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Abstract: We study strings associated with minimal 6d SCFTs, which by defini-

tion have only one string charge and no Higgs branch. These theories are labelled by

a number n with 1 ≤ n ≤ 8 or n = 12. Quiver theories have previously been proposed

which describe strings of SCFTs for n = 1, 2. For n > 2 the strings interact with

the bulk gauge symmetry. In this paper we find a quiver description for the n = 4

string using Sen’s limit of F-theory and calculate its elliptic genus with localization

techniques. This result is checked using the duality of F-theory with M-theory and

topological string theory whose refined BPS partition function captures the elliptic

genus of the SCFT strings. We use the topological string theory to gain insight into

the elliptic genus for other values of n.
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1 Introduction

Six-dimensional superconformal theories have light strings as their basic building

blocks. One approach to a better understanding of these theories involves unlocking

the mysteries associated with these strings. In particular one would like to describe

the free propagation of such strings and the degrees of freedom on their worldsheet.

Recently, many advances have been made in our understanding of 6d SCFTs [1–3]

including in many cases an effective description of their strings’ worldsheet QFT

[4–6]. The goal of this paper is to study the strings associated with minimal 6d

SCFTs. These are (1, 0) SCFTs in six dimensions which have only one string charge

(i.e. a one dimensional tensor branch), and are non-Higgsable. They are labelled
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by an integer 2 ≤ n ≤ 12 excluding n = 9, 10, 11, and are realized within F-theory

as elliptic fibrations over a base O(−n) → P1 [7]. It is also natural to include the

n = 1 case here although strictly speaking it is not part of the non-Higgsable family.

The cases n = 2, 3, 4, 6, 8, 12 also arise in the F-theory context as simple orbifolds

of C2 × T 2 [8] where we rotate each plane of C2 by an n-th root of unity ω and

compensate by rotating the elliptic fiber by ω−2.

For the n = 1 and n = 2 cases, quivers have been found which describe the

worldsheet dynamics of the corresponding strings [4–6]. The n = 1 case corresponds

to the exceptional CFT with E8 global symmetry describing an M5 brane near the

M9 boundary wall [9–12]; the n = 2 case, on the other hand, corresponds to the

(2, 0) SCFT of type A1. In this paper we extend this list by finding the quiver for

the n = 4 case. This is one of the orbifold cases for which the elliptic fiber can

have arbitrary complex modulus τ , as the only symmetry required in the fiber is Z2,

which does not fix the modulus of the torus. To find the quiver describing the strings

of this theory, we use Sen’s limit of F-theory [13], which corresponds to taking the

modulus of the torus τ2 ≫ 1. Following this approach we are able in particular to

compute the elliptic genus of these strings, which we do explicitly for the first few

string numbers.

If we compactify the theory on a circle, the elliptic genus computes the BPS

degeneracies of the wrapped strings. Following the duality between F-theory and

M-theory and the relation between M-theory, BPS counting in five dimensions, and

topological strings, we find that the elliptic genera are encoded in the topological

string partition function defined on the corresponding elliptically-fibered Calabi-Yau,

similar to the observation for the n = 1 case in [12]. Within topological string

theory the genus zero BPS invariants can be easily calculated using mirror symmetry

even for high degree k in the base, which corresponds to k times wrapped strings.

However, since the boundary conditions are only known to some extent [14], the

higher genus theory cannot be completely solved with the generalized holomorphic

anomaly equations; on the other hand, the elliptic genus computation provides the

all genus answer. In particular we can use this relation to successfully check our

answer for the elliptic genus of the n = 4 strings.

For the other values of n, no worldsheet description of the associated strings

is known. For these cases we employ topological string techniques to obtain BPS

invariants of the corresponding geometry, which can be related to an expansion of

the elliptic genus of small numbers of strings for specific values of fugacities.

The organization of this paper is as follows: In Section 2 we review the classifica-

tion of minimal 6d SCFTs and their F-theory realization. We also review the quivers

describing the worldsheet dynamics of the strings of the n = 1 and n = 2 models. In

Section 3 we derive the quiver for the strings of the n = 4 theory by exploiting its

orbifold realization. Furthermore, using the quiver we obtain an integral expression

for the elliptic genus of k strings which we evaluate explicitly for the cases k = 1
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and k = 2. We then discuss how one can extract from this the BPS degeneracies

associated to the strings. In Section 4 we construct explicitly the elliptic Calabi-Yau

manifolds corresponding to n = 1, . . . , 12 as hypersurfaces in toric ambient spaces,

solve the topological string theory and calculate the genus zero BPS invariants asso-

ciated to these Calabi-Yau manifolds, from which one can obtain BPS degeneracies

associated to the strings. In Appendix A we give a description of the local mirror

geometry for some of these elliptic Calabi-Yau threefolds in terms of non-compact

Landau-Ginzburg models.

2 Minimal SCFTs in six-dimensions

Six-dimensional SCFTs can be classified in the context of F-theory by considering

compactifications on an elliptically fibered Calabi-Yau threefold X with non-compact

base B. In the case where all fiber components are blown down the fibration π : X →
B can be described in terms of the Weierstrass form

y2 = x3 + fx+ g, (2.1)

where f and g are sections of the line bundles O(−4KB) and O(−6KB). The dis-

criminant locus, along which the elliptic fibers are singular, is a section of O(−12KB)

and has the following form:

∆ = 4f 3 + 27g2. (2.2)

The discriminant locus corresponds to the location of seven-branes in the system.

More precisely, each component of the discriminant locus is identified with a seven-

brane wrapping a divisor Σ ⊂ B. Each seven-brane supports a gauge algebra gΣ
which is determined by the singularity type of the elliptic fiber along Σ [16, 17].

In the maximally Higgsed phase (that is, when all hypermultiplet vevs that can

be set to non-zero value are turned on) one can classify the resulting models in terms

of the base geometry B only [7]. Non-Higgsability requires that the divisor Σ ⊂ B

be rigid. This implies that Σ must be a P1 curve with self-intersection −n < 0 for

a positive number n (in the following we will refer to this as a (−n) curve), and the

local geometry is the bundle O(−n) → P1. Furthermore, it can be shown that n

is only allowed to take the values 1 ≤ n ≤ 8 or n = 12 [7, 16, 17]. In the n = 1

case, corresponding to the E-string (1, 0) SCFT [9–11], the discriminant vanishes

along the non-compact fiber over isolated points on the P
1. In this case instead of

a gauge symmetry one finds an E8 global symmetry. In the n = 2 case the fiber is

everywhere non-singular, and one finds the A1 (2, 0) SCFT which corresponds to the

world-volume theory of M5 branes in flat space. For n > 2, the seven-branes wrap

the compact P1, and therefore the 6d SCFT has non-trivial gauge symmetry. In the

non-Higgsable case this gauge symmetry is completely determined by the integer n.

We summarize the list of possibilities in the following table:
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7-brane 3 4 5 6 7 8 12

gΣ SU(3) SO(8) F4 E6 E7 E7 E8

Hyper – – – – 1
2
56 – –

In the n = 7 case, one finds that in addition to E7 gauge symmetry the 6d theory

also contains a half-hypermultiplet. The cases n = 9, n = 10 and n = 11 lead to

E8 gauge symmetry but additionally contain “small instantons”; these cases can be

reduced to chains of the more fundamental geometries summarized in the table, as

discussed in [1].

These geometries (excluding the cases n = 1, 5, 7) can equivalently be realized

as orbifolds of the form (T 2 × C2)/Zn, n = 2, 3, 4, 6, 8, 12. Here, Zn acts on the zi,

i = 1, 2, 3, coordinates of T 2 and C2 as



z1
z2
z3


 7→



ω−2

ω

ω





z1
z2
z3


 , (2.3)

with ωn = 1. This construction will be in particular useful when we study the n = 4

SCFT, as it will enable us to find a weak coupling description for the corresponding

model.

2.1 Strings of the O(−1) → P
1 and O(−2) → P

1 models

Let us next discuss the strings that appear on the tensor branch of 6d SCFTs. From

the point of view of F-theory these strings arise from D3 branes which wrap the P
1

curve in the base B in the limit of small P1 size. Let us first review the ‘M-strings’

that arise in the n = 2 case. Since in this case the orbifold acts trivially on the torus,

its modulus τ can be taken to be arbitrary, and in particular one can take the weak

coupling limit τ → i∞ and study this system from the point of view of Type IIB

string theory compactified on B. It turns out [4, 5] that the dynamics of M-strings

are captured by the two-dimensional quiver gauge theory depicted in Figure 1. For

k strings, this quiver describes a two-dimensional N = (4, 0) theory with gauge

group U(k) and the following (2, 0) field content: Q and Q̃ are chiral multiplets in

the fundamental representation of U(k), while ΛQ and ΛQ̃ are fundamental Fermi

multiplets. Furthermore, the Fermi multiplet Λφ and vector multiplet Υ combine

into a (4, 0) vector multiplet, and the adjoint chiral multiplets B, B̃ combine into a

(4, 0) hypermultiplet. One intuitive way to see how this comes about is to look at

the configuration of (−2) curves which captures the local geometry O(−2) → P1 [3]

and is pictured in Figure 2.

The left and right (−2) curves are non-compact, whereas the curve in the middle

is a compact P1. Choosing the elliptic fiber to be trivial would lead upon circle

compactification to U(2) N = 4 gauge theory; it is in fact possible to deform this

theory to N = 2∗ by letting the elliptic fiber degenerate over each curve to an I1
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Figure 1: The quiver describing the O(−2) → P1 strings.

Figure 2: Configuration of (−2) curves that gives rise to the O(−2) → P1 local

geometry. We have also indicated the degeneration of the elliptic fiber over each

curve that gives rise to the M-string geometry.

singularity (that is, by wrapping a D7 brane over each curve). D3 branes wrapping

the compact (−2) curve give rise to the strings of the resulting 6d SCFT, and upon

circle compactification their BPS degeneracies then capture the BPS particle content

of the U(2)N = 2∗ theory. It is easy to understand how the field content of the quiver

in Figure 1 arises from strings that end on the D3 branes: D3-D3 strings give rise

to a (4, 4) vector multiplet in the adjoint of U(k) consisting of the (2, 0) multiplets

Υ,ΛΦ, B, B̃; strings stretching from the D3 branes to the D7 brane wrapping the

same compact P1 give rise to the chiral multiplets Q and Q̃; finally, strings stretching

between the D3 branes and the D7 branes that wrap the non-compact (−2) curves

give rise to the Fermi multiplets ΛQ and ΛQ̃. Whether D3-D7 strings give rise to

chiral or Fermi multiplets is determined by the number of dimensions that are not
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Figure 3: The quiver for O(−1) → P1 strings.

shared by the D3 and D7 branes (four for the D3-D7 strings leading to Q, Q̃, eight

for the ones leading to ΛQ,ΛQ̃).

Recently, a quiver gauge theory was also found that describes the dynamics of

E-strings, corresponding to the O(−1) → P1 case [6]. In terms of (2, 0) multiplets,

the theory of k E-strings was found to have the following field content: a vector

multiplet Υ and a Fermi multiplet Λφ in the adjoint representation of O(k), two chiral

multiplets B, B̃ in the symmetric representation of O(k), and a Fermi multiplet ΛQ

in the bifundamental representation of O(k) and of a SO(16) flavor group, which

enhances to E8 at the superconformal point. The relevant quiver is shown in Figure

3.

2.2 From strings of 6d SCFTs to topological strings

In cases where a quiver gauge theory description is available for the strings of minimal

six-dimensional SCFTs, one can use the methods of [18–20] to compute the elliptic

genus for an arbitrary number of strings. The elliptic genus will depend on the

complex structure τ of the torus as well as a number of fugacities corresponding to

various U(1) symmetries enjoyed by the two-dimensional quiver theory. In particular,

it will always depend on two parameters ǫ1, ǫ2 that correspond to rotating the C2

transverse to the strings’ worldsheet in the six-dimensional worldvolume of the SCFT.

In addition to this, the elliptic genus will depend on a number of fugacities mi

parametrizing the Cartan of the flavor symmetry group of the worldsheet theory. In

the F-theory picture these fugacities correspond to Kähler parameters of the resolved

elliptic fiber of the Calabi-Yau.

The elliptic genus encodes detailed information about the spectrum of the strings.

Being able to reproduce this information with an alternative method is therefore

an important check of the validity of the quiver theory. This can be achieved by

exploiting duality between F-theory and M-theory [15, 16], and in particular the

relation between D3 branes on one side and M2 branes on the other [12]. This

duality relates F-theory on X × T 2 × R4 (where X is an elliptically fibered Calabi-

Yau threefold) to M-theory on X×S1×R4; under this duality the complex structure

τ of the T 2 gets mapped to the Kähler parameter of the elliptic fiber of X on the

M-theory side. D3 branes wrapping the base P1 as well as T 2 correspond to strings
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wrapped on the torus. It turns out [12] that the BPS states of a configuration of

k strings with m units of momentum along a circle get mapped to BPS M2 branes

wrapping the base P1 k times and the elliptic fiber m times; furthermore, if a string

BPS state has nonzero flavor symmetry charges, the corresponding BPS M2 brane

will also wrap additional curves in X .

The precise relation between the counting of BPS states on the two sides turns

out to be [4]:

Ztop(X, ǫ1, ǫ2, τ, tb, mi) = Z0(τ, ǫ1, ǫ2, mi)

(
1 +

∞∑

k=1

QkZk(ǫ1, ǫ2, τ,mi)

)
, (2.4)

where Ztop(ǫ1, ǫ2, τ, tb, mi) is the topological string partition function that counts BPS

configurations of M2 branes on the M-theory side (or, equivalently, 5d BPS states

of the theory arising from M-theory compactification on X), and Zk is the elliptic

genus of k strings of the six-dimensional SCFT. Furthermore tb is the Kähler class

of the base P1 and Q is proportional to e−tb = Qb
1. In other words, the topological

string partition function is given by a sum over elliptic genera of the six-dimensional

strings, except for a simple piece Z0 which captures contributions coming from vector

multiplets and can be obtained straightforwardly.

In the next section we will discuss the case of the O(−4) theory and determine

the quiver describing its strings. Furthermore, we will find an integral expression for

the elliptic genera of these strings; we will evaluate these integrals explicitly for one

and two strings and present an answer in a form from which BPS degeneracies may

be readily extracted. In Section 4.2.3 we will compute the topological string partition

function of the corresponding Calabi-Yau geometry and extract BPS invariants which

can be shown to agree with the elliptic genus computations.

3 Quiver for the O(−4) → P1 model

We now turn to the strings of the n = 4 (1,0) SCFT in 6d and construct a quiver the-

ory that describes their dynamics. Recall that the six-dimensional theory is obtained

by compactifying F-theory on the following orbifold geometry:

CY3 =
(
T 2 × C× C

)
/Z4, (3.1)

where the orbifold action Z4 on the complex coordinates (z1, z2, z3) of T
2 ×C×C is

given by: 

z1
z1
z3


 7→



ω−2

ω

ω





z1
z2
z3


 , (3.2)

1The proportionality factor will be a combination of Kähler classes in the resolution of the elliptic

fiber and its exact form can be determined by requiring Q to be invariant under the monodromy

associated to SL(2,Z), as in [21].
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and ω = i. To obtain a F-theory construction in terms of a non-compact elliptic

Calabi-Yau one has to first blow up the singularity at C2/Z4. The resulting space is

described by the bundle

O(−4) −→ P
1, (3.3)

with the singular elliptic fiber T 2/Z2 over the P1 base. The resolution of this fiber

leads to the I∗0 fiber in the Kodaira classification of elliptic fibrations. In fact, one

can obtain an infinite family of six-dimensional theories by taking the singular fiber

to be of type I∗p , with p ≥ 0. Lowering p corresponds in physical terms to Higgsing.

This geometry can be equivalently viewed in the weak coupling limit as a type IIB

orientifold of the C2/Z2 singularity [13]. In this limit the singular elliptic fiber over

P1 can be interpreted as the presence of 4 + p D7-branes wrapping the P1 together

with an orientifold 7-plane. This gives rise to a N = (1, 0) SO(8 + 2p) gauge theory

in the six non-compact directions parallel to the branes. Furthermore, D3-branes

wrapping the P1 give rise to strings in the six-dimensional theory.

In the following we study the worldsheet theory of these strings and obtain a

quiver gauge theory description for it. The particular orientifold we are interested

in has been studied in some detail in [22] and we shall describe it here briefly. The

theory we want to study is type IIB theory on C2/Z2, modded out by ΩΠ, where Ω

is world-sheet parity and Π acts as

Π : z1 → z2, z2 → −z1, (3.4)

with z1, z2 parametrizing the two complex planes in C2/Z2. The D7-branes wrapping

the P1 can, in the singular limit,be thought of as D5-branes probing C2/Z2 together

with an orientifold 5-plane at z1 = z2 = 0. Similarly, D3-branes become D1-branes

whose worldvolume theory we wish to determine. We start by describing the brane

system probing C
2 and successively add the Z2 orbifold and Z2 orientifold actions.

Before the orbifolding, the theory living on the D1-branes is a N = (4, 4) U(k) gauge

theory with one adjoint and N fundamental hypermultiplets, where N denotes the

number of D5-branes [5]. To summarize, we have the following massless field content

on the worldvolume:

multiplet bosons fermions

vector bAY , A±± ψA′Y
− , ψAA′

+

adjoint hyper bA
′Ã′

ψAÃ′

− , ψÃ′Y
+

fundamental hyper HA′

χA
−, χ

Y
+

(3.5)

where the indices (A′Ã′) represent the fundamental representations of the two SU(2)

groups rotating the directions X2, X3, X4, X5 (the directions orthogonal to D1 but

parallel to D5) while (A, Y ) are indices for the SU(2)’s rotating X6, X7, X8, X9 (the

directions orthogonal both to D1 and D5). Next, we embed the Z2 orbifold action

– 8 –



generated by (
ω

ω−1

)
, ω ∈ Z2 (3.6)

into SU(2)Y and hence obtain the following action on fields with Y -index

(bAY , ψÃ′Y
+ , ψÃ′Y

+ , χY
+) 7→ (ωbAY , ωψA′Y

− , ωψÃ′Y
+ , ωχY

+). (3.7)

The resulting theory has N = (4, 0) supersymmetry and its field content can equally

well be described in terms of N = (2, 0) chiral superfields Σ, Φ, B, B̃, Q, Q̃, a (2, 0)

gauge superfield Υ, and (2, 0) Fermi superfields ΛΦ,ΛB,ΛB̃,ΛQ,ΛQ̃. The decompo-

sition of N = (4,0) fields in terms of (2, 0) components is as follows:

bAY ↔ (Σ,Φ), bA
′Ã′ ↔ (B, B̃), HA′ ↔ (Q, Q̃), (3.8)

ψAA′

+ ↔ (ΛΦ,Υ), ψÃ′Y
+ ↔ (ΛB,ΛB̃), χY

+ ↔ (ΛQ,ΛQ̃). (3.9)

Following [23], the theory one obtains after the orbifold (3.7) is a quiver gauge theory

whose gauge nodes correspond to the nodes of the affine A1 quiver (for more general

ZN orbifolds one would obtain the affine AN−1 quiver). The fields that do not carry a

Y index are localized at each node, while those with a Y index connect adjacent nodes

[5]. In order to turn this D1 quiver into a D3 quiver one needs furthermore to turn

off D1 brane charge and instead introduce D3 branes wrapped around blow-up cycles

of the resolved A1 singularity. This transformation corresponds to removing the last

node of the inner quiver as well as all links ending on it. Correspondingly, in the

case of the A1 singularity which is of interest here, the single remaining U(k) gauge

node contains an N = (4, 0) vector multiplet (Υ,Λφ) and an adjoint hypermultiplet

(B, B̃).

Next, we come to the orientifolding. Orientifolds of orbifolds were discussed in

[22]. There it was found that for C2/Zn orbifolds the gauge group in the ωl-twisted

(l = 0, · · · , n− 1) D-brane sector is of Sp-type if l is even and of SO-type if l is odd.

This implies for our case that we have an orthogonal gauge group on the D5-branes

in the untwisted sector and a symplectic one on the D5-branes of the ω-twisted

sector. Furthermore, anomaly cancellation in six dimensions fixes the ranks of the

gauge groups such that the allowed configurations are SO(8+2p)×Sp(p) [22]. This

corresponds to having 4 + p D5-branes together with an O5-plane at the Orbifold

singularity. Uplifting this to F-theory one finds that the p = 0 case is obtained from

the I∗0 fiber while the p > 0 cases come from I∗p fiber types.

In fact, in the F-theory setup the six-dimensional theory has SO(8 + 2p) gauge

group and two Sp(p) flavor nodes. The situation here is analogous to the O(−2) →
P1 case: the two flavor nodes correspond to non-compact D7 branes intersecting the

compact curve as shown in Figure 4 (see for example [3] for more details about the

geometry).
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Figure 4: The local geometry that gives rise to the SO(8 + 2p) 6d SCFT.

From the point of view of the two-dimensional theory living on the strings the

SO(8 + 2p) gauge node and the Sp(p) flavor nodes descend to flavor nodes. Fur-

thermore, orientifolding implies that (Υ,Λφ) transform in the symmetric (that is,

adjoint) representation of Sp(k)2, while (B, B̃) transform in the antisymmetric rep-

resentation [24]. It is interesting to note that the introduction of two Sp(p) nodes

is also necessary from gauge anomaly cancellation in two dimensions which will be

reviewed later. The resulting two-dimensional quiver is the one depicted in Figure 5.

Figure 5: The C2/Z4 quiver.

The various fields in the quiver have different charges with respect to the two

U(1)ǫ1 × U(1)ǫ2 ⊂ SO(4) that rotates the X2, X3, X4, X5 directions. We denote the

fugacities by ǫ1, ǫ2, as they are the same parameters that appear in the Nekrasov

partition function. For completeness we also present the charges of the fields of

2Orientifolding amounts to projecting the gauge group from U(2k) to Sp(k).
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the quiver under the different U(1)’s and gauge groups; these charges are obtained

directly by the orbifolding construction, as in [5].

ΛΦ B B̃ Q Q̃ ΛQ ΛQ̃

Sp(k) symmetric anti-symmetric anti-symmetric � � � �

U(1)ǫ1 −1 1 0 1
2

1
2

0 0

U(1)ǫ2 −1 0 1 1
2

1
2

0 0

We have arrived at the conclusion that the theory for k strings is an Sp(k) gauge

theory with a (2,0) vector multiplet Υ and a Fermi multiplet ΛΦ in the adjoint (i.e.

symmetric) representation, two chiral multiplets B, B̃ in the antisymmetric repre-

sentation, and two chiral multiplets Q, Q̃, each in the bifundamental representation

of Sp(k) × SO(8 + 2p). If p > 0 one also has Fermi multiplets ΛQ,ΛQ̃ in the bi-

fundamental of Sp(k) × Sp(p). One can pick a basis {ei}ki=1of the weight lattice of

Sp(k) in which the fundamental representation has weights ±ei (i = 1, . . . , k). In this

basis, the symmetric representation has weights ei±ej (∀i, j), while the antisymmet-

ric representation has weights ei ± ej (i 6= j). We also pick ±mi to be the Cartan

parameters dual to the weights of the fundamental representation of SO(8+2p), and

±µi and ±µ̃i to be the Cartan parameters for the two Sp(p) flavor groups.

Let us next comment on gauge anomaly cancellation in two dimensions. The

contribution of chiral fermions running in the loop to the anomaly is proportional to

the index of their representation T (R) defined as:

Tr(T a
RT

b
R) = T (R)δab. (3.10)

Furthermore, left-moving fermions contribute with a positive sign to the anomaly

while right-moving ones contribute with a negative sign. Thus, for our particular

quiver we obtain the following result:

a(L)− a(R) = TB(anti-sym) + TB̃(anti-sym) + (n+ 4)(TQ(�) + TQ̃(�)

−TΥ(sym)− TΛφ(sym)− n(TΛQ(�) + TΛQ̃(�)

= 2k − 2 + 2k − 2 + (n+ 4)(1 + 1)− (2k + 2)− (2k + 2)− n(1 + 1)

= 0,

(3.11)

where use has been made of the identities

T (anti-sym) = 2k − 2, T (sym) = 2k + 2, T (�) = 1, (3.12)

and the fact that the fundamental fields transform in real representations and there-

fore only have half the number of degrees of freedom.
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3.1 Localization computation

Having written down the field content of the two-dimensional theory of k strings, it is

straightforward to compute its elliptic genus, following the localization computation

of [19, 20]. The elliptic genus is given by a contour integral of a one-loop determinant:

Zk strings =

∫
Z1−loop

k strings(zi, mj , µi, µ̃i, ǫ1, ǫ2), (3.13)

where Z1−loop
k strings is a k-form on the k complex-dimensional space of flat Sp(k) con-

nections on T 2, which is a complex torus parametrized by variables ζi =
1

2πi
log zi,

and the contour of integration is determined by the Jeffrey-Kirwan prescription [25].

The one-loop determinant is obtained by multiplying together the contributions of

all multiplets and takes the following form:

Z1−loop
k strings = ZΥ ZΛΦ ZBZB̃ ZQZQ̃ ZΛQ ZΛQ̃ ,

where3

ZΥ =

(
k∏

i=1

dζi θ
′
1(0)θ1(z

2
i )θ1(z

−2
i )

η3

)(
k∏

i<j

∏

s1=±1, s2=±1

θ1(z
s1
i z

s2
j )

η

)
(3.15)

ZΛΦ =

(
k∏

i=1

θ1(dt)θ1(dtz
2
i )θ1(dtz

−2
i )

η3

)(
k∏

i<j

∏

s1=±1, s2=±1

θ1(dtz
s1
i z

s2
j )

η

)
(3.16)

ZBZB̃ =

(
η2

θ1(d)θ1(t)

)k
(

k∏

i<j

∏

s1=±1, s2=±1

η2

θ1(dz
s1
i z

s2
j )θ1(tz

s1
i z

s2
j )

)
(3.17)

ZQZQ̃ =
k∏

i=1

p+4∏

j=1

η4

θ1(
√
dtziQmj

)θ1(
√
dtz−1

i Qmj
)θ1(

√
dtziQ−1

mj
)θ1(

√
dtz−1

i Q−1
mj
)

(3.18)

ZΛQZΛQ̃ =

k∏

i=1

p∏

j=1

θ1(ziQµj
)θ1(z

−1
i Qµj

)θ1(ziQµ̃j
)θ1(z

−1
i Qµ̃j

)

η4
, (3.19)

and Qmi
= e2πimi , Qµi

= e2πiµi , Qµ̃i
= e2πiµ̃i , d = e2πiǫ1 , t = e2πiǫ2 . The integral itself

is then obtained by computing a sum over Jeffrey-Kirwan residues of the one-loop

determinant:

Zk strings =
1

|Weyl[Sp(k)]|
∑

α

JK-res(α, q)Z1−loop
k strings, (3.20)

3We use the following definitions for the Dedekind eta function η(τ) and Jacobi theta function

θ1(z, τ):

η(τ) = q1/24
∞∏

j=1

(1 − qj); θ1(z, τ) = −iq1/8
√
z

∞∏

j=1

(1− qj)(1 − z−1qj)(1 − z−1qj), (3.14)

where q = e2πiτ .
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where α labels poles of Z1−loop
k strings and the role of q will be clarified shortly. In the

following sections we will compute the residue sum for one and two strings, in which

case the evaluation of Jeffrey-Kirwan residues turns out to be straightforward and

we do not need to resort to the full-fledged formalism.

One string

For a single string, the one-loop determinant is given by a one-form:

Z1−loop
1 string = dζ

2πiη2θ(z2)θ(z−2)θ(dt)θ(dtz2)θ(dtz−2)

θ(d)θ(t)η3

×
p∏

i=1

θ(Qµi
z)θ(Q−1

µi
z)θ(Qµ̃i

z)θ(Q−1
µ̃i
z)

η4

×
4+p∏

i=1

η4

θ(
√
dtQmi

z)θ(
√
dtQ−1

mi
z)θ(

√
dtQmi

z−1)θ(
√
dtQ−1

mi
z−1)

. (3.21)

One first needs to identify the singular loci of the integrand. Each of the theta

functions in the second line of (3.21) determines a (0-dimensional) singular hyper-

plane within the one complex dimensional space M1 string spanned by ζ = log z, for

a total of 4 · (4 + p) distinct singular points at

± ζ +
ǫ1 + ǫ2

2
±mi = 0, i = 1, . . . 4 + p.4 (3.22)

To determine which poles contribute to the residue sum, one needs to consider the

normal vectors to the singular hyperplanes. In this case, the normal vector is simply

±∂ζ , where the sign is the one multiplying ζ in (3.22). The data that enters the

Jeffrey-Kirwan residue computation corresponds of two quantities: the position of

the pole in the ζ plane and a choice of a vector q ∈ TM1 string. In this case, we can

choose either q = ±∂ζ ; let us pick q = −∂ζ . For two-dimensional theories, it can

be argued that once the sum over residues is performed the answer is independent

of the choice of q. Next, one picks the poles satisfying the property that q lies

within the one-dimensional cone spanned by the vector normal to the corresponding

hyperplane. In this trivial example one finds that only the following poles contribute

to the integral:

− ζ +
ǫ1 + ǫ2

2
±mi = 0. (3.23)

Evaluating the Jeffrey-Kirwan residues in this situation corresponds to summing over

the ordinary residues at these poles. Summing over the eight residues and dividing

4Since ζ ∼ ζ + 1 ∼ ζ + τ , each theta function leads to a single pole.
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by Weyl[Sp(1)] = Z2 leads to the following answer:

Z1 string =
1

2

η2

θ(d)θ(t)
×

4+p∑

i=1

[
θ(dtQ2

mi
)θ(d2t2Q2

mi
)

η2

∏

j 6=i

∏

s=±1

η2

θ(Qmi
Qs

mj
)θ(dtQmi

Qs
mj
)

×
p∏

j=1

∏

s=±1

θ(
√
dtQmi

Qs
µj
)θ(

√
dtQmi

Qs
µ̃j
)

η2
+ (Qmi

→ Q−1
mi
)

]
.

(3.24)

Note some features of this expression: The existence of theta functions in the denom-

inator which depend on SO(8+2p) fugacities suggests that the SO(8+2p) continues

to be carried by some bosonic degrees of freedom in the IR. Also, the fact that the

expressions include a mixture of ǫi (captured by t, d) and mi suggests a non-trivial

structure for the theory which makes it unlikely to correspond to a free theory in the

IR. It would be interesting to identify the non-trivial (4, 0) CFT whose elliptic genus

is given by the above expression. Perhaps ideas similar to the ones employed in [26]

can be used to do this.

In Section 3.3 we will explain how to extract from this expression the BPS

degeneracies corresponding to a single string; for the p = 0 case, one finds a precise

match with the BPS invariants of the geometry that engineers the O(−4) → P
1

SCFT, to be discussed in Section 4.

Two strings

The computation for two strings proceeds analogously; first, one should identify the

hyperplanes in the two-dimensional space M2 strings along which the denominator of

Z1−loop
2 strings vanishes. There are 8(p+ 5) such hyperplanes:

± ζj +
ǫ1 + ǫ2

2
±mi = 0, i = 1, . . . 4 + p, j = 1, 2; (3.25)

±ζ1 ± ζ2 + ǫ1 = 0; (3.26)

±ζ1 ± ζ2 + ǫ2 = 0, (3.27)

where ζi = log(zi). For concreteness, let us focus from now on to the case where

p = 0, keeping in mind that the computation for arbitrary p proceeds analogously. We

display the vectors normal to the hyperplanes, as well as our choice of q ∈ TM2 strings,

in Figure 6. The next step is to identify the points at which hyperplanes intersect.

The computation of Jeffrey-Kirwan residues is simplified by the fact that for generic

values of m, ǫ1, ǫ2 at most two hyperplanes intersect at the same time. The poles

whose residues contribute to the elliptic genus are those for which q lies within the

cone spanned by the vectors normal to the corresponding hyperplanes. For example,

since q lies in the cone spanned by −∂ζ1 and −∂ζ1 − ∂ζ2 , but not in the one spanned

by −∂ζ1 and −∂ζ1 + ∂ζ2 , the residue evaluated at

− ζ1 +
ǫ1 + ǫ2

2
+m1 = 0; −ζ1 − ζ2 + ǫ1 = 0, (3.28)
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Figure 6: Singular hyperplane configuration for the two-string elliptic genus. The

vectors normal to the singular hyperplanes are displayed, along with the multiplicity

with which they occur. Our choice of q is also displayed here.

will contribute, while the one at

− ζ1 +
ǫ1 + ǫ2

2
+m1 = 0; −ζ1 + ζ2 + ǫ1 = 0 (3.29)

will not. Following this prescription, one arrives at the following list of poles whose

residues contribute to the computation:

αi,j,s : ζ1 =
ǫ1 + ǫ2

2
+ smi, ζ2 = ζ1 + ǫj ;

(i = 1, . . . , 4, j = 1, 2, s = ±1) (3.30)

α′
i,j,s : ζ2 =

ǫ1 + ǫ2
2

+ smi, ζ1 = ζ2 + ǫj ;

(i = 1, . . . , 4, j = 1, 2, s = ±1) (3.31)

α′′
i,j,s : −ζ2 =

ǫ1 + ǫ2
2

+ smi, ζ1 = − ζ2 + ǫj ;

(i = 1, . . . , 4, j = 1, 2, s = ±1) (3.32)

βi,j,s : ζ1 =
ǫ1 + ǫ2

2
+ smi, ζ2 = − ζ1 + ǫj ;

(i = 1, . . . , 4, j = 1, 2, s = ±1) (3.33)

γi,j,s1,s2 : ζ1 =
ǫ1 + ǫ2

2
+ s1mi, ζ2=

ǫ1 + ǫ2
2

+ s2mj.

(i = 1, . . . , 4, j 6= i, s1 = ±1, s2 = ±1) (3.34)
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The prescription outlined above also picks up some additional poles, but they do not

contribute to the elliptic genus since the numerator of Z1−loops
2 strings turns out to vanish for

them. Therefore, the elliptic genus of two strings is obtained by summing over the

residues that correspond the 112 poles listed in Equations (3.30)–(3.34). In practice,

one can exploit Sp(2) Weyl symmetry to show that the residues of poles (3.31) and

(3.32) are identical to the ones of (3.30). For the same reason, one can set j < i in

(3.34) and multiply the corresponding 24 residues by a factor of 2.

After these considerations, we are ready to write down the elliptic genus of two

strings:

Z2 strings =
1

8


3
∑

αi,j,s

Resαi,j,s
Z1−l.

2 str. +
∑

βi,j,s

Resβi,j,s
Z1−l.

2 str. + 2
∑

γi,j,s1,s2
j<i

Resγi,j,s1,s2Z
1−l.
2 str.


 ,

(3.35)

where we have divided by an overall factor of 8 = |Weyl[Sp(2)]|, and the residues

have the following explicit form:

Resαi,1,s
Z1−loop

2 strings =
θ1(d

2tQ2s
mi
)θ1(d

3tQ2s
mi
)θ1(d

3t2Q2s
mi
)θ1(d

2t2Q2s
mi
)

θ1(d)θ1(t)θ1(d2)θ1(t/d)

×
∏

j 6=i

∏

r=±1

η4

θ1(Qs
mi
Qr

mj
)θ1(dQs

mi
Qr

mj
)θ1(dtQs

mi
Qr

mj
)θ1(d2tQs

mi
Qr

mj
)
;

(3.36)

Resαi,2,s
Z1−loop

2 strings =
θ1(dt

2Q2s
mi
)θ1(dt

3Q2s
mi
)θ1(d

2t3Q2s
mi
)θ1(d

2t2Q2s
mi
)

θ1(d)θ1(t)θ1(t2)θ1(d/t)

×
∏

j 6=i

∏

r=±1

η4

θ1(Qs
mi
Qr

mj
)θ1(tQs

mi
Qr

mj
)θ1(dtQs

mi
Qr

mj
)θ1(dt2Qs

mi
Qr

mj
)
;

(3.37)

Resβi,1,s
Z1−loop

2 strings =
θ1(d

2t)θ1(tQ
2s
mi
)θ1(t/dQ

2s
mi
)θ1(d

2Q−2s
mi

)θ1(dt
2Q2s

mi
)θ1(d

2t2Q2s
mi
)

θ1(d)θ1(t)2θ1(d2)θ1(t/d)θ1(Q2s
mi
)

×
∏

j 6=i

∏

r=±1

η4

θ1(Qs
mi
Qr

mj
)θ1(dQs

mi
Qr

mj
)θ1(tQs

mi
Qr

mj
)θ1(dtQs

mi
Qr

mj
)
;

(3.38)

Resβi,2,s
Z1−loop

2 strings =
θ1(dt

2)θ1(dQ
2s
mi
)θ1(d/tQ

2s
mi
)θ1(t

2Q−2s
mi

)θ1(d
2tQ2s

mi
)θ1(d

2t2Q2s
mi
)

θ1(d)2θ1(t)θ1(t2)θ1(d/t)θ1(Q2s
mi
)

×
∏

j 6=i

∏

r=±1

η4

θ1(Qs
mi
Qr

mj
)θ1(dQs

mi
Qr

mj
)θ1(tQs

mi
Qr

mj
)θ1(dtQs

mi
Qr

mj
)
;

(3.39)
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Resγi,j,s1,s2Z
1−loop
2 strings =

θ1(dtQ
2s1
mi

)θ1(dtQ
2s2
mj

)θ1(d
2t2Q2s1

mi
)θ1(d

2t2Q2s2
mj

)

θ1(d)2θ1(t)2
θ1(d

2t2Qs1
mi
Qs2

mj
)

θ1(Q
s1
miQ

s2
mj )

× η8

[
θ1(dQ

s1
mi
Qs2

mj
)θ1(tQ

s1
mi
Qs2

mj
)θ1(dQ

s1
mi
Q−s2

mj
)θ1(tQ

s1
mi
Q−s2

mj
)

× θ1(dQ
−s1
mi
Qs2

mj
)θ1(tQ

−s1
mi

Qs2
mj
)θ1(d

2tQs1
mi
Qs2

mj
)θ1(dt

2Qs1
mi
Qs2

mj
)

]−1

×
∏

k 6=i,j

∏

r=±1

η4

θ1(Q
s1
miQr

mk
)θ1(Q

s2
mjQr

mk
)θ1(dtQ

s1
miQr

mj
)θ1(dtQ

s2
mjQr

mj
)
.

(3.40)

After summing over the 56 residues, one is left with a weight zero meromorphic

elliptic function with modular parameter τ and six elliptic parameters (ǫ1, ǫ2 and the

SO(8) fugacities (m1, . . . , m4)). In Section 4.2.3 we will check the validity of our

answer in the unrefined limit ǫ2 = −ǫ1 by verifying that it exactly reproduces the

genus 0 BPS invariants of the Calabi-Yau threefold that engineers the six-dimensional

theory under consideration. If ǫ1, ǫ2 are left arbitrary, Equation (3.35) can be used

to compute arbitrary genus refined BPS invariants of this geometry.

For higher numbers of strings the computation of the elliptic genus from Equation

(3.20) proceeds analogously, but for simplicity and clarity of exposition we limit our

discussion to the cases of one and two strings.

3.2 Modular anomaly

In this section we wish to study the behavior of the elliptic genus under SL(2,Z)

transformations

γ : (tb, τ,mi, µi, ǫi) →
(
tb,

aτ + b

cτ + d
,

mi

cτ + d
,

µi

cτ + d
,

ǫi
cτ + d

)
,

(
a b

c d

)
∈ SL(2,Z).

(3.41)

The modular properties of the elliptic genus can be best understood starting from the

integral expression (3.13), where the integration variables ζi also transform as elliptic

parameters: ζi → ζi/(cτ + d). Each (2, 0) multiplet contributes to the integrand a

factor of the form
(

θ1(y,τ)
η(τ)

)±1

. Recall that under S and T transformations

θ1(e
2πiζ , τ + 1)

η(τ + 1)
=
eπi/4θ1(e

2πiζ , τ)

eπi/12η(τ)
= eπi/6

θ1(e
2πiζ , τ)

η(τ)
, (3.42)

θ(e2πiζ/τ ,−1/τ)

η(−1/τ)
=
e−3πi/4e

πi
τ
ζ2θ1(e

2πiζ , τ)

e−πi/4η(τ)
= e−πi/2e

πi
τ
ζ2 θ1(e

2πiζ , τ)

η(τ)
. (3.43)

Using this, one can easily check that the elliptic genus of k strings is invariant under

τ → τ + 1:

Zk strings(τ + 1) = Zk strings(τ); (3.44)
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on the other hand, under τ → −1/τ one can show that the integrand picks up a

zi-independent phase:

Zk strings(−1/τ)

Zk strings(τ)
= exp

[
− πi

τ

(
ǫ1ǫ2

(
4k2 − 2k

)
− (ǫ1 + ǫ2)

2 k(2 + p)

− 4k

4+p∑

j=1

m2
j + 2k

p∑

j=1

(µ2
j + µ̃2

j)

)]
. (3.45)

In other words, Zk strings transforms as a modular function up to an anomalous phase

factor. The origin of this factor can be easily understood by considering the following

representation of the theta function:

θ(z, τ) = η(τ)3(2πζ) exp

(
∑

k≥1

B2k

(2k)(2k)!
E2k(τ)(2πiζ)

2k

)
, (3.46)

where the dependence on the modular parameter τ is expressed in terms of the

Eisenstein series

E2k(τ) =
1

2ζ(2k)

∑

(m,n)∈Z2\(0,0)

1

mτ + n
, k ≥ 1 (3.47)

and ζ(z) is the Riemann zeta function. For any k ≥ 2, E2k(τ) is a modular form of

weight 2k. On the other hand, E2(τ) transforms anomalously:

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ)−

6ic

π
(cτ + d). (3.48)

In other words, the phase factors appearing in Equation (3.45) are completely deter-

mined by the E2(τ)-dependence of the integrand, and in lieu of (3.45) we might as

well have written:

∂E2Zk strings = − 1

24
(2π)2

(
ǫ1ǫ2

(
4k2 − 2k

)
− (ǫ1 + ǫ2)

2 k(2 + p)

− 4k

4+p∑

j=1

m2
j + 2k

p∑

j=1

(µ2
j + µ̃2

j)

)
Zk strings. (3.49)

This expression is very similar to the E-string and M-string modular anomaly equa-

tions found in [4, 14, 27]: in the E-string (O(−1) → P1) case, one has:

1

Zd
E

∂E2Z
d
E = − 1

24
(2π)2(ǫ1ǫ2(k

2 + k)− k(ǫ1 + ǫ2)
2 + k(

∑

i

m2
i )),

while in the M-string (O(−2) → P1) case, one finds:

1

Zk
M

∂E2Z
d
M = − 1

12
(2π)2(ǫ1ǫ2k

2 − k

4
(ǫ1 + ǫ2)

2 + km2).
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As discussed in Section 2, in all these cases the elliptic genera of the strings capture

part of the topological string partition function of the corresponding Calabi-Yau X :

Ztop(X) = Z0(X) ·
(
1 +

∞∑

k=1

QkZk strings(X)

)
. (3.50)

In all cases, X is elliptically fibered, and the topological string partition function

is expected to be invariant under modular transformations (3.45). However, this is

in contradiction with the fact that Zk strings is only invariant up to a phase. The

resolution to this apparent contradiction is well known: in the topological string

expression the second Eisenstein series E2(τ) should be replaced by its modular

completion

Ê2(τ, τ) = E2(τ)−
6i

π(τ − τ )
, (3.51)

which under the SL(2,Z) action transforms as follows:

Ê2

(
aτ + b

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)2Ê2(τ, τ). (3.52)

This implies that the topological string partition function is a well defined modular

function of τ , but no longer depends holomorphically on it:

∂τZtop(X) =
6i

π(τ − τ )2
∂Ê2

Ztop(X) 6= 0. (3.53)

3.3 Refined BPS invariants

Let us now explain how to extract refined BPS invariants from the elliptic genera of

k strings Zk, again specializing to the case p = 0 where the global symmetry on the

worldsheet is just SO(8). In order to proceed note that the full partition function of

the topological string is given by

Ztop = eF = Z0

(
1 +

∞∑

k=1

QkZk

)
, (3.54)

where Zk is the elliptic genus of k strings and Q is a combination of exponentiated

Kähler moduli of the elliptic Calabi-Yau geometry to be determined later. Further-

more, we perform the following change of basis which replaces the mass parameters

Qmi
by the parameters Qi corresponding to a choice of simple roots of SO(8):

Qm1 = Q1Qc

√
Q2

√
Q3, Qm2 = Qc

√
Q2

√
Q3, Qm3 =

√
Q2

√
Q3, Qm4 =

√
Q3√
Q2

.
∑

j=1

(3.55)

In addition to these parameters, let us also define the parameter Q4 corresponding

to the affine node of the extended Dynkin diagram of type D4 as shown in Figure
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Figure 7: Extended Dynkin diagram for D4.

7. The elliptic genera Zk can then be expanded in positive powers of Q1, Q2, Q3, Q4

and Qc upon replacing Qτ = e2πiτ by the following combination:

Qτ = Q1Q2Q3Q4Q
2
c , (3.56)

where the powers are determined by the Coxeter labels of the nodes in Figure 7.

Taking the logarithm of Equation (3.54), the free energy F can be expanded as:

F = logZ = log(Z0) + Z1Q+

(
−1

2
Z2

1 + Z2

)
Q2 +

(
Z3

1

3
− Z1Z2 + Z3

)
Q3 +O(Q4).

(3.57)

In order to make contact with the computation of the Calabi-Yau BPS invariants

from Section 4 we identify Q with the combination

Q = Qb
Q4

Q1Q2Q3Q2
c

, (3.58)

where Qb = e−tb and tb is the Kähler class of the base of the elliptic fibration. The

refined BPS invariants are encoded in the free energy F as follows [28, 29]

F =

∞∑

jl,jR=0

m=1

∑

β∈H2(M,Z)

njL,jR
β

m

(−1)2(jL+jR)
√
dmtm

(∑jL
n=−jL

(d/t)mn
)(∑jR

n=−jR
(dt)mn

)
em(β,t)

(1− dm)(1− tm)
,

(3.59)

where t denote the Kähler moduli of the Calabi-Yau. The above free energy en-

codes BPS degeneracies njL,jR
β of short multiplets of the five-dimensional quantum

field theory arising from circle compactification of the six-dimensional SCFT. In this

context the labels jL and jR refer to the spins of the two SU(2) subgroups of the

little group SO(4) in the decomposition SO(4) = SU(2)L×SU(2)R and β labels the

string charge as well as the various flavor charges. Denoting by tf the collection of
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the Kähler moduli of the resolved elliptic fiber and making use of the expansion

F (ǫ1, ǫ2, t) = F0(ǫ1, ǫ2, tf) +
∞∑

i=1

Fi(ǫ1, ǫ2, tf)Q
i, (3.60)

we find

F1(ǫi, mi, τ) = Z1(ǫi, mi, τ)

F2(ǫi, mi, τ) = Z2(ǫi, mi, τ)−
1

2
Z1(ǫi, mi, τ)

2

...

(3.61)

Since for F1 there is no multi-wrapping, we can set m = 1 in Equation (3.59) and

extract the invariants njL,jR
β immediately from the expression (3.24) for the elliptic

genus of one string. Let us specify β in terms of the following basis of H2(X,Z):

Jb, J1, J2, J3, J4, Jc; that is, we write:

njL,jR
β = njL,jR

nb,n1,n2,n3,n4,nc
. (3.62)

In the following tables we present a sample of invariants for some specific choices of

low degree curves.

2jL\2jR 0 1 2 3 4 5 6 7

0 0 33 0 28 0 9 0 1

1 2 0 3 0 1 0 0 0

njL,jR
1,2,2,1,1,3

2jL\2jR 0 1 2 3 4 5 6 7

0 0 28 0 42 0 29 0 9

1 1 0 3 0 3 0 1 0

njL,jR
1,2,2,1,1,4

2jL\2jR 0 1 2 3 4 5 6 7

0 0 10 0 11 0 6 0 1

1 0 0 0 0 0 0 0 0

njL,jR
1,3,3,1,1,3

2jL\2jR 0 1 2 3 4 5 6 7

0 0 41 0 47 0 28 0 9

1 2 0 4 0 3 0 1 0

njL,jR
1,3,3,1,1,4
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Analogously, we can extract all refined invariants for two strings, that is for base

wrapping number nb = 2. For example:

2jL\2jR 0 1 2 3 4 5 6 7

0 0 1 0 2 0 1 0 0

1 0 0 0 0 0 0 0 0

njL,jR
2,1,1,0,0,1

2jL\2jR 0 1 2 3 4 5 6 7

0 0 2 0 2 0 1 0 0

1 0 0 0 0 0 0 0 0

njL,jR
2,2,2,0,0,1

In order to extract unrefined invariants from these one has to sum over the

right-moving spin of the multiplets as follows:

njL
β =

∑

jR

(−1)2jR(2jR + 1)njL,jR
β . (3.63)

Furthermore, in order compare with the genus expansion of the topological string,

the SU(2)L representations have to be organized into

InL =

[
(
1

2
) + 2(0)

]⊗n

, (3.64)

and the BPS invariants ng
β can be obtained by comparing the two sides of the identity

∑
njL,jR
β (−1)2jR(2jR + 1)[jL] =

∑

g

ng
βI

g
L. (3.65)

The expansion coefficients in InL =
∑

j c
2n
j [j/2] can be found for example in [30].

Using these results we can compute unrefined invariants. For nb = 1, for example,

for the curves considered above one has:

n0
1,2,2,1,1,3 = −272 n1

1,2,2,1,1,3 = 16,

n0
1,2,2,1,1,4 = −534 n1

1,2,2,1,1,4 = 32,

n0
1,3,3,1,1,3 = −108 n1

1,3,3,1,1,3 = 0,

n0
1,3,3,1,1,4 = −582 n1

1,3,3,1,1,4 = 36,

(3.66)

and for the nb = 2 curves considered above we obtain

n0
2,1,1,0,0,1 = −16 n1

2,1,1,0,0,1 = 0,

n0
2,2,2,0,0,1 = −18 n1

2,2,2,0,0,1 = 0.

(3.67)
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For these classes all invariants with g ≥ 2 vanish.

Following the procedure outlined above we have extracted an extensive list of

BPS invariants corresponding to one and two strings. The genus zero invariants

can be computed independently by employing the mirror symmetry and topological

string techniques presented in the next section. When comparing the elliptic genus

results to the topological string computation presented in Section 4.2.3 we find a

perfect agreement.

4 The Calabi-Yau geometries with elliptic singularities

In this section we construct the local elliptic Calabi-Yau geometries corresponding

to the different minimal 6d SCFTs. Our strategy will be to first find a minimal

compact elliptic Calabi-Yau 3-fold with the right type of elliptic fiber degeneration

over the rigid divisor Σ in the base B and subsequently take the local limit by

decompactifying the normal direction to Σ in B. The resulting space will be the

non-compact Calabi-Yau 3-fold.

Non-compact Calabi-Yau geometries played an important role in the develop-

ment of topological string theory, which can frequently be completely solved on

these geometries, by well understood relations to matrix models, integrable models

and gauge theories. One wide class of examples are the non-compact toric Calabi-Yau

spaces; another one with some overlap to the first consists of the local (almost) Fano

varieties O(−KS) → S, where S is an (almost) Fano variety. That is, one considers

a rigid divisor S in the Calabi-Yau 3-fold and decompactifies the normal direction

to S. In these cases local mirror symmetry leads to a mirror curve. In the present

case, instead, we decompactify the normal direction to a rigid divisor Σ in the base

B of an elliptic Calabi-Yau 3-fold. Then, the mirror geometry does not reduce to

a curve. In cases where there is an orbifold description one can describe the local

mirror geometry as a non-compact Landau-Ginzburg model as we exemplify for the

Z3 orbifold in Appendix A.

4.1 The local geometries

The new local geometries we consider arise in Calabi-Yau threefolds, where we zoom

close to the elliptic singularity of an elliptic fibration over a divisor Σ in a two-

dimensional base B. The divisor Σ corresponds to the 7-brane locus in F-theory with

gauge symmetry gΣ and the exceptional divisors that resolve the elliptic singularity

intersect with the negative Cartan matrix CĝΣ of the affine Lie algebra ĝΣ associated

to gΣ.

We consider non-Higgsable singularities; in other words, the divisor Σ has to be

rigid and the Calabi-Yau space has no complex structure deformations which could

resolve the singularity. The simplest example for a non compact threefold of this

type are elliptic fibrations over B = (O(−n) → P1). We will start with a compact
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threefold M3 constructed as elliptic fibration over a Hirzebruch surface B = Fn [17].

The (−n) section of the rational fibration of Fn is then the rigid gauge symmetry

divisor Σ, with O(−n) as its normal bundle.

This setup allows us to solve the topological string using mirror symmetry with

normalizable intersections and instanton actions. By decompactifying the normal

direction we can easily decouple six-dimensional gravity.

Hirzebruch surfaces as base

Let us recall that the Hirzebruch surfaces Fn are rational P1 fibrations over P1,

where n parametrizes the twisting of the fiber. They can be constructed torically or

as gauged linear sigma models with four chiral fields Φi, i = 1, . . . , 4 and two U(1)’s

under which the fields have charges l
(1)
i and l

(2)
i . We also use the description in terms

of a toric fan in which each field Φi corresponds to a primitive vector νi spanning

the fan in the integer lattice Z2 and summarize the base data as follows:

Div ν∗i l(1) l(2)

D0 = K 1 0 0 −2 n− 2

D1 = S 1 0 1 1 0

D2 = F 1 1 0 0 1

D3 = S ′ 1 0 −1 1 −n
D4 = F 1 −1 −n 0 1

. (4.1)

Here we added the inner point ν0 = (0, 0) and promoted the points νi to ν
∗
i = (1, νi) ∈

Z3. This is useful for describing the non-compact Calabi-Yau as the anti-canonical

bundle over Fn (Φ0 is the noncompact direction), but it could be omitted for the

discussion of the compact Hirzebruch surface. Each point νi correponds to a toric

divisor Di = {Φi = 0} and within the surface the homological relations between

these divisors are S = S ′ + nF . The nonvanishing intersections are S2 = n, FS = 1

and (S ′)2 = −n; therefore, S ′ becomes the gauge theory divisor.

Geometrically the l(k), k = 1, 2 represent curve classes [Ck] and the intersection

with the toric divisors Di is given by

[Ck] · [Di] = l
(k)
i . (4.2)

The l(k) are also called Mori vectors; in the present example, k = 1 represents the

base P1 while k = 2 represents the fiber P1 of Fn.

The elliptic fiber types

Next, we want to construct the relevant Calabi-Yau spaces as elliptic fibrations over

the Hirzebruch surfaces Fn. From these we will finally obtain the local O(−n) → P1

models by taking the size of the P1 fiber specified by the class F of the Hirzebruch

surface Fn to infinity. However, it turns out that there are multiple ways to realize
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the elliptic fiber singularity of the appropriate type leading to different Mordell-Weyl

groups. In this paper we will be interested in a rank one Mordell-Weyl group, that is

an elliptic fibration with a single section. In the following we describe how to achieve

this desired fibration structure.

Generically, for n > 2, the situation is such that the discriminant vanishes on

the base P1 called S ′ (we therefore have Σ = S ′) and on isolated points of the fiber

P1 denoted by F . Let us describe the non-compact geometry which arises when we

take the size of F to be infinite. We will denote curves on which the discriminant

vanishes point-wise by (−1)-curves borrowing the terminology from E-strings. In

fact, the analogy goes even further in that a subset of the E8 Weyl symmetry of E-

strings can act on sections of this elliptic fibration. The exact subset is determined by

the elliptic fiber singularity type at the intersection points of the non-compact limit

of F with S ′. We will denote the corresponding Kodaira group by gE which should

not be confused with gΣ discussed in Section 2 which labels the fiber degeneration on

S ′. A consistency condition is that gΣ should be a subgroup of gE , that is gΣ ⊂ gE. In

order to restrict to one section for each model we only consider the fiber type gE = E8

in this paper which leads to the following schematic picture of curve configurations:

For other choices of gE (simplest cases are gE = En, n = 3, . . . , 8, where

{En}8n=3 = A1×A2, A4, D4, E6, E7, E8) the subset of E8 which becomes the Mordell-

Weyl group of the elliptic Calabi-Yau is determined by the commutant of the Weyl

group gE in the Weyl group of E8. Note that gluing together the two non-compact

(−1)-curves gives back the compact Calabi-Yau M3 with base B = Fn. M3 can

equivalently be viewed as a K3 fibration over the (−n)-curve as the elliptic fibration

over F has second Chern class 24 due to the two E8-type degenerations of the elliptic

fiber shown in the above figure. For pure 6d gauge theories the Euler number of M3

is given purely in terms of group theory data as [31]

χpG(M3) = −2C(gE)

∫

B

c21(B)− rank(gΣ)C(gΣ)

∫

Σ

c1(Σ) . (4.3)
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Since we are interested in having a single section, we take gE = E8. In this case

the generic elliptic fiber can be given as a degree 6 hypersurface in the weighted

projective space P2(1, 2, 3). For the different models labeled by n the corresponding

dual Coxeter number C(gΣ) and the Euler numbers of the minimal compact Calabi-

Yau manifolds are given in Table 1.

7-brane n=1,2 3 4 5 6 7 8 9 10 11 12

gΣ - A2 D4 F4 E6 E
( 1
2
HM)

7 E7 E
(3)
8 E

(2)
8 E

(1)
8 E8

Cg - 3 8 12 12 18 18 30 30 30 30

−χ(M3) 480 492 528 576 624 676 732 780 840 900 960

h11(M3)− 1 2 4 6 6 8 9 9 13 12 11 10

Table 1: Table of Coxeter numbers Cg and Euler numbers χ(M3) for the different

minimal SCFT Calabi-Yau threefolds.

Note that, compared to the local geometry associated to the 6d SCFT, the

compact geometry leads to a larger number of hypermultiplets and one additional

vector multiplet.

In the table, we also list the E8 cases with a non-zero number nI = 12−n of small

instantons as E
(nI)
8 . Each instanton corresponds to an additional tensor multiplet in

the 6d theory. Each of the latter contains one additional modulus, so h11 increases

by nI . The 6d anomaly cancellation condition [32, 33] moreover enforces the relation

#HM−#VM = 273−29nI , which implies χ(M3) = χpG(M3)−2CE8E
nI . This yields

the Hodge numbers E
(1,2,3)
8 in Table 1. The corresponding toric hypersurfaces are

specified in Section 4.2.7.

Tate’s algorithm for elliptic fiber singularities and toric constructions

If the generic fiber is the elliptic curve X6(3, 2, 1), the elliptically fibered Calabi-Yau

threefold over a base B for this fiber type takes the Tate form

y2 + x3 + a6(u)z
6 + a4(u)xz

4 + a3(u)yz
3 + a2(u)z

2x2 + a1(u)zxy = 0 , (4.4)

where coordinates on the base B are denoted generically by u.

The construction of gauge singularities inside an elliptically fibered Calabi-Yau

n-fold with the necessary toric data to solve the topological string proceeds as fol-

lows [34, 35]. One constructs reflexive polyhedra such that the Calabi-Yau is given

by the anti-canonical hypersurface W∆(Y ) = 0 in the corresponding toric variety,

with W∆(Y ) being in a generic Tate form (4.4). Then one chooses the divisor Σ in

B, restricts the coefficients ofW∆(Y ) so that at Σ one has the suitable Tate singular-

ity [36], constructs the Newton polytope ∆r to the restricted polyhedron and its dual
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∆∗
r , and finally resolves all non-toric divisors by modifying ∆r, without changing the

singularity at Σ.

For instance, if B is a P1 fibration over Σ, one splits the coordinates of the Tate

form into {Yk} = {z, x, y, u1, u2, w, v}, where ui are coordinates of Σ and w, v are ho-

mogeneous coordinates of the P1 fiber. For example, for w = 0 the whole Σ becomes

a gauge divisor and by setting the coefficients of the monomials in ai(u, v, w, z) to

zero (that is, choosing a specialization of the complex structure moduli), one can put

the ai(u, v, w, z) in the following form:

a1 = α1w
[a0] , a2 = α2w

[a2] , a3 = α3w
[a3] , a4 = α4w

[a4] , a6 = α6w
[a6] , (4.5)

where αi(u, v, w, z) are of order zero in w. Choosing this leading behavior at w = 0

leads by Tate’s algorithm to singular fibers and hence results in a gauge group along

Σ. The association of the leading powers of [ai] with the singularity is given by Tate’s

algorithm [36]. The discussion applies to the Hirzebruch surfaces as bases B which

can be viewed as a P1 fibration over Σ = P1. As already mentioned the divisor Σ

becomes S ′ in this case.

In the following sections we construct the minimal compact Calabi-Yau three-

folds with the prescribed local geometries as hypersurfaces in a toric ambient space.

Minimal means that they have just one additional modulus, whose decompactifica-

tion leads to the local geometry. The cases of main interest have the Euler number

(4.3) as indicated in Table 1.

4.2 Solution of the topological string on the toric hypersurface Calabi-

Yau spaces

Generically the Calabi-Yau geometries under consideration can be described as anti-

canonical hypersurfaces H given by

W∆(Y ) =
∑

νi∈∆
ai
∑

ν∗
k
∈∆∗

Y
〈νi,ν∗k〉+1

k = 0 (4.6)

in P∆∗ , where (∆,∆∗) are reflexive polyhedra.

We denote by ν∗i ∈ Z
4 the relevant points of ∆∗ whose complex hull in R

4 is ∆∗

and by l(k) the charges or Mori vectors, which fulfill

∑

i

l
(k)
i ν̄∗i = 0 , (4.7)

where ν̄∗i = (1, ν∗i ). The Mori vectors span the Mori cone, which is dual to the Kähler

cone. The possible choices of Mori cones constitute the secondary fan whose data

are encoded in the possible star triangulations of ∆∗. Some of them are redundant,

because the Calabi-Yau manifold still has the same Mori cones. Others correspond

truly to different topological phases of the gauged linear sigma model. According to
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the theorem of C.T.C. Wall [37] the topological type of the Calabi-Yau threefold M3

is fixed by the independent Hodge numbers, which for an SU(3) holonomy manifold

are h11 and h21, the triple intersection numbers Ji ·Jj ·Jk and evaluation of the second

Chern class on the basis Ji of divisors dual to the basis of the Kähler cone. Only the

Ji ·Jj ·Jk change in a non-trivial way in the transitions. Given the l(k) and the C.T.C.

Wall topological data one can use toric mirror symmetry [38] to predict the genus

zero BPS numbers for all toric hypersurfaces following [39]. We review the formalism

that leads to the genus zero BPS numbers in Appendix A, see (A.18)-(A.21).

4.2.1 O(−n) → P1 geometries with n = 1, 2

The cases n = 1, 2 have only Kodaira fibers of type I1 over codimension one in the

base and hence no gauge theory divisor.

To fix the notation used in the following sections we review the n = 1 case,

which is of particular interest as the local geometry is the 1
2
K3 on which F-theory

compactification yields the E-string theory. The refined BPS spectrum of the E-

string has an interpretation as the refined stable pair invariants on the local geometry.

The data associated to this geometry is summarized by the following table:

Div. ν̄∗i l
(e)
I l

(f)
I l

(b)
I l

(e′)
II l

(h)
II l

(−b)
II

D0 1 0 0 0 0 −6 0 0 −6 0 0

D1 1 −1 0 0 0 2 0 0 2 0 0

D2 1 0 −1 0 0 3 0 0 3 0 0

S ′ 1 2 3 0 −1 0 1 −1 −1 0 1

K 1 2 3 0 0 1 −2 −1 0 −3 1

F 1 2 3 −1 −1 0 0 1 1 1 −1

S 1 2 3 0 1 0 1 0 0 1 0

F 1 2 3 1 0 0 0 1 1 1 −1

. (4.8)

The polyhedron ∆∗ has two star triangulations, denoted by subscripts I and II,

which lead to different Mori cones in the secondary fan. Such different Mori or

Kähler cones can be understood as different geometrical phases of the 2d sigma

model, which can have non-geometrical phases as well [40].

We give the C.T.C. Wall data for the first phase, namely phase I, which cor-

responds to the E-string geometry. Both phases have h21 = 243 and h11 = 3, and

hence Euler number χ = −480. The topological data in the phase marked with I in

(4.8) are encoded in

RI = 8J3
e + 3J2

eJf + JeJ
2
f + 2J2

e Jb + JeJfJb , (4.9)

whose coefficients are the classical triple intersection numbers cijk =
∫
JiJjJk. The

evaluation of the second Chern class is
∫
c2Je = 92,

∫
c2Jf = 36, and

∫
c2Jb = 24.

We can see from (4.2) that l
(b)
I corresponds to the section [Cb] = [S ′] of the base in
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F1, the (−1) curve, while l
(f)
I corresponds to the fiber [Cf ] = [F ] in F1, a (0) curve.

Over the (−1) curve one has a 1
2
-K3, which is the divisor Jf dual to [Cf ] inM3, while

over [Cf ] one has an elliptically fibered K3, which is the divisor Jb dual to [Cb] in

M . According to Oguiso’s criterion [41] we see that the latter is a fibration of the

geometry M as the K3 does not intersect J2
b = 0 and

∫
c2Jb = 24. The class [Ce]

represents the elliptic fiber.

The E-string partition function has the structure Z = exp(λ2g−2F (g)(Qτ , Qb))

where the free energies have the form F (g) =
∑∞

n=0 F̃
(g)
n (Qτ )Q

n
b . HereQτ = exp(2πiτ)

with τ the modular parameter and F̃
(g)
n (Qτ ) =

Q
n
2
τ

η(Qτ )12n
P

(g)
n with P

(g)
n (Ê2, E4, E6) an

almost holomorphic modular form of weight 2g − 6n − 2, e.g. P
(0)
1 = E4 etc. One

has hence to redefine the Kähler parameters so that Q = QbQ
1
2
τ and

F (g) =
∞∑

n=0

F (g)
n (Qτ )Q

n. (4.10)

In the above formula F
(g)
n (Qτ ) are truly SL(2,Z) invariant coefficients. The anal-

ogous redefinition has been made in (3.58) for the D4 string. The analysis of the

monodromies of M3 that yield an SL(2,Z) action on τ and a non-trivial decoupling

limit fix the combination Q. This was discussed in detail in [21] in a similar context

and applies to geometries discussed below.

The second phase is obtained by flopping the base [Cb] out of the half K3, which

becomes thereby an elliptic pencil, the del Pezzo surface with degree one. The latter

can be obtained by eight blow ups of P2 and is called therefore d8P
2. Note that the

intersections are

RII = 8J3
e′ +3J2

e′Jh+ Je′J
2
h +9J2

e′J−b +3Je′JhJ−b + J2
hJ−b +9Je′J

2
−b +3JhJ

2
−b +9J3

−b,

while the evaluation of the second chern class is given by
∫
c2Ji = {92, 36, 102}. The

transformation of the basis l
(e′)
II = l

(e)
I + l

(b)
I , l

(h)
II = l

(f)
I + l

(b)
I and l

(−b)
I = −l(b)I gives

already almost the intersection ring RII except that one gets 8J3
−b instead of 9J3

−b,

i.e. in a coordinate independent formulation one observes that the triple intersection

of the divisors dual to the rational curve that gets flopped increases by +1. This can

be argued in general in various ways, see e.g. [8].
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The case n = 2 has only one phase:

Div. ν̄∗i l
(e)
I l

(f)
I l

(b)
I

D0 1 0 0 0 0 −6 0 0

D1 1 −1 0 0 0 2 0 0

D2 1 0 −1 0 0 3 0 0

S ′ 1 2 3 0 −1 0 1 −2

K 1 2 3 0 0 1 −2 0

F 1 2 3 −1 −1 0 0 1

S 1 2 3 0 1 0 1 0

F 1 2 3 1 0 0 0 1

. (4.11)

In this phase one has a K3 and an elliptic fibration and the intersection ring is in

general

R = 8J3
e + 4J2

eJf + 2JeJ
2
f + 2J2

eJb + JeJfJb, (4.12)

with ∫
c2Je = 92,

∫
c2Jf = 48,

∫
c2Jb = 24 . (4.13)

The n = 2 geometry corresponds to the A1 N = (2, 0) SCFT; by making the elliptic

fiber singular over the (−2) curve, one obtains the M-string geometry which was

studied in detail in [4, 5].

4.2.2 O(−3) → P1 geometry with Â2 resolution

The easiest example with a non-Higgsable gauge symmetry is the A2 case, which has

the following polyhedron ∆∗:

Div. ν∗i l(1) l(2) l(3) l(4) l(5) lT 2 l
(1)

P2 l
(2)

P2 l
(3)

P2 lde
D0 0 0 0 0 −1 0 0 0 0 −6 −3 0 0 0

D1 −1 0 0 0 0 1 0 −1 0 2 1 1 0 0

D2 0 −1 0 0 1 0 0 0 −1 3 3 0 0 0

D3 1 1 0 −1 −1 0 0 0 2 0 −3 0 0 0

D4 1 2 0 −1 1 −3 0 3 0 0 0 −3 0 0

S ′ 2 3 0 −1 0 0 1 −3 1 0 0 0 −3 0

K 2 3 0 0 0 0 −2 1 0 1 0 0 1 −5
3

F 2 3 −1 −3 0 1 0 0 −1 0 1 1 1 1
3

S 2 3 0 1 0 0 1 0 0 0 0 0 0 1

F 2 3 1 0 0 1 0 0 −1 0 1 1 1 1
3

. (4.14)

We study the basis5 which is appropriate to exhibit the curve classes that exhibit

the affine Â2 singularity over the divisor S ′, which are depicted in the figure below:

5The intersection ring and an alternate basis appropriate to the Landau-Ginzburg description is

given in Appendix A.
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1 11 2

1 3

This basis corresponds to the following choice of vectors:

l1
Â2

= 4l(1) + l(2) + l(5) = (−4, 1, 3,−2, 1, 1, 0, 0, 0, 0),

l2
Â2

= l(1) + l(2) + l(5) = (−1, 1, 0, 1,−2, 1, 0, 0, 0, 0),

l3
Â2

= l(1) + l(2) + l(4) + l(5) = (−1, 0, 0, 1, 1,−2, 1, 0, 0, 0),

lb = −(l(1) + l(5)) = ( 1, 0, 0,−1,−1,−1, 0, 1, 0, 1),

lde = 5l(1) + 8
3
l(2) + l(3) + 10

9
l(4) + 8

3
l(5) = (−5, 14

9
, 7
3
, 1

3
, 1

3
, 1

3
,−8

9
, 0, 1, 0)) .

(4.15)

Note that we have flopped the P1 represented by the vector l(1)+ l(5) in the Mori cone

in order to arrive at the appropriate P1 base for the affine Â2 singularity. The P
1 base

is represented by the Mori vector lb, which intersects the three rational components

of the degenerate elliptic curve with (−1). The decompactification direction can be

specified as a rational element in H2(M3) so that the intersection form of the compact

two-dimensional part becomes

1

33
Jb

3∑

i,j=1

CijJ
(i)

Â2
J
(j)

Â2
. (4.16)

We note that the Coxeter labels ai have the property that for Cij the affine

Cartan matrix
r∑

j=0

aiCij = 0 . (4.17)

A first check on our identification is therefore that the P1 curve classes called l
(i)

D̂4

add up to the class of the elliptic fiber with the Coxeter lables indicated at the affine

Dynkin diagram, i.e.

lT 2 = 1l
(1)

Â2
+ 1l

(2)

Â2
+ 1l

(3)

Â2
.

This is geometrically required, because the curve class of the elliptic fiber has self

intersection 0. We list in the following some of the BPS invariants n
(0)

db,d
1
Â2

,d2
Â2

,d3
Â2

,

where the degree in the decompactified direction is zero. The number db corresponds

to the base wrapping number and therefore indicates the string charge in the 6d SCFT

whereas the other numbers correspond to the flavor fugacity charges. The numbers

n
(0)

db,d
1
Â2

,d2
Â2

,d3
Â2

are symmetric in d1
Â2
, d2

Â2
, d3

Â2
. Since the emphasis of this paper is on

the strings of the 6d SCFTs, we focus on the BPS invariants corresponding to nb ≥ 1.

For example, the following tables display BPS invariants corresponding to nb = 1, 2

and small values of d i
Â2
.
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d1
Â2

\d2
Â2

0 1 2 3 4 5

0 1 3 5 7 9 11

1 3 4 8 12 16 20

2 5 8 9 15 21 27

3 7 12 15 16 24 32

4 9 16 21 24 25 35

5 11 20 27 32 35 36

n
(0)

db=1,d1

Â2

,d2

Â2

,0

d1
Â2

\d2
Â2

1 2 3 4 5

1 16 36 60 84 108

2 36 56 96 144 192

3 60 96 120 180 252

4 84 144 180 208 288

5 108 192 252 288 320

n
(0)

db=1,d1

Â2

,d2

Â2

,1

d1
Â2

\d2
Â2

2 3 4 5

2 149 288 465 651

3 288 456 735 1080

4 465 735 954 1371

4 651 1080 1371 -

n
(0)

db=1,d1

Â2

,d2

Â2

,2

d1
Â2

\d2
Â2

3 4

3 1012 1788

4 1788 -

n
(0)

db=1,d1

Â2

,d2

Â2

,3

d1
Â2

\d2
Â2

0 1 2 3 4 5

0 0 0 -6 -32 -110 -288

1 0 0 -10 -70 -270 -770

2 -6 -10 -32 -126 -456 -1330

3 -32 -70 -126 -300 -784 -2052

4 -110 -270 -456 -784 -1584 -3360

5 -288 -770 -1330 -2052 -3360 -6076

n
(0)

db=2,d1

Â2

,d2

Â2

,0
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d1
Â2

\d2
Â2

1 2 3 4 5

1 -8 -60 -360 -1432 -4280

2 -60 -216 -850 -3164 -9720

3 -360 -850 -2176 -6084 -16960

4 -1432 -3164 -6084 -13000 -29526

5 -4280 -9720 -16960 -29526 -

n
(0)

db=2,d1

Â2

,d2

Â2

,1

d1
Â2

\d2
Â2

0 1 2 3 4 5

0 0 0 0 27 286 1651

1 0 0 0 64 800 5184

2 0 0 25 266 1998 11473

3 27 64 266 1332 6260 26880

4 286 800 1998 6260 21070 70362

5 1651 5184 11473 26880 70362 191424

n
(0)

db=3,d1

Â2

,d2

Â2

,0

4.2.3 O(−4) → P
1 geometry with D̂4 resolution

In this section we describe the elliptic Calabi-Yau which has base B = F4 and

corresponds to the two-dimensional quiver studied in Section 3. Taking the local

limit by sending the size of the P1 fiber of F4 to infinity one arrives at a local Calabi-

Yau which has an affine D̂4 Kodaira singularity over the (−4) curve. The singularity

in the elliptic fiber is resolved by sphere configurations with the affine D4 intersection

numbers and multiplicities as depicted below:

c2

112 1

3 1 41

The toric data are given by a reflexive polyhedron ∆∗ , whose points ν are the first

entries in the table below.
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D ν∗i l(1) l(2) l(3) l(4) l(5) l(6) l(7) lT 2 l
(1)

D̂4
l
(2)

D̂4
l
(3)

D̂4
l
(4)

D̂4
l
(c)

D̂4
lde

D0 0 0 0 0 −1 0 0 0 0 0 0 −6 0 −2 −2 0 −1 0

D1 −1 0 0 0 0 −2 0 0 0 0 1 2 0 2 0 0 0 0

D2 0 −1 0 0 0 0 −1 0 0 1 0 3 1 1 1 0 0 0

D3 1 1 0 −1 1 0 2 0 0 −2 0 0 −2 0 0 0 1 0

D4 0 1 0 −1 1 3 0 0 0 0 −2 0 0 −2 2 0 0 0

D5 1 2 0 −2 −1 0 0 0 0 0 1 0 0 0 −2 0 1 0

S ′ 2 3 0 −1 0 1 −2 0 1 0 0 0 0 0 0 −2 1 0

K 2 3 0 0 0 0 1 0 −2 0 0 1 0 0 0 1 0 −3
2

S ′′ 2 3 0 −2 0 −2 0 −2 0 1 0 0 1 1 1 1 −2 1
2

F 2 3 −1 −4 0 0 0 1 0 0 0 0 0 0 0 0 0 0

S 2 3 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

F 2 3 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

. (4.18)

The Calabi-Yau hypersurface has χ(M3) = −528 and h11 = 7. The polyhedron

∆∗ has 30 star triangulations and the l(1), . . . , l(7) are generators of a simple geomet-

rical Mori cone, which are needed to solve the topological string on the global model.

Note that the evaluation of the Kähler classes against the second Chern class are:

{
∫
c2Ji} = {620, 204, 140, 24, 72, 452, 616}.

It turns out that J4 appears only linearly in the intersection ring and
∫
c2J4 = 24.

Oguiso’s criterion implies that M3 is a K3 fibration whose base P1 is represented

by l(4). This P1 is also the base of the local surface B = O(−4) → P1 and we will

henceforth denote it by lb. Since J5 appears only quadratically in the intersection

ring , l(5) represents the base of the elliptic fibration. Also, lT 2 represents the elliptic

fiber class and the l
(i)
D4

correspond to the simple roots of the affine D̂4. Finally, lde
is the class that one can take large to zoom in on the local surface geometry. The

relation to the nef classes in the global model are

lT 2 = 6l(1) + 2l(2) + l(3) + 4l(6) + 6l(7), l
(1)

D̂4
= l(6), l

(2)

D̂4
= 2l(1) + l(6) + 2l(7),

l
(3)

D̂4
= 2l(1) + l(6), l

(4)

D̂4
= l(3) + l(6), l

(c)

D̂4
= l(1) + l(2) + 2l(7) .

(4.19)

A first check on these identifications is that the P1 curve classes called l
(i)

D̂4
add up

to the class of the elliptic fiber with Coxeter labels ai indicated in the affine Dynkin

diagram, i.e.

lT 2 = 1l
(1)

D̂4
+ 1l

(2)

D̂4
+ 1l

(3)

D̂4
+ 1l

(4)

D̂4
+ 2l

(c)

D̂4
, (4.20)

which is obviously the case. Another check is that after transforming to this basis

the intersection form takes on a very simple appearance and is symmetric in l
(i)

D̂4
,
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i = 1, . . . , 4:

R = 9J3
T 2+

3

2
J4J

2
T 2+6JdeJ

2
T 2+4J2

deJT 2+J4JdeJT 2−
4∑

i=1

(J
(i)

D̂4
)3−1

2
J4

4∑

i=1

(J
(i)

D̂4
)2. (4.21)

The curve whose volume has to be scaled to infinity to decouple the O(−4) → P1

geometry from the compact manifold is the Kähler class dual to the Mori cone vector

l(5). This decompactifies the base of the Cababi-Yau threefold by scaling the fiber of

the Hirzebruch surface to infinity. The class can be further modified to lde above to

make the intersections even simpler.

Let us next come to the evaluation of BPS numbers. We denote the charge

associated to the class dual to l(4), which is the base, by nb, the one dual to lde
by nde, the ones dual to l

(i)

D̂4
by n1, n2, n3, n4, nc and the one dual to lT 2 by ne.

From the viewpoint of the strings of the 6d SCFT, nb denotes the string charge;

ni, i = 1, · · · , 4, nc correspond to the flavor fugacity charges and ne is the exponent

of Qτ in an expansion of the elliptic genus Znb
. We consider by definition of the local

limit only nde = 0. Due to the relation (4.20) the class lT 2 is not an independent

class and therefore when labelling BPS states we can omit the dependence on ne.

The genus zero invariants are then given by n
(0)
nb,n1,n2,n3,n4,nc and are fully symmetric

in n1, . . . , n4. Let us first focus on the BPS states associated to a single string (that

is, those corresponding to nb = 1). For ne = 0 and nc = 1 we get:

n1\n2 0 1 2 3 4 5 6

0 -4 -6 -6 -10 -14 -18 -22

1 -6 -8 -6 -10 -14 -18 -22

2 -6 -6 0 0 0 0 0

3 -10 -10 0 0 0 0 0

4 -14 -14 0 0 0 0 0

5 -18 -18 0 0 0 0 0

6 -22 -22 0 0 0 0 0

n
(0)
1,n1,n2,0,0,1

For ne = 0 and nc = 2 we get:

n1\n2 0 1 2 3 4 5 6

0 -6 -10 -12 -12 -18 -24 -30

1 -10 -16 -18 -16 -24 -32 -40

2 -12 -18 -18 -12 -18 -24 -30

3 -12 -16 -12 0 0 0 0

4 -18 -24 -18 0 0 0 0

5 -24 -32 -24 0 0 0 0

6 -30 -40 -30 0 0 0 0

n
(0)
1,n1,n2,0,0,2
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For ne = 1 one finds:

n1\n2 0 1 2 3 4

0 -80 -78 -96 144 -192

1 -78 -48 32 - -

2 -96 -32 - - -

3 -144 - - - -

4 -192 - - - -

n
(0)
1,n1+1,n2+1,1,1,2

Let us now consider the two-string sector. For nb = 2, ne = 0 and nc = 1 we get:

n1\n2 0 1 2 3 4 5 6

0 -6 -10 -12 -30 -98 -306 -814

1 -10 -16 -18 -40 -112 -324 -836

2 -12 -18 -18 -30 -42 -54 -66

3 -30 -40 -30 -50 -70 -90 -110

4 -98 -112 -42 -70 -98 -126 -154

5 -306 -324 -54 -90 -126 -162 -198

6 -814 -836 -66 -110 -154 -198 -242

n
(0)
2,n1,n2,0,0,1

For nb = 1, . . . , 4 and nc = 0 we also find the following invariants:

nb\n1 0 1 2 3 4 5 6 7 8 9 10

1 -2 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20

2 0 0 0 -6 -32 -110 -288 -644 -1280 -2340 4000

3 0 0 0 0 -8 -110 -756 -3556 -13072 -40338 -109120

4 0 0 0 0 0 -10 -288 -3556 -27264 -153324 -690400

n
(0)
nb,n1,0,0,0,0

Remarkably, and this is the main non-trivial test of the paper, all the invariants

listed above can be reproduced from the elliptic genus computation in Section 3!

4.2.4 O(−5) → P1 geometry with F̂4 resolution

This elliptic singularity corresponds now to a non-simply laced Lie algebra. Unlike

in the simply laced case, the Coxeter labels differ from the dual Coxeter labels. We

indicate both Coxeter/dual Coxeter labels in the following diagram:

1/1

0

2/2

1

3/3

2

4/2

3

2/1

4
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The toric polyhedron has 25 star triangulations; we present here the polyhedron

together with the simplest choice of Mori vectors:

D ν∗i l(1) l(2) l(3) l(4) l(5) l(6) l(7) l
(4)

F̂4
l
(3)

F̂4
l
(3)

F̂4
l
(1)

F̂4
l
(0)

F̂4

D0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 −2

D1 −1 0 0 0 0 −2 0 0 0 0 1 1 0 0 0 0

D2 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 1

D3 0 1 0 −1 0 3 0 0 0 1 −2 −2 1 0 0 0

D4 1 2 0 −2 2 0 0 0 0 −2 1 1 −2 0 0 2

S ′ 2 3 0 −1 0 1 −2 0 1 0 0 0 0 −2 1 0

S ′′ 2 3 0 −2 1 −2 1 −1 0 0 0 0 0 1 −2 1

S ′′′ 2 3 0 −3 −2 0 0 −1 0 1 0 0 1 0 1 −2

K 2 3 0 0 0 0 1 0 −2 0 0 0 0 1 0 0

F 2 3 −1 −5 0 0 0 1 0 0 0 0 0 0 0 0

S 2 3 0 1 0 0 0 0 1 0 0 0 0 0 0 0

F 2 3 1 0 0 0 0 1 0 0 0 0 0 0 0 0

. (4.22)

Evaluation of the second Chern class on the Kälher forms yields

{
∫
c2Ji} = {336, 240, 164, 24, 84, 692, 708} .

The intersection ring has the property that J4 appears only linearly so that l(4)

represents the base of a K3 fibration and the base of the local surface B, we therefore

have l(4) = lb. J5 appears only quadratically in the intersection ring and l(5) represents

the base of an elliptic fibration. As before, it is the normal direction to the base of

the local surface and gets decompactified.

We find the following basis, which reflect the curves that represent the Cartan

elements of the affine F̂4.

l
(0)

F̂4
= l(3), l

(1)

F̂4
= 2l(7) + l(2) + l(6), l

(2)

F̂4
= l(1) l

(3)

F̂4
= l(6), l

(4)

F̂4
= l(7) . (4.23)

We see that in this basis

lT 2 = l
(0)

F̂4
+ 2l

(1)

F̂4
+ 3l

(2)

F̂4
+ 4l

(3)

F̂4
+ 2l

(4)

F̂4
, (4.24)

as expected (the vector corresponding to a given node is multiplied by the Coxeter

label of that node). Note that the height in the last coordinate of ν∗i is the dual

Coxeter number of the Dynkin diagram of F4. This is a consequence of the F -theory

realization of the G bundle moduli space of the heterotic string on an elliptically

fibered K3 over the same P1 base as P(a0, . . . , ar) [42] and will hold for all mod-

els below. From these data it is possible to calculate genus zero BPS invariants

analogously to the n ≤ 4 cases6.

6We have calculated thes BPS invariants up to high multi-degree; these numbers are available

on request.
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4.2.5 O(−6) → P1 geometry with Ê6 resolution

1

6

2

5

3

4

2

3

1

1

2 2

1 0

In this hase the hypersurface CY has Euler number χ(M3) = −624 and h11 = 9.

The polyhedron ∆∗ has 199 star triangulations. Again we choose a simple one

D ν∗i l(1) l(2) l(de) l(4) l(b) l(6) l(7) l(8) l(9)

D0 0 0 0 0 0 0 0 0 0 0 0 −1 0

D1 −1 0 0 0 −2 0 0 0 0 0 0 0 1

D2 0 −1 0 0 0 −1 0 0 0 0 0 1 0

D3 0 0 0 −1 0 0 0 0 0 0 1 −1 −1

D4 0 1 0 −1 3 0 0 0 0 0 −1 1 −1

D5 1 1 0 −2 0 2 0 0 0 1 −1 0 1

D6 1 2 0 −2 0 0 0 0 0 −2 1 0 0

F 2 3 −1 −6 0 0 0 0 1 0 0 0 0

S ′ 2 3 0 −3 0 −2 0 0 −2 1 0 0 0

S ′′ 2 3 0 −2 −2 1 0 1 0 0 0 0 0

S ′′′ 2 3 0 −1 1 0 1 −2 0 0 0 0 0

K 2 3 0 0 0 0 −2 1 0 0 0 0 0

S 2 3 0 1 0 0 1 0 0 0 0 0 0

F 2 3 1 0 0 0 0 0 1 0 0 0 0 ,

(4.25)

which has the property that

{
∫
c2Ji} = {276, 360, 96, 188, 24, 764, 1524, 728, 800}.

By Oguiso’s criterion Jb represents the volume of the base of a K3 fibration while

Jde respresents the volume of the base of an elliptic fibration. We have calculated

the genus zero BPS invariants up to multi-degree 21.

4.2.6 The cases with Ê7 resolution

Here we discuss the casesO(−n) → P1 with n = 7 and n = 8. Let us start with n = 8,

that is, the pure E7 gauge theory case. The reflexive polyhedron ∆∗ is the convex

hull of the points ν∗i listed below, together with the Mori cone that corresponds to a

simple of a total of 420 star triangulations of ∆∗.

1

0

2

1

3

2

4

3

3

5

2

6

1

7

2 4
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D ν∗i l(1) l(2) l(3) l(4) l(5) l(6) l(7) l(8) l(9) l(10)

D0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

D1 −1 0 0 0 −1 0 0 0 0 0 0 0 0 1

D2 0 −1 0 0 0 −1 0 0 0 0 0 0 1 0

D3 0 0 0 −1 0 0 0 0 0 0 0 1 −2 0

D4 0 1 0 −2 0 0 0 0 0 0 1 1 1 −1

D5 1 1 0 −2 0 2 0 0 0 0 0 −1 0 1

D6 1 2 0 −3 3 0 0 0 0 0 −2 −1 0 0

S ′ 2 3 0 −4 −3 0 −2 0 0 0 1 0 0 0

S ′′ 2 3 0 −3 1 −2 0 0 0 1 0 0 0 0

S ′′′ 2 3 0 −2 0 1 0 0 1 −2 0 0 0 0

S ′′′′ 2 3 0 −1 0 0 0 1 −2 1 0 0 0 0

F 2 3 −1 −8 0 0 1 0 0 0 0 0 0 0

K 2 3 0 0 0 0 0 −2 1 0 0 0 0 0

S 2 3 0 1 0 0 0 1 0 0 0 0 0 0

F 2 3 1 0 0 0 1 0 0 0 0 0 0 0

(4.26)

By standard toric methods we calculate χ(M3) = −732 and h11 = 10, i.e. h21 = 376.

For this choice of Mori cone one has:

{
∫

M3

c2Ji} = {560, 456, 24, 120, 236, 348, 1724, 1764, 884, 848}.

In the intersection ring J3 appears only linearly, while J4 appears only quadratically

indicating a K3- and an elliptic fibration structure respectively.

The case with an additional 1
2
56 hypermultiplet is obtained by replacing the

point ν∗F = (2, 3,−1,−8) with ν∗F = (2, 3,−1,−7). The Hodge numbers change to

h21 = 348, h11 = 10, and hence χ(M3) = −676. The only change in the Mori

generators is the modified element

l(3) = (0, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 1, 0, 0, 1),

which leads to

{
∫

M3

c2Ji} = {524, 408, 24, 108, 212, 312, 1592, 1608, 806, 792}.

While the intersection ring is modified, the fibration structure with respect to the

classes J3 and J4 is maintained. For the Ê7 geometries, we have computed genus

zero BPS invariants up to multi-degree 21.

4.2.7 The cases with Ê8 resolution

1

0

2

8

3

7

4

6

5

5

6

4

4

3

2

1

3 2
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The Calabi-Yau hypersurface has h11 = 11 and χ(M3) = −960 and is the case

with maximal absolute value of the Euler number within the class of toric hypesur-

faces. From the 588 star triangulations of ∆∗ we choose one leading to simple Mori

cone with desired fibration structure:

D ν∗i l(1) l(2) l(3) l(4) l(5) l(6) l(7) l(8) l(9) l(10) l(11)

D0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

D1 −1 0 0 0 −2 0 0 0 0 0 0 0 0 0 1

D2 0 −1 0 0 1 −1 0 0 0 0 0 0 0 0 0

D3 0 1 0 −2 3 0 0 0 0 0 0 0 0 1 −2

D4 1 1 0 −3 −2 2 0 0 0 0 0 0 1 0 0

D5 1 2 0 −4 0 0 0 0 0 0 0 0 1 −2 1

F 2 3 −1 −12 0 0 0 0 0 0 0 1 0 0 0

S ′ 2 3 0 −6 0 0 0 0 0 0 0 −2 −2 1 0

S ′′ 2 3 0 −5 0 −2 0 0 0 0 1 0 1 0 0

S ′′′ 2 3 0 −4 0 1 0 0 0 1 −2 0 0 0 0

S ′′′′ 2 3 0 −3 0 0 0 0 1 −2 1 0 0 0 0

S ′′′′′ 2 3 0 −2 0 0 0 1 −2 1 0 0 0 0 0

S ′′′′′′ 2 3 0 −1 0 0 1 −2 1 0 0 0 0 0 0

K 2 3 0 0 0 0 −2 1 0 0 0 0 0 0 0

S 2 3 0 1 0 0 1 0 0 0 0 0 0 0 0

F 2 3 1 0 0 0 0 0 0 0 0 1 0 0 0

(4.27)

The evaluations of the Kähler forms against the second Chern class are:

{
∫

M3

c2Ji} = {1496, 948, 168, 332, 492, 648, 800, 24, 1092, 2228, 3360}.

We have a K3 fibration over the P1 represented by J8 and an elliptic fibration over

the base whose volume is given by J3. As in all models with K3 fibrations, the BPS

numbers depend only on the square of the curve classes in the K3, whose intersection

form in the Picard lattice is given by coefficients of the ring that is linear in J8, and

can be obtained by a heterotic one-loop calculation. The genus zero BPS states are

available to multi-degree 18.

The geometry can be modified by successively adding tensor multiplets corre-

sponding to small instantons. This can be done by blow-ups of (−1) curves in the

base. In the particular case of E8 gauge symmetry this corresponds to the blowing up

Hirzebruch surfaces Fn, n = 11, 10, 9. We can construct explicitly models in which

all divisors have toric representatives, by modifying ∆∗ in the following way:

• n = 11 (one small instanton case): νF gets replaced by two points (νF →
{{2, 3,−1,−11}, {0, 0, 0,−1}}). Thus h11 = 12, and in accord with the 6d

anomaly condition we find χ(M3) = −900;
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• n = 10: one must replace νF → {{2, 3,−1,−10}, {0, 0, 0,−1}, {2, 3, 1,−1}};

• n = 9: here, νF → {{2, 3,−1,−9}, {0, 0, 0,−1}, {2, 3, 1,−1}, {2, 3, 1,−2}}.
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A Geometry of Landau-Ginzburg models

In this part of the Appendix we describe a mirror construction that applies directly

to the (T 2 × C2)/Zk, k = 3, 4, 6 local orbifold using a Landau-Ginzburg description

of the torus and the LG/CY correspondence. We focus on the case k = 3, which we

compare in the next subsection with the constuction of the O(−3) → P1 geometry

discussed in section 4.2.2.

The weighted homogenous Landau-Ginzburg potential W is the relevant term

determining the CFT that corresponds to the Calabi-Yau sigma model at the infrared

fixed point. The building blocks of W can be labeled by a simply laced Lie algebra.

The Ak+1 case corresponds to the monomial xk+2; D k+2
2

(with k even) corresponds

to x
k
2
+1

i + xy2; finally, one has the following exceptional cases: E6 : x3 + y4 (with

k = 10), E7 : x3 + xy3 (with k = 16), and E8 : x3 + y5 (with k = 28). Here the

notation is so that k+2 is the Coxeter number of the Lie algebra and the contribution

of each block to the central charge is

c =
3k

k + 2
. (A.1)

Note that quadratic terms do not contribute to the central charge. Each building

block is identified with a minimal (2, 2) superconformal theory with this central

charge and the label of the Lie algebra specifies the way the left and the right

sectors of the theory are glued to form a modular invariant partition function, a

problem that enjoys an ADE classification. When one identifies tensor products

of LG models or minimal (2, 2) SCFT with the CY geometry one has to make a

consistent projection on integral U(1)L/R charges and the correct spin structure.

This involves orbifoldizations on the LG or minimal model side.
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The c = 3 cases correspond to elliptic curves on the Calabi-Yau side. There are

three cases with only A invariants,

W3 = x31 + x32 + x33 − 3αx1x2x3, (A.2)

W4 = x41 + x42 + x23 − 4αx1x2x3, (A.3)

W6 = x61 + x32 + x23 − 6αx1x2x3, (A.4)

which have been identified with T 2/Z3, T
2/Z4 and T 2/Z6 orbifolds of the elliptic

curve, see for example [43].

If one adds up three copies the above potential to a c = 9 LG potential and

projects to integral charges one gets string vacua that correspond to the resolved

(T 2)3/(Zk × Zk) CY manifolds. To get the simpler (T 2)3/(Zk) orbifolds one has to

mod out on the LG side by a further Zk. Aspects of the mirror description have been

described in [44].

Let us consider for instance the k = 3 case. The LG potential is

W =
9∑

i=1

x3i +
∑

i 6=j 6=k

αijkxixjxk, (A.5)

where we listed the
(
9
3

)
= 84 independent complex structure deformations in the

homogeneous degree 3 ring C[x]/{∂xi
W : i = 1, . . . , 9}. The (T 2)3/(Zk×Zk) orbifold

has 84 Kähler deformations and the Landau-Ginzburg model can be viewed as its

mirror. Some aspects of the B-model have been analyzed in [44]. In particular one

has a (5, 2)-form in the sevenfold W = 0 in P8 given by

Ω5,2 =
1

2πi

∮

S1

µ8

W 3
, (A.6)

where

µ8 = ǫi1,...,i9xi1dxi1 . . .dxi9 . (A.7)

is a eight form, well defined under scaling xi → λxi. Integrating over the S1 around

W = 0 makes it a (5, 2) form.

The orbifold that relates the LG model to the (T 2)3/Z3 geometry acts by


xi, i ∈ I

xj , j ∈ J

xk, k ∈ K


 7→



αxi, i ∈ I

α2xj , j ∈ J

xk, k ∈ K


 , (A.8)

where the sets are I = {1, 2, 3}, K = {4, 5, 6} and J = {7, 8, 9} and α is a third root

of unity. The invariant monomials are m1 = x1x2x3, m2 = x4x5x6 and m3 = x7x8x9
as well as the 27 monomials mijk = xixjxk, where indices i, j, k are in the sets I, J,K

respectively. Hence, we get the invariant LG potential

W =
9∑

i=1

x3i − 3
3∑

i=1

αimi − 3
∑

i∈i,j∈J,k∈K
αijkxixjxk. (A.9)
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On each T 2 of (T 2)3/Z3 (which we parametrize by complex coordinates zi, i =

1, 2, 3), the Z3 action has three fixed points, corresponding to zi = 0, 1√
3
β, and 2√

3
β,

where β12 = 1, so that the global orbifold has 33 = 27 Z3 fixed points. Locally it

is given by C
3/Z3, with the action of Z3 as in (2.3). The resolved geometry near

each fixed point looks locally like the total space O(−3) → P2 of the anti-canonical

bundle over P2. Here the P2 is the exceptional divisor Ei of the blow up. There are

nine further Kähler classes in the invariant sector: the three invariant (1, 1) forms

hi = dzi ∧ dz̄i, i = 1, 2, 3 and the six invariant (1, 1) forms hij = dzi ∧ dz̄j, i 6= j,

i, j = 1, 2, 3. If we denote the dual divisors Hi and Hij respectively one has the

non-vanishing intersections

H1 ·H2 ·H3 = κ, Hij ·Hki ·Hjk = κ,

Hi ·Hjk ·Hkj = −κ, for i 6= j, i 6= k , E3
i = κ, i = 1, . . . 27.

(A.10)

Here we have taken a normalization κ = 9. Similarly, the intersection numbers of

orbifolds with fixed tori have been calculated in [45].

We know from the mirror map of the individual T 2/Z3’s, given by the cubic

constraint W3 = 0 in (A.4), that 1
2πi

log(αi) → i∞ corresponds to the large volume

limit Im(τi) → ∞ of the i’th T 2. Hence the limit in which (T 2)3/Z3 becomes the

T 2 × C2 geometry involves taking, say, α2, α3 → ∞, while keeping α ≡ α1 finite.

These limits can be taken individually and produce a term ∞x4x5x6 or ∞x7x8x9 in

W , which requires taking, say, x5 → 0 and x8 → 0. The complex volumes of the

27 P
2’s in the local O(−3) → P

2 geometies are parametrized in the large volume

limit of the P2’s by ta ∼ 1
2πi

log(αijk), a = 1, . . . , 27. We want to keep three of these

finite, while 24 of them should be scaled to infinite volume. Again this gives infinite

terms in W , which can be eliminated by setting in addition x6 = x8 = 0; that is,

we keep only x1, x2, x3, x4, x7 finite. Then,
1

2πi
log(αi,4,7) ≡ 1

2πi
log(βi) ∼ ti, i = 1, 2, 3

parametrize the three finite P2s. Hence, we end up with a potential

W = x31+x
2
2+x

3
3+x

3
4+x

3
7−3αx1x2x3−3β1x1x4x7−3β2x2x4x7−3β3x3x4x7. (A.11)

Let us relabel coordinates and rewrite W as

W = a0x1x2x3 +
5∑

i=1

aix
3
i + a6x1x4x5 + a7x2x4x5 + a8x3x4x5 ≡

8∑

i=0

aiYi. (A.12)

We note that there are k relations among the Yi given by

∏

i

Y
l
(r)
i

i = 1, r = 1, . . . , k, (A.13)

where k = 4 and
l(1) = (−3; 1, 1, 1, 0, 0, 0, 0, 0)

l(2) = ( 0; 1, 0, 0, 1, 1,−3, 0, 0)

l(3) = ( 0; 0, 1, 0, 1, 1, 0,−3, 0)

l(4) = ( 0; 0, 0, 1, 1, 1, 0, 0,−3) .

(A.14)
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The Yi, i = 0, . . . , 4 are C variables while the Yj, j = 4, . . . , 8 are C∗ variables. All Yi
are subject to a C∗ action Yi → νYi with ν ∈ C∗. This yields a (9− 4− 1− 1) = 3-

dimensional local Calabi-Yau manifold which is the mirror to the (T 2 × C2)/Z3

manifold.

Its four complex deformations zr = (−1)l
(r)
0
∏

i a
l
(r)
i

i , r = 1, . . . , 4, correspond re-

spectively to the complexified volume of the T 2 and three lines in different exceptional

P2’s. The local (3,0) form is given by

Ω3,0 =
1

2πi

∮
ǫijkxidxjdxk

W

dx4
x4

dx5
x5

i, j, k = 1, 2, 3 . (A.15)

From local expression of the (3,0) form in (A.15) or a limit of (A.6) one can see that

the periods Π̃ in the local limit fulfill

∏

l
(r)
i <0

∂
l
(r)
i
ai Π̃ =

∏

l
(r)
i >0

∂
l
(r)
i
ai Π̃. (A.16)

Also, the periods have the scale invariances acting on the ai that allow one to elimi-

nate the ai by the invariant combinations zr. The periods Π are therefore annihilated

by the differential operators

D1 = (θ1 + θ2)(θ1 + θ3)(θ1 + θ4) + 3θ1(3θ1 − 2)(3θ1 − 1)z1
D2 = (θ1 + θ2)(θ2 + θ3 + θ4)

2 + 3(θ2 − 1)(3θ2 − 1)(3θ2 − 1)z2
D3 = (θ1 + θ3)(θ2 + θ3 + θ4)

2 + 3(θ3 − 1)(3θ3 − 2)(3θ3 − 1)z3
D4 = (θ1 + θ4)(θ2 + θ3 + θ4)

2 + 3(θ4 − 1)(3θ4 − 2)(3θ4 − 1)z4,

(A.17)

where θi = zi
d
dzi

. Note the following:

• We normalized the periods to Π = a0Π̃.

• The periods are not completely determined by the operators; that is, there are

more functions annihilated by the Di than periods.

Nevertheless, we can identify the relevant solutions by the Frobenius method. In this

method, we define a z = (z1, . . . , k) and ρ = (ρ1, . . . , ρk) dependent function as

ω(z, ρ) =
∑

n

(
Γ(
∑

a l
(a)
0 (na + ρa) + 1)

∏
i>0 Γ(

∑
a l

(a)
i (na + ρa) + 1)

)
zn+ρ . (A.18)

Using the fact that [∂ρa ,Dk] ∼ 0 and ω(z, ρ = 0) is a solution, we get more solutions

by taking derivatives with respect to the various ρi:

X0 = ω(z, ρ)|ρ=0 ,

Xr = ∂ρrω(z, ρ)|ρ=0 ,

F̃r = 1
2
crij∂ρi∂ρjω(z, ρ)|ρ=0 ,

F̃0 = 1
6
cijk∂ρi∂ρj∂ρkω(z, ρ)|ρ=0 .

(A.19)
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Here r = 1, . . . , h11(M3) = h21(W3), and the cijk are classical intersection numbers.

Note that each derivative w.r.t. ρi gives a log(zi) term and that there is only a finite

number b3(W3) of solutions
7, which are given in (A.19).

The single logarithmic solutions define the mirror maps as

tk =
1

2πi

Xk

X0
. (A.20)

Mirror symmetry and special geometry implies that an integral sympletic basis of

periods is given by

Π = X0




1

ta

∂taF0

2F0 − ta∂taF0


 , (A.21)

where the prepotential F0 is determined in terms of the C.T.C Wall Data as

F0 = X2
0

[
−1

6
cijkt

itjtk +
1

2
Aijt

itj + cit
i − iχ

ζ(3)

2(2π)3
+
∑

n

n(0)
n Li3(Q

n)

]
, (A.22)

with Lik(x) =
∑

n=1
xn

nk , Q
n =

∏k
i=1 exp(2πitini), ci =

1
24

∫
X
c2 Ji and χ is the Euler

number of M3. In particular, we can read off the genus 0 GV invariants n
(0)
n already

from the double logarithmic solutions

X0∂trF0 . (A.23)

In the example under consideration, one gets in particular the period X0 and, by

taking single derivatives with respect to ρi, one gets k further periods, which are to

low orders in z given by

X0(z1) = 1 + 6z1 + 90z21 + 1680z31 + 34650z41 +O(z51)

X1(z1) = X0 log(z1) + 15z1 + (513z21)/2 + 5018z31 +O(z41)

Xk(z1, zk) = X0 log(zk)− 6(z1 + zk) + (45z2k − 135z21 − 18z1zk)

+(90z1z
2
k − 3080z31 − 180z21zk − 560z3k) +O(z4), k = 2, 3, 4.

(A.24)

In the local limit, only the intersections E3
i ∼ κlim contribute, with an appropriate

normalization. We have calculated the genus zero BPS numbers using the description

above and checked that they agree with the ones calculated in the decompatification

limit of the Calabi-Yau threefold discussed in section 4.2.2 in the basis discussed in

the next section.

7In fact the notation [∂ρa
,Dk] ∼ 0 means that arbitrary derivatives are not all annihilated by

the differential operators Dk; rather, the result will be in general proportional to log(zi) terms.
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Toric Geometry realization of the O(−3) → P1 geometry

Here we want to obtain the geometry discussed in the last section from the toric

polyhedron specified in Table 4.14. It has 10 star triangulations. We list only one

Mori cone with the intersections

R = 1791J3
1 + 957J2

1J2 + 511J1J
2
2 + 272J3

2 + 180J2
1J3+

96J1J2J3 + 51J2
2J3 + 18J1J

2
3 + 9J2J

2
3 + 360J2

1J4+

192J1J2J4 + 102J2
2J4 + 36J1J3J4 + 19J2J3J4 + 3J2

3J4 + 72J1J
2
4+

38J2J
2
4 + 7J3J

2
4 + 14J3

4 + 900J2
1J5 + 480J1J2J5 + 256J2

2J5 + 90J1J3J5+

48J2J3J5 + 9J2
3J5 + 180J1J4J5 + 96J2J4J5 + 18J3J4J5 + 36J2

4J5 + 450J1J
2
5+

240J2J
2
5 + 45J3J

2
5 + 90J4J

2
5 + 225J3

5 .
(A.25)

The evaluation of the second Chern class is given by
∫
c2Ji = {570, 308, 60, 116, 282},

and the model has no particular fibration structure except for the elliptic one.

In relation to the Landau-Ginzburg formulation of the Z orbifold, the following

classes in the given base,

lT 2 = 6l(1) + 3l(2) + l(4) + 3l(5), l
(1)

P2 = 3l(1) + l(2)

l
(2)
P2 = l(2), l

(3)
P2 = l(2) + l(4), lde = l(3) + 1

3
(l(2) + l(5)),

(A.26)

are of particular interest, because for them the intersection form becomes symmetric

in the three classes of the P
2’s discussed in Section A:

R =
25

3
J3
T 2 − 1

3
(J3

P2
1
+ J3

P2
2
+ J3

P2
3
) + 5J2

T 2Jde + 3JT 2J2
de . (A.27)

Here Jde is the class that needs to be decompactified to obatain a non-compact

geometry.

The curve classes, which correspond to the Mori cone vector l
(i)

P2 generate all the

BPS states of O(−3) → P
2. For example, at genus zero

{n(0)
3k,k,0,0,0} = {n(0)

0,k,0,0,0} = {n(0)
0,k,0,k,0} = {3,−6, 27,−192, 1695,−17064, . . .}.

(A.28)

These curves lie in the divisor classes D3, D4, D5, which consist of an exceptional

curve over the −3 curve in the base S ′ with (S ′)2 = −3, a section of the Hirzebruch

surface F3 fiber. The class lT 2 is the class of the elliptic fiber. We find that in this

direction all BPS numbers are {n(0)
6k,3k,0,k,3k} = {492, 492, . . .}. Note that 492 is the

Euler number of the Calabi-Yau and this is the first modular direction. This follows

from the representation of the Eisenstein series E4 as

E4(q) = 1 + 240
∞∑

k=1

k3qk

1− qk
(A.29)

and from the multicovering formula for g = 0, which reads

F0 = F classical
0 +

∞∑

d=1

n
(0)
d Li3(q

d), (A.30)
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with Lik(x)
∑∞

n=1
xd

kd
. From this, one gets

∂3t F0 = c+

∞∑

d=1

ndd
3qd

1− qd
=

240c− χ

240
+

χ

240
E4(q) (A.31)

Let us denote by dT 2 the degree of the elliptic curve, and by d1, d2, d3 the degrees

with respect to the three O(−3) → P2 classes Li, i = 1, 2, 3, and denote now the BPS

invariants by n
(0)
d
T2 ,d1,d2,d3

. We have the obvious property that n
(0)
d
T2 ,d1,d2,d3

depends

symmetrically on the di. We can study the mixing of the local P2 with the fiber. At

dT 2 = 0 we have no mixing between the Li classes:

d1\d2 0 1 2 3 4

0 i492ζ(3)
(2π)3 3 -6 27 -192

1 3 0 0 0 0

2 -6 0 0 0 0

3 27 0 0 0 0

4 -192 0 0 0 0

nd
T2=0,d1,d2,0

In general n0,d1,d2,d3 = 0 if more then two di are non zero. This is of obvious from

the geometry, since the blow up points sit at distiguished points of the fiber and are

uncorrelated as long there is no curve wrapping the fiber.

From dT 2 > 1 the mixing starts. In particular, one finds:

d1\d2 0 1 2 3 4

0 492 36 -360 4752 -70560

1 36 -216 2052 -26082 376704

2 360 2052 -17760 211140 -2912544

3 4752, -26082 211140 -2378484 31525200

4 -70560 376704 -2912544 31525200 -405029376

n
(0)
1,0,d1,d2

d1\d2 1 2 3 4

1 1458 -12654 150903 -2087856

2 -12654 103536 -1177686 15735024

3 150903 -1177686 12859560 -1664394480

4 -2087856 15735024 -166439448 2099613312

n
(0)
1,1,d1,d2

d1\d2 2 3 4

2 -812808 8923104 -115996032

3 8923104 -94862502 1201724208

4 -115996032 1201724208 -14901588864

n
(0)
1,2,d1,d2

– 47 –



d1\d2 0 1 2 3

0 492 288 -10656 346356

1 288 -8604 225234 -5852520

2 -10656 225234 -4648248 102706623

3 346356 -5852520 102706623 -2009199816

n
(0)
2,0,d1,d2

d1\d2 0 1 2

0 492 1788 -197568

1 1788 -76724 -

2 -197568 - -

n
(0)
3,0,d1,d2
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