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We consider the one-loop partition function for Euclidean BTZ black hole back-
grounds or equivalently thermalAdS3 backgrounds which are quotients ofH3

~EuclideanAdS3!. The one-loop partition function is modular invariant and we can
read off the spectrum which is consistent to that found in hep-th/0001053. We see
long strings and discrete states in agreement with the expectations. ©2001
American Institute of Physics.@DOI: 10.1063/1.1377039#

I. INTRODUCTION

In this paper we continue the investigation started in Ref. 1 of the SL(2,R) WZW model
describing string theory onAdS33M. For other work on this model, see Ref. 2. Our motivati
is to understand string theories in curved spacetimes where the metric componentg00 is nontrivial,
of which AdS3 is the simplest example. Moreover, it is possible to construct black hole solu
as quotients ofAdS3 ,3 so understanding string theory onAdS3 would lead to an understanding o
strings moving near black hole horizons.

In Ref. 1 the spectrum of the SL(2,R) WZW model was studied, using spectral flow
generate new representations from the standard ones. These new representations includ
corresponding to long strings,5,6 with a continuous energy spectrum, as well as discrete states
existence of spectral flow as a symmetry of the theory was argued on the basis of classic
semi-classical analysis. Further support was given by the fact that the seemingly arbitrary
bound on the mass of string states inAdS3 was removed, thus recovering the infinite tower
masses one expects from string theory. We would like to verify these results by an e
calculation of the one-loop partition function. As shown in Ref. 4, the Euclidean black
background is equivalent to the thermalAdS3 background. So we will consider string theory o
AdS3 at a finite temperature, which is described by strings moving on a EuclideanAdS3 back-
ground with the Euclidean time identified. The calculation of the partition function for this ge
etry is a minor variation on the calculation of Gawedzki in Ref. 7. From this we can read of
spectrum of the theory in Lorentzian signature by interpreting the result as the free energy o
of strings.

This paper is organized as follows. In Sec. II we review the spectrum found in Ref. 1. In
III we compute the one-loop partition function on thermalAdS3 . In Sec. IV we read off the
spectrum from the one-loop calculation. First we present a qualitative analysis, which is
followed by a precise calculation. We explain how the different parts of the spectrum arise

a!Electronic mail: malda, json@pauli.harvard.edu
b!Electronic mail: ooguri@theory.caltech.edu
c!On leave of absence from the University of California, Berkeley.
29610022-2488/2001/42(7)/2961/17/$18.00 © 2001 American Institute of Physics
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this calculation. We further show how the one-loop result contains information about the SLR)
and Liouville reflection amplitudes.

II. THE SPECTRUM

We begin by briefly summarizing the results of Ref. 1, where a concrete proposal fo
spectrum ofAdS3 string theory was made. We consider a critical bosonic string theory
AdS33M. The Hilbert space of the SL(2,R) WZW model is generated by the action of th
left-moving and right-moving current algebra SL(2,R)̂L3SL(2,R)̂R , and all the states form rep
resentations of this algebra. The simplest representations are built by first choosing represe
for the zero modes, then regarding them as the primary states annihilated byJn.0

3,6 . The raising
operatorsJn,0

3,6 are then used to generate the representations of the current algebra. From ha
analysis, i.e. quantum mechanical limit, it is known that the left–right symmetric combina
Cj 51/21 is

a 3Cj 51/21 is
a andDj .1/2

6 3Dj .1/2
6 form a complete basis inL2(AdS3), whereCj 51/21 is

a is
the principal continuous representation andDj .1/2

6 the principal discrete representation
SL(2,R). These representations are unitary, but the resulting current algebra represen
Ĉj 51/21 is

a 3 Ĉj 51/21 is
a and D̂j .1/2

6 3D̂j .1/2
6 , constructed as explained above, are not. This is n

surprise, for even in flat Minkowski space it is not until one imposes the Virasoro constrain

~Ln1Ln2dn,0!uphysical&50, n>0, ~1!

that a unitary spectrum is obtained. HereLn is the Virasoro generator for the internal conform
field theory corresponding toM. The proposal of Ref. 1 is that one should consider not just th
representations but also those obtained by the spectral flow

Jn
3→ J̃n

35Jn
32

k

2
wdn,0 ,

Jn
1→ J̃n

15Jn1w
1 , ~2!

Jn
2→ J̃n

25Jn2w
2 .

The Virasoro generators, given by the Sugawara form, then becomeL̃n5Ln1wJn
32k/4w2dn,0 .

Imposing onD̂j .1/2
6 3D̂j .1/2

6 the condition~1! with L̃n one finds that these states have a discr
energy spectrum,

E5J0
31 J̄0

35q1q̄1kw12 j̃

511q1q̄12w1A114~k22!~Nw1h212 1
2 w~w11!!; ~3!

hereNw is defined to be the level of the current algebra after spectral flow by the amouw,
Nw5Ñ2wq, andÑ is the level before spectral flow. The state with energy~3! is obtained from
a lowest weight state by acting with the SL(2,R) currentsP J̃n<0

6 u j̃ , j̃ &, with q the net number of
6 signs in this expression. In other words,q is the number of spacetime energy raising operat
Ja

1 minus the number of spacetime energy lowering operatorsJa
2 that we have to apply to the

lowest weight, lowest energy stateu j̃ ,m5 j̃ & to get to the state whose spacetime energy is~3!. q̄ is
the corresponding quantity for the generatorsJ̄a

6 . We also have a level matching condition of th
form

Nw1h5N̄w1h̄, ~4!
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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which implies that the angular momentum inAdS3 , l 5J0
32 J̄0

35q2q̄, is an integer. We argued in
Ref. 1 that j̃ is further restricted to the range

1

2
, j̃ ,

k21

2
, ~5!

which implies

k

4
w21

1

2
w,Nw1h211

1

4~k22!
,

k

4
~w11!22

1

2
~w11!. ~6!

A similar analysis onĈj 51/21 is
a 3 Ĉj 51/21 is

a yields a continuous spectrum,

E5
k

2
w1

1

w
S 2s21 1

2

k22
1Ñ1h1N! 1h̄22D , ~7!

where s takes values over the real numbers and is interpreted as the momentum in the
direction for the long strings. These states satisfy the level matching condition

Ñ1h5N! 1h̄1w3~ integer!. ~8!

In the rest of the paper we will do an independent calculation which will reproduce this s
string spectrum.

III. ONE-LOOP PARTITION FUNCTION

In this section we compute the worldsheet one-loop partition function. First we explai
relation between various useful coordinate systems. Then we consider thermalAdS35H3 /Z and
show how the identification of Euclidean time in the global coordinates translates into part
boundary conditions for the target space fields. The partition function is then calculated
explicit evaluation of the functional integral following Ref. 7.

A. Coordinates on H3 and thermal AdS 3

The natural metric onH3 is given by

ds25
k

y2 ~dy21dw dw̄!, ~9!

which is the Euclidean continuation of the Poincare´ metric onAdS3 . By the coordinate transfor
mation,

w5tanhret1 iu, w̄5tanhret2 iu, y5
et

coshr
, ~10!

we obtain the cylindrical coordinates on EuclideanAdS3 ,

ds2

k
5cosh2 r dt21dr21sinh2 r du2. ~11!

For the purpose of calculating the partition function, however, it is convenient to use coord
in which the metric reads7 as

ds2

k
5df21~dv1v df!~dv̄1 v̄ df!, ~12!
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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which corresponds to the parametrization ofH3 as

g5Fef~11uvu2! v

v̄ e2fG . ~13!

The coordinate transformation from~11! to ~12! is

v5sinhreiu

v̄5sinhre2 iu ~14!

f5t2 log coshr.

ThermalAdS3 is given by the identification

t1 iu;t1 iu1b̂, ~15!

where b̂ represents the temperatureT and the imaginary chemical potentialim for the angular
momentum,

b̂5b1 imb5
1

T
1 i

m

T
. ~16!

The corresponding identifications in the coordinates~12! are

v;veimb

v̄; v̄e2 imb ~17!

f;f1b,

which is a consistent symmetry of the WZW action,

S5
k

p E d2z„]f ]̄f1~] v̄1]f v̄ !~ ]̄v1 ]̄fv !…. ~18!

B. Computation of the partition function on thermal AdS 3

In this subsection we compute the partition function for string theory on thermalAdS3 . We
consider a conformal field theory on a worldsheet torus with modular parametert (z;z12p
;z12pt). The two-dimensional conformal field theory on the worldsheet is the sum of t
parts: the conformal field theory onH3 , the internal conformal field theory onM, and the~b, c!
ghosts. First we start with the computation of the partition function for the conformal field th
describing the three dimensions of thermalAdS3 and then we will multiply the result by the
partition function of the ghosts and the internal conformal field theory.

Due to the identification~17!, the string coordinates now satisfy the following bounda
conditions:

f~z12p!5f~z!1bn, f~z12pt!5f~z!1bm,
~19!

v~z12p!5v~z!einmb, v~z12pt!5v~z!eimmb.

The thermal circle is noncontractible and therefore we get two integers~n,m! characterizing
topologically nontrivial embeddings of the worldsheet in spacetime. In order to implement
boundary conditions it is convenient to define new fieldsf̂,v̂ such that they are periodic:
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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f5f̂1b f n,m~z,z̄!,
~20!

v5 v̂ exp„imb f n,m~z,z̄!…,

with

f n,m~z,z̄!5
i

4pt2
@z~nt̄2m!2 z̄~nt2m!#. ~21!

When we substitute this into the action~18!, we get

S5
kb2

4pt2
unt2mu21

k

p E d2zS u]f̂u21US ]1
1

2t2
Un,m1]f̂ D vC U2D , ~22!

where

Un,m~t!5
i

2p
~b2 imb!~nt̄2m!. ~23!

We are interested in the functional integral

Z~b,m;t!5E Df Dv̄ e2S. ~24!

This integral is evaluated as explained in Ref. 7. We can first do the integral overv̂, v̂̄ which is
quadratic, giving the determinant

detU]1
1

2t2
Un,m1]f̂U22

. ~25!

We calculate thef̂ dependence on the determinants by realizing that we can view~25! as an
inverse of two fermion determinants. We can then removef̂ from the determinants by a chira
gauge transformation and using the formulas for chiral anomalies. The result is

detU]1
1

2t2 Un,m1]f̂U22

5e2/pE d2z ]f̂]̃f̂ detU]1
1

2t2 Un,mU22

. ~26!

The remaining integral overf̂ gives the usual result for a free boson, except thatk→k22 due to
~26!. The functional integral for the thermalAdS3 partition function then gives

Z~b,m;t!5
b~k22!1/2

8pAt2

3(
n,m

e2kb2um2ntu2/4pt212p~ Im Un,m!2/t2

usin~pUn,m!u2u) r 51
` ~12e2p ir t!~12e2p ir t12p iU n,m!~12e2p ir t22p iU n,m!u2

5
b~k22!1/2

2pAt2

~qq̄!23/24(
n,m

e2kb2um2ntu2/4pt212p/~ Im Un,m!2/r 2

uq1~t,Un,m!u2
, ~27!

whereq1 is the elliptic theta function andq5e2p i t. The factorb(k22)1/2 comes from the length
of the circle in thef direction. This partition function is explicitly modular invariant after sum
ming over~n, m!. @In our previous paper, there was a puzzle about the apparent lack of mo
invariance of the SL(2,R) partition functions withJ3 insertions~see Appendix B of Ref. 1!. Here
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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we have found that, if we introduce the twist by considering the physical set-up of thermalAdS3 ,
the result~27! turns out to be manifestly modular invariant. This resolves the puzzle raised in
1.#

We also need to include the contribution of the~b, c! ghosts and the internal CFT. A partitio
function of the latter will be of the form

ZM5~qq̄!2cint/24(
h,h̄

D~h,h̄!qhq̄h̄, ~28!

whereD(h,h̄) is the degeneracy at left-moving weighth and right-moving weighth̄, andcint is
the central charge of the internal CFT. Modular invariance requires thath2h̄PZ, a fact which
will be useful in the next section. Vanishing of the total conformal anomaly gives

cSL~2,R!1cint526. ~29!

We can calculate now the total contribution to the ground state energy. We found a groun
energy of23/24 in ~27!, the ghosts contribute with 2/24 and the internal CFT with2cint/24
5(cSL(2,R)226)/24. UsingcSL(2,R)5316/(k22), we find the overall factor,

~qq̄!2~11cint!/245e4pt2~121/4~k22!!. ~30!

@Note thatcint>0, k.2, and~29! imply that there will always be a tachyon in the theory.#
After multiplying ~27! by the~b, c! ghosts and the internal CFT partition functions, we sho

integrate the resulting expression over the fundamental domainF0 of the modular parametert.
The computation is much facilitated by the trick invented in Ref. 8 to trade the sum overn in ~27!
for the sum over copies of the fundamental domain. See Fig. 1. This is possible since~n, m!
transforms as a doublet under the modular group SL(2,Z). If ( n,m)Þ(0,0), it can be mapped by
an SL(2,Z) transformation to (0,m),m.0. The SL(2,Z) transformation also maps the fundame
tal domain into the strip Imt>0, u Retu<1/2. On the other hand, (n,m)5(0,0) is invariant under
the SL(2,Z) transformation, and the corresponding term still has to be integrated over the f
mental domainF0 . This term represents the zero temperature contribution to the cosmolo
constant, or the zero temperature vacuum energy. In addition to the usual tachyon diverge
bosonic string theory at larget2 , it is also divergent due to the sin21 factor in~27!; this divergence
can be interpreted as coming from the infinite volume ofAdS3 . Since the temperature dependen
of this term is trivial we will ignore it from now on. The final result then is that we fixn50 in ~27!
and we integrate over the entire strip shown in Fig. 1. The one-loop partition function of bo
string theory onH3 /Z3M is then

FIG. 1. The sum overn is traded for the sum over copies of the fundamental domain.
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Z~b,m!5
b~k22!1/2

8p
E

0

` dt2

t2
3/2 E

21/2

1/2

dt1 e4pt2~121/4~k22!!(
h,h̄

D(h,h̄)qhq̄h̄

3 (
m51

`
e2~k22!m2b2/4pt2

usinh~mb̂/2!u2
U)

n51

`
12e2p int

~12emb̂12p int~12e2mb̂12p int!
U2

. ~31!

IV. READING OFF THE SPECTRUM

We will now extract the spectrum of Lorentzian string theory onAdS3 by interpreting the
one-loop partition function in the spacetime theory. The one-loop partition function is the s
particle contribution to the spacetime thermal free energy,Z(b,m)52bF. To this each string
state makes a contributionb21 log(12e2b(E1iml)), whereE and l are the energy and the angul
momentum of the state. The total free energy is the sum over all such factors:

F~b,m!5
1

b (
stringPH

log~12e2b~Estring1 im l string!!5 (
m51

`

f ~mb,mm!, ~32!

where

f ~b,m!5
1

b (
stringPH

e2b~Estring1 im l string!. ~33!

HereH is the physical Hilbert space of single string states. In both~31! and ~32!, we have the
sums over functions of (mb,mm). It is therefore sufficient to compare them51 terms in these
expressions. In other words, we want to verify thatEstring and l string extracted from the identifica
tion,

f ~b,m!5 (
stringPH

1

b
e2b~Estring1 im l string!

5
~k22!1/2

8p
E

0

` dr2

t2
3/2 E

21/2

1/2

dt1 e4pt2~121/4~k22!!(
h,h̄

D(h,h̄)qhq̄h̄

3
e2~k22!b2/4pt2

usinh~ b̂/2!u2
U)

n51

`
12e2p int

~12eb̂12p int!~12e2b̂12p int!
U2

, ~34!

agree with the string spectrum found in our previous paper.1 We will see that the sum over th
Hilbert space breaks up into a sum over the discrete states and an integral over the con
states, with the expressions for the energies that were reviewed in Sec. II. Since the on
calculation presented here is independent of the assumptions made in Ref. 1 about str
LorentzianAdS3 , we can regard this as a derivation of the spectrum starting from the well-de
Euclidean path integral.

A. Qualitative analysis

In this subsection we will analyze~34! in a qualitative way and explain where the differe
contributions to the spectrum come from. To keep the notation simple, we setm50 in this
subsection, leaving the exact computation for the next subsection.

As expected, in~34! there is an exponential divergence ast2→`, coming from the tachyon
This is just as in the flat space case, where (mass)2,0 of the tachyon causes its contribution to
weighted with a positive exponential. We will disregard this divergence.@A skeptical reader could
think that we are really doing the superstring partition function~the fermions included in the
internal CFT, etc.!. Then the tachyon divergence will disappear but one would still find
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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divergences that we discuss below. Of course, the one-loop partition function is nonvan
even in the supersymmetric case since the thermal boundary conditions break supersym#
However, rather unexpectedly, the expression above has additional divergences at finite va
t. In string theory one might naively expect that divergences come only from the corners
fundamental domain in thet-plane, but in this case the divergence is coming from points in
interior of the fundamental domain. Overcoming the initial panic, one realizes that these
gences are related to the presence of long strings. In fact, as with any other string diverge
can be interpreted as an IR effect. This divergence is due to the fact that long strings fee
potential as they go to infinity and therefore we get an infinite volume factor. To see this, not
near the pole~see Fig. 2!,

t5tpole1e, ~35!

where

tpole5
r

w
1 i

b

2pw
, ~36!

we can expand the partition function and replacet in all terms by its value at the pole, except
the one term that has the pole. If we integrate~34! near the pole, i.e. in the regione,ut2tpoleu
!1, we find that it diverges as loge with the coefficient

1

Awb3
expF2bS k

2
w1

1

w S Ñ1h1N! 1h̄221
1

2~k22! D D1
2p ir

w
~Ñ1h2N! 2h̄!G . ~37!

We now sum overr, with ur /wu<1/2, since these are the ones corresponding to the poles i
strip. ~If some poles are on the boundaries of the strip,t1561/2, then we only count them once!

This sum constrainsÑ1h2N! 2h̃ to be an integer multiple ofw, as in ~8!, and it introduces an
additional factor ofw in ~37!. The log divergence in thet-integral can therefore be expressed

f ~b,m!;
1

b
logeE

0

`

ds e2bE~s!1¯ , ~38!

whereE(s) is the energy spectrum given by~7!. Note that thes-integral and the sum overr we
mentioned above give the factorAw/b needed to match the prefactor in~37! to that in~38!. This

FIG. 2. Poles in thet-plane, shown forw51 to 4.
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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reproduces the expected contribution from the long strings on the left hand side of~34!. The
logarithmic divergence should be interpreted as a volume factor due to the fact that the long
can be at any radial position. In the next subsections, we will see more precisely that it is i
associated to the infinite volume in spacetime by relatinge to a long distance cutoff.

Now we would like to calculate the short string spectrum. Since the long string spectrum
a divergent result, while the short string spectrum gives a finite one, it might appear at firs
extracting the contributions due to the short strings from a divergent expression such as~34! will
be problematic. Fortunately we can get around this difficulty since the temperature depende
the long string free energy is different from that of the short string free energy. In the
subsection we will explain how to do this precisely and reproduce the short string spectrum
agrees with Ref. 1. One of the more puzzling aspects of the short string spectrum found t
that there is a cutoff 1/2, j̃ ,(k21)/2 in the value of the SL(2,R) spin j̃ . In the remainder of this
section we will explain in a qualitative way how this cutoff arises by doing the calculation
largek.

If we were to evaluate the right hand side of~34! naively ~and incorrectly!, we would expand
the integrand in powers ofq5e2p i t and then perform thet-integral. If we did this, we would
obtain the short string spectrum withw50 and no upper bound on the value ofj̃ . However this
expansion is not correct. How we can expand the integrand in~34! depends on the value oft2 .
When we cross the poles att25b/2pw, a different expansion should be used for the denom
tor:

1

12eb12p iwt 5 (
q50

`

eq~b12p iwt!S t2.
b

2pwD ,

52 (
q50

`

e2~q11!~b12p iwr!S t2,
b

2pwD . ~39!

Whent2 is in the range

b

2p~w11!
,t2,

b

2pw
, ~40!

the product overn in the first term in the denominator in~34! is broken up into two factors, a
product in 1<n<w and a product inw11<n. The first factor is expanded in powers o
e(2b12p int) and the second factor is expanded in powers ofeb12p int. Combining them togethe
with the terms coming from the expansion of the remaining products in~34!, we get an exponen
of the form6

2~ 1
2 1q1w!b12p i t~Nw2 1

2 w~w11!!, ~41!

for some integersq and Nw . @The first term2b/2 comes from expanding 1/sinh(b/2) in ~34!.#
There is a similar term fort→ t̄. We are then to do thet-integral of the form

E d2t

t2
3/2

3e4pt2~121/4~k22!!2~k22!~b2/4pt2!2b~11q1q̄12w!12p i t„Nw1h2~1/2!w~w11!…22p i t̄„N̄w1h̄2~1/2!w~w11!…,

~42!

over the region~40!. The integral overt1 produces the level matching condition~4!. Now we
evaluate the integral overt2 using the saddle point approximation. We find that the saddle p
is at
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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tsaddle5
~k22!b

2pA114~k22!„Nw1h212 1
2 w~w11!…

, ~43!

and the integral gives

1

b
expF2bS 11q1q̄12w1A114~k22!S Nw1h212

1

2
w~w11! D D G . ~44!

This is the correct form of the contributions due to the short strings on the left hand side of~34!.
Moreover we obtain the bound onj̃ precisely, becausetsaddlehas to be in the range~40! in order
for the saddle point approximation to give a nonzero result. By~43!, this condition is the same a
the bound on the spectrum~6!, which is equivalent to 1/2, j̃ ,(k21)/2. ~It is a bit surprising that
we get all factors precisely right from the saddle point approximation.! Notice then that the cutoff
in j̃ is associated to the fact that we expand the integrand in~34! in different ways depending on
the value oft. The value oft making the biggest contribution to the integral depends on the va
of N andh of the string state.

B. A precise evaluation of the t-integral

Now let us study the partition function~34! more systematically. In this subsection, we
back to the general case withmÞ0. From what we saw in the previous subsection, we expec
find the discrete states from the integral over the range~40!, and the continuous states from th
poles after a suitable regularization.

In order to evaluate thet-integral exactly, it is useful to introduce a new variablec by

e2~k22!~b2/4pt2!52
8p i

b S t2

k22D 3/2E
2`

`

dc ce2@4pt2 /~k22!#c212ibc. ~45!

Now supposet2 is in the range

b

2p~w11!
,t2,

b

2pw
, ~46!

and expand the integrand in~34! as explained in the previous subsection. The right hand sid
~34! becomes a sum of terms like

4

b~k22!i E2`

`

dc cE
b/2p~w11!

b/2pw

dt2E
21/2

1/2

dt1expF2b̂S q1w1
1

2D2 b̂̄S q̄1w1
1

2D
12p i t1~Nw1h2N̄w2h̄!12icb22pt2S h1h̄1Nw1N̄w1

2c21 1
2

k22
2w~w11!22D G .

~47!

The integral overt1 gives a delta function enforcingNw1h5N̄w1h̄, which is the level-matching
condition ~4!. Integrating overt2 in the range~46! gives
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1

bp i E2`

`

dc c
exp@2icb2b̂~q1w1 1

2!2b̄
ˆ
~ q̄1w1 1

2!#

c21 1
4 1~k22!~Nw1h212 1

2 w~w11!!

3H 2expF2
b

w
S 2Nw12h221

2c21 1
2

k22
2w~w11!D G

1expF2
b

w11
S 2Nw12h221

2c21 1
2

k22
2w~w11!D G J , ~48!

where we used~4!.
Let us first look at the first term~the second line! in ~48!. We note that the exponent can b

expressed in the form of a complete square if we setc5s1( i /2)(k22)w. As it will become clear
shortly, it is natural to shift the contour of thec-integral from Imc50 to Imc51/2(k22)w so that
s becomes real. During this process the contour crosses some poles in the integrand, picking
residues of the poles in the range 0,Im c,1/2(k22)w. See Fig. 3. The poles are located at

2
c2

~k22!
5Nw1h2

1

2
w~w11!211

1

4~k22!
,

k22

4
w2. ~49!

Similarly, for the second exponential term~the third line! in ~48! we shift the contour toc5s
1( i /2)(k22)(w11) with s real. This picks up the poles at

2
c2

~k22!
5Nw1h2

1

2
w~w11!211

1

4~k22!
,

k22

4
~w11!2. ~50!

It is important to note that the residues of these poles have a sign opposite to that of the re
of the poles obeying~49!. So the result is that we are left with only those poles in the range

k22

2
w,Im c,

k22

2
~w11!, ~51!

with residues

1

b
exp@2b̂q2 b̂̄q̄2b~112w1A114~k22!~Nw1h212 1

2 w~w11!!!#. ~52!

This is the expected contribution of the short strings to the right hand side of~34!, and we see also
that ~51! translates into the correct bound onj̃ ~5!.

It remains to examine the resulting integral overs. Notice that the term coming from jus
above the pole att5b̂/2pw has a very similarw dependence in the exponent as that coming fr

FIG. 3. Shifting the contour of integration picks up the pole residues corresponding to the short string spectru
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just below the pole. In other words, we combine the first term of~48! with the second term of an
expression similar to~48! but with w→w21 and we find, after shifting the contours as above

1

2p ib E
2`

`

dsS 2s

w~k22!
1 i D S expF2b̂q2 b̂̄q̄2bS k

2
w1

2

w S s211/4

k22
1Nw211h21D D G

1

2
1 is2

k

4
w1

1

w S Nw211h211
s211/4

k22 D

2

expF2b̂q2 b̂̄q̄2bS k

2
w1

2

w S s211/4

k22
1Nw1h21D D G

2
1

2
1 is2

k

4
w1

1

w S Nw1h211
s211/4

k22 D D . ~53!

Let us concentrate for now on the third line of~53!. We first note that the sum of such terms ov
all states gives rise to the log divergence. To see this, it is useful to notice that the combin

Ñ5qw1Nw , N! 5q̄w1N̄w , ~54!

that appear in the exponent of the third line of Eq.~53! are the levels before spectral flow. Thu

for a given stateuc&, states of the form (J̃0
1J! 0

1)nuc& all have the same value ofÑ and Ñ̄. Acting
with J̃0

1J! 0
1 on uc& does not change the exponent in~53!, but it does change the denominator b

one. This implies that when we sum over all the states of this type, we will find a divergent
of the form

(
n50

`
1

A2n
.

This divergence has the same origin as the divergence of the right hand side of~34! at the pole
tpole5b̂/2pw. In fact, if we regularize thet-integral by removing a small region near the pole
ut2tpoleu.e, we find an additional factore2ne in the sum. In the next subsection, we will give th
spacetime interpretation of this procedure. With this regularization, the sum behaves ase.
More precisely we have

2 (
n50

`
1

A2n
e2ne5 loge1

d

dA
logG~2A!1O~e!, ~55!

where

A52
1

2
1 is2

k

4
w1

1

w
S s21 1

4

k22
1Ñ1h21D . ~56!

Here we have assumed that

N! 1h̄<Ñ1h, ~57!

but it can be seen that the other case gives the same result.
Now we turn our attention to the second line of~53!. In those terms we have one less unit

spectral flow, as compared to the third line in~53! that we analyzed above. In other words, now w
will have that (w21)q1Nw215Ñ8. These states are in the spectral flow image ofDj

1 . Since we
want to combine these states with the states coming from the third line in~53! it is convenient to
do spectral flow one more time and think of these states as in the spectral flow image ofDj

2 under
w units of spectral flow. In this case we find thatq1Ñ85Ñ where nowÑ is the level of theDj

2
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representation before spectral flow. From now on the discussion is very similar to what w
above. The states with (J̃0

2J! 0
2)nuc& all have the same energies but they will contribute to

denominator of the second line in~53! with

(
n50

`
1

B1n
e2ne5 loge2

d

dB
logG~B!1O~e!, ~58!

where

B5
1

2
1 is2

k

4
w1

1

w
S s21 1

4

k22
1N! 1h̄21D . ~59!

again assuming~57!.
After we perform these two sums, we find that~53! can be written in the form

2

b E
0

`

dsr~s!expF2bS E~s!1 i
m

w
~Ñ1h2N! 2h̄! D G , ~60!

with E(s) the energy of long strings~7! andr(s) the density of states. We will later see that t
physical momentump of a long string in ther direction is equal top52s. The angular momen-
tum l 5(Ñ1h2N! 2h̄)/w is an integer since the states in~53! were obeying~4! and the definition
~54! ensures that~8! is satisfied. The density of statesr(s) derived from this analysis is

r~s!5
1

2p
2 loge1

1

2p i

d

2ds
logS G~ 1

22 is1m! !G~ 1
22 is2m̃!

G~ 1
2 1 is1m! !G~ 1

2 1 is2m̃!
D , ~61!

where

m̃52
k

4
w1

1

w
S s21 1

4

k22
1Ñ1h21D , m! 52

k

4
w1

1

w
S s21 1

4

k22
1N! 1h̄21D . ~62!

Note that, despite appearances to the contrary,~61! is actually symmetric underm̃↔m! sincem̃

2m! 5 l is an integer. In the next subsection we will show that this density of states~61! is what
is expected from the spacetime meaning of the cutoffe. In going from~53! to ~60! we have states
which could be interpreted as coming from the spectral flow of the discrete representationDj

1

andDj
2 , with the zero modes essentially stripped off since they were explicitly summed ov

~55! and ~58!. This implies that the states we have in the end belong to the continuous rep
tation. Note also that the integral overs in ~60! has only half the range in~53!. We rewrote it in
this way using the fact that the exponent is invariant unders→2s, and that is the reason why w
have four gamma functions in~61!. In going from ~53! to ~60! we have also used thatd/dA
5(1/d/dA(s)/ds)(d/ds) in ~56! and similarly in~59!.

Combining Eqs.~52! and ~60!, we have, finally,

f ~b,m!5
1

b ( D~h,h̄,Ñ,N! ,w!F(
q,q̄

e2b~E1 im l !1E
0

`

dsr~s!e2b~E~s!1 im l !G ~63!

which is the free energy due to the short strings and the long strings, respectively.

C. The density of long string states

What remains to be shown is the interpretation ofr(s) given by ~61! as the density of long
string states. Whenever we have a continuous spectrum the density of states may be calcu
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first introducing a long distance cutoff which will make the spectrum discrete, and then rem
the cutoff. If the cutoff is related to the volume of the system then the density of states will
a divergent part, proportional to the volume and dependent only on the bulk physics, and a
part which encodes information about the scattering phase shift and also has some depend
the precise cutoff procedure. To see this, let us consider a one-dimensional quantum mec
model on the half line,r.0, with a potentialV(r). We assume thatV(r) vanishes sufficiently
fast for larger, and that there is continuous spectrum above a certain energy level. To defi
density of states, it is convenient to introduce a long distance cutoff at larger so that the spectrum
becomes discrete. Let us first consider a cutoff by an infinite wall atr5L. If L is sufficiently
large, an energy eigenfunctionc~r! near the wall can be approximated by the plane wave,

c~r!;e2 ipr1eipr1 id~p!, ~64!

whered(p) is the phase shift due to the original potentialV(r). Imposing Dirichlet boundary
conditionc(L)50 at the wall, we have

2pL1d~p!52p~n1 1
2!, ~65!

for some integern. If L is sufficiently large, there is a unique solutionp5p(n) to this equation for
a givenn. As we remove the cutoff by sendingL→`, the spectrum ofp becomes continuous. W
then define the density of statesr(p) by

dn5r~p!dp. ~66!

From ~65!, we obtain

r~p!5
1

2p S 2L1
dd

dpD . ~67!

Thus the finite part of the density of states is given by the derivative of the phase shift.
Instead of the infinite wall atr5L, we may consider a more general potentialVwall(r2L)

which vanishes forr,L but rises steeply forL,r to confine the particle. Let us denote b
dwall(p) the phase shift due to scattering fromVwall(r). We then obtain the condition on th
allowed values of momenta by matching these two wavefunctions and their derivatives atr5L as

c~r!;e2 ipr1eipr1 id~p!;A@e2 ip~r2L !1eip~r2L !1 idwall~p!# ~r;L !. ~68!

It follows that

pL1d~p!52pL1dwall~p!12pn. ~69!

In the limit L→`, the density of states given bydn5r(p)dp is then

r~p!5
1

2p S 2L1
dd

dp
2

ddwall

dp D . ~70!

When we have the infinite wall, the phase shift due to the wall is independent ofp(dwall5p), and
~70! reduces to~67!.

In order to apply this observation to our problem, it is useful to first identify the origin of
logarithmic divergence in the one-loop amplitudeZ(b,m) by examining the functional integra
~24! near the boundary ofAdS3 . In the cylindrical coordinates~11!, the string worldsheet action
~18! for larger takes the form

S;
k

p E d2zS ]r ]̄r1
1

4
e2ru ]̄~u2 i t !u21¯ D . ~71!
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Because of the factore2r, the functional integral for larger restricts (t,u) to be a harmonic map
from the worldsheet to the target space. Since (t,u) are coordinates on the torus,

u2 i t;u2 i t 12pn1 i b̂m ~n,m integers!, ~72!

the harmonic map from the torus to the torus is

u2 i t 5~2pw1 i b̂m!s t1~2pr 1 i b̂n!s2

5@~2pw1 i b̂m!t2~2pr 1 i b̂n!#
z̄

2i t2

2@~2pw1 i b̂m!t̄2~2pr 1 i b̂n!#
z

2i t2
, ~73!

wherez5s11rs2 is the worldsheet coordinate and~r, w, n, m! are integers. In particular, th
map (u2 i t ) with (n,m)5(1,0) becomesw–to–1 andholomorphicwhent takes the special value

tpole5
r

w
1 i

b̂

2pw
. ~74!

On the other hand, ift is not at one of these points,]̄(u2 i t ) cannot be set to zero.@For anyt, we
also have a trivial holomorphic map (t,u)5const. The functional integral around such a m
gives a result independent ofb and we can neglect it in the following discussion.# This gives rise
to an effective potentiale2r for r, which keeps the worldsheet from growing towards the bou
ary. If t is neartpole,

t5tpole1e, ~75!

the harmonic map~73! with (n,m)5(1,0) gives

u ]̄~u2 i t !u2;S 2p2w2

b D 2

e2. ~76!

Thus the action~71! generates the Liouville potentiale2e2r. When we computed the one-loo
amplitude in Secs. IV A and IV B, we regularized thet-integral by removing a small diskut
2tpoleu,e around each of these special points. Neart5tpole, this is equivalent to adding the
infinitesimal Liouville potentiale2e2r to the worldsheet action. Forut2tpoleu@e, the worldsheet
can never grow large enough and the effect of the Liouville term is negligible. To be precis
Gaussian functional integral of (t,u) shiftsk→(k22) as in~26! and the effective action forr near
t5tpole is

SLiouville5
k22

p E d2z~]r ]̃r1e2e2r!. ~77!

Therefore, we find that our choice of regularization in~55! and ~58! amounts to introducing the
Liouville wall which prevents the longs strings from going to very large values ofr. By looking
at the potential in~77!, we see that the effective length of the interval isL; loge. The central
charge of this Liouville theory is such that thee2r term has conformal weight one,

cLiouville5116S b1
1

bD 2

, b[
1

Ak22
. ~78!
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The finite part of the density of states will be given through~70! by d(s), the phase shift in the
SL(2,R) model, anddwall(s), the corresponding quantity in Liouville theory. The first one w
calculated in Refs. 9 and 10,

id~s!5 logS GS 1

2
1 is2m̃DGS 1

2
1 is1m! DG~22is!GS 2is

k22D
GS 1

2
2 is2m̃DGS 1

2
2 is1m! D ~2is!GS 22is

k22 D D , ~79!

while the second one was obtained in Refs. 11 and 12,

idwall~s!5 logS G~22is!GS 2is

k22D
G~2is!GS 22is

k22 D D . ~80!

@In order to compare with the expressions in Refs. 11, 12, we use the value ofb given in ~78! and
note that the relevant values ofa area5Q/21 isb.# Using these two formulas we can check th
indeed the density of states~61! is given by~70!. We can view this as an independent calculati
of ~79! or as an overall consistency check. Notice that the physical momentump of a long string
along ther direction isp52s. This can be seen by comparing the energy of a long string~7! with
the energy expected from~77! with spacetime momentump along the radial direction,p5(k
22)wṙ. We have chosen the variables since it is conventional to denote byj 51/21 is the
SL(2,R) spin of a continuous representation.
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