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In this paper we study the spectrum of bosonic string theonAd;. We study
classical solutions of the SL(R) WZW model, including solutions for long strings

with nonzero winding number. We show that the model has a symmetry relating
string configurations with different winding numbers. We then study the Hilbert
space of the WZW model, including all states related by the above symmetry. This
leads to a precise description of long strings. We prove a no-ghost theorem for all
the representations that are involved and discuss the scattering of the long string.
© 2001 American Institute of Physic§DOI: 10.1063/1.1377273

[. INTRODUCTION

In this paper we study the spectrum of critical bosonic string theonAdi$;x M with
NS—NS backgrounds, wher&1 is a compact space. Understanding string theoryAd&; is
interesting from the point of view of th&d S CFT correspondence since it enables us to study the
correspondence beyond the gravity approximation. Another motivation is to understand string
theory on a curved space—time, where the timelike compaggdf the metric is nontrivial.

This involves understanding the SLE), WZW model. In this paper, we always consider the
case when the target space is the universal cover of the B) @oup manifold so that the
timelike direction is noncompact. The states of the WZW model form representations of the

current algebras S2,R), X SL(2,R)g. Once we know which representations of these algebras
appear, we can find the physical states of a strirydis; by imposing the Virasoro constraints on

the representation spaces. The problem is to find the set of representations that one should con-
sider. In WZW models for compact groups, the unitarity restricts the possible representations.

Representations of $R,R), on the other hand, are not unitary except for the trivial representation.

Of course this is not a surprise; the physical requirement is that states should have non-negative
norms only after we impose the Virasoro constraints. Previous work on the gabjegpically
considered representations with bounded below and concluded that the physical spectrum does
not contain negative norm states if there is the restrictierj €k/2 on the SL(ZR) spinj of the
representation; the spin of the SLR},is roughly the mass of the string stateAn S;.

This restriction raises two puzzles. One is that it seems to imply an upper bound on the mass
of the string states iMdS; so that the internal energy of the string could not be too high. For
example, if the compact spade has a nontrivial 1-cycle, we find that there is an upper bound on
the winding number on the cycle. This restriction, which is independent of the string coupling,
looks very arbitrary and raises doubts about the consistency of the theory. The second puzzle is
that, on physical grounds, we expect that the theory contains states corresponding to the long
strings of Refs. 11 and 12. These are finite energy states where we have a long string stretched
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close to the boundary &dS;. These states are not found in any representation jthounded

below. In this paper, we propose that the Hilbert space of the WZW model includes a new type of
representations, and we show that this proposal resolves both the puzzles. In these new represen-
tations,L is not bounded below. They are obtained by acting on the standard representations by
elements of the loop group that are not continuously connected to the identity, through an opera-
tion called spectral flow. These representations in the R)(2VZW model have also been
considered, with some minor variations, in Refs. 13 and 14. The authors of these papers were
motivated by finding a modular invariant partition function. They were, however, considering the
case when the target space is SR2group manifold and not its universal cover.

Throughout this paper, we considédS; in global coordinates, which do not have a coordi-
nate horizon. In these coordinates, the unitarity issue becomes clearer since strings cannot fall
behind any horizon. The interested reader could refer to Refs. 15—17 for studies invabi#g
in Poincarecoordinates. From the point of view of tlhed SCFT correspondence, it is the spec-
trum of strings onAdS; in the global coordinates that determines the spectrum of conformal
dimensions of operators in the boundary CFT, though in principle the same information could be
extracted from the theory in Poincare coordinates.

In order to completely settle the question of consistency of the &)(2YZW model, one
needs to show that the OPE of two elements of the set of representations that we consider contains
only elements of this set. We plan to discuss this issue in our future publication.

The organization of this paper is as follows: In Sec. Il, we study classical solutions of the
SL(2R) WZW model and we show that the model has a spectral flow symmetry which relates
various solutions. In Sec. Ill, we do a semiclassical analysis and have the first glimpse of what
happens when we raise the internal excitation of the string beyond the upper bound implied by the
restriction j<k/2. In Sec. IV, we study the full quantum problem and we propose a set of
representations that gives a spectrum for the model with the correct semiclassical limits. In Sec. V,
we briefly discuss scattering amplitudes involving the long strings. We conclude the paper with a
summary of our results in Sec. VI. In Appendix A, we extend the proof of the no-ghost theorem
for the representations we introduced in Sec. IV. In Appendix B, we study the one-loop partition
function in AdS; with the Lorentzian signature metric and show how the sum over spectral flow
reproduces the restfftafter taking an Euclidean signature metric, up to contact terms in the
modular parameters of the worldsheet.

Il. CLASSICAL SOLUTIONS
We start by choosing a parameterization of the SRjZjroup element as

g= eiu0'2ep0'3ei voy

@

cost coshp +cos¢ sinhp  sint coshp—sin ¢ sinhp
| —sintcoshp—sin¢ sinhp  cost coshp—cose¢ sinhp|

Hereo'(i=1,2,3) are the Pauli matricés;=(23), o,=(% "), ando3=(3%,)], and we set
u=3(t+¢), v=3(t—4¢). 2

Another useful parameterization gfis

X_1+X1 XO_X2
9=\  _ v | 3
Xo—X; X_1—X;
with
X2+ XE—X3-X3=1, (4)
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This parameterization shows that the SIKRgroup manifold is a three-dimensional hyperboloid.
The metric onAdS;,

ds?=—dX2 ;- dX5+dXi+dXx3,
is expressed in the global coordinatesd(,p) as
ds?= —costf pdt?+dp?+ sintf pd ¢2. (5)

We will always work on the universal cover of the hyperbol®g, andt is noncompact.
Our theory has the WZW action,

k 2 B ]
SZW d“o Tr(g~~9gg™ ~dg) +kI'ywz. (6)

The levelk is not quantized sinckl® vanishes for SL(R). The semiclassical limit corresponds
to largek. We define the right and left moving coordinates on the worldsheet as,

X*=r1*0, (7)

whereo is periodic with the period 2. This action has a set of conserved right and left moving
currents

JR(X)=kTr(T?9,.9g9™h), (X7 )=kTr(T*g 19_g), ®)
whereT? are a basis for the SL(R) Lie algebra. It is convenient to take them as

i 1
T3=— 50'2, TiZE(a'?’ii(Tl).

In terms of our parameterization, the currents are expressed as

J2=k(d,u+cosh i, v),

Jr=k(d,p*isinh2pd,v)e*'?Y, ©
and
Jf=k((9,v+cosh Zd_u)
_ (10
J=k(d_p=isinh2pd_u)e*'?,
The zero modes olgy,_ are related to the enerdy and angular momentumin AdS; as
+
ngfozw%\]ﬁ:%(EH),
= fozwi—:JE%(E—I). (1)
The second Casimir of SL(R) is
C,=J33=3(J"J +J3J")—(3%2 (12
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The equations of motion derived frof6) is 9_(9,.gg~1)=0, namely, that the currentdg
andJ, , are purely right or left moving as indicated. A general solution of the equations of motion
for SL(2R) is the product of two group elements each of which depends onlk/oar x~ as

g=0.(x")g_(x). (13

Comparing(13) with (1) we can find the embedding of the worldsheeAidS;. The requirement
that the string is closed under— o+ 27 imposes the constraint,

g+ (X" +2m) =g, (x")M, g (x”—2m)=M"1g_(x7), 14

with the samev e SL(2R) for bothg, andg_. The monodromy matri¥ is only defined up to
a conjugation by SL(R), and classical solutions of the WZW model are classified according to
the conjugacy class d¥l.

For strings onPAd S X M, we should impose the Virasoro constraints,

Ttotal- TAdS, Tother— g, (15)
and similarly T°®=0, where

1
The = I3

is the energy-momentum tensor for tAeS; part(In the quantum theory, we will have the same
expression but wittkk—k—2.) and T(fhf’ represents the energy-momentum tensor for the sigma-
model on M.

Let us analyze some simple classical solutions.

A. Geodesics in AdS5

Consider a solution
g+:Ueiv+(x+)u-2, g_:eiu,(xf)u-zvl (16)

whereU andV are constant elements of SLE), The energy momentum tensor of this solution
is

TAIS=—k(9,v4)% TAS=—k(s_u )2 (17)

Suppose we have some string excitation in the compact/jpadf AdS;x M, and seff"'=h

for some constartt>0. We may regardh as a conformal weight of the sigma-model o, The
Virasoro constraintd'®?=0 implies

(‘9+U+)2:(19—U—)2:E-

Thus we can set . =ax"/2 andu_=ax~ /2 wherea= + J4h/k. Substituting this in(13), we
obtain

cofar) sin(art)

9=Yl _sinar) cogan]V" (18)

Since the solution depends only erand not ono, we interpret that the string is collapsed to a
point which flows along the trajectory iAdS; parameterized by (see Fig. L If U=V=1, the
solution (18) represents a particle sitting at the centeAdfS;,
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N

(A) (B)

FIG. 1. Timelike geodesigiA) a solution(18) with U=V=1, (B) a general geodesic is obtained by acting the SR)2,
X SL(2R) isometry in(A).

t=ar, p=0. (19

A more general solutioril8) is given by acting the SL(R) X SL(2R) isometry on(19), and
therefore it is a timelike geodesjtn fact, any timelike geodesic can be expressed in the form
(19)] in AdS;. For this solution, the currents are given by

k
JgTaZEauﬁu—l, (20)

and similarly forJ, . The monodromy matri defined by(14) is

cofam) Sin(am)
| —sin(am) codam)

and belongs to the elliptic conjugacy class SR)2,
A solution corresponding to a spacelike geodesic is

e*” 0
9=U| 5 gar|V. (21)

with U, Ve SL(2R). The energy-momentum tensor has a sign oppositd Of
TAIS=1ka?. (22

If we chooseU =V =1, the solution is simply a straight line cutting the spacelike sedtio® of
AdS; diagonally,

t=0, pe'?=ar (23

[see Fig. PA)]. A general solution(21) is given from this by the action of the isometry, and
therefore is a spacelike geodesic. The currents for this solution are

k
J;Ta=§aUT1u-1, (24)

and the monodromy matrix is

0 e_[I7T

<
Il

e*” 0 )
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A) (B)

FIG. 2. Spacelike geodesi¢A) a solution (21) with U=V=1, (B) a general geodesic is obtained by acting the
SL(2R) X SL(2R) isometry in(A).

which belongs to the hyperbolic conjugacy class of SR}2,
There is one more class of solutions whose monodromy matrices are in the parabolic conju-
gacy class of SL(R). They correspond to null geodesicsAuS;.

B. Spectral flow and strings with winding numbers

Given one classical solutiog=4G+§_, we can generate new solutions by the following
operation:

g, = ei(l/2)WRx+02'g+ g- :'giei(l/2)w|_x’oz_ (25)
Comparing this with the parameterizati@t) of g=g.,g_, we see that this operation amounts to

t—t+ % (WR+WL)T+ %(WR_WL)O',

(26)
d— P+ 5 (Wrt W )o+ 3 (We—W, ).

The periodicity of the string worldsheet, under— o+ 2, on the universal cover of SL(R)
requires[If the target space is the single cover of SIRR, wg andw, can be different. In this
case (vg—Ww,) gives the winding number along the closed timelike curve on RR)2,wg
=w_=w for some integemw.

One may regard25) as an action by an element of the loop gro/u\r(ZSR)xé\L(z,R) which

is not continuously connected to the identityhe loop group S{2,R) has such an element since
71(SL(2R))=7. Therefore, in the model whose the target space is the single cover ofR§L(2,

the full symmetry group of the model is the loop group of SR2<SL(2R) and its connected
components are parametrized By Z. In this paper, we are studying the model for the universal
cover of SL(2R). In this case, some of these elements do not act properly on the field space,
generating worldsheets which close only modulo time translation. However the ones parametrized
by the diagonaV. are still symmetry of the model. The diagorfaparameterizes the spectral flow
operation performed simultaneously for both the left and right mol&tss particular symmetry

of the theory will also be useful in our analysis of the Hilbert space. Here we see that it generates
a new solution from an old solution. Furthermore, the currédtchange in the following way:

~ k .
B=T3+ 5w, Jg=Tge™ 27)

and a similar expression faf . Or, in terms of the Fourier modes,
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J3=33+5w5 Jr=3- (28)
n nt o n,0» n nFw:+

This means that the stress tensor will change to
TAS=TAP-wI— w2 (29

In the CFT literature, this operation is known as the spectral flow.

Let us study what happens if we act with this symmetry on the solutions corresponding to
geodesics(18) and(21). These solutions depend only on the worldsheet time coordinated the
spectral flow(26) with w=wg=w, introducess dependence as

t=to(7) twr,
p=po(7), (30)

¢=do(7)+Wo.

Here (q,p0,¢0) represents the original geodesic solution. So what the spectral flow does is to
stretch the geodesic solution in thdirection(by addingw7) and rotates it around-times around

the centep=0 of AdS; (by addingwo). It is clear that the resulting solution describes a circular
string, windingw-times around the center &dS;. Since the spectral flow changes the energy-
momentum tensor, we need to impose the physical state condititi+ T9"®=0 with respect to

the new energy-momentum tend@s).

C. Short strings as the spectral flow of timelike geodesics

A timelike geodesic irAdS; makes a periodic trajectory as shown in Fig. 1, approaching the
boundary ofAdS;, then coming back to the center and so on. In particular, Whek) ~* in (18),
the geodesic periodically passes through the cemte® of AdS;, with the period 2r in the
t-coordinate. The spectral flow,

t—t+wr, ¢p—dtwo,

stretches the geodesic in the time direction and rotate it around the genterit is pictorially

clear that the resulting solution describes a circular string which repeats expansion and contrac-

tion. This is shown in Fig. 3 in the case wi=1. AssumingTﬂer: h as in the case of geodesics,

the Virasoro constraint for the solution is
total_ FFAdS 3 k 2 other__
T++—T++—wJ—Zw +T3L=0. (31
Since

k
FAdS_ 2
TWor=-

Za
for the timelike geodesic, we find
53=33+ Sw=Swr 2= Kazan 32
0TS0 pWEZWT G T T (32)

The space—time enerdy of the string is given bff=2J3, and is bounded above as
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FIG. 3. A classical solution obtained by the spectral flow of a timelike geodesic. The solution repeats expansion and
contraction. The maximum size of the stringpis pg .

E_k ! ka?+2h K 2h 33
—§W+W(— a“+ )<§W+W. ( )

It is not difficult to find an explicit form of the solution. Whev=U ~ in (18), without loss
of generality, we can sdA different choice ofU=V "1 simply results in the shift ofp in the
solution) U=V "t=eM?ros;. The solution(We have been informed that a similar classical so-
lution has also been studied in Refs. 19 and 2btained by the spectral flow @18) is then

e'? sinhp=ie"’ sinhpy sinar,

(34
fant— tanwr+ tana7/coshpg
ant= 1—tanwrtana7/coshpg’
The currents of this solution are
s K
JR=§(a coshpy+w),
(39

+ . k . —iwx T
Jr==i 5 sinhpge™™* |
and similarly forJ, . Comparing this with(32), we find

_ 4h
a=a.,=—wcoshpy* \/W?sinl? py+ S (36)

If we choose the branch=«, , the space—time enerdyof the solution is positive and is given

by
3_513 ah o i
E=2J5=2J5=K| coshpg W Sir? po—w sint? pg | . (37

There are several interesting features of this formula for the ertergxcept for the case of
h=kw?/4, the energy is a monotonically increasing functiorpgf which approacheE— kw/2
+2h/w aspy—. One may view that the solution describe a bound state trapped insfogSpt
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At the exceptional value ofi=kw?/4, we havea, =0 and the energy of the solution becomes
E=kw, completely independent of the sipg of the string. The solution in this case is

p=pg, t=wr, p=wao, (39

and represents a string staying at the fixed ragditig,, neither contracting nor expanding. The
fact that we have such a solution at any radigsmeans that the string becomes marginally
unstable inAdS;.

Now let us turn to the case whéiwV 1, or to be more precise, whasV does not commute
with T3=—(i/2)0®. (When UV commutes withT3, one can shift the value of to setU
=V~1) In this case, the geodesic does not necessarily pass through the cekts;ofTherefore
the circular string obtained by its spectral flow does not collapse to a point. Since

3 k 311—-1 73 k -173
J T =5 aUTU ™, JRTP =5 aV T, (39

32 #33% unlessUV commutes withT3=—(i/2)o?, and the space—time angular momentum
1=33—33=3%-33 is nonzero. Thus one may view that the circular string is kept from com-
pletely collapsing by the centrifugal force. Sin€8%S— T295= —w(3%,—33), the Virasoro con-
straint T%'®=0 requires that the left and right conformal weights (hg) of the internal part
should be different and thétz—h_ =wl.

D. Long strings as the spectral flow of spacelike geodesics

We have seen i(33) that the space—time ener@yof the solution given by the spectral flow
of the timelike geodesic is bounded aboveEaskw/2+ 2h/w. What will happen if we raise the
energy above this value? To understand this, let us look at the spectral flow of the spacelike

geodesic. Sinc@%%95= +ka?/2 for the spacelike geodesic, the Virasoro constrédaj gives

J3—33+k K +1 X 2+h 40
0o R WE AW W 2o ) 40
and the space—time energy is now bounded below,
E—2J3>k +2h 41
“2hzaWh ey 4D

As an example, let us consider the straight line cutting the spacelike s¢eti@miagonally
(23). The spectral flow withw of this solution is

t=wr, pe?=are"’, (42

namely

-2 43
p—w|'[|. (43

The solution starts in the infinite past —« as a circular string of an infinite radius located at the
boundary ofAdS;. The string then collapse, shrinks to a point&t0, and expand away toward
the boundary oAdS; ast— + . More generally, if we choosd =V~ 1=e(~ 2071  the spectral
flow of the geodesi¢21) gives

e'? sinhp=e"“ coshp, sinha 7,
(44)

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



2938 J. Math. Phys., Vol. 42, No. 7, July 2001 J. Maldacena and H. Ooguri

FIG. 4. A long string solution obtained by the spectral flow of a spacelike geodesic. The long string comes from the
boundary ofAdS;, collapses to a point, and then expands away to the boundakg 8f again.

tanwr+tanharsinhpg
1—-tanwrtanharsinhpg’

tant=

This solution, which we call a long string, is depicted in Fig. 4.
The Virasoro constraiff'®®=0 for the long string44) is

k
TAS+ T‘ﬂefzz(aZ—zaw sinhpo—w?)+h=0, (45)

] 4h
a=a.=wsinhpy* \/W? coslf po— e (46)

The space—time enerdy of these solutions are

with the solutions

4h
L @

E=2)2=2J]3= k( w cost po+ sinhpy \/ W2 cosif po— -
At the critical valueh=kw?/4, we havea,=0 and the energy for this solution becomgs
=kw. At this point, the long string solutiofd4) coincides with(38). Thus we see that, as we
increase the value df to h=kw?/4, the short string solutiofB4) can turn into the long string
solution (44) and escape to infinity.

As explained in Refs. 11 and 12, a string that windé\uhS; close to the boundary has finite
energy because there is a balance between two large forces. One is the string tension that wants to
make the string contract and the other is the NS—BISield which wants to make the string
expand. These forces cancel almost precisely near the boundary and only a finite energy piece is
left. The threshold energy for the long string computed in Refs. 11 and R®/#&, in agreement
with (41) whenh=0. These strings can have some momentum in the radial direction and that is
a degree of freedor that we saw explicitly above. One may view the long string as a scattering
state, while the previous solutiqB4) is like a bound state trapped inside Al S;.

In general, ifUV commutes withT®= — (i/2)?, the long string collapses to a point once in
its lifetime. If UV does not commute witf®, the angular momenturn=J3—J2 of the solution
does not vanish and the centrifugal force keeps the string from collapsing completely. In this case,
the Virasoro constrainTtgf_':O requireshg—h_ =wl for the conformal weights of the internal
sector.
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For the long strings, one can define a notion of the S-matrix. In the infinite past, the size of the
long string is infinite but its energy is finite. Therefore the interactions between them are expected
to be negligible, and one can define asymptotic states consisting of long strings. The strings then
approach the center &dS; and are scattered back to the boundary. In this process, the winding
number could in principle change.

[ll. SEMICLASSICAL ANALYSIS

In studying the classical solutions, we were naively identifying the winding numbas
associated to the cyclé— ¢+ 27r. But since this cycle is contractible ihdS;, we should be
careful about what we mean by the integermhe winding number is well-defined when the string
is close to the boundary, so we expect that long strings close to the boundary have definite winding
numbers. On the other hand, when the string collapses to a point, as shown in Figs. 3 and 4, the
winding number is not well-defined. Therefore, if we quantize the string, it is possible to have a
process in which the winding number changes. There is however a sense in which string states are
characterized by some integer

In order to clarify the meaning off when the string can collapse, let us look at the Nambu
action,

d
S= f dt%[\/detgmd— Biyds b1, (48

where gj,q is the induced metric on the worldsheet, aBg, is the NS—NSB-field. We have
chosen the static gauge in the time directienr. We assume that initially we have a state with
p=0, and we want to analyze small perturbations. Since the coordinat@ot well-defined, it is
more convenient to use

X1+ixX?=pe'?. (49

Let us compute the components of the induced meffig¢. To be specific, we consider the case
when the target spackdS;x S*X T4, and consider a string winding around a cycle @h By
expanding in the quadratic order jin we find

Uind,00= K[ — (14 p?) + doX29pX?] + aoY'dpY',
ing.01= KdoX233, X3+ 9o Y19, Y', (50)
Oind 1= Kd1:X39 X2+ 91 Y'9,Y!, (a=1,2),

whereY"s are coordinates ofi*. For simplicity, we consider purely winding modes ®f, so

that only d,Y' is nonzero. For these states, the conformal welmist given by(One factor of 2
comes from the fact that this includes left and right movers and the other from the fact that the
expression for the energy involves Y/2.)

do : )
4h 3@ 5 GijorY sy, (51)

Substituting(50) and (51) into the action and expanding to the quadratic ordeg,inve find

1 1 k [an |2
S= \/4khf do? 1—§(§0Xa)2+§m(ﬁlxa+ €ab ?Xb +---
(52
1 1k [an\ |?
_ 2|1 _ = 2, i _
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where® = X!+iX2,

The action(52) is the one for a massless charged scalar fieltk 58" coupled to a constant
gauge fieldA= \4h/k aroundS'. As we varyA, we observe the well-know phenomenon of the
spectral asymmetry. Let us first assume #ha not an integer. A general solution to the equation
of motion derived from(52), requiring the periodicity ino, is

* iAo

®~ 2 (agei(n—A)(7—+o-)+bne—i(n—A)(?—o)) ’
n=—owo n_A

(53
whereA= \/4h/k and7= 7/A. Upon quantization, the commutation relations are gigrendulo a
positive constant factphby

[an,ap]=(N=A)8,m, [Dn.bR]=(N—A)n. (54)

Notice that the sign in the right-hand side(6#) determines whethex,, or a,’: should be regarded
as the annihilation operator. Thus, assuming that the Hilbert space is positive definite, the vacuum
state is defined by

ay|0)=b;y|0)=0, (n>A),

(55)
al|0)=b[|0)=0, (n<A).
For ®=pe'? given by (53) andt=A%, we find
Je=k(e Mg, d* —d* 9, e )~ —ik>, a,e "),
n
(56)
Jn=k(e"'9, d— Do, et)~ik>, alenTro)
n
and similarly forJ;". Thereforel; = —ika, andJ, =ika',. The vacuum stat0) defined by
(55) then obeys
J7[0)=0 (n>A), J,|0)=0 (n>—A). (57

Thus the vacuum stat6) is not in a regular highest weight representation of the current algebra
SL(2,R). If we set

In =Jnzw (58)
with the integemw defined by
W<A<w+1, (59
then|0) obeys the regular highest weight condition with respeElﬁto
J3710)=0 (n=1), J;|0)=0 (n=0). (60)

The change of the basi$8) is nothing but the spectral flo\i28) discussed earlier, so we can
identify w as the amount of spectral flow needed to transform the string state into a string state
which obeys the regular conditiori60). We have found that, for a given value lof there is a
unigue integer ofw associated to the string state. As we vary the conformal weighh

= y4h/k will become an integer. At that point, one of the modes of the fiblavill have a
vanishing potential. In fact we can check that classically this potential is completely flat. Giving an
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expectation value to that mode, we find configurations 88h Corresponding to various values

of its momentum in the radial direction, we have a continuum of states. So, at this vdlpeef

do not have a normalizable ground state; instead we have a continuum of states which are
Ssfunction normalizable. If we continue to incredsewe find again normalizable states, but they

are labeled by a new integew(+1). Notice thatw is not directly related to the physical winding

of the string. In fact by exciting a coherent state of the oscillaaqrsr b,, we can find string states

that look like expanding and collapsing strings with winding numbearound the origin.

One of the puzzles we raised in the Introduction was what happens when we increase the
internal conformal weighh of the string beyond the upper bound implied by the restricfion
<k/2 on the SL(R) spinj due to the no-ghost theorem. In this section, we saw a semiclassical
version of the puzzle and its resolution. Whiemeaches the bound, we find that the state can
become a long string with no cost in energy. Above the bound, we should consider a Fock space
with a different bose sea level. In the fully quantum description of the model given below, we will
find a similar situation but with minor corrections.

IV. QUANTUM STRING IN AdS;

The Hilbert space of the WZW model is a sum of products of representations of the left and
the right-moving current algebras generated by

= 3 e ™, 3= > Jhe ™, (61)

n=—o n=—w

with a=3, =, obeying the commutation relations
k
[35.97]= = 5N8nimo.

[359m]=+ I m, (62)
[35 Jm]=—233. nt KNS i mo,

and the same foﬁ‘. We denote the current algebra by, & R). The Virasoro generatdr,, are

defined by
11 2 + + 3 3
LO:kT =(JgJo +30J5)— (JO) + 2 QI dnt I Im—232 .30 |,
} (63
1 o
n;ﬁO:k_ Z: me+‘]n—m‘]rT1_2‘]ﬁ—m‘]ﬁ1)'
and obey the commutation relation,
€ 3
[LniLm]:(n_m)Ln+m+ l_Z(n _n)5n+m,0v (64)
where the central chargeis given by
3k
c= m (65)

We will find that the Hilbert space of the WZW model consists of subsectors parameterized
by integerw, labeling the amount of spectral flow in a sense to be made precise below. We then
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formulate our proposal on how the complete Hilbert space of the WZW model is decomposed into
representations of the current algebras and provide evidences for the proposal.

States in a representation of the current algebra are labeled by eigenvalyeanaf)3. Since
the kinetic term of the WZW model based on SIRP has an indefinite signature, it is possible
that the Hilbert space of the model contains states with negative eigenvaluga®ivell as states
with negative norms, and indeed both types of states appear as we will see below. For the moment,
we will consider a representation in which eigenvalued gfis bounded below. We call them
positive energy representatigre unflowedrepresentations. Since the action]ﬁF withn=1 on
a state lowers the eigenvalue lof by n, there has to be a set of states which are annihilated by
them. We will call such states the primary states of the positive energy representation. All other
states in the representation are obtained by actifgn=1) on the primary states. The ground
states make a representation of SR2generated byig™ . So let us review irreducible represen-
tations of SL(2R).

A. Representations of the zero modes

We expect that physical states of a stringAidS; have positive norms. Sincl%i commute
with the Virasoro constraints, physical spectrum of the string must be in unitary representations of
SL(2R). Most of the mathematical references on representation theory of SL@2al with the
case with compact tim¢For a review of representations of SLIR}, see, for example, Ref. 2]1.
we are however interested in the case with noncompact time. A clear analysis from the algebraic
point of view is presented in Ref. 22, which we now summarize with some minor changes is
notation.

There are the following five types of unitary representations. All the representations are
parameterized by, which is related to the second CasimHz%(JgJ(;JrJng)—(Jg)z asc,=
—j(i—1).

(1) Principal discrete representatiofiewest weight:
A representation of this type is realized in the Hilbert space

D ={|jim):m=j, j+1, j+2, .},

wherelj;j) is annihilated by, and|j;m) is an eigenstate afs with J3=m. The representation
is unitarity if j is real andj>0. For representations of the group SIRR,j is restricted to be a
half-integer. Since we are considering the universal cover of ®)(P,can be any positive real
number.
(2) Principal discrete representatioffsghest weight

A charge conjugation ofl). A representation of this type is realized in the Hilbert space,

Dy ={ljymym=—j, —j-1, —=j—2,..},

where|j;j) is annihilated byd; and|j;m) is an eigenstate QIS with ngm. The representation
is unitary ifj is real andj >0.
(3) Principal continuous representations:

A representation of this type is realized in the Hilbert space of

CG'={lj,am:m=a, a*l, a*2, ..},

where|j,a;m) is an eigenstate of3 with J3=m. Without loss of generality, we can restrict 0
< a<1. The representation is unitaryji=1/2+is andsis real.(Strictly speaking the represen-
tation with j=1/2, «=1/2 is reducible as the sum of a highest weight and a lowest weight
representation with=1/2.)
(4) Complementary representations:

A representation of this type is realized in the Hilbert space of
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gf:{“,a;m):m:a, axl, ax2, .}

where|j,a;m) is an eigenstate of3 with J3=m. Without loss of generality, we can restrict 0
<a<1. The representation is unitaryjifis real, with 1/2<j<1 andj—1/2<|a—1/2|.
(5) Identity representation:

This is the trivial representation with= 0.

The analysis that led to the above representation was completely algebraic and in a particular
physical system we can have only a subset of all possible representations. Which of these repre-
sentations appear in the Hilbert space of the WZW model? As the first approximation, let us
consider thek—oo limit. If we expand around a short string solutions, i.e., oscillations near
geodesics ilAdS;, the WZW model in this limit reduces to the quantum mechanicf\di%;.

The Hilbert space of the quantum mechanical model is the space of square-inté§nabé\ d S;

is noncompact, we consider square-integrability in the delta-function $dusetions£?(AdS;)

on AdS;. The isometry ofAdS; is SL(2,R) X SL(2R), and one can decompog&(AdS;) into

its unitary representations. It is convenient to choose the basis of the Hilbert space in the follow-
ing way. For each representati@ one can define a function dhdS; by F, —(g) <m|g|_)
wherege AdS;, i.e., universal cover of SL(R), and|m) is an eigenstate o3 with J3=

Thus, for a given representatidi of SL(2R), the functionF, 7(g) on AdS; is in the tensor
product of the representatio&x R for the isometry group SL(R) X SL(2R).

For a discrete representatidirf , the wave-functiorf (p) behaves a$(p)~e~2/? for largep.
Thus¢ e £L2(AdS;) if j>1/2. Notice that in the range<0j <1 we have two representations with
the same value of the Casimir but only one isCf(AdS;), the one with 1/Z j<1. As explained
in Ref. 23, one could modify the norm so that the second solution wittj <01/2 becomes
normalizable. This modification of the norm jiglependent. Similarly, supplementary series rep-
resentations needjalependent modification to the norm to render them normaliZflaerefore
these representations would appear in nonstandard quantizations of geodesics, quantizations which
do not use theZ? norm onAdS;. In this paper, we will only consider the standard quantization
using the£? norm for the zero mode¢$Notice however, that even if the primary states have
>1/2, we could have states with smaller valuesjgffor the zero mode SL(R) among the
descendents, for exampld_,|j) with 1<j<3/2, hasj,=j—1<1/2] Wave-functions in
C{_1+is are also delta-function normalizable with respect to tifenorm. It is known that

% 1+isXCl1p1is @A D X D;” with j>1/2 form the complete basis d(AdS;).

For discrete lowest weight representations, the second Casimir is bounded aboye as
—j(j—1)=<1/4. This corresponds to the well-known Breitenlohner—Freedman bound @wass)
—1/4 for the Klein—Gordon equation. For the principal continuous representdfiowith |
=1/2+is, the second Casimir is,=1/4+s?. Therefore an existence of such a particle would
violate the Breitenlohner—Freedman bound. In the bosonic string theory, the only physical state of
this type is the tachyon. In a perturbatively stable string theory, such particle states should be
excluded from its physical spectrum. On the other hand, the continuous representations appear in
L£?(AdS;) and they are expected to be part of the Hilbert space of the WZW model before the
Virasoro constraint is imposed.

B. Representations of the current algebra and no-ghost theorem

Given a unitary representatidd of SL(2R), one can construct a representation of SR{2,
by regardingH as its primary states annihilated By, . The full representation space is gener-
ated by actmg]n< , on H. Following the discussion in the previous subsection, we consider the
cases wheft{=C_,, ;; andD;” with j>1/2. We denote b, andC; the representations of the
full current algebra built on the corresponding representations of the zero modes. In Fig. 5, we
have shown the weight diagram of the positive energy representéﬁon

A representation of SI(2,R) in general contains states with negative norms. In order for a
string theory orAdS; to be consistent, one should be able to remove these negative norm states
by imposing the Virasoro constraint,
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FIG. 5. Weight diagram the representat'r&ﬁ , Whose the primary states form a discrete lowest weight representation
2
]

(Ly+ L= 80| physica) =0, n=0, (66)

on the Hilbert space for a single string state, whére is the Virasoro generator of the
SL(2R)WZW model andl,, for the sigma-model on\. It has been shown that this no-ghost
theorem holds for states @, or D;” with 0<j<k/2236-922

The no-ghost theorem is proven by first showing that all the solutions to the Virasoro con-
straint(66) can be expressed, modulo null states, as states in the coseRpIL{¢L) obeying

By)=0, n=1. (67)

This statement is true fa@k,, andf)f with 0<<j<k/2, if the total central charge of the Virasoro
generatorL,+ £, is 26274%%(We also assumk>2.) We review the proof of this statement in
Appendix A.1. The second step is to show that the condit®n removes all negative norm
states. This was shown in Ref. 22 for the same class of representations.

The no-ghost theorem suggests that the spectrum of discrete representations has to be trun-
cated forj <k/2. As we will see, this truncation is closely related to the existence of the long string
states.

C. Spectral flow and the long string

The classical and semiclassical results discussed above indicate that, beyond positive energy
representations that we have discussed so far, we have to include others related by spectral flow.
To define a quantum version of the spectral flow, we note that, for any integae transforma-
tion 33+ —3J3* given by

~3_ 13K N1+ T

Jn:‘-]n_ §W5n,0' Jn :‘]n+W! ‘]n :‘Jn—W' (68)
preserves the commutation relatioi@). The Virasoro generatorfsn, which have the standard
Sugawara form in terms aF, are different fromL,,. They are given by

~ . ko,
Lo=Lo+ W= 2 w50 (69)

Of course, they obey the Virasoro algebra with the same central cbaftés is the same formula
as saw in the classical counterp&9) of the spectral flow.

The change of the basi$8) maps one representation into another, and this is called the
spectral flow. In the case of a compact group such a@flthe spectral flow maps a positive
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FIG. 6. Weight diagram of the representati@ﬁ’wzl, which is the spectral flow of the diagram 5 with=1. The

worldsheet energy., of this representation is not bounded below, but the space—time erﬂérg’y, bounded below for
states obeying the Virasoro constralin=1.

energy representation of the current algebra into another positive energy representation. An analo-
gous transformation in the case of tNe=2 superconformal algebra in two dimensions has been
used to construct the spacetime supercharges for superstring.

In the case of SL(R), the spectral flow generates a new class of representations. As shown

in Fig. 6, the spectral flow withv=1 maps the lowest weight representatiﬁjﬁ to a represen-

tation in whichL, is not bounded below. The appearance of negative energy states is not too
surprising since the kinetic term of the SLIR}, model is not positive definite. In general, a

spectral flow 01‘ZA}J.Jr with w=1 orw= —2 gives a new representation in whith is not bounded
below. Similarly, the spectral flow @, ;s With w#0 gives a representation in whidh is
not bounded below. We denote the resulting representatioﬁsjtb"{/and@?’w, wherej labels the
SL(2R) spin before the spectral flogFig. 7).

04O O =D

FIG. 7. The spectral flow of the diagram 5 with=—1. AD;“ is mapped toAD;“'W=_1=ZA)j' with j=k/2—]. Since]

>1/2, the resultingﬁj’ obeysj<(k—1)/2. In particular, the unitarity bounp<k/2 required by the no-ghost theorem is
satisfied.
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These representations obtained by the spectral flow also contain negative norm states. In
Appendix A.2, we generalize the proof of the no-ghost theorem and show that the Virasoro

constraints indeed remove all negative norm states in the repres,ent?aft_ﬂq;ﬁiS andf)Jri * with
J<ki/2, for any integemw.

The only case where we get a representation Witbounded below by the spectral flow is
f)ji with w=+1. In this case, the representation is mapped to another positive energy represen-
tationf}ji ’W:+l=f7;/275. Note that, if we start with the representation wjth 1/2, the represen-
tation one gets after the spectral flow satisfiesk/2—] <(k—1)/2. Conversely, if there were a
representatiorf)f with j>(k—1)/2 in the Hilbert space, the spectral flow would generate a

representatiorﬁji with j<1/2 in contradiction with the standard harmonic analysis of the zero
modes in Sec. IV A. Therefore, if we assume that the spectral flow is a symmetry of the WZW
model, the discrete representatidﬁﬁ appearing in the Hilbert space are automatically restricted
to be in 1/2<j<(k—1)/2. In particular, the spectrum ¢fis truncated below the unitarity bound
j<k/2 required by the no-ghost theorem. This further restrictior) aas discussed in a related
context by Ref. 24.

D. Physical spectrum

Let us consider first the spectrum for strings witk= 0. This is fairly standard. We start from
an arbitrary descendent at levglin the current algebra and some operator of the internal CFT
with conformal weighth. The Ly constraint reads

j(j—1
(L0—1)|j,m,N,h)=0:>—J(kj_z)+N+h—1=0. (70
If we demand that 12 j<(k—1)/2, this equation will have a solution as longhs h is within
the range
0=N+h—14+-——<K2) 71
< - <
T k=2 T 4 7

If we allow j to go all the way tdk/2 we getk/4 on the right-hand side af71).
To analyze physical states of strings witt¥ 0, we start with a positive energy representation

f}r . After the spectral flow(68), a primary statéT,r”n) of f}f , as a state o’fDJf+ " obeys
IrolTMy=0, 3,_,[T.my=0, 33[].M)=0, n=1,
(72)

[7./).

3T ~ k ~
Jolj,my= ZWHm
Let us look for physical states with respect to the Virasoro genetatoiFrom (72), we find the
Virasoro constraints are
. G- ko, o -
(Lo—D)[j,my=| — (Wi ow +N+h—1]/[j,mN,h)=0,

(73

Lo, my=(L,—w3)[],m=0, n=1,

whereh is the contribution to the conformal weight from the internal CFT Binid the level inside
the current algebra before we take the spectral flow. The state obeys the physical state conditions
provided
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m——Ew h —11:2+N+h—1 (74)
47wl (k-2) '
The space—time energy of this state measuredgbig then
ﬁ—m+5w—5w+3-—TG_D+N+h—q (75)
o2 4T wl o (k—2) '

This is the quantum version of the classical form(8a), with the replacement

k , J(0-1
Ko 1G-D

4 k—2

+1.

Notice that=] +q whereq is some integer, which could be negativ is the totaiJ® eigen-
value of the state so it can be lowered by applying to the highest weight state. So we have the

constraintq=—N.) Therefore the physical state condition becomes

~_1 k2 \/1 ke2)[ he 1 N 1 76
j—E—TW"r‘ Z+( — ) -1+ W_EW(WJ’_ ) . ( )

Here

N, =N-wq (77)

is the level of the current algebra after the spectral flow by the ammuNbtice that the equation
for ] is invariant undeN—N+w, g—q= 1. This is reflecting the fact thak; =J=,, commute
with the Virasoro constraints and generate the space—time B) (Rultiplets. In particular, we
see that the space—time SLR2,representations that we get are lowest energy representations,
since repeated action af, zjv’v will eventually annihilate the state. In fact, it is shown in
Appendix A.2 that the only physical state with zero spacetime end@:yo, is the statel”,|j
=1), and its complex conjugate. This physical state corresponds to the dilaton fidld S
which played an important role in the analysis of the spacetime Virasoro algebra in Ref. 25. All
other stategexcept the tachyon wittv=0) have nonzero energy, and form highest/lowest weight
representations of SL(R) space—time algebra. The negative energy ones are the complex con-
jugates of the positive energy ones.

By solving the on-shell conditiof¥6) for j >0 and substituting it int¢75), one finds that the
space—time energy of the string is given by

E+l 11 1
5 =J=atwi 5+ \[+(k=2)| h=1+N,~ sww+1)|. (79)

Since bothN,, andq are integers, the energy spectrum is discrete. This is reasonable since we are

considering the string trapped insideAdlS;. The constraint 1/2] < (k— 1)/2 translates into the
inequality

X 2 Y Ny tho1t ! <k +1)2 Wl 79
g g SNeth=dt g gy sg w5 (79

This is the quantum version of the semiclassical forn{&9. In fact, if we takek,h>N,q,w,

(79 reduces td59). As in the semiclassical discussiamjs not necessarily related to the physical
winding number of the string. It is just an integer labeling the type of representation that the string
state is in.
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The analysis for the representations coming from the continuous representations for the zero
modes is similar. If we do not spectral flow, the only state in the continuous representation is the
tachyon. If we do spectral flow, we get E4), which can be conveniently rewritten as

wk kw 1 s?

ngﬁ"l't‘ 5 —T"r‘w

k 2+|\|+h 1) (80)

For continuous representationds labeling the physical winding of the string when it approaches
the boundary ofAdS In this case we do not get an equation lik&) since, for continuous
representationsn is not related tq. Comparing with the classical formu{d0), we identifys as

the momentunw/k of the long string along the radial direction AtlS;. We clearly see that the
energy of this state is above the threshold to produce an excitation that will approach the boundary
as aw-times wound string.

We can see that, whenever the valueha$ such that it saturates the rang®), we have a
continuous representation with the same energy. This is clear for the lower bound in the case of
w=0 since, for each state in the discrete representationjwith/2, there is one in the continuous
representation with the same valued gfandJ3. By the spectral flow, we see that the same is true
for the lower bound in79) for anyw. Indeed we can check explicitly that a state in the discrete
representation with parametets,{,q,N) saturating the lower bound i79) has the same space—
time energy as a state in the continuous representation with parambters£0,N). [The
parameter in the continuous representation is fixed by the valuégdh (80).] Similarly, if we
have a state in a discrete representation saturating the upper boui8),irit has the same

spacetime energy as a state in the continuous representation with parafmeterd, s=0, N’
=N+q). Note that, sincgj=—N (see the footnote in the previous pagee haveN’=0. In this
case, to show that the two states have the same energy, it is useful to identify the ﬁate as

a state mD k/2 ~. Sincej— (k—1)/2 corresponds t§— 1/2 under this identification, we can

apply the above argument for the lower bound to show that we will find a state in the continuous
representation. The shift’ =N+ q comes from the fact that the identificatidﬁ;v?uﬁj_:"':;f
involves spectral flow one more time.

The above paragraph explains what happens as we chainge discrete representation and
we make it equal to the upper or lower bound: a continuous representation appears. Another
question that one could ask is the following. Given a valué,affhat is the state with the lowest
value ofJ3 that satisfies the physical state conditions? Let us first look for the lowest energy state
in the discrete representations obeying the bo(f@). Within this bound, one can show that
833(h,w,q,N)/9g=0 andaJ3(h,w,q=—N,N)/sN=0. Therefore, if we can sef=N=0, it will
give the lowest energy state in the discrete representations. This is poshildeniithin the range,

k , w h1 1 k 12 w+1 81
ZW +§< +m<z(w+ ) —_—. ( )

With some more work, one can show that, fon this range, there is not any state in a continuous
representation whose energy is lower than that of the discrete representation stalé=vgth

=0. As we saw in the above paragraph, at the upper or lower bouf@lpfthe energy of the
discrete stat¢q=0, N=0) coincides with that of the continuous state wig+ 0, N=0). Outside

this range(81), it is not possible to seN=q=0, and the lowest energy state will be in a
continuous representation. In our semi-classical discussion in the last section, we found that the
discrete representation can decay into the continuous representationkai?/4. Now we see

that, in the fully quantum description, the range over which a continuous representation has lower
energy has expanded from the point kw?/4 to a strip of widthw,
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K 2—w<h—1+—<E 2, ¥ (82
2V ak-2) a2

So far we have restricted our attention to right-moving sectors of the Hilbert space. Let us
now discuss how the left and right movers are combined together. For the classical solution of the
long string, the worldsheet periodicity requires that the spectral flow has to be done simulta-
neously on both the left and right movers with the same amourtd®; were not the universal
cover of SL(2R) but its single cover, different amounts of the left and the right spectral flows
would have been allowed since the resulting solution is periodic modulo the closed timelike curve
of SL(2R). It is straightforward to identify the corresponding constraint in the quantum theory.
Suppose we perform the spectral flows by the amaynandwg on the left and the right-movers.
A state with conformal weightsh( ,hg) and thng charge fh,_,Mg) is mapped by this transfor-
mation to a state with conformal weightis, —w, M, — (k/4)w?, hg—wgfy— (k/4)w3), accord-
ing to (69). The worldsheet locality, which is the quantum counterpart of the periodicity of the
classical solution, requires that the conformal weidht@indhg differ only by an integer. If this
is the case before spectral flow, the same requirement after the flow implies

w f, + gwfszr”nRJr gwﬁ (mod integey. (83

For generic values offfj, ,Mg), the only solution to this constraint v8_=wg. In this paper, we
are considering only the universal cover of SIRPas the target space of the model. In this case,
the spectrum of fip, ,Mg) is continuous, and only the left-right symmetric spectral flay
=wpg is allowed.

SummaryWe propose that the spectrum of the SIRRWZW model[for the universal cover
of SL(2R)] contains the following two types of representations. First, the spectral flow of the
continous representations, with the same amount of spectral flow on the left an(ﬁﬁﬁhng
x@f;ﬂisyR. Then the discrete representatidh%‘LWx ﬁ:‘RW with the same amount of spectral flow

on the left and right and the same valuejofwith 1/2<7j < (k—1)/2. In the string theory, these
representations should be tensored with the states of the internal CFT, and the Virasoro constraints
should be imposed.

V. SCATTERING OF THE LONG STRING

When a long string comes in from the boundaryAafS; to the center, it will scatter back to
the boundary. In this process the winding number could in principle change. In order to study the
Smatrix between incoming and outgoing long strings, it is convenient to perform the rotations to
Euclidean signature spaces, both on the worldsheet and in space time. Following the standard
procedure, we define the hermiticity as is natural in the Lorentzian theory. For this reason we still
have the SL(R), XSL(2R)r currents in the Euclidean theory. The relevant conformal field
theory, whose target space is the three-dimensional hyperbolic $paeSL(2,C)/SU(2) has
been studied in Refs. 18, 25-30.

A. Vertex operators

To compute the scattering amplitudes, we would like to find vertex operators for all repre-
sentations considered above. Spectral flow is realized in the vertex operator for malism in the
following standard fashiof: We bosonize thé® currents, introducing left and right moving chiral
bosong Reflecting the hermiticity of the SL(R) model, the scalar fielg is Hermitian, but with
a wrong sign for the two-point functiofx(z) ¢(z'))=log(z—2').] through

=i \/Ea¢(z) B=—ij \/E§¢(E§ (84)
R 2 ’ L 2 .
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N e
A state with chargem underJ3 contains an exponential ith(z) of the forme™V(2¢( The
other two currents therefore can be expressed as

e _ N e
3t = ye V(2k)g(2). Jr= yleN@s@) (85)

and similarly ford” . A primary field ®;,w(z,2) of the current algebra can be expressed as

B = €MV S@ +HMVRR Dy, (86)
where W ;,; carries no charges with respect.lﬁ’,_. In the case of the SI2) model, the field
corresponding taV is known as a parafermion. The parafermion for the SR}2model was
studied in Ref. 32. The conformal weights of the parafermion fig|dy is

j(j-1)  m?
(87)
— (-1 m
Mvimn=~ )2 T
In the discrete lowest weight representatiomm=j,j+1,j+2, .... In particular, when=k/2,

the fieldWV; _ /o m=m-k2 has conformal weighta=h=0. Since the parafermion field lives in the
unitary conformal field theory it is natural to assume that it is the identity oper@ecently we

have learned that a similar argument has appeared in unpublished notes by Zamolodchikov. We
thank him for having his note available to t#%.Here we simply note that the operator,

e (K2 ($(2)+ $(2)

has the correct OPE for the primary field of spi k/2 with the SL(2R) currents.
Using the parafermion notation, the operator obtained by the spectral flow buyits is
expressed as

L~ e o —_—
(I)WZel(m+Wk/2)V(Z/k)¢(z)+I(m+Wk/2)V/(2lk)¢(Z)‘I’jmni,. (88)
It is easy to see that the conformal weight is given by

0:%‘21)_ mw-+kw?/2. (89)

B. Reflection coefficient

We will compute the amplitude, using the formulas obtained in Refs. 34, 35, 26, 33, in the
case that the winding number does not change.

The long string states are in the spectral flow of the continuum representation. The corre-
sponding vertex operators are

cpl;nﬁz em¢(2)+ﬁ¢(7)\yiﬁﬁvhm 2,7),
(90)

m=m-wk/2, m=m-wk/2, j=3+is,

whereV,, is an operator in the internal part with conformal weigmsﬂ. The physical energy
E and angular momentuinof a state inAdS; are given by

m=1(E+l), m=1(E-I). (91)
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The physical state constraint (80) with N=0. This implies that

o wk4 1[1/4+s? -
m=—-w +W k—2+_' (92
Now we can now consider the two point functiori’3
_ i is
I'(1/2+is—mI'(1/2+is+m)['(—2is)I’ TZ)
(Phw2D Py (2'7)) = s
F(l/Z—iS—ﬁ1)F(1/2—iS+n=1)F(2iS)F(ﬁ)
X 8(5—5') Sy s S(E+E"). (93)

Thez dependence is just|Z~z’'|* coming from the fact that the two operators have weidk).
This is the reflection amplitude and the valuesioff are determined b§92) (notice thatmis the
physical energy, nai).

As explained in Ref. 28 in this context, in string theory we have to integratezved divide
by the volume of SL(Z). We can use SL(E) invariance to puz=0, z' =« in the correlator.
The volume of the rest of SL(2) then givesS(d?z/|z|?), which cancels one of the delta-
functions in(93). Notice thats(s—s') S(E+E') = 8(s—s’) 8(0), thevolume of SL(2C) cancels
the &0) piece.

Now if we study the poles 0f93), we find that they are located at #2s—m= —q with g
=0,1,2, .... They come from the first Gamma-function. Taking this condition together(9&th
we find that

1
1/2+is+q=m=—wk/4+ w

1/4+s? .
k—2

(94)

and this equation is precisely the same as the usual mass shell equation for discrete states if we
take] = 1/2+is. There are similar poles from the second Gamma-function. There are no poles
coming from the third factor since they cancel extra poles appearing in the other factors. Notice
that the poles appearing 94) satisfy precisely Eq(76) for bound states in the representation
f}r'w (with N=0). There is however, an important difference.(#6) the value ofj obeyed the
condition

1 . k-1 o

while we do not have such a condition (®4). It is interesting to note that if satisfies(95), then

the residue at the pole has the proper sign to be interpreted as coming from a bound state. When
T=(k—1)/2, i.e., at the upper bound ¢5), we find that there is no pole. Moreover, immediately
above that value, we have the wrong sign for the pole residue. This might make us worry that the
amplitude is not having the right analytic structure. However, in order to have a one-to-one
correspondence between poles of the scattering amplitude and bound states, the potential has to
decrease sufficiently rapidly at the infinit{,a condition that is not met in our case. In such a
situation, it is possible to have extra poles that do not correspond to physical states. We plan to
analyze the poles and their implications for physical states in a future publication.

C. Relation to the scattering of the two-dimensional black hole

The coset of the SL(R) WZW by the U1) generated byl® gives a sigma-model whose
target space is the two-dimensional black hole with the Euclidean signature Méttie.geom-
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etry of the black hole is like a semi-infinite cigar with an asymptotic region in the form of the
cylinder Rx St. The dilaton field grows as one approaches the center of the black hole, but it
remains finite since the geometry is terminated at the tip of the cigar. The string theory on
SL(2R)/U(1) X (time) X M is closely related to the string theory #& S;X M since the physical
state conditions for the latter implielﬁ|physica}=0 for n=1, as we show in Appendix A.
Similarly the superstring theory omAdS;X M is related to the Kazama—Suzuki coset
SL(2R)/U(2).

There is however difference between the zero mode sectors of the theoedSyrand on
the two-dimensional black hole. In order to construct representations f@/8I(1), we can start

from the representations of §,R) that we described above and impose the conditionlﬁ@@
annihilate the state and that the tofal S; energy vanisheslgR+ JS‘,_= m-+m=0. In terms of the
parafermion¥ . given in (86) and (88), the condition ism+m=wk. The locality condition
m—m=n, wheren is an integer implies thah— m=n. These two quantization conditions are the
ones in Ref. 3§see Eq.(3.6) of that pape}. The SL(2)/U(1) theory has been studied recently in
connection with “little” string theories in Refs. 24 and 39.

VI. CONCLUSION

In this paper, we studied the physical spectrum of bosonic string theoihyd®. We pro-
posed that the complete Hilbert space of the SRf2WZW model consists of the continuous

representations and their spectral fléﬁl"‘i,zﬂsxéfg"i/zﬂs, and the discrete representations and

their spectral rovaADji'Wx f)f"” with the constraint 1/2 j<(k—1)/2. The sum over the spectral
flow is required if we assume that the Hilbert space realizes the full loop group of BL.(2,
including its topologically nontrivial elements. We found that this proposal leads to the physical
spectrum of the string theory with the correct semiclassical limits.

In particular, we have solved the two puzzles which we mentioned in the Introduction. The

no-ghost theorem fo’f)ji requires the constraint<0j <k/2. If we only had the unflowed sector
(with w=0), it would imply the upper bound on allowed mass of string states, which appears
artificial. This was one of the puzzles. We have resolved this puzzle by showing that the upper
bound on the mass is removed if we include all the spectral flowed sectors in the Hilbert space.
Moreover we showed that the consistency with the spectral flow and the standard harmonic
analysis of the zero modes requires the constraintt12(k—1)/2, more stringent than the one
required by the no-ghost theorem. The constraintZj/2 (k—1)/2 is found to be consistent with
the locations of the poles in the reflection coefficiémith the correct sign for the pole residues;
see also Ref. 24 and the modular invariance of the partition function.

Another puzzle was to identify states in the Hilbert space corresponding to the long strings.

We found that these states are in the spectral flow of the continuous represenﬁ‘;ﬁﬂ@is

X@J-“;"{,ZHS. The integemw, which parametrized the amount of the spectral flow, is identified with

the winding number of the long string stretched closed the bounda’ds;. The physical
spectrum of the long strings obtained from these representations agrees with the expectations from
the semiclassical analysis in Refs. 11 and 12.

The resolutions of these puzzles removes the longstanding doubts about the consistency of the
model. Moreover it appears that the SIRR,WZW model is exactly solvable, just as WZW
models for compact groups, although its Hilbert space structure is significantly different from
those of the compact cases. We hope that further study of the model will provide us more useful
insights into theAdS CFT correspondence and strings in curved spaces in general.
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APPENDIX A: NO-GHOST THEOREMS

In this Appendix we would like to extend the proof of the no-ghost theorem to all the
representations considered above. We asskim2. The proof of the no-ghost theorem for the
standard lowest energy representatioiis2involves two parts. Part | consists of showing that a
physical state can be chosen, up to a null state to be suctiffyat =0, for n=1. This first part
uses 0<j <k/2 for theD— representations as well as- 26 and the mass shell condition. This was
shown in Refs. 2-9. Part Il consists in showing that any state that is annlhllatéﬁggywas a
non-negative norm. This step also uses jG<k/2 for theD* representations. This was done in
Ref. 22. Here we will use the same strategy and prove Part | for the all our representations. The
no-ghost theorem then follows from Part .

We first review the proof of Part | for the representations with O and then we do Part | for
thew=+0 representations.

1. Proof of part | for unflowed representations

Here we follow the proof in Refs. 2, 3, 6, 7, 9. It has essentially three steps.
Step 1:The first step of the proof is to show that states of the form
Lol onybonm 32 m 320 [f),

—mpY-my
Ni=ny=---=nNy, M=M=---=my, (A1)
with L,|f)=33f)=0 for n=>1,

are linearly independent and that they form a complete basis of the Hilbert space.

The state$f ) are constructed from states in the current algebra times some states in an internal
conformal field theory. This internal piece is assumed to be unitary. This step involved separating
the piece oL, involving L(®:=J33%:, definingL,=L,—L{>. One can show that the statil)
are in one to one correspondence with states of the form,

I-—nll——nz'"L—n,\,‘]’iml‘]:imz —mM|f>

(A2)

Ni=n,=---=ny, M=My=---=my.

Notice that condition$A1) on|f) are the same ds,o|f)=J3_,|f)=0. It is easier to show that
(A2) is a basis since now we can think of the CFT as a product ofia fdctor with the rest. The

rest is a CFT withc=25 and therefore the fact théd2) is a basis reduces to showing that there
are no null states in the Virasoro descendents on a primary field. This will be true if the conformal
weight of the rest is positive. This reduces to showing thdtk—2)+m?/k+M>0, whereM is

the grade in the SL(R) piece. For the continuous representations, this is obvious sy¥8. For
lowest weight representations, this inequality can be shown by rewriting it as

1
_j+m+M)+F(j_m)2>0' (A3)

2i(ki2—j) 2M [k '
i( i) ( +?J(

kk—2) k|2
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We to use 6<j<k/2 and also the fact thah=j—M, which is true in general. Notice that tine
that appears here is the tot@ value, after we applied=,, any number of times. Notice that in
this step we did not use that the states were obeying the mass shell condition, but we<ysed 0
<k/2 and thatc=26.

Step 2:Here we show that a physical state can be chosen so that it involves pavhen
written as(Al).

A physical state can be written as a state withLng, plus a spurious state. A spurious state
is a state with at least orle_,,. Then we use the fact that, whers=26, L,(n=1) acting on a
spurious state which satisfies thg=1 condition leaves it as a spurious st&é'If L., acts on
a state of the fornfAl) with noL _, then it will not produce any. _,,. Together with the fact that
(B1) is a basis this implies that the part of the state withlng, satisfies the physical state
condition on its own, and therefore the rest is a null statspurious physical state

Step 3:We show that if the physical staje) involves noL _,, when written as inAl) then
Jly)=o0.

Since there are nb_,’s in the physical statg this implies thaﬂ_§13)¢=0 forn=1. Then we
try to show that the only states satisfying this will be states Wﬁbbzo for n=1. This would be
true if there are no null states in thé® Virasoro descendents of the statEswe considered
above. Ifm#0 then one can show that there is no null state in the Virasoro descendents ¥ the
Virasoro descendents. There are two states mithO one is in the continuous representation, but
the mass shell condition automatically implies tiNt=0 (there are nal? , in this stat¢ and
therefore the state has positive norm. The other is the state in the lowest weight representation

J24]i=1) (A4)

(and of course its complex conjugate in the highest weight representaktuis state has positive
norm. Note thatm is the physical energy iddS; of the state in question. Zero energy states,
therefore imply that we have a normalizable zero mode. This is the state corresponding to the
identity operator in the spacetime boundary conformal field theory, the 3idbe of Ref. 25
which played an important role in the computation of the spacetime Virasoro algebra.

One can show, using the mass shell condition, that all other statesrivae The mass shell
condition is

iG-1
k—2

+N+h'—1=0, (A5)

whereN is the grade in the SL(R) part andh’ is the conformal weight of the redh/=0. If
0<j<1 thenm is nonzero because it can only change by an integer by the action df the
currents. Ifj=1 with N=1 andh’=0 we find(A4) and states with positiven.

Consider nowj >1. If we hadm=0 then we also neel=j,j=2 (sincem=0 only if j is
intege) and furthermore

i(—1) (J—1)(k=2-}))
5 PN-1= >0 (A6)

providedj=<k/2. Sincej has to be at least 2, thda>4 and therefor&k—2—k/2>0. Thus we
conclude thatA5) would not be obeyed im=0.

2. Proof of Part | for flowed representations

Now we would like to generalize the above discussion to the spectral flowed representations
that we called’$y i andADr’W. In the case of discrete representations we want to show that the

no ghost theorem holds for<0j <k/2, where] labels the representation before we perform the
spectral flow operation, i.e., it labels a representation of the current algebra yitounded
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below. So we consider the same representations we had above but we modify the physical state
conditions. This is equivalent to imposing the usual conditions on the flowed representations. We
would like to prove that, given any state built on a lowest weight or continuous representation with
respect toJ,,, the physical state conditior_f— Sn0)|¥)=0 n=0 with respect to_, removes
non-negative norm states. We only consider spectral flow withl on continuous or lowest
weight representation?ﬁj+ . These and their complex conjugates cover all the representations we
needed to consider. We reproduce now the steps in Appendix A.1.

Step 1:In (A1) we need to show that they form a basis V\lithn=t,n—wj'°:n. We know that
they would form a basis if we had an expression likd) with L_,—L_,,. Fortunately there is
an invertible one to one map between these two sets of states, so that they form a basis.

Step 2:It is the same since onlg= 26 is used.

Step 3:If we write a physical statdy)), as a state with na _, then L§13) with n=1 annihilates
it. Again we will try to show thatm=m+kw/2 is nonzero and that will imply thalﬁ>o|z,//>=0.
For this we need to use the new mass shell condition

+N+h' —wm+ —=1, (A7)

whereN is the level inside the current algebra before the spectral Bigus the second casimir in

terms of] andh’ is the conformal weight of state in the internal conformal theng internal
piece needs not be a primary state, and we only require that the whole combined state needs to be
primary). We can assume with no loss of generality thvat 1. Let us start with the spectral flow

of a continuous representatiofA7) implies that ifm=0 thenN=0 and there are no negative
norm states(The only solution withm=0 is in the case ok=3 and]=1/2)

Let us turn to lowest weight representations. Thanks to the restrictionp<k/2, we have
T,/ (k—2)>—k/4. Therefore, ifm=0, the left-hand side ofA7) is larger thark/4(w?—1). If
w=2, (A7) cannot be obeyed. =1, m=0 impliesm= —k/2 andN in (A7) has to be at least
N=T +k/2. However, in this case we firith /(k—2)+ N+ k/4=k/2+]>1 (here we used>2)
and again(A7) is not satisfied.

So we conclude that all states can be mapped into states ob&yig)=0.

APPENDIX B: PARTITION FUNCTION

In this Appendix, we discuss the partition function of the SR2WZW model and its
modular invariance.

1. Partition function of the SU (2) model

Before we begin discussing the modular invariance of the &)(&eory, let us review the
case of SIR2).

The charactergl‘(r, 0) (1=0,,1,...k/2) of the irreducible representations of the(8) affine
algebra transform under the modular transformation as

2
X,k(—l/r,—e/f)=exp( 2 i ;07)2 Suxl(7,0), (B1)
I!

whereS;; is some orthonormak({+ 1) X (k+ 1) matrix. The diagonalso-calledA,-type) modular
invariant combination is therefore

e 2m(k/2)[(Im 0)2/Im T]E (T, 0)|2' (B2)
T

—2m(k/2)[(Im )

The exponential factoe “Im7] i there to cancel the exponential factor(Bi) as
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[Im(—6/n]> (Ime)? 6* 6
m(—1n)  mr 27 2%

(B3)

It is known that the exponential factor i(B2) is a consequence of the chiral anomaly and
therefore of the OPE singularity,

I¥(2)I¥(w)~

(Z_W)Z' (B4)

2. Partition function of the SL  (2,C)/SU(2) model

In string theory, one-loop computations are done after performing the Euclidean rotation on
both the target space and the worldsheetstay in the Lorentzian signature space and usedhe
prescription. The modular invariance of the partition function is imposed on the Euclidean world-
sheet. In our case, the Euclidean rotation of the target space meansRBL(2;
=SL(2,C)/SU(2). The partition function of the SL(Z)/SU(2) model has been evaluated in Ref.

18 as

1
Zsi2c)isu2) ™ We[_z”('m 92im T]| 91r 0)|2.

Note that our definition of the partition function differs from that in Ref. 18 by the factor

e27(W2L(Im O%Im7] 1t annears that, without this factor, the partition function is not modular invari-
ant. (The puzzle about the apparent lack of the modular invariance was recently resolved in Ref.
42) One may expect that this partition function is related to the one for the Ry (Bpdel by the
Euclidean rotation. In the discussion below, we first evaluate the Bl [#rtition function on the
Lorentzian torus, and therefore taker, 6, 6 to be independent real variables. We then analytically

continue them to complex values so tigtd) are complex conjugate ofr(#). We will find that,
by doing this analytic continuation, and ignoring contact terms, the ) (Rartition function
turns into the SL(Z3)/SU(2) partition function(B5), provided we impose the constraint /2
<(k—1)/2 on the discrete representations.

(B5)

3. Discrete representations of SL  (2,R)

The character of the discrete representamfn is

Xj+( 7,0) = Tr(e2m (Lo~ [K8(k=2)]) g2 ng)
expl 2mis| — UZH
- T k=2 8(k—2)
_(1_e27TiB)H::Zl(l_eZWinT)(l_eZ'n'ir‘ITeZ'n'i0)(1_e2winre—277i0)

+ 27 9]}

2mir  1\? orial i 1
_ex ka3 +27i 6 =3 .
- 95(7.0) ' (8O
whered4(7, 6) is the elliptic theta-function,
S . 12 1
Yq(7,0)=—i E (—1)"exg it n—-5 +2mi 6 n=3/| (B7)
n=—ow

The spectral flow,
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- k o~ k
Lo=LotwI— sz, B=33— SW, (W=021£2.), (B8)

transforms the charactqrj+ as

Tr(e?™ (Lo~ [K/8(k— 2))) g2 038)

= Tr(e?™ T(Lo-+wig— (kigyw? ~ [K/B(k—2)]) g27i 633~ (2w))

1 2
2,(“5) N TRLPY N
_ex —2mT\ 5 W5 +ZW + WIHJ—E—EW
- i0q(7,0+WT)
27-ri7-_1k—222._1k—2
s B A S TemblmyT W o
—Y 93(7.0) - ®
where we used
(7, 0+wWr)=(—1)" exp( — i Tw?— 27i 6W) 9,( 7, 6). (B10)

We have also performed an analytic continuation such as

> q'=-2>q"
n=0 n=1

ignoring terms likeX_ _..q"~ &(7). From here on, we allowr, 6) to take complex values and
(7,0) to be their complex conjugates.

Let us sum over allowed representation. According to our proposal about the Hilbert space of
the WZW model, all the representations in the allowed range& {2(k— 1)/2 should appear. We
also require that the spectrum to be invariant under the spectra(B8ywso we need to sum over
w. The part of the partition function made by discrete representations is then

e+ 27(KR2)[(IM 6)2/Im 7] 2 f(k_l)lzdj
w=—o J1/2

‘{47T|m7<. 1 k-2 )2 ( 1 k-2 ”
ex j—5=—F5WwW| —4m7Imb| j—5— —F—

y k—2 2 2 2 2
|61(T10)|2
4almT
. O t?—4mIm ot
— gt 2m(ki2)[(Im 0)2/Im T]J dt
—® |1‘91(T! 0)|2

1
~ Im re27L(m 9)2/Im T]|ﬁl( . 0)|2. (B11)

It is interesting to note that thieintegral over the range 1#2j <(k—1)/2 and the sum ovew fit
together to give thé-integral over—o<t<w. Since the spectral flow witlv=1 mapst to
Dy,-j, we do not have to consider the orbit &; separately. The exponential factor
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e+ 27(W2L(Im &%(m 2] s due to the chiral anomaly, as in the @Ucase. The sign in the exponent
is opposite here since the sign of the OPEJdfs opposite in the SL(R) case.

The partition function computed i(B11) is manifestly modular invariant. In fact, it is iden-
tical to (B12) computed for the SL(Z)/SU(2) model. This gives an additional support for our
claim that the Hilbert space of the SLR), model contains the discrete representations of 1/2
<j<(k—1)/2 and their spectral flow.

The construction of the partition function here is closely related to the one given in Ref. 13.
There, instead of the integral ovgiin (B11), the partition function was given by a sum over
integral values of. This is because they considered the string theory on the single cover of the
SL(2R) group manifold with the closed timelike curve. The resulting partition function, after
analytic continuation, is also modular invariant and appears to be a correct one for such a model.
It is, however, different from the partition functiofB15) of the SL(2C)/SU(2) model, as it
should since the Euclidean rotation of the SIGRSU(2) model is naturally related to the model
on the universal cover of SL(R) rather than on its single cover.

4. Continuous representations

It is curious that the sum over the discrete representations and their spectral flow alone
reproduces the partition function of the SLC2/SU(2) model. In fact, the sum over the continu-
ous representations and their spectral flow, although formally modular invariant by itself, does not

contribute to the partition function if we assume the analytic continuation #n9, # and ignore
contact terms.

The character of the continuous representation is parametrized by a pair of real nusndgrs (
with 0= a <1 ands arbitrary. The character is given by

_ o2/l ; '
Xj=1/2+is.a= 17 SeZm[s /(k 2)]re|a9; eZmnf)_ (BlZ)

As before, we regard the worldsheet metric to be of the Minkowski signaturef enetal. So the
sumz, in the definition ofy; , gives the periodic delta-function,

> e2m=25> §(6+m). (B13)
n m
After the spectral flow(B8), the character becomes

_ i(1s2/(k— 2 i _
Xj—1/2+is,acw= 17 3eZ7TI([S 1(k—2)]+ (k/d)w )7277_% eZ'n'Im(a (k/2)W)5(0+WT+ m) (814)

Now let us take| Xl/2+is,a;w|2 and integrate oves and a. The integral overa forcesm;

=mg in the summation inB14). The integral oves gives the factor 1/Im 7. So we have

! > 5(o+wr+m).  (B15)

Vim 7 [® “m

Let us sum this ovew. We get a nonzero result only when there is some integsuch that

o 1
2_ o—4m Im n(kid)w?
f dsfoda|X1/2+is,a;w| =g 47 Im 7

Im 6

w=——-.
Im~

(B16)

Therefore
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o 1 1
e+ 2m(KI2L(Im 6)%/1m 7] f dsf da e S 5D(grwrtm).
%‘4 . 0 |X1/2+|s, ,w| /_|m7'|7]|6\/\%n ( )
(B17)

This expression is formally modular invariant singg, ,, sums over the modular orbit of the
delta-function and 1#|* cancels its modular weight. If we assume the analytic continuation, terms

of this form are all set equal to zero. So, in this sense, the continuous representation does not
contribute to the partition function of the SL(®@),/SU(2) theory after the Euclidean rotation.
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