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We consider the one-loop partition function for Euclidean BTZ black hole back-
grounds or equivalently thermaldS; backgrounds which are quotients bif;
(EuclideanAdS;). The one-loop partition function is modular invariant and we can
read off the spectrum which is consistent to that found in hep-th/0001053. We see
long strings and discrete states in agreement with the expectation200®
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I. INTRODUCTION

In this paper we continue the investigation started in Ref. 1 of the &)(®ZW model
describing string theory oAd S X M. For other work on this model, see Ref. 2. Our motivation
is to understand string theories in curved spacetimes where the metric comggyismiontrivial,
of which AdS; is the simplest example. Moreover, it is possible to construct black hole solutions
as quotients oAdS;,® so understanding string theory él'S; would lead to an understanding of
strings moving near black hole horizons.

In Ref. 1 the spectrum of the SL®), WZW model was studied, using spectral flow to
generate new representations from the standard ones. These new representations include states
corresponding to long string$ with a continuous energy spectrum, as well as discrete states. The
existence of spectral flow as a symmetry of the theory was argued on the basis of classical and
semi-classical analysis. Further support was given by the fact that the seemingly arbitrary upper
bound on the mass of string statesAndS; was removed, thus recovering the infinite tower of
masses one expects from string theory. We would like to verify these results by an explicit
calculation of the one-loop partition function. As shown in Ref. 4, the Euclidean black hole
background is equivalent to the thernfadlS; background. So we will consider string theory on
AdS; at a finite temperature, which is described by strings moving on a Euclidld& back-
ground with the Euclidean time identified. The calculation of the partition function for this geom-
etry is a minor variation on the calculation of Gawedzki in Ref. 7. From this we can read off the
spectrum of the theory in Lorentzian signature by interpreting the result as the free energy of a gas
of strings.

This paper is organized as follows. In Sec. Il we review the spectrum found in Ref. 1. In Sec.
Il we compute the one-loop partition function on thernfedlS;. In Sec. IV we read off the
spectrum from the one-loop calculation. First we present a qualitative analysis, which is then
followed by a precise calculation. We explain how the different parts of the spectrum arise from
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this calculation. We further show how the one-loop result contains information about theR$L(2,
and Liouville reflection amplitudes.

IIl. THE SPECTRUM

We begin by briefly summarizing the results of Ref. 1, where a concrete proposal for the
spectrum ofAdS; string theory was made. We consider a critical bosonic string theory on
AdSX M. The Hilbert space of the SL(R) WZW model is generated by the action of the
left-moving and right-moving current algebE—SL\RaLx ST(Z?)W and all the states form rep-
resentations of this algebra. The simplest representations are built by first choosing representations
for the zero modes, then regarding them as the primary states annihilaﬂ%fp.yThe raising
operators]ﬁf0 are then used to generate the representations of the current algebra. From harmonic
analysis, i.e. quantum mechanical limit, it is known that the left—right symmetric combinations
C12+is X C 12415 ANd D= 1, X D~ 4, form a complete basis if*(AdS;), whereC . ;s is
the principal continuous representation aﬁqt>1,2 the principal discrete representation of
SL(2R). These representations are unitary, but the resulting current algebra representations
C 121 is X Ciyjp11s AN D} 1 X DJ 115, constructed as explained above, are not. This is not a
surprise, for even in flat Minkowski space it is not until one imposes the Virasoro constraints,

(Ly+ Ly— 8n0)|physica)=0, n=0, (1)
that a unitary spectrum is obtained. Hetg is the Virasoro generator for the internal conformal

field theory corresponding t81. The proposal of Ref. 1 is that one should consider not just these
representations but also those obtained by the spectral flow

~ k
Ji—3a=33— 5 Wano,

N AN AT 2)

3 —=3n =3

The Virasoro generators, given by the Sugawara form, then beﬁqmd-;n+wJﬁ—k/4w25n,0.

Imposing onD,~.,,X D;~,, the condition(1) with L, one finds that these states have a discrete
energy spectrum,

E=J33+33=q+0+kw+2]

—1+q+q+ 2w+ V1+4(k—2)(N,+h—1— Tw(w+1)); 3)

hereN,, is defined to be the level of the current algebra after spectral flow by the amgunt
N,,=N—wgq, andN is the level before spectral flow. The state with ene(@lyis obtained from

a lowest weight state by acting with the SLR®,currentsITJd-_,[j,]), with q the net number of
*+ signs in this expression. In other wordgis the number of spacetime energy raising operators
J minus the number of spacetime energy lowering operatgrshat we have to apply to the

lowest weight, lowest energy steﬁe m=T> to get to the state whose spacetime enerd@)isq is

the corresponding quantity for the generatdys We also have a level matching condition of the
form

Ny+h=N,+h, (4)
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which implles that the angular momentumAnl S;, | = Jg—ng g—q, is an integer. We argued in
Ref. 1 thatj is further restricted to the range
k—1

N| -

which implies

k , 1
—w+ swW<N,+h—1+

k , 1
Z 5 <Z(W+l) ——(w+1). (6)

1
4(k—2) 2

A similar analysis orCi 15, ;s X Cj 1545 Yi€lds a continuous spectrum,

kK 1[28°+3% _ .
E_§W+V_V W‘l‘N‘l‘h‘l‘N‘l‘h—Z s (7)

where s takes values over the real numbers and is interpreted as the momentum in the radial
direction for the long strings. These states satisfy the level matching condition

N+h=N+h+wx (intege). (8)

In the rest of the paper we will do an independent calculation which will reproduce this single
string spectrum.

[lI. ONE-LOOP PARTITION FUNCTION

In this section we compute the worldsheet one-loop partition function. First we explain the
relation between various useful coordinate systems. Then we consider thedi8at H,/Z and
show how the identification of Euclidean time in the global coordinates translates into particular
boundary conditions for the target space fields. The partition function is then calculated by an
explicit evaluation of the functional integral following Ref. 7.

A. Coordinates on Hj and thermal AdS;

The natural metric o5 is given by

k
d52=>72(dy2+dde, 9)
which is the Euclidean continuation of the Poincaretric onAdS;. By the coordinate transfor-
mation,
et
- tHi0 o t—io —
w=tanhpe'™'?, w=tanhpe'™'?, y coshp’ (10
we obtain the cylindrical coordinates on Euclide@dsS;,
d32 2 2 i 2
TZCOSdet +dp?+sint? p d 6. (11

For the purpose of calculating the partition function, however, it is convenient to use coordinates
in which the metric readsas

92 L
o =07+ (dv-+v de)(do+o de), (12)
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which corresponds to the parametrizationHf as

e?(1+|v|?>) v 13
s (13)
The coordinate transformation froti1) to (12) is
v=sinhpe'?
v=sinhpe '’ (14)
¢$=t—log coshp.
ThermalAdS; is given by the identification
t+ig~t+io+p, (15
where 3 represents the temperatufeand the imaginary chemical potentiat for the angular
momentum,
B=pripg= =t 16
B=priup=z+i7. (16)

The corresponding identifications in the coordinatE® are

v~peHh
v~ve #h 17
P~ ot B,
which is a consistent symmetry of the WZW action,
k ) — _ -
S=; d<z(d¢p dp+(dv+ddpv)(dv +dgdv)). (18
B. Computation of the partition function on thermal AdS;,

In this subsection we compute the partition function for string theory on theAd&,. We
consider a conformal field theory on a worldsheet torus with modular paramédter z+ 2
~z+2m7). The two-dimensional conformal field theory on the worldsheet is the sum of three
parts: the conformal field theory dr;, the internal conformal field theory afvt, and the(b, ¢
ghosts. First we start with the computation of the partition function for the conformal field theory
describing the three dimensions of therndedS; and then we will multiply the result by the
partition function of the ghosts and the internal conformal field theory.

Due to the identification(17), the string coordinates now satisfy the following boundary
conditions:

d(z+2m)=d(z)+ BN, P(z+277)=d(z)+ Bm,
19
U(Z+27T)=U(Z)ein“ﬁ, U(Z+27T7')=v(z)eim,u/3_ (19

The thermal circle is noncontractible and therefore we get two inte@eny characterizing
topologically nontrivial embeddings of the worldsheet in spacetime. In order to implement these

boundary conditions it is convenient to define new fiefgl$ such that they are periodic:
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b=d+ Bl am(2,2),

(20)
U:i} exqi M:Bfn,m(zaij):
with
f _ ! 17 21
nn(22)= g —[2(n7=m)=Znr-m)]. (21)
When we substitute this into the acti¢b), we get
kp? 2, K 2 (2 1 2\ 2
S= 47772|nr—m| +;fd z| ||+ ‘HZ_TZU”"“JFM ol |, (22
where
[ . _
Un(7)= 5 (B=ipB)(n7—m). (23
We are interested in the functional integral
Z(B,pim)= f D¢ Dve >, (24)

This integral is evaluated as explained in Ref. 7. We can first do the integrabgwerhich is
quadratic, giving the determinant

de

1 . -2
o+ 2_7_2Un,m+ (9¢‘ . (25)
We calculate thez}ﬁ dependence on the determinants by realizing that we can (@&was an

inverse of two fermion determinants. We can then remgvizom the determinants by a chiral
gauge transformation and using the formulas for chiral anomalies. The result is

-2

de

(26)

1 N ne 1
(9+2—r5Un'm+(7¢’ ZEZ/WJ d2207¢o7¢de (9+Z_7Un,m

The remaining integral ovep gives the usual result for a free boson, except khak—2 due to
(26). The functional integral for the thermAldS; partition function then gives

Bk—2)"”
Z(B,u;1)=

e~ kB m=n1?/anry+2m(Im Uy )%/,

X i i i i
an |Sin(7TUn‘m)|2|H?=l(1_ e2'n'lr'r)(1_ eZﬂ'If'r+ 27U n,m)(l_ eZﬂ'II’ T—27T|Unym)|2

—kBIm=n7l2/dmry+ 2a/(Im Uy, ) 2/r 5

_'B(k_z)llz _ana &
ol A0 EXCE ’ @7

whered; is the elliptic theta function ang=e?™'". The factor8(k—2)*2 comes from the length

of the circle in the¢ direction. This partition function is explicitty modular invariant after sum-
ming over(n, m). [In our previous paper, there was a puzzle about the apparent lack of modular
invariance of the SL(R) partition functions withJ® insertions(see Appendix B of Ref.)1 Here
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(n,m)

FIG. 1. The sum oven is traded for the sum over copies of the fundamental domain.

we have found that, if we introduce the twist by considering the physical set-up of thah$g|
the result(27) turns out to be manifestly modular invariant. This resolves the puzzle raised in Ref.
1]

We also need to include the contribution of liee ¢) ghosts and the internal CFT. A partition
function of the latter will be of the form

Z= (@ S D(h,h)g"g", 28)
h,h

WhereD(h,F) is the degeneracy at left-moving weidhtand right-moving WeighR andcy is
the central charge of the internal CFT. Modular invariance requireshthdite Z, a fact which
will be useful in the next section. Vanishing of the total conformal anomaly gives

Csi(2R) T Cint= 26. (29

We can calculate now the total contribution to the ground state energy. We found a ground state
energy of —3/24 in (27), the ghosts contribute with 2/24 and the internal CFT witl;,/24
= (Csi(2r) —26)/24. Usingcg or)= 3+ 6/(k—2), we find the overall factor,

(qﬁ)*(lﬂint)/%: etmra(1-1AKk-2)) (30)

[Note thatc;,=0, k>2, and(29) imply that there will always be a tachyon in the thedry.

After multiplying (27) by the(b, ¢) ghosts and the internal CFT partition functions, we should
integrate the resulting expression over the fundamental dofgiof the modular parameter.
The computation is much facilitated by the trick invented in Ref. 8 to trade the surmongR7)
for the sum over copies of the fundamental domain. See Fig. 1. This is possible(isjnTie
transforms as a doublet under the modular group S)(2f (n,m)+# (0,0), it can be mapped by
an SL(2Z) transformation to (®n),m>0. The SL(2Z) transformation also maps the fundamen-
tal domain into the strip Im=0, | Re7{<1/2. On the other handn(m)=(0,0) is invariant under
the SL(22) transformation, and the corresponding term still has to be integrated over the funda-
mental domainF,. This term represents the zero temperature contribution to the cosmological
constant, or the zero temperature vacuum energy. In addition to the usual tachyon divergence of
bosonic string theory at largs, it is also divergent due to the sihfactor in(27); this divergence
can be interpreted as coming from the infinite volum@dfS;. Since the temperature dependence
of this term is trivial we will ignore it from now on. The final result then is that werfix0 in (27)
and we integrate over the entire strip shown in Fig. 1. The one-loop partition function of bosonic
string theory orH3;/ZX M is then
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k—2 1/2 1/2 o _
zw,m—ﬁ R f @47 HAKE2DS) D(hh) g
0 75

1/2 h,h

e*(k*Z)m2B2/4'n’7'2 * l_eZ'n'ir‘IT

n=1 (]_—emﬁ+27inT(l_e*mﬁ+2ﬂinr)

‘ 2
(31)

|sinh(mpB/2)|?

IV. READING OFF THE SPECTRUM

We will now extract the spectrum of Lorentzian string theoryAdS; by interpreting the
one-loop partition function in the spacetime theory. The one-loop partition function is the single
particle contribution to the spacetime thermal free ener(\3,«)=— BF. To this each string
state makes a contributigf~* log(1—e #E*)) whereE and| are the energy and the angular
momentum of the state. The total free energy is the sum over all such factors:

[

1 )
F(B.u)== 2 log(1—e AEsing"iulsing)= > f(mB,mu), (32
B stringe H m=1
where
1 )
f(:87ﬂ) = — 2 efﬁ(Estrinng'/’“lstring)_ (33)
,8 stringe H

Here M is the physical Hilbert space of single string states. In k8t and(32), we have the
sums over functions ofniB,mu). It is therefore sufficient to compare tine=1 terms in these
expressions. In other words, we want to verify tBat;,q andl g €xtracted from the identifica-
tion,

f(B'/“L): 2 Ee_B(Estring‘*'iM'string)
stringe H ﬂ

0 27

1/2 12 ") h
_(k=2)"” 2) dpzj dry g7~ 1420 b (h h)gg"
h,h

oo

e—(k—z)ﬁ lAmTy 1— g2minT ‘2

(34

X

n=1 (l_eﬂ+27‘rin7')(l_efﬂ+2ﬂ'inf)

|sinh(B/2)|?

agree with the string spectrum found in our previous pap#ke will see that the sum over the
Hilbert space breaks up into a sum over the discrete states and an integral over the continuous
states, with the expressions for the energies that were reviewed in Sec. Il. Since the one-loop
calculation presented here is independent of the assumptions made in Ref. 1 about strings in
LorentzianAdS;, we can regard this as a derivation of the spectrum starting from the well-defined
Euclidean path integral.

A. Qualitative analysis

In this subsection we will analyz€4) in a qualitative way and explain where the different
contributions to the spectrum come from. To keep the notation simple, wg sét in this
subsection, leaving the exact computation for the next subsection.

As expected, in34) there is an exponential divergencem@s—~, coming from the tachyon.
This is just as in the flat space case, where (nfas8)of the tachyon causes its contribution to be
weighted with a positive exponential. We will disregard this divergeptekeptical reader could
think that we are really doing the superstring partition functithe fermions included in the
internal CFT, etg. Then the tachyon divergence will disappear but one would still find the
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X T2 =|3/21t
x T2=0/4n
x X x T2 =l3/61t
X e X T2 =ﬁ/875
T1==1/2 T1=1/2

FIG. 2. Poles in the~-plane, shown fow=1 to 4.

divergences that we discuss below. Of course, the one-loop partition function is nonvanishing
even in the supersymmetric case since the thermal boundary conditions break supersymmetry.
However, rather unexpectedly, the expression above has additional divergences at finite values of
7. In string theory one might naively expect that divergences come only from the corners of the
fundamental domain in the-plane, but in this case the divergence is coming from points in the
interior of the fundamental domain. Overcoming the initial panic, one realizes that these diver-
gences are related to the presence of long strings. In fact, as with any other string divergence, it
can be interpreted as an IR effect. This divergence is due to the fact that long strings feel a flat
potential as they go to infinity and therefore we get an infinite volume factor. To see this, note that
near the poldsee Fig. 2,

T= Tpolet €, (35
where
r. B
Tpole™ w +1 m s (36)

we can expand the partition function and replade all terms by its value at the pole, except in
the one term that has the pole. If we integrédd) near the pole, i.e. in the regian<|7— 7yod
<1, we find that it diverges as logwith the coefficient

1 k 1/~ - — 1 2mir . U
\/T’Bsexr{—ﬁ §W+W N+h+N+h—2+2(k_2)>)+ " (N+h—N-h)|. (37

We now sum over, with |r/w|<1/2, since these are the ones corresponding to the poles in the
strip. (If some poles are on the boundaries of the strip; = 1/2, then we only count them onge.

This sum constraindl+h—N—h to be an integer multiple ofv, as in(8), and it introduces an
additional factor ofw in (37). The log divergence in the-integral can therefore be expressed as

1 o)
f(ﬁ,M)~Elogef0 dse PES ... (39

whereE(s) is the energy spectrum given i§y). Note that thes-integral and the sum overwe
mentioned above give the factqiw/B needed to match the prefactor (@) to that in(38). This
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reproduces the expected contribution from the long strings on the left hand si@4)ofThe
logarithmic divergence should be interpreted as a volume factor due to the fact that the long string
can be at any radial position. In the next subsections, we will see more precisely that it is indeed
associated to the infinite volume in spacetime by relating a long distance cutoff.

Now we would like to calculate the short string spectrum. Since the long string spectrum gives
a divergent result, while the short string spectrum gives a finite one, it might appear at first that
extracting the contributions due to the short strings from a divergent expression s(82) a4l
be problematic. Fortunately we can get around this difficulty since the temperature dependence of
the long string free energy is different from that of the short string free energy. In the next
subsection we will explain how to do this precisely and reproduce the short string spectrum which
agrees with Ref. 1. One of the more puzzling aspects of the short string spectrum found there is
that there is a cutoff 1/2] <(k—1)/2 in the value of the SL(R) spin]. In the remainder of this
section we will explain in a qualitative way how this cutoff arises by doing the calculation for
largek.

If we were to evaluate the right hand side(8#) naively (and incorrectly, we would expand
the integrand in powers aj=e?"" and then perform the-integral. If we did this, we would
obtain the short string spectrum wiit=0 and no upper bound on the valuejofHowever this
expansion is not correct. How we can expand the integrari@4ndepends on the value af,.
When we cross the poles at= B/27ww, a different expansion should be used for the denomina-

tor:
1 - . B
_ q(B+2miwT)
l_eﬁ+27|WT_§0 € i T<T2>27TW)’
= _qu e~ (@+1)(+2miwp) 7.2<ﬁ ) (39)

When 75 is in the range

B B

2m(w+1) ST oaw (40

the product oven in the first term in the denominator i{84) is broken up into two factors, a
product in I=n<w and a product inw+1=<n. The first factor is expanded in powers of
e(~£+2mn7 and the second factor is expanded in powerg®2™"7. Combining them together
with the treﬁrims coming from the expansion of the remaining product34n we get an exponent
of the for

—(3+q+w)B+2mi (N, — sw(w+1)), (41)

for some integerg] andN,,. [The first term—£/2 comes from expanding 1/sindi@) in (34).]
There is a similar term for— 7. We are then to do the-integral of the form

J d?r
72
% @dmra(1- UAk=2)) (k- 2)(B2l4mry) — B(1+q+ 4 2W) + 27 7Ny + h— (L2W(W-+ 1)) — 277 7Ny, + h— (L2 W(w+1))

(42)

over the region(40). The integral overr; produces the level matching conditié#). Now we
evaluate the integral over, using the saddle point approximation. We find that the saddle point
is at
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(k=2)p
Tsaddle— ) (43
27\ 1+ 4(k—2)(Ny+h—1— 2w(w+1))
and the integral gives
1 _ 1
Eex;{ -Bl1+q+g+2w+ \/1+4(k—2) Ny, +h—1— Ew(w+ 1) } (44

This is the correct form of the contributions due to the short strings on the left hand si@é).of
Moreover we obtain the bound gnprecisely, because,,qgehas to be in the rang@o) in order

for the saddle point approximation to give a nonzero result(48), this condition is the same as
the bound on the spectru(B), which is equivalent to 12 < (k—1)/2. (It is a bit surprising that

we get all factors precisely right from the saddle point approximatidnotice then that the cutoff
in] is associated to the fact that we expand the integrari@4nin different ways depending on
the value ofr. The value ofr making the biggest contribution to the integral depends on the values
of N andh of the string state.

B. A precise evaluation of the  sintegral

Now let us study the partition functio(84) more systematically. In this subsection, we go
back to the general case with+ 0. From what we saw in the previous subsection, we expect to
find the discrete states from the integral over the raid@ and the continuous states from the
poles after a suitable regularization.

In order to evaluate the-integral exactly, it is useful to introduce a new variablby

; 312 o
e—(k—2)(ﬁ2/47r72):_8;| (kizz) f de Ce—[4w72/(k—2)]02+2iﬁc. (45)

Now supposer, is in the range

B
2m(w+1)

<’7'2< (46)

27w’

and expand the integrand {84) as explained in the previous subsection. The right hand side of
(34) becomes a sum of terms like
1 _ 1
—-Blq+tw+ >

4 J'oo Bl2mw 172 F{ .
—_— dc CJ d J drexg — +w+ =
B(k—=2)i J - Bl2m(w+1) ) Ala
2c24 1

2
h+h+ Ny, + Ny, + kfzz—w(w+ 1)—2) }

+2i Tl(NW-i‘h—WW—H)-FZiCﬂ—Z’TTTZ

(47)

The integral overr; gives a delta function enforcing,, + h=ﬁw+ﬁ, which is the level-matching
condition (4). Integrating overr, in the rangeg(46) gives
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c-plane

c=s+ik-2)(w+1)/2

c=s+1(k-2) w/2

|1

FIG. 3. Shifting the contour of integration picks up the pole residues corresponding to the short string spectrum.

if L EH2ich—patwt - pE+w+ 3)]
—or c®+ 5+ (k—2)(N,+h—1— w(w+1))

B

2, 1
2c+ 3

B
x[ —exp{—w<2NW+2h—2+ - —w(w+1)

2c?+ 1

2—W(W+ 1)

2N, +2h—2+ ] (49)

B
* ex‘{ w1 k—2
where we used4).
Let us first look at the first ternithe second lingin (48). We note that the exponent can be

expressed in the form of a complete square if wecses+ (i/2) (k—2)w. As it will become clear

shortly, it is natural to shift the contour of tleeintegral from Imc=0 to Imc=1/2(k— 2)w so that
sbecomes real. During this process the contour crosses some poles in the integrand, picking up the
residues of the poles in the rangez0m c<1/2(k—2)w. See Fig. 3. The poles are located at

©  _Nyihe L o1t 2 49

(k——Z)_ wt EW(W"F ) +m<TW. ( )

Similarly, for the second exponential terfthe third line in (48) we shift the contour t&=s
+(i/2)(k—2)(w+ 1) with s real. This picks up the poles at

c? 1 1 -
— — — — - e 2
=2 N,+h 2w(w+ 1) 1+4(k—2) < 7 (w+1)~. (50
It is important to note that the residues of these poles have a sign opposite to that of the residues
of the poles obeyin@49). So the result is that we are left with only those poles in the range

k—2
TW<|m C<T(W+ 1), (52

with residues

%ex;{—ﬁq—ﬁa—g(ﬁ oW+ \1+4(k—2)(Ny,+h—1— 2w(w+1)))]. (52)

This is the expected contribution of the short strings to the right hand sipfand we see also

that (51) translates into the correct bound pr(5).
It remains to examine the resulting integral owemotice that the term coming from just
above the pole at= B/wa has a very similaw dependence in the exponent as that coming from
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just below the pole. In other words, we combine the first tern48f with the second term of an
expression similar t@48) but withw—w—1 and we find, after shifting the contours as above,

.- [k 2(s*+14
1 oo 25 . exr{—ﬂq—ﬁq—ﬁ §W+W W+Nw—l+h_l
2wiﬂfwds(w(k—2)+' 1 k 1 2 1/4
5 His—zw+ o NW,1+h—1+—k_2 )
. o~ [k 2 (s?+1/4
ex;{—ﬁq—ﬁq—ﬂ EW"‘w(W‘f‘NW‘Fh—l)”
B 1 k1 2+ 1/4 ' (53
_§+IS_ZW+W NW+h_1+W

Let us concentrate for now on the third line (&f3). We first note that the sum of such terms over
all states gives rise to the log divergence. To see this, it is useful to notice that the combinations

N=qw+N,, N=gqw+N,, (54)

that appear in the exponent of the third line of Es3) are the levels before spectral flow. Thus,

for a given statey), states of the formJ} J;)"|¢) all have the same value &f andN. Acting

with 3355 on |¢) does not change the exponent(6§8), but it does change the denominator by
one. This implies that when we sum over all the states of this type, we will find a divergent sum
of the form

1
n§=:oA—n'

This divergence has the same origin as the divergence of the right hand <igi® af the pole
Tpole™ B/wa. In fact, if we regularize the-integral by removing a small region near the pole as

| 7— Tpoid > €, we find an additional factae™ "€ in the sum. In the next subsection, we will give the
spacetime interpretation of this procedure. With this regularization, the sum behaveseas log
More precisely we have

i 1 “Ne_| + d logI'(—A)+O 55
25 A-n® g€t gplogl(=A)TOle), %9
where
1k 1(s?+% _
A__§+IS_ZW+V_V n‘FN‘Fh_l . (56)

Here we have assumed that

N+h<N+h, (57)

but it can be seen that the other case gives the same result.

Now we turn our attention to the second line(68). In those terms we have one less unit of
spectral flow, as compared to the third ling%8) that we analyzed above. In other words, now we
will have that (v—1)g+N,,_;=N’. These states are in the spectral flow imag@pf. Since we
want to combine these states with the states coming from the third li&S)irit is convenient to
do spectral flow one more time and think of these states as in the spectral flow in2geuoier

w units of spectral flow. In this case we find trgat N’ =N where nowN is the level of theD}”
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representation before spectral flow. From now on the discussion is very similar to what we had

above. The states witrﬁgjg)”|z/f> all have the same energies but they will contribute to the
denominator of the second line {63) with

z“’: Le’“‘"=|oge—ilogl“(B)jL(’)(e) (58
n=0 B+n dB ’
where
1k 1[s+i . —
B_§+IS_ZW+_ m'ﬁ"\l'ﬁ‘ —-1]. (59)

again assumings7).
After we perform these two sums, we find t{&B) can be written in the form

Efwd - (E +il N+h—|\7—ﬁ) (60)
3, sp(s)exg — B| E(s) |W( )|

with E(s) the energy of long string&’) andp(s) the density of states. We will later see that the
physical momentunp of a long string in thep direction is equal tgp=2s. The angular momen-
tum|=(N+h—N-h)/w is an integer since the states(68) were obeying4) and the definition
(54) ensures that8) is satisfied. The density of statpés) derived from this analysis is

) 1 " d | I'(i—is+mI'(3—is—) 61
s)=5—-2loge+ — slo ,
PI™ 27 2097 24 2ds gF(%+is+n’1)F(%+is—ﬁ1)
where
ko 1[s+E )=k132+%:_
m——ZW‘FW k_o +N+h—-1]1, m——ZW+W k_2+N+h—1 . (62

Note that, despite appearances to the contri@d), is actually symmetric undeh«—m sincefn
—m=lis an integer. In the next subsection we will show that this density of stafgss what
is expected from the spacetime meaning of the cuwolii going from(53) to (60) we have states
which could be interpreted as coming from the spectral flow of the discrete representa]ﬁons
andD; , with the zero modes essentially stripped off since they were explicitly summed over in
(55 and(58). This implies that the states we have in the end belong to the continuous represen-
tation. Note also that the integral ovein (60) has only half the range i(63). We rewrote it in
this way using the fact that the exponent is invariant ursder—s, and that is the reason why we
have four gamma functions i(61). In going from (53) to (60) we have also used that/dA
=(1/d/dA(s)/ds)(d/ds) in (56) and similarly in(59).

Combining Egs(52) and(60), we have, finally,

E e—B(E+i,u|)+fxdsp(s)e—B(E(SHi,ul) (63
a.9 0

1 — -
f(B,M)=EE D(h,h,N,N,w)

which is the free energy due to the short strings and the long strings, respectively.
C. The density of long string states

What remains to be shown is the interpretatiorp¢$) given by(61) as the density of long
string states. Whenever we have a continuous spectrum the density of states may be calculated by
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first introducing a long distance cutoff which will make the spectrum discrete, and then removing
the cutoff. If the cutoff is related to the volume of the system then the density of states will have

a divergent part, proportional to the volume and dependent only on the bulk physics, and a finite
part which encodes information about the scattering phase shift and also has some dependence on
the precise cutoff procedure. To see this, let us consider a one-dimensional quantum mechanical
model on the half linep>0, with a potentiaM(p). We assume tha¥(p) vanishes sufficiently

fast for largep, and that there is continuous spectrum above a certain energy level. To define the
density of states, it is convenient to introduce a long distance cutoff at pesgethat the spectrum
becomes discrete. Let us first consider a cutoff by an infinite watl=at.. If L is sufficiently

large, an energy eigenfunctiafip) near the wall can be approximated by the plane wave,

w(p)~e—ipp+eipp+i5(p), (64)

where §(p) is the phase shift due to the original potentiflp). Imposing Dirichlet boundary
condition (L) =0 at the wall, we have

2pL+8(p)=2m(n+ 3), (65)

for some integen. If L is sufficiently large, there is a unique solutips p(n) to this equation for
a givenn. As we remove the cutoff by sendig— o0, the spectrum op becomes continuous. We
then define the density of stateép) by

dn=p(p)dp. (66)

From (65), we obtain

B 1 ( d5)
P(p)—z 2L+d—p . (67)

Thus the finite part of the density of states is given by the derivative of the phase shift.
Instead of the infinite wall ap=L, we may consider a more general potentigl(p—L)
which vanishes fop<<L but rises steeply foL<<p to confine the particle. Let us denote by
Swan(p) the phase shift due to scattering frovy,,(p). We then obtain the condition on the

allowed values of momenta by matching these two wavefunctions and their derivatpred ads

w(p)we*ipp_,_eippﬂ&(p)wA[e*ip(p*L)_,_eip(p*LHi&wau(p)] (p~L). (68)
It follows that
pL+6(p)=—pL+ Syai(p)+27n. (69

In the limit L—oo, the density of states given lidn=p(p)dp is then

1
p(p)=5(2L+—— (70)

When we have the infinite wall, the phase shift due to the wall is independ@igf,= =), and
(70) reduces td67).

In order to apply this observation to our problem, it is useful to first identify the origin of the
logarithmic divergence in the one-loop amplitudé€s, ) by examining the functional integral

(24) near the boundary 0AdS;. In the cylindrical coordinate€ll), the string worldsheet action
(18) for large p takes the form

k .
S~;jdzz(&pﬁp-l-Zezp|&(0—lt)|2+'-~ . (72
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Because of the facta®”, the functional integral for large restricts €, 6) to be a harmonic map
from the worldsheet to the target space. Sinc@)( are coordinates on the torus,

6—it~6—it+27n+iBm (n,m integers, (72

the harmonic map from the torus to the torus is

6—it=(2mw+iBm)ot+(2ar +iBn)a?

=[(2mw+iBm)r— (27r +iBn)] %
2

—[(zww+i23m)7—(2m+iian)]%, (73

wherez= o'+ po? is the worldsheet coordinate arid w, n, m are integers. In particular, the
map (f—it) with (n,m)=(1,0) becomesv—to—1 ancholomorphicwhenrtakes the special value

(74

On the other hand, if is not at one of these pointg(6—it) cannot be set to zerpFor anyr, we
also have a trivial holomorphic map, @) =const. The functional integral around such a map
gives a result independent gfand we can neglect it in the following discussipmhis gives rise

to an effective potentia@®” for p, which keeps the worldsheet from growing towards the bound-
ary. If 7is nearrpge,

T= Tpolet €, (75

the harmonic mag73) with (n,m)=(1,0) gives

20,2\ 2
|3(a—it)|2~(zwﬁw) &, (76)

Thus the action(71) generates the Liouville potentia’e?”. When we computed the one-loop
amplitude in Secs. IVA and IV B, we regularized thdntegral by removing a small diskr
—Tp0|e|<e around each of these special points. Nearr,q., this is equivalent to adding the
infinitesimal Liouville potentiale?e?” to the worldsheet action. Fo#— 7,0d> €, the worldsheet

can never grow large enough and the effect of the Liouville term is negligible. To be precise, the
Gaussian functional integral of,@) shiftsk— (k—2) as in(26) and the effective action fgr near

T= Tpole IS

S . :k__z dZZ((? ';7 + 2 Zp) (77)
Liouville p popTeET).

Therefore, we find that our choice of regularization(%) and (58) amounts to introducing the
Liouville wall which prevents the longs strings from going to very large values &y looking
at the potential in(77), we see that the effective length of the intervalLis-loge. The central
charge of this Liouville theory is such that teé” term has conformal weight one,

1\2 1

b++~], b=—.
vk—2

ClLiowile=1+6 (78)

b
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The finite part of the density of states will be given throu@h) by §(s), the phase shift in the
SL(2R) model, andé,4(s), the corresponding quantity in Liouville theory. The first one was
calculated in Refs. 9 and 10,

1“1'”1“1"1“ 2'1“2iS
. §+|s—m §+|s+m (—2is) =2 .
io(s)=log ; '~r1' zz'r_ZiS : (79
E—ls—m §—|s+m( is) =2
while the second one was obtained in Refs. 11 and 12,
(= 2is\T 2is
. (—2is) =2
i Oyan(s) =log (80)

) —2is
F(ZIS)F(E)

[In order to compare with the expressions in Refs. 11, 12, we use the vatugiven in(78) and
note that the relevant values afare « = Q/2+isb.] Using these two formulas we can check that
indeed the density of staté8l) is given by(70). We can view this as an independent calculation
of (79) or as an overall consistency check. Notice that the physical momemufma long string
along thep direction isp=2s. This can be seen by comparing the energy of a long stdhgith

the energy expected frorf¥7) with spacetime momentum along the radial directionp=(k
—2)wp. We have chosen the variabtesince it is conventional to denote ky=1/2+is the
SL(2R) spin of a continuous representation.
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