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In this paper we study the spectrum of bosonic string theory onAdS3 . We study
classical solutions of the SL(2,R) WZW model, including solutions for long strings
with nonzero winding number. We show that the model has a symmetry relating
string configurations with different winding numbers. We then study the Hilbert
space of the WZW model, including all states related by the above symmetry. This
leads to a precise description of long strings. We prove a no-ghost theorem for all
the representations that are involved and discuss the scattering of the long string.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1377273#

I. INTRODUCTION

In this paper we study the spectrum of critical bosonic string theory onAdS33M with
NS–NS backgrounds, whereM is a compact space. Understanding string theory onAdS3 is
interesting from the point of view of theAdS/CFT correspondence since it enables us to study
correspondence beyond the gravity approximation. Another motivation is to understand
theory on a curved space–time, where the timelike componentg00 of the metric is nontrivial.

This involves understanding the SL(2,R) WZW model. In this paper, we always consider t
case when the target space is the universal cover of the SL(2,R) group manifold so that the
timelike direction is noncompact. The states of the WZW model form representations o

current algebras SL̂(2,R)L3SL̂(2,R)R . Once we know which representations of these algeb
appear, we can find the physical states of a string inAdS3 by imposing the Virasoro constraints o
the representation spaces. The problem is to find the set of representations that one shou
sider. In WZW models for compact groups, the unitarity restricts the possible representa1

Representations of SL̂(2,R), on the other hand, are not unitary except for the trivial representa
Of course this is not a surprise; the physical requirement is that states should have non-n
norms only after we impose the Virasoro constraints. Previous work on the subject2–10 typically
considered representations withL0 bounded below and concluded that the physical spectrum d
not contain negative norm states if there is the restriction 0, j ,k/2 on the SL(2,R) spin j of the
representation; the spin of the SL(2,R) is roughly the mass of the string state inAdS3 .

This restriction raises two puzzles. One is that it seems to imply an upper bound on the
of the string states inAdS3 so that the internal energy of the string could not be too high.
example, if the compact spaceM has a nontrivial 1-cycle, we find that there is an upper bound
the winding number on the cycle. This restriction, which is independent of the string coup
looks very arbitrary and raises doubts about the consistency of the theory. The second pu
that, on physical grounds, we expect that the theory contains states corresponding to th
strings of Refs. 11 and 12. These are finite energy states where we have a long string st

a!Electronic mail: malda@pauli.harvard.edu
b!On leave of absence from the University of California, Berkeley; electronic mail: ooguri@theory.caltech.edu
29290022-2488/2001/42(7)/2929/32/$18.00 © 2001 American Institute of Physics
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close to the boundary ofAdS3 . These states are not found in any representation withL0 bounded
below. In this paper, we propose that the Hilbert space of the WZW model includes a new ty
representations, and we show that this proposal resolves both the puzzles. In these new re
tations,L0 is not bounded below. They are obtained by acting on the standard representati
elements of the loop group that are not continuously connected to the identity, through an
tion called spectral flow. These representations in the SL(2,R) WZW model have also been
considered, with some minor variations, in Refs. 13 and 14. The authors of these paper
motivated by finding a modular invariant partition function. They were, however, considerin
case when the target space is SL(2,R) group manifold and not its universal cover.

Throughout this paper, we considerAdS3 in global coordinates, which do not have a coord
nate horizon. In these coordinates, the unitarity issue becomes clearer since strings can
behind any horizon. The interested reader could refer to Refs. 15–17 for studies involvingAdS3

in Poincare´ coordinates. From the point of view of theAdS/CFT correspondence, it is the spe
trum of strings onAdS3 in the global coordinates that determines the spectrum of confo
dimensions of operators in the boundary CFT, though in principle the same information cou
extracted from the theory in Poincare coordinates.

In order to completely settle the question of consistency of the SL(2,R) WZW model, one
needs to show that the OPE of two elements of the set of representations that we consider c
only elements of this set. We plan to discuss this issue in our future publication.

The organization of this paper is as follows: In Sec. II, we study classical solutions o
SL(2,R) WZW model and we show that the model has a spectral flow symmetry which re
various solutions. In Sec. III, we do a semiclassical analysis and have the first glimpse o
happens when we raise the internal excitation of the string beyond the upper bound implied
restriction j ,k/2. In Sec. IV, we study the full quantum problem and we propose a se
representations that gives a spectrum for the model with the correct semiclassical limits. In S
we briefly discuss scattering amplitudes involving the long strings. We conclude the paper
summary of our results in Sec. VI. In Appendix A, we extend the proof of the no-ghost the
for the representations we introduced in Sec. IV. In Appendix B, we study the one-loop pa
function in AdS3 with the Lorentzian signature metric and show how the sum over spectral
reproduces the result18 after taking an Euclidean signature metric, up to contact terms in
modular parameters of the worldsheet.

II. CLASSICAL SOLUTIONS

We start by choosing a parameterization of the SL(2,R) group element as

g5eius2ers3eivs2

5S cost coshr1cosf sinhr sint coshr2sinf sinhr

2sint coshr2sinf sinhr cost coshr2cosf sinhr
D . ~1!

Heres i( i 51,2,3) are the Pauli matrices@s15(1 0
0 1), s25( i 0

0 2 i), ands35(0 21
1 0 )#, and we set

u5 1
2 ~ t1f!, v5 1

2 ~ t2f!. ~2!

Another useful parameterization ofg is

g5S X211X1 X02X2

2X02X2 X212X1
D , ~3!

with

X21
2 1X0

22X1
22X2

251. ~4!
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This parameterization shows that the SL(2,R) group manifold is a three-dimensional hyperbolo
The metric onAdS3 ,

ds252dX21
2 2dX0

21dX1
21dX2

2,

is expressed in the global coordinates (t,f,r) as

ds252cosh2 rdt21dr21sinh2 rdf2. ~5!

We will always work on the universal cover of the hyperboloid~4!, andt is noncompact.
Our theory has the WZW action,

S5
k

8pa8
E d2s Tr~g21]gg21]g!1kGWZ . ~6!

The levelk is not quantized sinceH3 vanishes for SL(2,R). The semiclassical limit correspond
to largek. We define the right and left moving coordinates on the worldsheet as,

x65t6s, ~7!

wheres is periodic with the period 2p. This action has a set of conserved right and left mov
currents

JR
a~x1!5k Tr~Ta]1gg21!, JL

a~x2!5k Tr~Ta* g21]2g!, ~8!

whereTa are a basis for the SL(2,R) Lie algebra. It is convenient to take them as

T352
i

2
s2, T65

1

2
~s36 is1!.

In terms of our parameterization, the currents are expressed as

JR
35k~]1u1cosh 2r]1v !,

~9!
JR

65k~]1r6 i sinh 2r]1v !e7 i2u,

and

JL
35k~]2v1cosh 2r]2u!

~10!
JL

65k~]2r6 i sinh 2r]2u!e7 i2v.

The zero modes ofJR,L
3 are related to the energyE and angular momentuml in AdS3 as

J0
35E

0

2p dx1

2p
JR

35
1

2
~E1 l !,

J̄0
35E

0

2p dx2

2p
JL

35
1

2
~E2 l !. ~11!

The second Casimir of SL(2,R) is

c25JaJa5 1
2 ~J1J21J2J1!2~J3!2. ~12!
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The equations of motion derived from~6! is ]2(]1gg21)50, namely, that the currents,JR

andJL , are purely right or left moving as indicated. A general solution of the equations of mo
for SL(2,R) is the product of two group elements each of which depends only onx1 or x2 as

g5g1~x1!g2~x2!. ~13!

Comparing~13! with ~1! we can find the embedding of the worldsheet inAdS3 . The requirement
that the string is closed unders→s12p imposes the constraint,

g1~x112p!5g1~x1!M , g2~x222p!5M 21g2~x2!, ~14!

with the sameMPSL(2,R) for bothg1 andg2 . The monodromy matrixM is only defined up to
a conjugation by SL(2,R), and classical solutions of the WZW model are classified accordin
the conjugacy class ofM.

For strings onAdS33M, we should impose the Virasoro constraints,

T11
total5T11

AdS1T11
other50, ~15!

and similarlyT22
total50, where

T11
Ads5

1

k
JR

aJR
a

is the energy-momentum tensor for theAdS3 part ~In the quantum theory, we will have the sam
expression but withk→k22.! andT11

other represents the energy-momentum tensor for the sig
model onM.

Let us analyze some simple classical solutions.

A. Geodesics in AdS 3

Consider a solution

g15Ueiv1~x1!s2, g25eiu2~x2!s2V, ~16!

whereU andV are constant elements of SL(2,R). The energy momentum tensor of this solutio
is

T11
AdS52k~]1v1!2, T22

AdS52k~]2u2!2. ~17!

Suppose we have some string excitation in the compact partM of AdS33M, and setT66
other5h

for some constanth.0. We may regardh as a conformal weight of the sigma-model onM. The
Virasoro constraintsT66

total50 implies

~]1v1!25~]2u2!25
h

k
.

Thus we can setv15ax1/2 andu25ax2/2 wherea56A4h/k. Substituting this in~13!, we
obtain

g5US cos~at! sin~at!

2sin~at! cos~at!
DV. ~18!

Since the solution depends only ont and not ons, we interpret that the string is collapsed to
point which flows along the trajectory inAdS3 parameterized byt ~see Fig. 1!. If U5V51, the
solution ~18! represents a particle sitting at the center ofAdS3 ,
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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t5at, r50. ~19!

A more general solution~18! is given by acting the SL(2,R)3SL(2,R) isometry on~19!, and
therefore it is a timelike geodesic@In fact, any timelike geodesic can be expressed in the fo
~18!# in AdS3 . For this solution, the currents are given by

JR
aTa5

k

2
aUT3U21, ~20!

and similarly forJL . The monodromy matrixM defined by~14! is

M5S cos~ap! sin~ap!

2sin~ap! cos~ap!
D

and belongs to the elliptic conjugacy class SL(2,R).
A solution corresponding to a spacelike geodesic is

g5US eat 0

0 e2atDV, ~21!

with U, VPSL(2,R). The energy-momentum tensor has a sign opposite of~17!

T66
AdS5 1

4 ka2. ~22!

If we chooseU5V51, the solution is simply a straight line cutting the spacelike sectiont50 of
AdS3 diagonally,

t50, reif5at ~23!

@see Fig. 2~A!#. A general solution~21! is given from this by the action of the isometry, an
therefore is a spacelike geodesic. The currents for this solution are

JR
aTa5

k

2
aUT1U21, ~24!

and the monodromy matrix is

M5S eap 0

0 e2apD ,

FIG. 1. Timelike geodesic;~A! a solution~18! with U5V51, ~B! a general geodesic is obtained by acting the SL(2,R)
3SL(2,R) isometry in~A!.
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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which belongs to the hyperbolic conjugacy class of SL(2,R).
There is one more class of solutions whose monodromy matrices are in the parabolic

gacy class of SL(2,R). They correspond to null geodesics inAdS3 .

B. Spectral flow and strings with winding numbers

Given one classical solutiong5g̃1g̃2 , we can generate new solutions by the followi
operation:

g15ei ~1/2!wRx1s2g̃1 g25g̃2ei ~1/2!wLx2s2. ~25!

Comparing this with the parameterization~1! of g5g1g2 , we see that this operation amounts

t→t1 1
2 ~wR1wL!t1 1

2 ~wR2wL!s,
~26!

f→f1 1
2 ~wR1wL!s1 1

2 ~wR2wL!t.

The periodicity of the string worldsheet, unders→s12p, on the universal cover of SL(2,R)
requires@If the target space is the single cover of SL(2,R), wR andwL can be different. In this
case (wR2wL) gives the winding number along the closed timelike curve on SL(2,R).# wR

5wL5w for some integerw.

One may regard~25! as an action by an element of the loop group SL̂(2,R)3SL̂(2,R) which

is not continuously connected to the identity.@The loop group SL̂(2,R) has such an element sinc
p1(SL(2,R))5Z. Therefore, in the model whose the target space is the single cover of SL(R),
the full symmetry group of the model is the loop group of SL(2,R)3SL(2,R) and its connected
components are parametrized byZ3Z. In this paper, we are studying the model for the univer
cover of SL(2,R). In this case, some of these elements do not act properly on the field s
generating worldsheets which close only modulo time translation. However the ones param
by the diagonalZ are still symmetry of the model. The diagonalZ parameterizes the spectral flo
operation performed simultaneously for both the left and right movers.# This particular symmetry
of the theory will also be useful in our analysis of the Hilbert space. Here we see that it gen
a new solution from an old solution. Furthermore, the currents~9! change in the following way:

JR
35 J̃R

31
k

2
w, JR

65 J̃R
6e7 iwx1

~27!

and a similar expression forJL
a . Or, in terms of the Fourier modes,

FIG. 2. Spacelike geodesic;~A! a solution ~21! with U5V51, ~B! a general geodesic is obtained by acting t
SL(2,R)3SL(2,R) isometry in~A!.
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Jn
35 J̃n

31
k

2
wdn,0 , Jn

65 J̃n7w
6 . ~28!

This means that the stress tensor will change to

T11
AdS5T̃11

AdS2wJ̃32
k

4
w2. ~29!

In the CFT literature, this operation is known as the spectral flow.
Let us study what happens if we act with this symmetry on the solutions correspondi

geodesics,~18! and~21!. These solutions depend only on the worldsheet time coordinatet, and the
spectral flow~26! with w5wR5wL introducess dependence as

t5t0~t!1wt,

r5r0~t!, ~30!

f5f0~t!1ws.

Here (t0 ,r0 ,f0) represents the original geodesic solution. So what the spectral flow does
stretch the geodesic solution in thet-direction~by addingwt! and rotates it aroundw-times around
the centerr50 of AdS3 ~by addingws!. It is clear that the resulting solution describes a circu
string, windingw-times around the center ofAdS3 . Since the spectral flow changes the energ
momentum tensor, we need to impose the physical state conditionT66

AdS1T66
other50 with respect to

the new energy-momentum tensor~29!.

C. Short strings as the spectral flow of timelike geodesics

A timelike geodesic inAdS3 makes a periodic trajectory as shown in Fig. 1, approaching
boundary ofAdS3 , then coming back to the center and so on. In particular, whenV5U21 in ~18!,
the geodesic periodically passes through the centerr50 of AdS3 , with the period 2p in the
t-coordinate. The spectral flow,

t→t1wt, f→f1ws,

stretches the geodesic in the time direction and rotate it around the centerr50; it is pictorially
clear that the resulting solution describes a circular string which repeats expansion and c
tion. This is shown in Fig. 3 in the case ofw51. AssumingT66

other5h as in the case of geodesic
the Virasoro constraint for the solution is

T11
total5T̃11

AdS2wJ̃32
k

4
w21T11

other50. ~31!

Since

T̃11
AdS52

k

4
a2

for the timelike geodesic, we find

J0
35 J̃0

31
k

2
w5

k

4
w1

1

w S 2
k

4
a21hD . ~32!

The space–time energyE of the string is given byE52J0
3, and is bounded above as
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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E5
k

2
w1

1

w
~2ka212h!,

k

2
w1

2h

w
. ~33!

It is not difficult to find an explicit form of the solution. WhenV5U21 in ~18!, without loss
of generality, we can set~A different choice ofU5V21 simply results in the shift off in the
solution.! U5V215e(1/2)r0s3. The solution~We have been informed that a similar classical s
lution has also been studied in Refs. 19 and 20.! obtained by the spectral flow of~18! is then

eif sinhr5 ieiws sinhr0 sinat,
~34!

tant5
tanwt1tanat/coshr0

12tanwt tanat/coshr0
.

The currents of this solution are

JR
35

k

2
~a coshr01w!,

~35!

JR
656 i

k

2
a sinhr0e7 iwx1

,

and similarly forJL . Comparing this with~32!, we find

a5a652w coshr06Aw2 sinh2 r01
4h

k
. ~36!

If we choose the brancha5a1 , the space–time energyE of the solution is positive and is give
by

E52J0
352J̄0

35kS coshr0A4h

k
1w2 sin2 r02w sinh2 r0D . ~37!

There are several interesting features of this formula for the energyE. Except for the case o
h5kw2/4, the energy is a monotonically increasing function ofr0 , which approachesE→kw/2
12h/v asr0→`. One may view that the solution describe a bound state trapped inside ofAdS3 .

FIG. 3. A classical solution obtained by the spectral flow of a timelike geodesic. The solution repeats expans
contraction. The maximum size of the string isr5r0 .
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At the exceptional value ofh5kw2/4, we havea150 and the energy of the solution becom
E5kw, completely independent of the sizer0 of the string. The solution in this case is

r5r0 , t5wt, f5ws, ~38!

and represents a string staying at the fixed radiusr5r0 , neither contracting nor expanding. Th
fact that we have such a solution at any radiusr0 means that the string becomes margina
unstable inAdS3 .

Now let us turn to the case whenUÞV21, or to be more precise, whenUV does not commute
with T352( i /2)s2. ~When UV commutes withT3, one can shift the value oft to set U
5V21.! In this case, the geodesic does not necessarily pass through the center ofAdS3 . Therefore
the circular string obtained by its spectral flow does not collapse to a point. Since

J̃a
LT* a5

k

2
aUT3U21, J̃a

RTa5
k

2
aV21T3V, ~39!

J̃ L
3 Þ J̃ R

3 unless UV commutes withT352( i /2)s2, and the space–time angular momentu
l 5J R

32JL
35 J̃ R

3 2 J̃ L
3 is nonzero. Thus one may view that the circular string is kept from c

pletely collapsing by the centrifugal force. SinceT11
AdS2T22

AdS52w( J̃ R
3 2 J̃ L

3 ), the Virasoro con-
straint T66

total50 requires that the left and right conformal weights (hL ,hR) of the internal part
should be different and thathR2hL5wl.

D. Long strings as the spectral flow of spacelike geodesics

We have seen in~33! that the space–time energyE of the solution given by the spectral flow
of the timelike geodesic is bounded above asE,kw/212h/w. What will happen if we raise the
energy above this value? To understand this, let us look at the spectral flow of the spa
geodesic. SinceT̃11

AdS51ka2/2 for the spacelike geodesic, the Virasoro constraint~31! gives

J0
35 J̃0

31
k

2
w5

k

4
w1

1

w S k

2
s21hD , ~40!

and the space–time energy is now bounded below,

E52J0
3.

k

2
w1

2h

w
. ~41!

As an example, let us consider the straight line cutting the spacelike sectiont50 diagonally
~23!. The spectral flow withw of this solution is

t5wt, reif5ateiws, ~42!

namely

r5
a

w
utu. ~43!

The solution starts in the infinite pastt52` as a circular string of an infinite radius located at t
boundary ofAdS3 . The string then collapse, shrinks to a point att50, and expand away towar
the boundary ofAdS3 ast→1`. More generally, if we chooseU5V215e(21/2)r0s1, the spectral
flow of the geodesic~21! gives

eif sinhr5eiws coshr0 sinhat,

~44!

4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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tant5
tanwt1tanhat sinhr0

12tanwt tanhat sinhr0
.

This solution, which we call a long string, is depicted in Fig. 4.
The Virasoro constraintT11

total50 for the long string~44! is

T11
AdS1T11

other5
k

4
~a222aw sinhr02w2!1h50, ~45!

with the solutions

a5a65w sinhr07Aw2 cosh2 r02
4h

k
. ~46!

The space–time energyE of these solutions are

E52J0
252J̄0

35kS w cosh2 r07sinhr0Aw2 cosh2 r02
4h

k D . ~47!

At the critical valueh5kw2/4, we havea150 and the energy for this solution becomesE
5kw. At this point, the long string solution~44! coincides with~38!. Thus we see that, as w
increase the value ofh to h5kw2/4, the short string solution~34! can turn into the long string
solution ~44! and escape to infinity.

As explained in Refs. 11 and 12, a string that winds inAdS3 close to the boundary has finit
energy because there is a balance between two large forces. One is the string tension that
make the string contract and the other is the NS–NSB field which wants to make the strin
expand. These forces cancel almost precisely near the boundary and only a finite energy
left. The threshold energy for the long string computed in Refs. 11 and 12 iskw/4, in agreement
with ~41! whenh50. These strings can have some momentum in the radial direction and t
a degree of freedoma that we saw explicitly above. One may view the long string as a scatte
state, while the previous solution~34! is like a bound state trapped inside ofAdS3 .

In general, ifUV commutes withT352( i /2)s2, the long string collapses to a point once
its lifetime. If UV does not commute withT3, the angular momentuml 5JR

32JL
3 of the solution

does not vanish and the centrifugal force keeps the string from collapsing completely. In this
the Virasoro constraintT66

total50 requireshR2hL5wl for the conformal weights of the interna
sector.

FIG. 4. A long string solution obtained by the spectral flow of a spacelike geodesic. The long string comes fro
boundary ofAdS3, collapses to a point, and then expands away to the boundary ofAdS3 again.
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For the long strings, one can define a notion of the S-matrix. In the infinite past, the size
long string is infinite but its energy is finite. Therefore the interactions between them are exp
to be negligible, and one can define asymptotic states consisting of long strings. The string
approach the center ofAdS3 and are scattered back to the boundary. In this process, the win
number could in principle change.

III. SEMICLASSICAL ANALYSIS

In studying the classical solutions, we were naively identifying the winding numberw as
associated to the cyclef→f12p. But since this cycle is contractible inAdS3 , we should be
careful about what we mean by the integerw. The winding number is well-defined when the strin
is close to the boundary, so we expect that long strings close to the boundary have definite w
numbers. On the other hand, when the string collapses to a point, as shown in Figs. 3 and
winding number is not well-defined. Therefore, if we quantize the string, it is possible to ha
process in which the winding number changes. There is however a sense in which string sta
characterized by some integerw.

In order to clarify the meaning ofw when the string can collapse, let us look at the Nam
action,

S5E dt
ds

2p
@Adetgind2Btf]sf#, ~48!

where gind is the induced metric on the worldsheet, andBtf is the NS–NSB-field. We have
chosen the static gauge in the time directiont5t. We assume that initially we have a state wi
r50, and we want to analyze small perturbations. Since the coordinatef is not well-defined, it is
more convenient to use

X11 iX25reif. ~49!

Let us compute the components of the induced metricgind . To be specific, we consider the ca
when the target spaceAdS33S33T4, and consider a string winding around a cycle onT4. By
expanding in the quadratic order inr, we find

gind,005k@2~11r2!1]0Xa]0Xa#1]0Yi]0Yi ,

gind,015k]0Xa]1Xa1]0Yi]1Yi , ~50!

gind,115k]11X
a]1Xa1]1Yi]1Yi , ~a51,2!,

whereYi ’s are coordinates onT4. For simplicity, we consider purely winding modes onT4, so
that only]1Yi is nonzero. For these states, the conformal weighth is given by~One factor of 2
comes from the fact that this includes left and right movers and the other from the fact th
expression for the energy involves 1/2Y82.!

4h R ds

2p
Gi j ]1Yi]1Yj . ~51!

Substituting~50! and ~51! into the action and expanding to the quadratic order inr, we find

S5A4khE ds2F12
1

2
~]0Xa!21

1

2

k

4h S ]1Xa1eabA4h

k
XbD 2

1¯G
~52!

5A4khE ds2F12
1

2
u]0Fu21

1

2

k

4h
US ]12 iA4h

k DFU2

1¯G ,
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whereF5X11 iX2.
The action~52! is the one for a massless charged scalar field onR3S1 coupled to a constan

gauge fieldA5A4h/k aroundS1. As we varyA, we observe the well-know phenomenon of t
spectral asymmetry. Let us first assume thatA is not an integer. A general solution to the equati
of motion derived from~52!, requiring the periodicity ins, is

F; (
n52`

`

~an
†ei ~n2A!~ t̃1s!1bne2 i ~n2A!~ t̃2s!!

eiAs

n2A
, ~53!

whereA5A4h/k andt̃5t/A. Upon quantization, the commutation relations are given~modulo a
positive constant factor! by

@an ,am
† #5~n2A!dn,m , @bn ,bm

† #5~n2A!dn,m . ~54!

Notice that the sign in the right-hand side of~54! determines whetheran or an
† should be regarded

as the annihilation operator. Thus, assuming that the Hilbert space is positive definite, the v
state is defined by

anu0&5bnu0&50, ~n.A!,
~55!

an
†u0&5bn

†u0&50, ~n,A!.

For F5reif given by ~53! and t5At̃, we find

JR
15k~e2 i t]1F* 2F* ]1e2 i t !;2 ik(

n
ane2 in~ t̃1s!,

~56!

JR
25k~eit]1F2F]1eit !; ik(

n
an

†ein~ t̃1s!,

and similarly forJL
6 . ThereforeJn

152 ikan and Jn
25 ika2n

† . The vacuum stateu0& defined by
~55! then obeys

Jn
1u0&50 ~n.A!, Jn

2u0&50 ~n.2A!. ~57!

Thus the vacuum stateu0& is not in a regular highest weight representation of the current alg

SL̂(2,R). If we set

Jn
65 J̃n7w

6 ~58!

with the integerw defined by

w,A,w11, ~59!

then u0& obeys the regular highest weight condition with respect toJ̃n
6 ,

J̃n
1u0&50 ~n>1!, J̃n

2u0&50 ~n>0!. ~60!

The change of the basis~58! is nothing but the spectral flow~28! discussed earlier, so we ca
identify w as the amount of spectral flow needed to transform the string state into a string
which obeys the regular conditions~60!. We have found that, for a given value ofh, there is a
unique integer ofw associated to the string state. As we vary the conformal weighth, A
5A4h/k will become an integer. At that point, one of the modes of the fieldF will have a
vanishing potential. In fact we can check that classically this potential is completely flat. Givin
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expectation value to that mode, we find configurations as in~38!. Corresponding to various value
of its momentum in the radial direction, we have a continuum of states. So, at this value ofh, we
do not have a normalizable ground state; instead we have a continuum of states whi
d-function normalizable. If we continue to increaseh, we find again normalizable states, but th
are labeled by a new integer (w11). Notice thatw is not directly related to the physical windin
of the string. In fact by exciting a coherent state of the oscillatorsan or bn we can find string states
that look like expanding and collapsing strings with winding numbern around the origin.

One of the puzzles we raised in the Introduction was what happens when we increa
internal conformal weighth of the string beyond the upper bound implied by the restrictioj
,k/2 on the SL(2,R) spin j due to the no-ghost theorem. In this section, we saw a semiclas
version of the puzzle and its resolution. Whenh reaches the bound, we find that the state c
become a long string with no cost in energy. Above the bound, we should consider a Fock
with a different bose sea level. In the fully quantum description of the model given below, we
find a similar situation but with minor corrections.

IV. QUANTUM STRING IN AdS 3

The Hilbert space of the WZW model is a sum of products of representations of the lef
the right-moving current algebras generated by

JL
a5 (

n52`

`

Jn
ae2 inx2

, JR
a5 (

n52`

`

J̄n
ae2 inx1

, ~61!

with a53, 6, obeying the commutation relations

@Jn
3,Jm

3 #52
k

2
ndn1m,0 ,

@Jn
3,Jm

6#56Jn1m
6 , ~62!

@Jn
1 ,Jm

2#522Jn1m
3 1kndn1m,0 ,

and the same forJ̄n
a . We denote the current algebra by SL̂

k(2,R). The Virasoro generatorLn are
defined by

L05
1

k22 F1

2
~J0

1J0
21J0

2J0
1!2~J0

3!21 (
m51

`

~J2m
1 Jm

21J2m
2 Jm

122J2m
3 Jm

3 !G ,

~63!

LnÞ05
1

k22 (
m51

`

~Jn2m
1 Jm

21Jn2m
2 Jm

122Jn2m
3 Jm

3 !,

and obey the commutation relation,

@Ln ,Lm#5~n2m!Ln1m1
c

12
~n32n!dn1m,0 , ~64!

where the central chargec is given by

c5
3k

k22
. ~65!

We will find that the Hilbert space of the WZW model consists of subsectors paramete
by integerw, labeling the amount of spectral flow in a sense to be made precise below. We
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formulate our proposal on how the complete Hilbert space of the WZW model is decompose
representations of the current algebras and provide evidences for the proposal.

States in a representation of the current algebra are labeled by eigenvalues ofL0 andJ0
3. Since

the kinetic term of the WZW model based on SL(2,R) has an indefinite signature, it is possib
that the Hilbert space of the model contains states with negative eigenvalues ofL0 as well as states
with negative norms, and indeed both types of states appear as we will see below. For the m
we will consider a representation in which eigenvalues ofL0 is bounded below. We call them
positive energy representations, or unflowedrepresentations. Since the action ofJn

3,6 with n>1 on
a state lowers the eigenvalue ofL0 by n, there has to be a set of states which are annihilated
them. We will call such states the primary states of the positive energy representation. All
states in the representation are obtained by actingJ2n

3,6(n>1) on the primary states. The groun
states make a representation of SL(2,R) generated byJ0

3,6 . So let us review irreducible represen
tations of SL(2,R).

A. Representations of the zero modes

We expect that physical states of a string inAdS3 have positive norms. SinceJ0
3,6 commute

with the Virasoro constraints, physical spectrum of the string must be in unitary representati
SL(2,R). Most of the mathematical references on representation theory of SL(2,R) deal with the
case with compact time;@For a review of representations of SL(2,R), see, for example, Ref. 21.#
we are however interested in the case with noncompact time. A clear analysis from the alg
point of view is presented in Ref. 22, which we now summarize with some minor chang
notation.

There are the following five types of unitary representations. All the representation
parameterized byj, which is related to the second Casimirc25 1

2 (J0
1J0

21J0
2J0

1)2(J0
3)2 asc25

2 j ( j 21).
~1! Principal discrete representations~lowest weight!:

A representation of this type is realized in the Hilbert space

Dj
15$u j ;m&:m5 j , j 11, j 12, ...%,

whereu j ; j & is annihilated byJ0
2 andu j ;m& is an eigenstate ofJ0

3 with J0
35m. The representation

is unitarity if j is real andj .0. For representations of the group SL(2,R), j is restricted to be a
half-integer. Since we are considering the universal cover of SL(2,R), j can be any positive rea
number.
~2! Principal discrete representations~highest weight!:

A charge conjugation of~1!. A representation of this type is realized in the Hilbert space

Dj
25$u j ;m&:m52 j , 2 j 21, 2 j 22, ...%,

whereu j ; j & is annihilated byJ0
1 andu j ;m& is an eigenstate ofJ0

3 with J0
35m. The representation

is unitary if j is real andj .0.
~3! Principal continuous representations:

A representation of this type is realized in the Hilbert space of

Cj
a5$u j ,a;m&:m5a, a61, a62, ...%,

where u j ,a;m& is an eigenstate ofJ0
3 with J0

35m. Without loss of generality, we can restrict
<a,1. The representation is unitary ifj 51/21 is ands is real.~Strictly speaking the represen
tation with j 51/2, a51/2 is reducible as the sum of a highest weight and a lowest we
representation withj 51/2.!
~4! Complementary representations:

A representation of this type is realized in the Hilbert space of
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



0

rticular
repre-

let us
ear

ollow-

h

p-

s which
ion
e

s
s)

ld
tate of
uld be
pear in
e the

r-
r the
e
5, we

r a
states

2943J. Math. Phys., Vol. 42, No. 7, July 2001 Strings in AdS3 and SL(2,R) WZW model

Downloaded 1
Ej
a5$u j ,a;m&:m5a, a61, a62, ...%,

where u j ,a;m& is an eigenstate ofJ0
3 with J0

35m. Without loss of generality, we can restrict
<a,1. The representation is unitary ifj is real, with 1/2, j ,1 and j 21/2,ua21/2u.
~5! Identity representation:

This is the trivial representation withj 50.
The analysis that led to the above representation was completely algebraic and in a pa

physical system we can have only a subset of all possible representations. Which of these
sentations appear in the Hilbert space of the WZW model? As the first approximation,
consider thek→` limit. If we expand around a short string solutions, i.e., oscillations n
geodesics inAdS3 , the WZW model in this limit reduces to the quantum mechanics onAdS3 .
The Hilbert space of the quantum mechanical model is the space of square-integrable~SinceAdS3

is noncompact, we consider square-integrability in the delta-function sense.! functionsL2(AdS3)
on AdS3 . The isometry ofAdS3 is SL~2,R)3SL(2,R), and one can decomposeL2(AdS3) into
its unitary representations. It is convenient to choose the basis of the Hilbert space in the f
ing way. For each representationR, one can define a function onAdS3 by Fm,m̄(g)5^mugum̄&,
wheregPAdS3 , i.e., universal cover of SL(2,R), and um& is an eigenstate ofJ0

3 with J0
35m.

Thus, for a given representationH of SL(2,R), the functionFm,m̄(g) on AdS3 is in the tensor
product of the representationsR3R for the isometry group SL(2,R)3SL(2,R).

For a discrete representationDj
6 , the wave-functionf (r) behaves asf (r);e22 j r for larger.

ThusfPL2(AdS3) if j .1/2. Notice that in the range 0, j ,1 we have two representations wit
the same value of the Casimir but only one is inL2(AdS3), the one with 1/2, j ,1. As explained
in Ref. 23, one could modify the norm so that the second solution with 0, j ,1/2 becomes
normalizable. This modification of the norm isj-dependent. Similarly, supplementary series re
resentations need aj-dependent modification to the norm to render them normalizable.21 Therefore
these representations would appear in nonstandard quantizations of geodesics, quantization
do not use theL2 norm onAdS3 . In this paper, we will only consider the standard quantizat
using theL2 norm for the zero modes.@Notice however, that even if the primary states havj
.1/2, we could have states with smaller values ofj 0 for the zero mode SL(2,R) among the
descendents, for example,J21

2 u j & with 1, j ,3/2, has j 05 j 21,1/2.# Wave-functions in
Cj 51/21 is

a are also delta-function normalizable with respect to theL2 norm. It is known that
Cj 51/21 is

a 3Cj 51/21 is
a andDj

63Dj
6 with j .1/2 form the complete basis ofL2(AdS3).

For discrete lowest weight representations, the second Casimir is bounded above ac25
2 j ( j 21)<1/4. This corresponds to the well-known Breitenlohner–Freedman bound (mas2>
21/4 for the Klein–Gordon equation. For the principal continuous representationCj

a with j
51/21 is, the second Casimir isc251/41s2. Therefore an existence of such a particle wou
violate the Breitenlohner–Freedman bound. In the bosonic string theory, the only physical s
this type is the tachyon. In a perturbatively stable string theory, such particle states sho
excluded from its physical spectrum. On the other hand, the continuous representations ap
L2(AdS3) and they are expected to be part of the Hilbert space of the WZW model befor
Virasoro constraint is imposed.

B. Representations of the current algebra and no-ghost theorem

Given a unitary representationH of SL(2,R), one can construct a representation of SL(2,R)
by regardingH as its primary states annihilated byJn>1

3,6 . The full representation space is gene
ated by actingJn<21

3,6 on H. Following the discussion in the previous subsection, we conside
cases whenH5Cj 51/21 is

a andDj
6 with j .1/2. We denote byD̂j

6 andĈj
a the representations of th

full current algebra built on the corresponding representations of the zero modes. In Fig.
have shown the weight diagram of the positive energy representationD̂j

1 .

A representation of SL̂
k(2,R) in general contains states with negative norms. In order fo

string theory onAdS3 to be consistent, one should be able to remove these negative norm
by imposing the Virasoro constraint,
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~Ln1Ln2dn,0!uphysical&50, n>0, ~66!

on the Hilbert space for a single string state, whereLn is the Virasoro generator of th
SL(2,R)WZW model andLn for the sigma-model onM. It has been shown that this no-gho
theorem holds for states inĈj 51/21 is

a or D̂j
6 with 0, j ,k/2.2,3,6–9,22

The no-ghost theorem is proven by first showing that all the solutions to the Virasoro
straint ~66! can be expressed, modulo null states, as states in the coset SL(2,R)/U~1! obeying

Jn
3uc&50, n>1. ~67!

This statement is true forĈ1/21 is
a andD̂j

6 with 0, j ,k/2, if the total central charge of the Virasor
generatorLn1Ln is 26.2–4,6–9~We also assumek.2.! We review the proof of this statement i
Appendix A.1. The second step is to show that the condition~67! removes all negative norm
states. This was shown in Ref. 22 for the same class of representations.

The no-ghost theorem suggests that the spectrum of discrete representations has to
cated forj ,k/2. As we will see, this truncation is closely related to the existence of the long s
states.

C. Spectral flow and the long string

The classical and semiclassical results discussed above indicate that, beyond positive
representations that we have discussed so far, we have to include others related by spect
To define a quantum version of the spectral flow, we note that, for any integerw, the transforma-
tion Jn

3,6→ J̃n
3,6 given by

J̃n
35Jn

32
k

2
wdn,0 , J̃n

15Jn1w
1 , J̃n

25Jn2w
2 , ~68!

preserves the commutation relations~62!. The Virasoro generatorsL̃n , which have the standard
Sugawara form in terms ofJ̃n

a , are different fromLn . They are given by

L̃n5Ln1wJn
32

k

4
w2dn,0 ~69!

Of course, they obey the Virasoro algebra with the same central chargec. This is the same formula
as saw in the classical counterpart~29! of the spectral flow.

The change of the basis~68! maps one representation into another, and this is called
spectral flow. In the case of a compact group such as SU~2!, the spectral flow maps a positiv

FIG. 5. Weight diagram the representationD̂j
1 , whose the primary states form a discrete lowest weight representa

D̂j
1 .
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energy representation of the current algebra into another positive energy representation. An
gous transformation in the case of theN52 superconformal algebra in two dimensions has b
used to construct the spacetime supercharges for superstring.

In the case of SL(2,R), the spectral flow generates a new class of representations. As s
in Fig. 6, the spectral flow withw51 maps the lowest weight representationD̂

̃

1
to a represen-

tation in whichL0 is not bounded below. The appearance of negative energy states is n
surprising since the kinetic term of the SL(2,R) model is not positive definite. In general,
spectral flow ofD̂

j̃

1
with w>1 or w<22 gives a new representation in whichL0 is not bounded

below. Similarly, the spectral flow ofĈj 51/21 is
a with wÞ0 gives a representation in whichL0 is

not bounded below. We denote the resulting representations byD̂
j̃

6,w
andĈ

j̃

a,w
, where j̃ labels the

SL(2,R) spin before the spectral flow~Fig. 7!.

FIG. 6. Weight diagram of the representationD̂
j̃

1,w51
, which is the spectral flow of the diagram 5 withw51. The

worldsheet energyL0 of this representation is not bounded below, but the space–time energy,J0
3, is bounded below for

states obeying the Virasoro constraintL051.

FIG. 7. The spectral flow of the diagram 5 withw521. D̂
j̃

1
is mapped toD̂

j̃

1,w521
5D̂j

2 with j 5k/22 j̃ . Since j̃

.1/2, the resultingD̂j
2 obeysj ,(k21)/2. In particular, the unitarity boundj ,k/2 required by the no-ghost theorem

satisfied.
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These representations obtained by the spectral flow also contain negative norm sta
Appendix A.2, we generalize the proof of the no-ghost theorem and show that the Vir
constraints indeed remove all negative norm states in the representationsĈj 51/21 is

a,w andD̂
j̃

6,w
with

j̃ ,k/2, for any integerw.
The only case where we get a representation withL0 bounded below by the spectral flow

D̂j
6 with w571. In this case, the representation is mapped to another positive energy rep

tation D̂
j̃

6,w571
5D̂

k/22 ̃

7
. Note that, if we start with the representation withj̃ .1/2, the represen-

tation one gets after the spectral flow satisfiesj 5k/22 j̃ ,(k21)/2. Conversely, if there were
representationD̂j

6 with j .(k21)/2 in the Hilbert space, the spectral flow would generat
representationD̂j

6 with j ,1/2 in contradiction with the standard harmonic analysis of the z
modes in Sec. IV A. Therefore, if we assume that the spectral flow is a symmetry of the W
model, the discrete representationsD̂j

6 appearing in the Hilbert space are automatically restric
to be in 1/2, j ,(k21)/2. In particular, the spectrum ofj is truncated below the unitarity boun
j ,k/2 required by the no-ghost theorem. This further restriction onj was discussed in a relate
context by Ref. 24.

D. Physical spectrum

Let us consider first the spectrum for strings withw50. This is fairly standard. We start from
an arbitrary descendent at levelN in the current algebra and some operator of the internal C
with conformal weighth. TheL0 constraint reads

~L021!u j ,m,N,h&50⇒2
j ~ j 21!

k22
1N1h2150. ~70!

If we demand that 1/2< j <(k21)/2, this equation will have a solution as long asN1h is within
the range

0<N1h211
1

4~k22!
<

~k22!

4
. ~71!

If we allow j to go all the way tok/2 we getk/4 on the right-hand side of~71!.
To analyze physical states of strings withwÞ0, we start with a positive energy representati

D̂
j̃

1
. After the spectral flow~68!, a primary stateu j̃ ,m̃& of D̂

j̃

1
, as a state ofD̂

j̃

1,w
, obeys

Jn1w
1 u j̃ ,m̃&50, Jn2w

2 u j̃ ,m̃&50, Jn
3u j̃ ,m̃&50, n>1,

~72!

J0
3u j̃ ,m̃&5S k

2
w1m̃D u j̃ ,m̃&.

Let us look for physical states with respect to the Virasoro generatorLn . From ~72!, we find the
Virasoro constraints are

~L021!u j̃ ,m̃&5S 2
j̃ ~ j̃ 21!

k22
2wm̃2

k

4
w21Ñ1h21D u j̃ ,m̃,Ñ,h&50,

~73!
Lnu j̃ ,m̃&5~ L̃n2wJ̃n

3!u j̃ ,m̃&50, n>1,

whereh is the contribution to the conformal weight from the internal CFT andÑ is the level inside
the current algebra before we take the spectral flow. The state obeys the physical state co
provided
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m̃52
k

4
w1

1

w
S 2

j̃ ~ j̃ 21!

~k22!
1Ñ1h21D . ~74!

The space–time energy of this state measured byJ0
3 is then

J0
35m̃1

k

2
w5

k

4
w1

1

w
S 2

j̃ ~ j̃ 21!

~k22!
1Ñ1h21D . ~75!

This is the quantum version of the classical formula~32!, with the replacement

k

4
a2→ j̃ ~ j̃ 21!

k22
11.

Notice thatm̃5 j̃ 1q whereq is some integer, which could be negative.~m̃ is the totalJ̃3 eigen-
value of the state so it can be lowered by applyingJ2n

2 to the highest weight state. So we have t
constraintq>2Ñ.! Therefore the physical state condition becomes

j̃ 5
1

2
2

k22

2
w1A1

4
1~k22!S h211Nw2

1

2
w~w11! D . ~76!

Here

Nw5Ñ2wq ~77!

is the level of the current algebra after the spectral flow by the amountw. Notice that the equation
for j̃ is invariant underÑ→Ñ6w, q→q61. This is reflecting the fact thatJ0

65 J̃7w
6 commute

with the Virasoro constraints and generate the space–time SL(2,R) multiplets. In particular, we
see that the space–time SL(2,R) representations that we get are lowest energy representa
since repeated action ofJ0

25 J̃w
2 will eventually annihilate the state. In fact, it is shown

Appendix A.2 that the only physical state with zero spacetime energy,J0
350, is the stateJ21

2 u j
51&, and its complex conjugate. This physical state corresponds to the dilaton field inAdS3 ,
which played an important role in the analysis of the spacetime Virasoro algebra in Ref. 2
other states~except the tachyon withw50! have nonzero energy, and form highest/lowest wei
representations of SL(2,R) space–time algebra. The negative energy ones are the complex
jugates of the positive energy ones.

By solving the on-shell condition~76! for j̃ .0 and substituting it into~75!, one finds that the
space–time energy of the string is given by

E1 l

2
5J0

35q1w1
1

2
1A1

4
1~k22!S h211Nw2

1

2
w~w11! D . ~78!

Since bothNw andq are integers, the energy spectrum is discrete. This is reasonable since w
considering the string trapped inside ofAdS3 . The constraint 1/2, j̃ ,(k21)/2 translates into the
inequality

k

4
w21

w

2
,Nw1h211

1

4~k22!
,

k

4
~w11!22

w11

2
. ~79!

This is the quantum version of the semiclassical formula~59!. In fact, if we takek,h@Ñ,q,w,
~79! reduces to~59!. As in the semiclassical discussion,w is not necessarily related to the physic
winding number of the string. It is just an integer labeling the type of representation that the
state is in.
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The analysis for the representations coming from the continuous representations for th
modes is similar. If we do not spectral flow, the only state in the continuous representation
tachyon. If we do spectral flow, we get Eq.~74!, which can be conveniently rewritten as

J0
35m̃1

wk

2
5

kw

4
1

1

w
S 1

4 1s2

k22
1Ñ1h21D . ~80!

For continuous representationsw is labeling the physical winding of the string when it approach
the boundary ofAdS. In this case we do not get an equation like~76! since, for continuous
representations,m̃ is not related toj. Comparing with the classical formula~40!, we identifys as
the momentuma/k of the long string along the radial direction ofAdS3 . We clearly see that the
energy of this state is above the threshold to produce an excitation that will approach the bo
as aw-times wound string.

We can see that, whenever the value ofh is such that it saturates the range~79!, we have a
continuous representation with the same energy. This is clear for the lower bound in the c
w50 since, for each state in the discrete representation withj 51/2, there is one in the continuou
representation with the same values ofL0 andJ0

3. By the spectral flow, we see that the same is t
for the lower bound in~79! for any w. Indeed we can check explicitly that a state in the discr
representation with parameters (h,w,q,Ñ) saturating the lower bound in~79! has the same space
time energy as a state in the continuous representation with parameters (h,w,s50,Ñ). @The
parametera in the continuous representation is fixed by the value ofJ0

3 in ~80!.# Similarly, if we
have a state in a discrete representation saturating the upper bound in~79!, it has the same
spacetime energy as a state in the continuous representation with parameters~h,w11, s50, Ñ8

5Ñ1q!. Note that, sinceq>2Ñ ~see the footnote in the previous page!, we haveÑ8>0. In this
case, to show that the two states have the same energy, it is useful to identify the state inD̂

j̃ 5 j̃

1,w
as

a state inD̂
j̃ 5k/22 j̃

2,w11
. Since j̃ →(k21)/2 corresponds toj̃ →1/2 under this identification, we ca

apply the above argument for the lower bound to show that we will find a state in the contin
representation. The shiftÑ85Ñ1q comes from the fact that the identificationD̂

j̃ 5 j̃

1,w
5D̂

j̃ 5k/22 j̃

2,w11

involves spectral flow one more time.
The above paragraph explains what happens as we changej̃ in a discrete representation an

we make it equal to the upper or lower bound: a continuous representation appears. A
question that one could ask is the following. Given a value ofh, what is the state with the lowes
value ofJ0

3 that satisfies the physical state conditions? Let us first look for the lowest energy
in the discrete representations obeying the bound~79!. Within this bound, one can show tha
]J0

3(h,w,q,Ñ)/]q>0 and]J0
3(h,w,q52Ñ,Ñ)/]Ñ>0. Therefore, if we can setq5Ñ50, it will

give the lowest energy state in the discrete representations. This is possible ifh is within the range,

k

4
w21

w

2
,h211

1

4~k22!
,

k

4
~w11!22

w11

2
. ~81!

With some more work, one can show that, forh in this range, there is not any state in a continuo
representation whose energy is lower than that of the discrete representation state withÑ5q
50. As we saw in the above paragraph, at the upper or lower bound of~81!, the energy of the
discrete state~q50, Ñ50! coincides with that of the continuous state with~s50, Ñ50!. Outside
this range~81!, it is not possible to setÑ5q50, and the lowest energy state will be in
continuous representation. In our semi-classical discussion in the last section, we found t
discrete representation can decay into the continuous representation ath5kw2/4. Now we see
that, in the fully quantum description, the range over which a continuous representation has
energy has expanded from the pointh5kw2/4 to a strip of widthw,
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k

4
w22

w

2
,h211

1

4~k22!
,

k

4
w21

w

2
. ~82!

So far we have restricted our attention to right-moving sectors of the Hilbert space. L
now discuss how the left and right movers are combined together. For the classical solution
long string, the worldsheet periodicity requires that the spectral flow has to be done sim
neously on both the left and right movers with the same amount. IfAdS3 were not the universa
cover of SL(2,R) but its single cover, different amounts of the left and the right spectral fl
would have been allowed since the resulting solution is periodic modulo the closed timelike
of SL(2,R). It is straightforward to identify the corresponding constraint in the quantum the
Suppose we perform the spectral flows by the amountwL andwR on the left and the right-movers
A state with conformal weights (hL ,hR) and theJ0

3 charge (m̃L ,m̃R) is mapped by this transfor
mation to a state with conformal weights~hL2wLm̃L2(k/4)wL

2, hR2wRm̃W2(k/4)wR
2!, accord-

ing to ~69!. The worldsheet locality, which is the quantum counterpart of the periodicity of
classical solution, requires that the conformal weightshL andhR differ only by an integer. If this
is the case before spectral flow, the same requirement after the flow implies

wLm̃L1
k

4
wL

25wRm̃R1
k

4
wR

2 ~mod integer!. ~83!

For generic values of (m̃L ,m̃R), the only solution to this constraint iswL5wR . In this paper, we
are considering only the universal cover of SL(2,R) as the target space of the model. In this ca
the spectrum of (m̃L ,m̃R) is continuous, and only the left-right symmetric spectral flowwL

5wR is allowed.
Summary:We propose that the spectrum of the SL(2,R) WZW model@for the universal cover

of SL(2,R)# contains the following two types of representations. First, the spectral flow o
continous representations, with the same amount of spectral flow on the left and right,Ĉ1/21 is,L

a,w

3 Ĉ1/21 is,R
a,w . Then the discrete representationsD̂

j̃ ,L

1,w
3D̂

j̃ ,R

1,w
with the same amount of spectral flo

on the left and right and the same value ofj̃ , with 1/2, j̃ ,(k21)/2. In the string theory, thes
representations should be tensored with the states of the internal CFT, and the Virasoro con
should be imposed.

V. SCATTERING OF THE LONG STRING

When a long string comes in from the boundary ofAdS3 to the center, it will scatter back to
the boundary. In this process the winding number could in principle change. In order to stu
S-matrix between incoming and outgoing long strings, it is convenient to perform the rotatio
Euclidean signature spaces, both on the worldsheet and in space time. Following the st
procedure, we define the hermiticity as is natural in the Lorentzian theory. For this reason w
have the SL(2,R)L3SL(2,R)R currents in the Euclidean theory. The relevant conformal fi
theory, whose target space is the three-dimensional hyperbolic spaceH35SL(2,C)/SU~2! has
been studied in Refs. 18, 25–30.

A. Vertex operators

To compute the scattering amplitudes, we would like to find vertex operators for all r
sentations considered above. Spectral flow is realized in the vertex operator for malism
following standard fashion.31 We bosonize theJ3 currents, introducing left and right moving chira
bosons@Reflecting the hermiticity of the SL(2,R) model, the scalar fieldf is Hermitian, but with
a wrong sign for the two-point function̂f(z)f(z8)&5 log(z2z8).# through

JR
352 i Ak

2
]f~z!, JL

352 i Ak

2
]̄f~ z̄!. ~84!
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A state with chargem underJR
3 contains an exponential inf(z) of the form eimA(2/k)f(z). The

other two currents therefore can be expressed as

JR
15ceiA~2/k!f~z!, JR

25c†e2 iA~2/k!f~z!, ~85!

and similarly forJL
6 . A primary fieldF jmm̄(z,z̄) of the current algebra can be expressed as

F jmm̄5eimA~2/k!f~z!1 im̄A~2/k!f~ z̄!C jmm̄ , ~86!

whereC jmm̄ carries no charges with respect toJR,L
3 . In the case of the SU~2! model, the field

corresponding toC is known as a parafermion. The parafermion for the SL(2,R) model was
studied in Ref. 32. The conformal weights of the parafermion fieldC jmm̄ is

hC; jmm̄52
j ~ j 21!

k22
1

m2

k
,

~87!

h̄C; jmm̄52
j ~ j 21!

k22
1

m̄2

k
.

In the discrete lowest weight representation,m,m̄5 j , j 11,j 12, ... . In particular, whenj 5k/2,
the fieldC j 5k/2,m5m̄5k/2 has conformal weightsh5h̄50. Since the parafermion field lives in th
unitary conformal field theory it is natural to assume that it is the identity operator.~Recently we
have learned that a similar argument has appeared in unpublished notes by Zamolodchik
thank him for having his note available to us.33! Here we simply note that the operator,

eiA~k/2!~f~z!1f~ z̄!!

has the correct OPE for the primary field of spinj 5k/2 with the SL(2,R) currents.
Using the parafermion notation, the operator obtained by the spectral flow byw units is

expressed as

Fw5ei ~m̃1wk/2!A~2/k!f~z!1 i ~m! 1wk/2!A~2/k!f~ z̄!C jm̃m! . ~88!

It is easy to see that the conformal weight is given by

L05
2 j ~ j 21!

k22
2mw1kw2/2. ~89!

B. Reflection coefficient

We will compute the amplitude, using the formulas obtained in Refs. 34, 35, 26, 33, i
case that the winding number does not change.

The long string states are in the spectral flow of the continuum representation. The
sponding vertex operators are

Fmm̄
j 5emf~z!1m̄f~ z̄!Cm̃m!

j Vhh̄~z,z̄!,

~90!
m̃5m2wk/2, m! 5m̄2wk/2, j 5 1

21 is,

whereVhh̄ is an operator in the internal part with conformal weights (h,h̄). The physical energy
E and angular momentuml of a state inAdS3 are given by

m5 1
2 ~E1 l !, m̄5 1

2 ~E2 l !. ~91!
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



-

es if we
poles
otice
n

. When
ly
at the
-one
l has to
a

plan to

e

2951J. Math. Phys., Vol. 42, No. 7, July 2001 Strings in AdS3 and SL(2,R) WZW model

Downloaded 1
The physical state constraint is~80! with Ñ50. This implies that

m̃52wk/41
1

w F1/41s2

k22
1h21G . ~92!

Now we can now consider the two point function26,27,33

^Fmm̄
j ~z,z̄!Fm8m̄8

j 8 ~z8,z̄8!&5

G~1/21 is2m̃!G~1/21 is1m! !G~22is!GS 2is

k22D
G~1/22 is2m̃!G~1/22 is1m! !G~2is!GS 22is

k22 D
3d~s2s8!dN1N8d~E1E8!. ~93!

Thez dependence is just 1/uz2z8u4 coming from the fact that the two operators have weight~1,1!.
This is the reflection amplitude and the values ofm̃,m! are determined by~92! ~notice thatm is the
physical energy, notm̃!.

As explained in Ref. 28 in this context, in string theory we have to integrate overz and divide
by the volume of SL(2,C). We can use SL(2,C) invariance to putz50, z85` in the correlator.
The volume of the rest of SL(2,C) then gives*(d2z/uzu2), which cancels one of the delta
functions in~93!. Notice thatd(s2s8)d(E1E8)5d(s2s8)d(0), thevolume of SL(2,C) cancels
the d~0! piece.

Now if we study the poles of~93!, we find that they are located at 1/21 is2m̃52q with q
50,1,2, ... . They come from the first Gamma-function. Taking this condition together with~92!
we find that

1/21 is1q5m̃52wk/41
1

w F1/41s2

k22
1h21G ~94!

and this equation is precisely the same as the usual mass shell equation for discrete stat
take j̃ 51/21 is. There are similar poles from the second Gamma-function. There are no
coming from the third factor since they cancel extra poles appearing in the other factors. N
that the poles appearing in~94! satisfy precisely Eq.~76! for bound states in the representatio
D̂

j̃

1,w
~with Ñ50!. There is however, an important difference. In~76! the value ofj̃ obeyed the

condition

1

2
, j̃ ,

k21

2
, ~95!

while we do not have such a condition in~94!. It is interesting to note that ifj̃ satisfies~95!, then
the residue at the pole has the proper sign to be interpreted as coming from a bound state
j̃ 5(k21)/2, i.e., at the upper bound of~95!, we find that there is no pole. Moreover, immediate
above that value, we have the wrong sign for the pole residue. This might make us worry th
amplitude is not having the right analytic structure. However, in order to have a one-to
correspondence between poles of the scattering amplitude and bound states, the potentia
decrease sufficiently rapidly at the infinity,36 a condition that is not met in our case. In such
situation, it is possible to have extra poles that do not correspond to physical states. We
analyze the poles and their implications for physical states in a future publication.

C. Relation to the scattering of the two-dimensional black hole

The coset of the SL(2,R) WZW by the U~1! generated byJ3 gives a sigma-model whos
target space is the two-dimensional black hole with the Euclidean signature metric.37 The geom-
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etry of the black hole is like a semi-infinite cigar with an asymptotic region in the form of
cylinder R3S1. The dilaton field grows as one approaches the center of the black hole,
remains finite since the geometry is terminated at the tip of the cigar. The string theo
SL(2,R)/U~1!3~time!3M is closely related to the string theory onAdS33M since the physical
state conditions for the latter impliesJn

3uphysical&50 for n>1, as we show in Appendix A
Similarly the superstring theory onAdS33M is related to the Kazama–Suzuki cos
SL(2,R)/U~1!.

There is however difference between the zero mode sectors of the theories onAdS3 and on
the two-dimensional black hole. In order to construct representations for SL~2!/U~1!, we can start

from the representations of SL̂(2,R) that we described above and impose the condition thatJn.0
3

annihilate the state and that the totalAdS3 energy vanishes,J0,R
3 1J0,L

3 5m1m̄50. In terms of the
parafermionC jm̃m! given in ~86! and ~88!, the condition ism̃1m! 5wk. The locality condition
m2m̄5n, wheren is an integer implies thatm̃2m! 5n. These two quantization conditions are th
ones in Ref. 38@see Eq.~3.6! of that paper#. The SL~2!/U~1! theory has been studied recently
connection with ‘‘little’’ string theories in Refs. 24 and 39.

VI. CONCLUSION

In this paper, we studied the physical spectrum of bosonic string theory inAdS3 . We pro-
posed that the complete Hilbert space of the SL(2,R) WZW model consists of the continuou
representations and their spectral flowĈj 51/21 is

a,w 3 Ĉj 51/21 is
a,w , and the discrete representations a

their spectral flowD̂j
6,w3D̂j

6,w with the constraint 1/2, j ,(k21)/2. The sum over the spectra
flow is required if we assume that the Hilbert space realizes the full loop group of SL(2R),
including its topologically nontrivial elements. We found that this proposal leads to the phy
spectrum of the string theory with the correct semiclassical limits.

In particular, we have solved the two puzzles which we mentioned in the Introduction
no-ghost theorem forD̂j

6 requires the constraint 0, j ,k/2. If we only had the unflowed secto
~with w50!, it would imply the upper bound on allowed mass of string states, which app
artificial. This was one of the puzzles. We have resolved this puzzle by showing that the
bound on the mass is removed if we include all the spectral flowed sectors in the Hilbert
Moreover we showed that the consistency with the spectral flow and the standard har
analysis of the zero modes requires the constraint 1/2, j ,(k21)/2, more stringent than the on
required by the no-ghost theorem. The constraint 1/2, j ,(k21)/2 is found to be consistent with
the locations of the poles in the reflection coefficient~with the correct sign for the pole residue
see also Ref. 24 and the modular invariance of the partition function.

Another puzzle was to identify states in the Hilbert space corresponding to the long st
We found that these states are in the spectral flow of the continuous representations,Ĉj 51/21 is

a,w

3 Ĉj 51/21 is
a,w . The integerw, which parametrized the amount of the spectral flow, is identified w

the winding number of the long string stretched closed the boundary ofAdS3 . The physical
spectrum of the long strings obtained from these representations agrees with the expectatio
the semiclassical analysis in Refs. 11 and 12.

The resolutions of these puzzles removes the longstanding doubts about the consistenc
model. Moreover it appears that the SL(2,R) WZW model is exactly solvable, just as WZW
models for compact groups, although its Hilbert space structure is significantly different
those of the compact cases. We hope that further study of the model will provide us more
insights into theAdS/CFT correspondence and strings in curved spaces in general.
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APPENDIX A: NO-GHOST THEOREMS

In this Appendix we would like to extend the proof of the no-ghost theorem to all
representations considered above. We assumek.2. The proof of the no-ghost theorem for th
standard lowest energy representations.2–9,22 involves two parts. Part I consists of showing tha
physical state can be chosen, up to a null state to be such thatJn

3uc.50, for n>1. This first part
uses 0, j ,k/2 for theDj

6 representations as well asc526 and the mass shell condition. This w
shown in Refs. 2–9. Part II consists in showing that any state that is annihilated byJn.0

3 has a
non-negative norm. This step also uses 0, j ,k/2 for theDj

6 representations. This was done
Ref. 22. Here we will use the same strategy and prove Part I for the all our representation
no-ghost theorem then follows from Part II.

We first review the proof of Part I for the representations withw50 and then we do Part I fo
the wÞ0 representations.

1. Proof of part I for unflowed representations

Here we follow the proof in Refs. 2, 3, 6, 7, 9. It has essentially three steps.
Step 1:The first step of the proof is to show that states of the form

L2n1
L2n2

¯L2nN
J2m1

3 J2m2

3
¯J2mM

3 u f &,

n1>n2>¯>nN , m1>m2>¯>mM , ~A1!

with Lnu f &5Jn
3u f &50 for n>1,

are linearly independent and that they form a complete basis of the Hilbert space.
The statesuf & are constructed from states in the current algebra times some states in an in

conformal field theory. This internal piece is assumed to be unitary. This step involved sepa
the piece ofLn involving L (3)

ªJ3J3:, definingL̂n5Ln2Ln
(3) . One can show that the states~A1!

are in one to one correspondence with states of the form,

L2n1
L2n2

¯L2nN
J2m1

3 J2m2

3
¯J2mM

3 u f &,

~A2!
n1>n2>¯>nN , m1>m2>¯>mM .

Notice that conditions~A1! on u f & are the same asL̂n.0u f &5Jn.0
3 u f &50. It is easier to show tha

~A2! is a basis since now we can think of the CFT as a product of a U~1! factor with the rest. The
rest is a CFT withc525 and therefore the fact that~A2! is a basis reduces to showing that the
are no null states in the Virasoro descendents on a primary field. This will be true if the conf
weight of the rest is positive. This reduces to showing thatc2 /(k22)1m2/k1M.0, whereM is
the grade in the SL(2,R) piece. For the continuous representations, this is obvious sincec2.0. For
lowest weight representations, this inequality can be shown by rewriting it as

2 j ~k/22 j !

k~k22!
1

2M

k S k

2
2 j D1

2 j

k
~2 j 1m1M !1

1

k
~ j 2m!2.0. ~A3!
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We to use 0, j ,k/2 and also the fact thatm> j 2M , which is true in general. Notice that them
that appears here is the totalJ0

3 value, after we appliedJ2n
6 any number of times. Notice that in

this step we did not use that the states were obeying the mass shell condition, but we use, j
,k/2 and thatc526.

Step 2:Here we show that a physical state can be chosen so that it involves noL2n when
written as~A1!.

A physical state can be written as a state with noL2n plus a spurious state. A spurious sta
is a state with at least oneL2n . Then we use the fact that, whenc526, Ln(n>1) acting on a
spurious state which satisfies theL051 condition leaves it as a spurious state.40,41 If Ln.0 acts on
a state of the form~A1! with no L2n then it will not produce anyL2n . Together with the fact tha
~B1! is a basis this implies that the part of the state with noL2n satisfies the physical stat
condition on its own, and therefore the rest is a null state~a spurious physical state!.

Step 3:We show that if the physical stateuc& involves noL2n when written as in~A1! then
Jn

3uc&50.
Since there are noL2n’s in the physical statec this implies thatLn

(3)c50 for n>1. Then we
try to show that the only states satisfying this will be states withJn

3c50 for n>1. This would be
true if there are no null states in theL (3) Virasoro descendents of the statesuf & we considered
above. IfmÞ0 then one can show that there is no null state in the Virasoro descendents in thL (3)

Virasoro descendents. There are two states withm50 one is in the continuous representation, b
the mass shell condition automatically implies thatN50 ~there are noJ2n

a in this state! and
therefore the state has positive norm. The other is the state in the lowest weight represen

J21
2 u j 51& ~A4!

~and of course its complex conjugate in the highest weight representation!. This state has positive
norm. Note thatm is the physical energy inAdS3 of the state in question. Zero energy stat
therefore imply that we have a normalizable zero mode. This is the state corresponding
identity operator in the spacetime boundary conformal field theory, the stateJ̄JF1 of Ref. 25
which played an important role in the computation of the spacetime Virasoro algebra.

One can show, using the mass shell condition, that all other states havemÞ0. The mass shel
condition is

2
j ~ j 21!

k22
1N1h82150, ~A5!

whereN is the grade in the SL(2,R) part andh8 is the conformal weight of the rest,h8>0. If
0, j ,1 thenm is nonzero because it can only change by an integer by the action of thJn

6

currents. If j 51 with N51 andh850 we find ~A4! and states with positivem.
Consider nowj .1. If we hadm50 then we also needN> j , j >2 ~sincem50 only if j is

integer! and furthermore

2
j ~ j 21!

k22
1N21>

~ j 21!~k222 j !

k22
.0 ~A6!

provided j <k/2. Sincej has to be at least 2, thenk.4 and thereforek222k/2.0. Thus we
conclude that~A5! would not be obeyed ifm50.

2. Proof of Part I for flowed representations

Now we would like to generalize the above discussion to the spectral flowed represent
that we calledĈ1/21 is

a,w andD̂
j̃

1,w
. In the case of discrete representations we want to show tha

no ghost theorem holds for 0, j̃ ,k/2, where j̃ labels the representation before we perform
spectral flow operation, i.e., it labels a representation of the current algebra withL̃0 bounded
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below. So we consider the same representations we had above but we modify the physic
conditions. This is equivalent to imposing the usual conditions on the flowed representation
would like to prove that, given any state built on a lowest weight or continuous representation
respect toJ̃n , the physical state condition (Ln2dn,0)uc&50 n>0 with respect toLn removes
non-negative norm states. We only consider spectral flow withw.1 on continuous or lowes
weight representationsD̂

j̃

1
. These and their complex conjugates cover all the representation

needed to consider. We reproduce now the steps in Appendix A.1.
Step 1:In ~A1! we need to show that they form a basis withL2n5L̃2n2wJ̃2n

3 . We know that
they would form a basis if we had an expression like~A1! with L2n→L̃2n . Fortunately there is
an invertible one to one map between these two sets of states, so that they form a basis.

Step 2:It is the same since onlyc526 is used.
Step 3:If we write a physical state,uc&, as a state with noL2n thenLn

(3) with n>1 annihilates
it. Again we will try to show thatm5m̃1kw/2 is nonzero and that will imply thatJn.0

3 uc&50.
For this we need to use the new mass shell condition

c̃2

k22
1Ñ1h82wm1

kw2

4
51, ~A7!

whereÑ is the level inside the current algebra before the spectral flow,c̃2 is the second casimir in
terms of j̃ andh8 is the conformal weight of state in the internal conformal theory~the internal
piece needs not be a primary state, and we only require that the whole combined state nee
primary!. We can assume with no loss of generality thatw>1. Let us start with the spectral flow
of a continuous representation,~A7! implies that if m50 thenÑ50 and there are no negativ
norm states.~The only solution withm50 is in the case ofk53 and j̃ 51/2.!

Let us turn to lowest weight representations. Thanks to the restriction 0, j̃ ,k/2, we have
c̃2 /(k22).2k/4. Therefore, ifm50, the left-hand side of~A7! is larger thank/4(w221). If
w>2, ~A7! cannot be obeyed. Ifw51, m50 impliesm̃52k/2 andÑ in ~A7! has to be at leas
Ñ> j̃ 1k/2. However, in this case we findc̃2 /(k22)1Ñ1k/4>k/21 j̃ .1 ~here we usedk.2!
and again~A7! is not satisfied.

So we conclude that all states can be mapped into states obeyingJn.0
3 uc&50.

APPENDIX B: PARTITION FUNCTION

In this Appendix, we discuss the partition function of the SL(2,R) WZW model and its
modular invariance.

1. Partition function of the SU „2… model

Before we begin discussing the modular invariance of the SL(2,R) theory, let us review the
case of SU~2!.

The charactersx l
k(t,u) ( l 50,1

2,1,...,k/2) of the irreducible representations of the SU~2!k affine
algebra transform under the modular transformation as

x l
k~21/t,2u/t!5expS 2p i

k

4

u2

t D(
l 8

Sll 8x l 8
k

~t,u!, ~B1!

whereSll 8 is some orthonormal (k11)3(k11) matrix. The diagonal~so-calledAk-type! modular
invariant combination is therefore

e22p~k/2!@~ Im u!2/Im t#(
l

ux l~t,u!u2. ~B2!

The exponential factore22p(k/2)@(Im u)2/Imt# is there to cancel the exponential factor in~B1! as
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@ Im~2u/t!#2

Im~21/t!
5

~ Im u!2

Im t
1 i

u2

2t
2 i

ū2

2t̃
. ~B3!

It is known that the exponential factor in~B2! is a consequence of the chiral anomaly a
therefore of the OPE singularity,

J3~z!J3~w!;
k/2

~z2w!2 . ~B4!

2. Partition function of the SL „2,C…ÕSU„2… model

In string theory, one-loop computations are done after performing the Euclidean rotati
both the target space and the worldsheet~or stay in the Lorentzian signature space and use thi e
prescription!. The modular invariance of the partition function is imposed on the Euclidean w
sheet. In our case, the Euclidean rotation of the target space means SL(2,R)→H3

5SL(2,C)/SU~2!. The partition function of the SL(2,C)/SU~2! model has been evaluated in Re
18 as

ZSL~2,C!/SU~2!;
1

AIm te@22p~ Im u!2/Im t#uq1~t,u!u2
. ~B5!

Note that our definition of the partition function differs from that in Ref. 18 by the fac
e2p(k/2)@(Im u)2/Imt#. It appears that, without this factor, the partition function is not modular inv
ant. ~The puzzle about the apparent lack of the modular invariance was recently resolved i
42.! One may expect that this partition function is related to the one for the SL(2,R) model by the
Euclidean rotation. In the discussion below, we first evaluate the SL(2,R) partition function on the
Lorentzian torus, and therefore taket,t̄,u,ū to be independent real variables. We then analytica
continue them to complex values so that~t, u! are complex conjugate of (t̄,ū). We will find that,
by doing this analytic continuation, and ignoring contact terms, the SL(2,R) partition function
turns into the SL(2,C)/SU~2! partition function~B5!, provided we impose the constraint 1/2, j
,(k21)/2 on the discrete representations.

3. Discrete representations of SL „2,R…

The character of the discrete representationD j
1 is

x j
1~t,u!5Tr~e2p i t~L02@k/8~k22!# !e2p iuJ0

3
!

5

expF2p i tS 2
j ~ j 21!

k22
2

k

8~k22! D12p iu j G
~12e2p iu!)n51

` ~12e2p int!~12e2p inte2p iu!~12e2p inte22p iu!

5

expF2
2p i t

k22 S j 2
1

2D 2

12p iuS j 2
1

2D G
iq1~t,u!

, ~B6!

whereq1(t,u) is the elliptic theta-function,

q1~t,u!52 i (
n52`

`

~21!n expFp i tS n2
1

2D 2

12p iuS n2
1

2D G . ~B7!

The spectral flow,
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L̃05L01wJ0
32

k

4
w2, J̃0

35J0
32

k

2
w, ~w50,61,62,...!, ~B8!

transforms the characterx j
1 as

Tr~e2p i t~ L̃02@k/8~k22!# !e2p iu J̃0
3
!

5Tr~e2p i t~L01wJ0
3
2~k/4!w22@k/B~k22!# !e2p iu~J0

3
2~k/2!w!!

5

expF22p i tS S j 2
1

2D 2

k22
2wS j 2

1

2D1
k

4
w2D 12p iuS j 2

1

2
2

k

2
wD G

iq1~t,u1wt!

5~21!w

expF2
2p i t

k22 S j 2
1

2
2

k22

2
wD 2

12p iuS j 2
1

2
2

k22

2
wD G

iq1~t,u!
, ~B9!

where we used

q1~t,u1wt!5~21!w exp~2p i tw222p iuw!q1~t,u!. ~B10!

We have also performed an analytic continuation such as

(
n50

`

qn52 (
n51

`

q2n,

ignoring terms likeSn52`
` qn;d(t). From here on, we allow~t, u! to take complex values an

( t̄,ū) to be their complex conjugates.
Let us sum over allowed representation. According to our proposal about the Hilbert sp

the WZW model, all the representations in the allowed range 1/2, j ,(k21)/2 should appear. We
also require that the spectrum to be invariant under the spectral flow~B8!, so we need to sum ove
w. The part of the partition function made by discrete representations is then

e12p~k/2!@~ Im u!2/Im t# (
w52`

` E
1/2

~k21!/2
d j

3

expF4p Im t

k22 S j 2
1

2
2

k22

2
wD 2

24p Im uS j 2
1

2
2

k22

2
wD G

uq1~t,u!u2

5e12p~k/2!@~ Im u!2/Im t#E
2`

`

dt

expF4p Im t

k22
t224p Im ut G

uq1~t,u!u2

;
1

AIm te22p@~ Im u!2/Im t#uq1~t,u!u2
. ~B11!

It is interesting to note that thej-integral over the range 1/2, j ,(k21)/2 and the sum overw fit
together to give thet-integral over2`,t,`. Since the spectral flow withw51 mapsD j

1 to
Dk/22 j ,

2 we do not have to consider the orbit ofD j
2 separately. The exponential facto
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e12p(k/2)@(Im u)2/(Im t)# is due to the chiral anomaly, as in the SU~2! case. The sign in the exponen
is opposite here since the sign of the OPE ofJ3 is opposite in the SL(2,R) case.

The partition function computed in~B11! is manifestly modular invariant. In fact, it is iden
tical to ~B12! computed for the SL(2,C)/SU~2! model. This gives an additional support for o
claim that the Hilbert space of the SL(2,R) model contains the discrete representations of
, j ,(k21)/2 and their spectral flow.

The construction of the partition function here is closely related to the one given in Re
There, instead of the integral overj in ~B11!, the partition function was given by a sum ov
integral values ofj. This is because they considered the string theory on the single cover o
SL(2,R) group manifold with the closed timelike curve. The resulting partition function, a
analytic continuation, is also modular invariant and appears to be a correct one for such a
It is, however, different from the partition function~B15! of the SL(2,C)/SU~2! model, as it
should since the Euclidean rotation of the SL(2,C)/SU~2! model is naturally related to the mode
on the universal cover of SL(2,R) rather than on its single cover.

4. Continuous representations

It is curious that the sum over the discrete representations and their spectral flow
reproduces the partition function of the SL(2,C)/SU~2! model. In fact, the sum over the continu
ous representations and their spectral flow, although formally modular invariant by itself, do
contribute to the partition function if we assume the analytic continuation int,t̄,u,ū and ignore
contact terms.

The character of the continuous representation is parametrized by a pair of real numberss,a)
with 0<a,1 ands arbitrary. The character is given by

x j 51/21 is,a5h23e2p i @s2/~k22!#teiau(
n

e2p inu. ~B12!

As before, we regard the worldsheet metric to be of the Minkowski signature, andu is real. So the
sum(n in the definition ofx j ,a gives the periodic delta-function,

(
n

e2p inu52p(
m

d~u1m!. ~B13!

After the spectral flow~B8!, the character becomes

x j 51/21 is,a;w5h23e2p i ~@s2/~k22!#1~k/4!w2!t2p(
m

e2p im~a2~k/2!w!d~u1wt1m!. ~B14!

Now let us takeux1/21 is,a;wu2 and integrate overs and a. The integral overa forces mL

5mR in the summation in~B14!. The integral overs gives the factor 1/AIm t. So we have

E
2`

`

dsE
0

1

daux1/21 is,a;wu25e24p Im t~k/4!w2 1

AIm tuhu6
(
m

d~2!~u1wt1m!. ~B15!

Let us sum this overw. We get a nonzero result only when there is some integerw such that

w52
Im u

Im t
. ~B16!

Therefore
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e12p~k/2!@~ Im u!2/Im t#(
w

E
2`

`

dsE
0

1

daux1/21 is,a;wu25
1

AIm tuhu6
(
w,m

d~2!~u1wt1m!.

~B17!

This expression is formally modular invariant since(w,m sums over the modular orbit of th
delta-function and 1/uhu4 cancels its modular weight. If we assume the analytic continuation, te
of this form are all set equal to zero. So, in this sense, the continuous representation do
contribute to the partition function of the SL(2,C)/SU(2) theory after the Euclidean rotation.
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