained by low-energy nuclear theory as

well as general considerations on stability and causality. Finally, we enforce that each equation

of state reproduces a neutron star with at least 1.9M⊙, which is a conservative estimate for the

lower uncertainty bound for the two-solar-mass neutron-star observations (17). For each of the

two families of equations of state, one for ntr = nsat and one for ntr = 2nsat, we then randomly

select 2000 equations of state that have a uniform prior in R1.4.

We use Bayesian methods to measure the tidal polarizability of GW170817 and to infer the

equations of state that are most consistent with the observations. Given time-series data from

the Hanford, Livingston, and Virgo detectors ~d =
{

~dH , ~dL, ~dV
}

and a model waveform h, the

probability that the binary has a set of parameter values ~ϑ is

p(~ϑ|~d, h; I) = p(~d|~ϑ, h; I)p(~ϑ|h; I)
p(~d|h; I)

, (1)

where p(~d|~ϑ, h; I), p(~ϑ|h; I), and p(~d|h; I) are the likelihood, prior, and evidence, respectively.

The I indicates additional assumed information, such as the field theory used to describe nuclear

interactions. We assume that the detector noise is wide-sense stationary colored Gaussian noise

with zero mean, and is independent between observatories. In that case, the likelihood is

p(~d|~ϑ, h; I) ∝ exp



−1

2

∑

i=H,L,V

〈

~di − ~hi(~ϑ), ~di − ~hi(~ϑ)
〉



 , (2)
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where the brackets 〈·, ·〉 indicate an inner product that is weighted by the inverse power spectral

density of the noise in each detector.

We use the gravitational-wave data associated with the GWTC-1 release (43) from the GW

Open Science Center (GWOSC) (44). Specifically we use the 4096 s duration 16 384 Hz sam-

pled frame data for GW170817 from the list of GWTC-1 confident detections, which we down-

sample to 4096Hz. These data contain a non-Gaussian noise transient in the L1 data, which

we remove by subtracting the glitch model made available in LIGO document ligo-t1700406.

We include these glitch-subtracted data in our data release. Two hundred seconds of data span-

ning [t0 − 190 s, t0 + 10 s) are filtered starting from 20Hz, where t0 = 1187008882.443 is an

estimate of the geocentric GPS time of the merger obtained from the modeled searches that

detected GW170817 (4). The power spectral density of the noise is estimated using a variant of

Welch’s method (45) on 1632 s of data that precedes the start of the analysis time.

To sample the posterior probability over the full parameter space we use Markov-chain

Monte Carlo (MCMC) (46,47) and Nested Sampling stochastic samplers (48) in the PyCBC In-

ference framework (19). The resulting probability-density function can be numerically marginal-

ized to provide estimates of single parameters. Marginalizing p(~d|~ϑ, h; I)p(~ϑ|h; I) over all

parameters provides an estimate of the evidence p(~d|h; I). Taking the ratio of evidences for dif-

ferent physical models p(~d|h;B)/p(~d|h;A) provides the Bayes factor BA(B), which quantifies

how much the data supports model B relative to model A. We assume that the binary consists

of two compact objects with spins aligned with the orbital angular momentum, and that the

binary has negligible eccentricity by the time it can be detected by the LIGO and Virgo interfer-

ometers. Under these assumptions, the observed gravitational wave depends on 13 parameters:

six “intrinsic” parameters – the mass m1,2, dimensionless-spin magnitude χ1,2, and tidal polar-

izability Λ1,2 of each component star – and seven “extrinsic” parameters – the binary’s right

ascension α, declination δ, luminosity distance dL, inclination ι, coalescence time tc, reference
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phase φ, and polarization ψ. We fix the sky location and luminosity distance in our analysis

to α = 13h 09m 48.1s, δ = −23◦ 22′ 53.4” (20); dL = 40.7Mpc (21). The phase φ is analyti-

cally marginalized over using a prior uniform between 0 and 2π. We also use uniform priors on

ψ ∈ [0, 2π), cos ι ∈ [−1, 1), and tc ∈ t0 ± 0.1 s. For the dimensionless spin components χ1,2

we use a prior uniform in [−0.05, 0.05). This is consistent with the fastest-known pulsar in a

double neutron-star system (49), and was used in previous studies of GW170817 (4, 6, 7).

Observations of millisecond pulsars yield a large variance in possible neutron-star masses,

with the largest observed masses estimated to be 2.01 ± 0.04M⊙ (49) and 2.17+0.11
−0.10M⊙ (26).

We therefore use a prior distribution uniform in [1, 2) M⊙ for the detector frame component

masses in our main analysis. Assuming the standard Λ-CDM cosmology (50), this corresponds

to m1,2/M⊙ ∼ U(0.99, 1.98) in the source frame at 40.7 Mpc. Electromagnetic observations of

double neutron-star systems in the galaxy have yielded a best-fit neutron-star mass distribution

of p(mNS/M⊙) ∼ N (µ = 1.33, σ = 0.09) (2). We repeated our analysis using this distribution

as our prior on each component mass and we find that our results are insensitive to the choice

of mass prior.

We directly sample over individual equations of state instead of Λ1,2 or Λs. For each of the

2000 equations of state for each model, we order the equations by the radius they yield for a

1.4M⊙ neutron star, R1.4M⊙
. The equations of state are generated such that the distribution of

R1.4M⊙
is approximately uniform in the range supported. This results in the marginal prior on

each star’s radius R1,2 to also be approximately uniform for both of our mass priors, since the

radii do not vary much over the mass ranges considered. We then sample over an equation-

of-state index kEOS ∼ U [1, 2000]. Using the index and the two component masses m1,2, we

calculate Λ1,2, with which we generate a model gravitational wave h(~ϑ) and measure the like-

lihood, Eq. (2). In this manner, we ensure that both component masses use exactly the same

equation of state, with all sampled equations of state being constrained by chiral effective field
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theory.

We use restricted TaylorF2 post-Newtonian waveforms (51–56) in our analysis. The effect

of analyzing GW170817 using different waveforms was studied in Ref. (8) with unconstrained

equations of state. To test the effect of using TaylorF2 waveforms in this study, we repeat the

nsat analysis with the uniform mass prior using PhenomDNRT (57–60). We also tested whether

increasing the sample rate to 8192Hz had any effect using this waveform model. We found

negligible differences in all three cases; we therefore only report results using the TaylorF2

model.

Observations of the kilonova associated with GW170817 indicate that a large ∼ 0.02 −

0.08M⊙ amount of mass was ejected, and that this ejecta must contain components with both

large and small electron fraction (61). These inferences are inconsistent with numerical sim-

ulations of binary neutron-star mergers in which the remnant promptly (within milliseconds)

collapses to form a black hole. These simulations generally find a low amount of ejected mat-

ter with only high electron fraction, at odds with the optical and near-infrared observations of

GW170817. Therefore, electromagnetic observations of GW170817 are inconsistent with a

prompt collapse to a black-hole.

Systematic numerical studies of binary neutron-star mergers have found that the condition

for prompt collapse depends primarily on the total binary mass in comparison to an equation-

of-state-dependent threshold mass.1 Bauswein et al. (24, 63) show that this threshold mass

increases as a function of the neutron-star radius and maximum mass, following

Mthresh ≈Mmax

(

2.380− 3.606
GMmax

c2R1.6M⊙

)

± 0.05M⊙. (3)

We apply this condition to posterior samples for each equation of state in our analysis to impose

the requirement that the binary should not promptly collapse into a black hole upon merger.

1But see (62) for possible effects of large mass ratios, though such mass ratios are not expected if neutron stars

are drawn from a distribution similar to the population of Galactic binary neutron stars (36).
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For each equation of state in our sample we calculate the threshold mass using the above ex-

pression, and impose the requirement Mtotal < Mthresh implied by the kilonova observations

by discarding samples from the posterior that do not satisfy this requirement. This rules out

equations of state with low R1.4M⊙
, as shown in Figure 1. Bauswein et al. (23) first used similar

methods to place a lower bound of R1.6M⊙
≥ 10.64km. However, that study required equation-

of-state independent assumptions regarding causality to relate Mmax to R1.6M⊙
. Additionally,

they imposed a more stringent constraint Mtotal < Mthresh − 0.1M⊙ to obtain this value, and

find instead R1.6M⊙
> 10.27 km for the more conservative assumption Mtotal < Mthresh that

we adopt here. Our results are consistent with these previous findings, but manage to place a

slightly stronger lower limit on the radius (in the conservative case).

The electromagnetic observations of GW170817 are also inconsistent with a long-lived

merger remnant. If even a small fraction of the remnant’s rotational energy is extracted through

electromagnetic torques (as expected if the remnant neutron star develops even a modest exter-

nal dipole magnetic field) this would deposit sufficient energy into the surrounding medium to

be incompatible with energetic constraints from the kilonova and gamma-ray burst afterglow

modelling (22). A long-lived neutron star would also be in tension with the observed 1.7s delay

between the gamma-ray burst and merger (64–66). This requirement places an upper limit on

Mmax of roughly ∼ 2.2M⊙ (22, 64–66). To err on the side of caution we here adopt a more

conservative estimate Mmax < 2.3M⊙ (25). We implement this constraint by discarding sam-

ples whose equations of state do not satisfy this requirement onMmax. As described in the main

text, this has little affect on R1.4M⊙
because our equations of state allow for the most general

behavior above nsat or 2nsat including phase transitions, such that the high-density equation of

state, which sets Mmax, is effectively decoupled from the low-density region that determines

R1.4M⊙
.

Recently Radice and Dai (9) and Coughlin et al. (67) also performed multimessenger pa-
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rameter estimation for GW170817. Radice and Dai (9) imposed a lower limit on the tidal

polarizability of the merging neutron stars based on arguments that the mass surrounding the

remnant after merger (and that can subsequently become unbound and contribute to the kilonova

through secular disk winds (68–71)) is strongly correlated with Λ̃ (72). Combining this lower

limit with the GW data and translating their resulting constraints on Λ̃ into R1.4M⊙
using an

equation-of-state insensitive relation (6), they find R = 12.2+1.0
−0.8 ± 0.2 km. Coughlin et al. (67)

performed joint electromagnetic and GW parameter estimation, directly fitting the kilonova

photometry using results from radiative transfer calculations (73) and numerical relativity sim-

ulations, along with modeling of the associated gamma-ray burst GRB170817A. Sampling in

Λ̃ space and similarly translating their results into radius constraints using the equation-of-state

insensitive relation of De et al. (6), they obtained R ∈ (11.1, 13.4)± 0.2 km (67).

These earlier studies differ from our present work in several respects. First and foremost, we

here combine for the first time systematic nuclear theory in addition to the gravitational wave

and electromagnetic observations. We use theoretically motivated equations of state that comply

with low-density nuclear experimental data and neutron-star mass measurements while allow-

ing for the most general behavior at large densities, and are therefore able to directly constrain

the neutron-star radius rather than the tidal polarizability. This alleviates the need of assuming

a universal relation between Λ̃ and R1.4M⊙
, and allows us to explore the parameter space in

the most self-consistent way. Furthermore, we have adopted conservative assumptions regard-

ing the electromagnetic constraints, based on purely qualitative features of the electromagnetic

counterparts. While quantitatively fitting these counterparts as in Coughlin et al. (67) provides

a promising avenue for future investigation, the uncertainties associated with such modeling are

still poorly constrained. In this respect, it is unsurprising that the lower limit on R1.4M⊙
we

obtain here (and which is governed primarily by the electromagnetic constraint) is lower than

in these previous studies as we have made conservative assumptions. As a final note, we point
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out that our results are also consistent with early suggestions for a small neutron-star radius

(≤ 12km) as a possible way to explain the ‘blue’ kilonova component of GW170817 (74).

Neutron-star–black-hole mergers have been studied extensively in the literature starting

from the pioneering work of Lattimer and Schramm (75), however an electromagnetic coun-

terpart to such mergers has not yet been unambiguously detected. The most promising coun-

terparts, an optical/near-infrared kilonova or a gamma-ray burst, depend on whether significant

matter can be stripped off the neutron star prior to merger. The condition for the neutron star to

be tidally disrupted before merger depends sensitively on the neutron-star radius, in addition to

the neutron-star mass and black-hole mass and spin (31, 76, 77). Our new constraint on R1.4M⊙

allows us to reduce the uncertainty in this four-parameter space and provide more precise pre-

dictions on whether electromagnetic counterparts may be expected for neutron-star–black-hole

mergers given MBH, Mns, and χBH inferred from the gravitational-wave signal.

Foucart et al. (35) presented a systematic numerical study of mass ejection from neutron-

star–black-hole mergers and provided a fitting formula for the amount of mass remaining out-

side the black-hole horizon shortly after merger and which could produce detectable electro-

magnetic emission, Mdet,

Mdet ≈Mns

[

αη−1/3
(

1− 2
GMns

c2Rns

)

− βη−1RISCO

Rns

+ γ
]δ

. (4)

In the above, (α, β, γ, δ) = (0.406, 0.139, 0.255, 1.761) are parameters fit to the numerical rela-

tivity simulations, η is the symmetric mass ratio, and RISCO(χBH) is the radius of the innermost

stable circular orbit (ISCO) of the black hole and depends on its spin parameter χBH (78). In

Figure 3 we have shown curves along which Mdet = 0 as a function of the black-hole mass

and spin, and for different neutron-star masses. Above each curve (higher spin) the neutron star

would cross the black-hole ISCO before being tidally stripped of any matter, and a kilonova or

gamma-ray burst counterpart would not be expected.
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