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24 rue Lhomond, 75231 Paris, France

Department of Physics and Astronomy, Uppsala University,

SE-751 08 Uppsala, Sweden

E-mail: Konstantin.Zarembo@lpt.ens.fr

Abstract: Several string backgrounds which arise in the AdS/CFT correspondence are

described by integrable sigma-models. Their target space is always a Z4 supercoset (a

semi-symmetric superspace). Here we list all semi-symmetric cosets which have zero beta

function and central charge c 6 26 at one loop in perturbation theory.

Keywords: Sigma Models, AdS-CFT Correspondence, Integrable Field Theories

ArXiv ePrint: 1003.0465

1Also at ITEP, Moscow, Russia.

Open Access doi:10.1007/JHEP05(2010)002

mailto:Konstantin.Zarembo@lpt.ens.fr
http://arxiv.org/abs/1003.0465
http://dx.doi.org/10.1007/JHEP05(2010)002


J
H
E
P
0
5
(
2
0
1
0
)
0
0
2

Contents

1 Introduction 1

2 Sigma model 2

3 Beta function and central charge 5

4 Conformal sigma models 8

5 String sigma-models 11

6 Conclusions 13

A Rank of kappa symmetry 14

A.1 Type-U1 15

A.2 Type-U2 17

A.3 Type-U3 17

A.4 Type-U4 18

A.5 Type-O1 19

A.6 Type-O2 20

A.7 Type-Tu 21

A.8 Type-To 22

1 Introduction

A semi-symmetric superspace is a coset of a supergroup which possesses an additionalZ4 symmetry [1], thus generalizing the notion of ordinary, Z2 invariant symmetric space.

Sigma-models on semi-symmetric superspaces possess a number of interesting properties.

Perhaps the main motivation to study them comes from the AdS/CFT duality. The holo-

graphic duals of superconformal field theories in diverse dimensions are string theories on

Anti-de-Sitter backgrounds with Ramond-Ramond fluxes. In many cases (and certainly in

all maximally symmetric cases), the worldsheet sigma-models on such backgrounds are Z4

cosets [2]. The best known example is the Green-Schwarz string action on AdS5 × S5 [3],

which is a Z4 coset of PSU(2, 2|4), the superconformal group in four dimensions.1 One

can define a Green-Schwarz-type sigma-model on any Z4 coset. The Z4 symmetry plays a

crucial role in this construction by yielding the fermionic Wess-Zumino term in the sigma-

model action [2].

A remarkable property of the Green-Schwarz-type Z4 cosets is their classical integra-

bility [5], which parallels integrability of bosonic symmetric-space sigma-models [6]. A Lax

1The manifestly Z4-invariant form of the Metsaev-Tseytlin action is given in [4].
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representation of the equations of motion in semi-symmetric cosets can be constructed us-

ing the Z4 symmetry in a uniform, purely algebraic way.2 Perhaps this is why integrability

arises in the AdS/CFT correspondence.

All semi-symmetric superspaces are classified [1], and one can scan the list of theZ4 cosets for potentially interesting integrable models, in particular for integrable string

backgrounds. To be a string background, a Z4 coset must satisfy two additional conditions:

its beta function should vanish and it should have central charge c = 26.

After reviewing the construction of the Green-Schwarz-type sigma-model on a semi-

symmetric superspace, we will compute its beta function and central charge at one loop

following [7–9]. Then we will list all cosets that satisfy the beta-function and the central

charge constraints.

2 Sigma model

A coset G/H0 of a supergroup G is a semi-symmetric superspace if it is invariant un-

der a Z4 symmetry, generated by a linear automorphism Ω of the Lie algebra of G,

Ω : g → g, Ω([X,Y ]) = [Ω(X),Ω(Y )], Ω4 = id. The superalgebra g then admits a Z4

decomposition:

g = h0 ⊕ h1 ⊕ h2 ⊕ h3, (2.1)

which is consistent with the (anti-)commutation relations: [hn, hm} ⊂ h(n+m) mod 4. The

subspace hn consists of the elements of g with the Z4 charge n:

Ω(hn) = inhn. (2.2)

The denominator subalgebra of a semi-symmetric coset is the Z4-invariant subspace h0.

The fermion number F is the Z4 charge mod 2: the bosonic subalgebra of g is h0 ⊕ h2 and

all of the odd generators belong to either h1 or h3.

The worldsheet embedding in G/H0 is parameterized by a coset representative g(x) ∈
G, subject to gauge transformations g(x) → g(x)h(x) with h(x) ∈ H0. The global G-valued

transformations act on g(x) from the left: g(x) → g′g(x). The action of the sigma-model

can be written in terms of the Z4 decomposition of the left-invariant current g−1∂µg:

Jµ = g−1∂µg = Jµ 0 + Jµ 1 + Jµ 2 + Jµ 3. (2.3)

The h0 component of the current transforms as a connection under gauge transformations:

Jµ → h−1Jµ 0h + h−1∂µh. The other three components transform as matter fields in the

adjoint: Jµ 1,2,3 → h−1Jµ 1,2,3h.

The action must be gauge invariant and Z4-symmetric. By power counting, the only

possible terms3 are J2J2 and J1J3. A particularly interesting case, and the one that we

2The original construction of [5] for PSU(2, 2|4)/SO(4, 1) × SO(5) relies only on the Z4 decomposition

of the symmetry algebra and thus applies to any semi-symmetric coset.
3These terms describe coupling to the metric and to the RR fields. In certain cases it should be possible

to switch on the B-field (the theta-term in the sigma-model action) or its field strength (the bosonic Wess-

Zumino term). For example, if the denominator of the coset contains a U(1) factor, it is possible to add a

theta-term iϑεµν∂µJ
U(1)
ν 0 .
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will consider here is4

S =
1

2κ2

∫

d2x Str
(√

hhµνJµ 2Jν 2 + iεµνJµ 1Jν 3

)

. (2.4)

The ”supertrace” Str(· ·) denotes the G and Z4 invariant bilinear form on g, and κ is the

sigma-model coupling (κ2 = 2πα′/R2, where R is the radius of G/H0). The equations of

motion for this action admit a Lax representation [5] making the world-sheet sigma-model

classically integrable.

The expansion of the Lagrangian in (2.4) around g = 1 (the flat-space limit) has the

form ∂X∂X + θ̄∂X∂θ typical for the Green-Schwarz superstring [10]. And indeed the

Green-Schwarz action on many AdS backgrounds can be described as (2.4) for various Z4

cosets [3, 8, 9, 11–20]. Just like the ordinary Green-Schwarz action, (2.4) may possess local

fermionic kappa-symmetries which, in effect, means that some of the fermion dimensions

are unphysical and have to be removed by an appropriate gauge fixing prior to quantization.

The rank of the kappa-symmetry depends on the structure of the coset and will be computed

in section 4 for all sigma-models with the vanishing one-loop beta-function.

To illustrate these points and to set up the stage for the subsequent one-loop cal-

culations, let us expand the action (2.4) around an arbitrary bosonic background5 ḡ(x),

introducing the following notations for the background currents:

(

ḡ−1∂µḡ
)

0
= Aµ,

(

ḡ−1∂µḡ
)

2
= Kµ. (2.5)

Here Aµ is the background gauge field. We will denote by Dµ the background covariant

derivative: Dµ = ∂µ + [Aµ, ·], and by Fµν the background field strength: Fµν = ∂µAν −
∂νAµ + [Aµ, Aν ]. The currents Aµ and Kµ are assumed to satisfy the classical equations of

motion:

[Kµ,Kν ] + Fµν = 0,

DµKν − DνKµ = 0,

∇µKµ = 0, (2.6)

where ∇µKν = DµKν + Γν
µλKλ and Γν

µλ are the Christoffel symbols of the worldsheet

metric. The first two equations are identities that follow from the flatness of the current

ḡ−1∂µḡ. The equations of motion for the metric are the Virasoro constraints:

hµν StrK±µK± ν = 0, (2.7)

where K±µ are the chiral components of Kµ:

K±µ =
1

2

(

δν
µ ± i√

h
hµλελν

)

Kν . (2.8)

4We consider the Euclidean worldsheet, which is why the second term in the Lagrangian is multiplied

by i. After the Wick rotation the action becomes real.
5The background-field calculations have been done for the Green-Schwarz-type cosets [8], as well as for

many related pure-spinor type sigma-models [2, 9, 21–24].
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In order to expand around the classical background ḡ(x) we choose the coset represen-

tative in the form

g = ḡ e κX , (2.9)

where X ∈ h1⊕h2⊕h3. Under gauge transformation that also act on the background field:

ḡ → ḡh, X transforms in the adjoin: X → h−1Xh. It is straightforward to plug the coset

representative (2.9) into the action and expand the latter in the powers of the coupling κ.

The current (2.3) expands as

Jµ = Aµ + Kµ +
1 − e−κ ad X

ad X
DµX = Aµ + Kµ + κDµX − κ2

2
[X,DµX] + · · · , (2.10)

where the long derivative Dµ is defined by

Dµ = ∂µ + [ḡ−1∂µḡ, ·] = Dµ + [Kµ, ·]. (2.11)

Unlike the covariant derivative Dµ, which commutes with the Z4 grading, the long deriva-

tive Dµ does not have definite Z4 charge. Thus, (DµX)n = DµXn for any n and (DµX)2 =

DµX2, but (DµX)1,3 = DµX1,3 + [Kµ,X3,1].

Plugging the expansion (2.10) into the action (2.4) and using the identities

εµνDµDν = −εµν ad Kµ ad Kν ,

εµν [Dµ, ad Kν ] = 0,

[Dµ,
√

hhµν ad Kν ] = 0,

which follow from the equations of motion (2.6), one can bring the quadratic part of the

action to the form

S = S̄ +

∫

d2x
√

hhµν Str

(

1

2
DµX2DνX2 −

1

2
[Kµ,X2][Kν ,X2]

+X1∇+ µ[K− ν ,X1] + X3∇−µ[K+ ν ,X3] − 2[K+ µ,X3][K− ν ,X1]

)

+O(κX3), (2.12)

where the chiral projections of a vector are defined in (2.8). In the conformal gauge

(hµν = e φδµν), the quadratic part of the Lagrangian becomes:

L2 =
1

2
Str
(

D̄X2DX2 − [K̄,X2][K,X2]

+X1D[K̄,X1] + X3D̄[K,X3] − 2[K,X3][K̄,X1]
)

, (2.13)

where holomorphic and anti-holomorphic vector components are defined as D = D1 + iD2,

D̄ = D1 − iD2, and similarly for K.

The fermion fluctuations of the worldsheet couple to the background currents, and if the

currents vanish the fermion kinetic terms vanish too. Even if the background currents do

not vanish, the Dirac operator may have zero modes, because the Lagrangian depends on X1

(X3) only in the combination [K̄,X1] ([K,X3]). If K̄ (K) has a non-empty commutant in h1
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(h3), the Lagrangian degenerates and simply does not depend on the fermionic fluctuations

in the corresponding directions. This is a manifestation of the κ-symmetry, a local fermion

gauge invariance that has to be fixed in order to have well-defined perturbation theory.

The most simple and natural way to fix the kappa-gauge is to set to zero those com-

ponents of X1 and X3 that drop out from the action anyway. These components are

proportional to the Lie algebra generators from h1 and h3 which are annihilated by the

adjoint action of K̄ or K. The rank of the κ-symmetry is the number of such generators:

Nκ = dim ker ad K|h3
, Nκ̃ = dim ker ad K̄

∣

∣

h1
, (2.14)

where K and K̄ are sufficiently generic null elements of h2. The null condition follows from

the Virasoro constraints

StrK2 = 0 = Str K̄2. (2.15)

The number of zero modes Nκ or Nκ̃ does not depend on the particular choice of K and

K̄ provided that they are sufficiently generic. For special (non-generic) classical solutions,

the kappa-symmetry gauge condition may further degenerate. This is known to happen in

AdS4 × CP 3 [18]. However these degenerate cases occur on the surface of non-vanishing

co-dimension in phase space. In the bulk of the phase space (for generic classical solutions)

the rank of the kappa-symmetry is background independent, and is determined by the

structure constants of the Lie superalgebra g.

3 Beta function and central charge

To compute the central charge and the beta-function of the sigma-model, we integrate out

Xn, n = 1, 2, 3 in (2.12) and study the dependence of the effective action on the back-

ground currents and the 2d metric. The beta-function is determined by the log-divergent

contribution to the unique dimension two operator:
√

hhµν Str KµKν . The central charge

is determined by the standard conformal anomaly. Since the beta function and the cen-

tral charge are governed by different terms in the effective action, they can be computed

separately. The beta function arises from the insertions of the mass operators K2X2
2 and

K2X1X3 in the one-loop diagram and can be calculated in the conformal gauge. The cen-

tral charge arises due to the short-distance anomaly in the fluctuation determinants and is

insensitive to the masses. In computing the central charge the masses can thus be omitted,

after which the Lagrangian (2.12) reduces to that of the Green-Schwarz string in flat space

in the semi-light-cone gauge, the central charge for which was computed in [25–27].

The one-loop effective action in the conformal gauge is

Seff =
1

2
Sp2 ln

(

−D̄D + ad K ad K̄
)

− 1

2
Sp′

1⊕3

(

ad K ad K̄ D̄ ad K

D ad K̄ ad K̄ ad K

)

. (3.1)

Here we used that −DµDµ + ad Kµ ad Kµ = −D̄D + ad K ad K̄ because of the identity

[Dµ,Dν ] = ad Fµν = −[ad Kµ, ad Kν ] satisfied by the background currents in virtue of the

equations of motion (2.6). The prime in Sp′
1⊕3 means that the zero eigenvectors of ad K̄

– 5 –
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bosons fermions

Figure 1. The one-loop contribution to the beta-function.

(ad K) in h1 (h3) should be omitted. They are eliminated by fixing the kappa-symmetry

gauge.

The log-divergent contribution to the beta-function comes from the two diagrams in

figure 1. The bosonic contribution is easy to compute:

1

2

∫

d2p

(2π)2
1

p2

∫

d2x tr2 (ad Kµ)2 =
1

4π
ln Λ

∫

d2x tr2 (ad Kµ)2 . (3.2)

The fermion contribution requires more care because of the kappa-symmetry projec-

tion. The Dirac operator in (3.1) can be factorized as
(

ad K ad K̄ D̄ ad K

D ad K̄ ad K̄ ad K

)

=

(

D̄ ad K

ad K̄ D

)(

0 ad K

ad K̄ 0

)

=

(

0 ad K

ad K̄ 0

)(

D ad K

ad K̄ D̄

)

,

where we used that [D, ad K̄] = 0 = [D̄, ad K] due to the equations of motion. The Dirac

operator acts on h1 ⊕ h3, so the factor
(

0 ad K

ad K̄ 0

)

is just the kappa-symmetry projector, up to proportionality factor. The fermion contribu-

tion to the effective action thus is given by

S
(ferm)
eff = −1

2
Sp′

1⊕3

(

D̄ ad K

ad K̄ D

)

. (3.3)

Expanding to the second order in adK, ad K̄, we find:

1

4

∫

d2p

(2π)2
1

p2

∫

d2x
(

tr′1 ad K ad K̄ + tr′3 ad K̄ ad K
)

=
1

8π
ln Λ

∫

d2x
(

tr1 ad K ad K̄ + tr3 ad K̄ ad K
)

The prime in the trace is omitted in the second line because the integrand is proportional

to the kappa-symmetry projector. Now,

ad K ad K̄ = ad Kµ ad Kµ − iεµν ad Kµ ad Kν

ad K̄ ad K = ad Kµ ad Kµ + iεµν ad Kµ ad Kν ,

– 6 –
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so it might seem that fermions renormalize also the operator Σabε
µνKa

µKb
ν , where Σab is

an anti-symmetric invariant tensor on h2. However, this operator is a total derivative, its

variation being proportional to εµνDµKν = 0, and integrates to zero.

Adding together bosonic and fermionic contributions we find:

Seff =
1

8π
ln Λ

∫

d2x (2 tr2 − tr1 − tr3) (ad Kµ)2 + finite. (3.4)

Finally, recalling that Kµ ∈ h2 and thus ad Kµ maps h2 to h0 and vice versa, we find:

tr2 ad Kµ ad Kµ = tr0 ad Kµ ad Kµ.

Hence we can replace 2 tr2 − tr1 − tr3 in (3.4) by tr0 + tr2 − tr1 − tr3 = Stradj.

If we denote the Hermitian generators of h2 by Ta and introduce the metric on the

bosonic section of the coset:

gab =
1

κ2
Str TaTb, (3.5)

the one loop beta-function is

β1−loop
ab =

d

d ln Λ
gab = − 1

4π
fA

aBfB
bA(−1)|A|, (3.6)

where fA
BC are the structure constants of g. The beta-function is thus proportional to the

Killing form. The same one-loop beta-function arises in the pure-spinor-type cosets [2, 9,

22], the supergroup principal field [28, 29], and in the Z2 cosets of supergroups [30, 31]. The

condition for the one-loop beta-function to vanish is that the Killing form of g vanishes.6

The calculation of the central charge for the Green-Schwarz string requires careful reg-

ularization of the integration measure [34–37], and yields the following result [8, 25–27]: the

bosons have central charge 1; the left (right) moving fermions contribute 2 to the left (right)

central charge. In our case, X3 and X1 are, respectively, left and right movers so, in total,

cL = dimh2 + 2(dim h3 − Nκ), cR = dim h2 + 2(dim h1 − Nκ̃). (3.7)

The average central charge, c = (cL + cR)/2, is determined by the dimension of the coset

and the full rank of the kappa-symmetry:

c = dimG/H0 − Nκ − Nκ̃. (3.8)

The central charge is manifestly positive, in contradistinction to the non-unitary Z2 super-

cosets, which can have negative central charge [31].7 By an explicit calculation we will find

that in all conformal cosets cL = cR. We can thus make no distinction between c, cL and cR.

We will be also interested in the case when an external CFT is added to the coset. At

first sight, this cannot change the central charge counting, because the coset and the exter-

nal CFT interact only via 2d metric which does not carry dynamical degrees of freedom and

6Strictly speaking, only the projection of the Killing form on h2 should vanish, but if the Killing form is

non-vanishing it is also non-degenerate and unique [32, 33], and consequently proportional to the tree-level

action thus giving a non-zero beta-function.
7Typically, the central charge of a Z2 coset is equal to its superdimension [38] which counts bosons and

fermions with opposite signs.
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can be eliminated by fixing the conformal gauge. However, this is not quite true. Adding an

external CFT can partially or completely break the kappa-symmetry. The kappa-symmetry

transformations act on the 2d metric and since the latter enters the action of the external

CFT, kappa-symmetry gets broken. In the conformal gauge, the kappa-symmetry breaking

can be attributed to the violation of the null condition for the currents (2.15), which does

not hold in the presence of another CFT with a non-trivial energy-momentum tensor.8

The ranks of the left- and right-moving kappa-symmetries with the null condition re-

laxed will be denoted by N̂κ, N̂κ̃. They are computed by the same formulas (2.14) where

K and K̄ are now the most general elements of h2, not necessarily null. We will denote

the central charge of the sigma-model coupled to an external CFT (the extrinsic central

charge) by9 ĉ:

ĉ = dimG/H0 − N̂κ − N̂κ̃, (3.9)

In the next section we will compute extrinsic and intrinsic central charges for all conformalZ4 cosets.

4 Conformal sigma models

The string sigma-model must be defined on a real superspace, so the symmetry algebra

g should be a real Lie superalgebra. However, the one-loop beta-function and the central

charge depend only on the structure constants of g and therefore are the same for all

real forms of a given complex superalgebra. Dealing with complex Lie superalgebras is

technically simpler, and subsequent analysis will be done as if g were complex. We will

pick a particular real form in the very end. If we want to have a string interpretation of the

sigma-model, the real form must be such that the metric (3.5) has the Minkowski signature

(− + · · ·+). In the cases when the requisite real form does not exist, we will keep in mind

the compact form of the coset with the (+ · · ·+) metric.

The basic complex Lie superalgebras with vanishing Killing form form two infinite

series: psu(n|n) and osp(2n + 2|2n) [32, 33]. The one-parameter family of exceptional

superalgebras d(2, 1;α), a continuous deformation of osp(4|2), also has vanishing Killing

form. But since the deformation parameter appears only in the anti-commutator of su-

percharges, the central charge counting for d(2, 1;α) is the same as for osp(4|2) and we

need not discuss d(2, 1;α) separately, just keeping in mind that any OSp(4|2) coset can be

generalized to D(2, 1;α).

From the discussion above we see that there are two series of conformal sigma-models

on semi-symmetric superspaces, those with PSU(n|n) and OSp(2n+2|2n) symmetry, which

we will call type-U and type-O models. All possible Z4 automorphisms of psu(n|n) and

osp(2n+2|2n) and the corresponding cosets were classified by Serganova [1]. They fall into

six separate classes, four type-U and two type-O, conveniently described with the help of

8The observation that coupling to an external CFT breaks kappa-symmetry was made in [20], but

perhaps this simple fact was known before.
9This should not be confused with 2c/3 sometimes also denoted by ĉ.
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Coset Ω H0

type-U1 Ad diag(Ip, Iq) ◦ δ U(p) × SU(n − p) × U(q) × SU(n − q)

type-U2 −st SO(n) × SO(n)

type-U3 −st ◦ Π ◦ δ SU(n)

type-U4 −st ◦ Addiag(J, J) Sp(n) × Sp(n)

Table 1. Semi-symmetric cosets of PSU(n|n). Ω is the Z4 automorphism of su(n|n), H0 is the

invariant subgroup. The bosonic section of the coset is SU(n) × SU(n)/H0.

Coset Ω H0

type-O1 Ad diag(Ip, J) SO(p) × SO(2n + 2 − p) × U(n)

type-O2 Ad diag(J,1⊗ Ip) U(n + 1) × Sp(2p) × Sp(2n − 2p)

Table 2. Semi-symmetric cosets of OSp(2n + 2|2n). Ω is the Z4 automorphism of osp(2n + 2|2n),

H0 is the invariant subgroup. The bosonic section of the coset is SO(2n + 2) × Sp(2n)/H0.

the supermatrix representation of the su(n|n) and osp(2n + 2|2n) superalgebras:10

su(n|n) = {X ∈ M(n|n) | StrX = 0} (4.1)

osp(2n + 2|2n) =

{(

A Θ

Ψ B

)

∈ M(2n + 2|2n)

∣

∣

∣

∣

∣

A = −At, B = JBtJ,Ψ = JΘt

}

. (4.2)

Here J is the 2n × 2n matrix

J =

(

0 1n×n

−1n×n 0

)

. (4.3)

We will also need the diagonal matrix

Ip = diag
(1p×p,−1(n−p)×(n−p)

)

, (4.4)

and the following supermatrix operations:11

(

A Θ

Ψ B

)st

=

(

At −Ψt

Θt Bt

)

δ ◦
(

A Θ

Ψ B

)

=

(

A iΘ

−iΨ B

)

Π ◦
(

A Θ

Ψ B

)

=

(

B Ψ

Θ A

)

(4.5)

These three operations and the adjoint action of the matrices J and Ip allow one to build

all possible Z4 automorphisms of su(n|n) (table 1) and osp(2n+2|2n) (table 2) [1]. The Z4

decomposition corresponding to these cosets is described in more detail in the appendix.

Almost all of the cosets in tables 1 and 2 can be used to define the action of a sigma-

model, except for type-U3. Any element of h2 in a type-U3 coset is null, at least in the

10The central element in su(n|n) that distinguishes it from psu(n|n) can be trivially factored out.
11Our notations are essentially identical to those of [1].
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usual supertrace metric (the explicit Z4 decomposition is given in section A.3). The bosonic

part of the action then vanishes identically. Although we will formally compute the central

charge for this coset, we will not discuss this sigma-model any further.

In addition to the models based on simple Lie superalgebras one can also consider the

cosets of product groups. Such cosets naturally arise in the AdS3/CFT2 correspondence,

because the conformal algebra in two dimensions is a direct sum of two Virasoro algebras

acting independently on the left and right movers. Independently of the AdS/CFT connec-

tion, the product structure is quite natural from the point of view of the coset construction,

as it generally admits a Z4 action. If p is a superalgebra, we can define a Z4 action on the

direct sum g = p ⊕ p by combining the permutation of the two factors with the fermion

number [20]:

Ω =

(

0 id

(−1)F 0

)

. (4.6)

One can easily check that Ω([X,Y ]) = [Ω(X),Ω(Y )] for any X,Y ∈ p⊕p. It is also obvious

that Ω2 = (−1)F and thus Ω4 = id. The invariant subalgebra of the Z4 action is the bosonic

diagonal h0 = {(X,X)|X ∈ p}. Consequently, the supercoset is P ×P/H0, where H0 is the

bosonic subgroup of P diagonally embedded in P × P . The bosonic section is the group

manifold of H0. We refer to the tensor-product semi-symmetric spaces as type-Tu cosets

if P = PSU(n|n) and type-To cosets if P = OSp(2n + 2|2n). There are also interesting

cosets of U(n|n) [39], which we will not consider here.

We will calculate the one-loop central charge for the eight types of semi-symmetric

cosets introduced above (type-U1-4, type-O1,2 and type-Tu,o). The central charge counts

the number of degrees of freedom in the sigma-model and depends on the rank of the

kappa-symmetry (3.7)–(3.9), which in turn is given by the dimension of the commutant of

a generic element of h2 (2.14). The calculations reduce to simple algebra, but have to be

done case by case. The details are given in the appendix, here we just describe the general

pattern that emerges:

• The left- and right-moving kappa-symmetries, which are associated with the h3 and

h1 subspaces, are identical in almost all the cases. One and only exception is the

type-U3 coset, for which h3 and h1 are not isomorphic and have different dimensions.

The kappa-symmetry compensates for this, such that even in this case the left- and

right-moving central charges are equal.

• The extrinsic kappa-symmetries follow a regular pattern and depend uniformly on

the dimensionalities of the superalgebra and the coset (table 3).12

• There is no difference between intrinsic and extrinsic kappa-symmetries and central

charges in most cases, but in low ranks there are exceptions listed in table 4. Im-

posing the Virasoro constraints then increases the rank of the kappa-symmetry and

decreases the central charge.

12For type-U1, we assume that n > 2p and n > 2q.
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Coset N̂κ N̂κ̃

type-U1 (n − 2p)(n − 2q) (n − 2p)(n − 2q)

type-U2 0 0

type-U3 0 2n

type-U4 0 0

type-O1 0 0

type-O2 (n odd) 0 0

type-O2 (n even) 2n − 4p 2n − 4p

type-Tu 0 0

type-To 0 0

Table 3. The rank of the kappa-symmmetry, generic case.

Coset Nκ

type-U1 (p = 1, q = 1) n2 − 4n + 6

type-U2 (n = 2) 2

type-U4 (n = 4) 8

type-O1 (n = 1, p = 1) 1

type-O2 (n = 2, p = 1) 4

type-Tu (n = 2) 4

Table 4. The rank of the kappa-symmetry, exceptions (in all cases Nκ̃ = Nκ).

Coset ĉ

type-U1 6(p + q)n − 2p2 − 2q2 − 8pq

type-U2 3n2 + n − 2

type-U3 3n2 − 2n − 1

type-U4 3n2 − n − 2

type-O1 5n2 + (2p + 5)n − p2 + 2p

type-O2 (n odd) 5n2 + (4p + 5)n − 4p2

type-O2 (n even) 5n2 + (4p + 1)n − 4p2 + 8p

type-Tu 6n2 − 2

type-To 12n2 + 12n + 1

Table 5. The central charge, regular case.

The central charges for the regular cosets (for which there is no difference between ĉ and

c) are summarized in table 5. The exceptional cases in which the intrinsic and extrinsic

central charges are different are listed in table 6.

5 String sigma-models

The worldsheet diffeomorphisms in the sigma-models at hand are just the same as in the

bosonic string theory, and lead to the same set of bc ghosts in the conformal gauge. If the
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Coset c ĉ

type-U1 (p = 1, q = 1) 12n − 16 12n − 12

type-U2 (n = 2) 8 12

type-U4 (n = 4) 26 42

type-O1 (n = 1, p = 1) 11 13

type-O2 (n = 2, p = 1) 26 34

type-Tu (n = 2) 14 22

Table 6. The central charge, exceptions.

ghost contribution to the central charge is to be canceled by the sigma-model alone, its

intrinsic central charge should be equal to 26. If ĉ < 26, the central charge deficit can be

compensated by coupling to an external CFT with central charge 26 − ĉ. Let us list the

models that satisfy these criteria.

The inspection of tables 5 and 6 shows that there are only two cosets with c = 26,

both are exceptional:

Type−U4(n = 4) : PU(2, 2|4)/SO(4, 1) × SO(5) AdS5 × S5

Type−O2(n = 2, p = 1) : OSp(6|4)/U(3) × SO(3, 1) AdS4 × CP 3 (5.1)

These cosets define well-known sigma-models. The first one is the Metsaev-Tseytlin model

for the Green-Schwarz superstring on AdS5 × S5 [3]. The second model describes strings

on AdS3 ×CP 3 [18, 19] and can be obtained from the Green-Schwarz action on this back-

ground [40] by partially fixing kappa-symmetry. It is interesting that these two cases are

in a sense unique.

There is a number of non-critical semi-symmetric cosets with ĉ < 26. Some of them

admit a real form with the Minkowski metric on the bosonic subspace:

1) Type−To(n = 1) : OSp(4|2) × OSp(4|2)/SO(4) × SL(2,R)

ĉ = 25 AdS3 × S3 × S3

2) Type−Tu(n = 2) : PSU(1, 1|2) × PSU(1, 1|2)/SU(1, 1) × SU(2)

ĉ = 22 AdS3 × S3

3) Type−O1(n = 1, p = 2) : OSp(4|2)/U(1)3

ĉ = 14 AdS2 × S2 × S2

4) Type−O1(n = 1, p = 1) : OSp(4|2)/SO(3) × U(1)

ĉ = 13 AdS2 × S3

5) Type−U1(n = 2, p = 1, q = 1)/U2(n = 2) : PSU(1, 1|2)/U(1)2

ĉ = 12 AdS2 × S2

6) Type−U1(n = 2, p = 1, q = 0) : PSU(1, 1|2)/U(1) × SU(2)

ĉ = 10 AdS2

7) Type−O1(n = 1, p = 0)/O2(n = 1, p = 0) : OSp(4|2)/SO(4) × U(1)

ĉ = 10 AdS2 (5.2)
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Here OSp(4|2) can be replaced by a more general supergroup D(2, 1;α), which gives a

one-parametric family of sigma-models. In particular, there is a D(2, 1;α) coset which

continuously interpolates between cases 7 and 6. The same is true for cases 1 and 2 [20],

where the degeneration of D(2, 1;α) to PSU(1, 1|2) leaves two extra flat dimensions which

account for the difference in central charges.

Many of the cosets above have been discussed in the context of the AdS/CFT duality.

The first coset, supplemented by an external S1, describes the Green-Schwarz string on

AdS3 ×S3 ×S3 ×S1 with completely fixed kappa-symmetry [20]. The action of the second

coset can be interpreted as the 6d Green-Schwarz action on AdS3×S3 [9, 11, 12, 14, 16, 41]

and as such admits rank-eight kappa-symmetry (table 4). However, coupling to an external

T 4, which is necessary to compensate for the central charge deficit, breaks kappa-symmetry

and changes the central charge counting. This coset plus four compact bosons describes the

Green-Schwarz string on13 AdS3 ×S3 ×T 4 with fully fixed kappa-symmetry [20]. The fifth

coset yields the 4d Green-Schwarz action on AdS2×S2 [2, 9, 13]. Again, its (four-parameter)

kappa-symmetry is completely broken by coupling to an external c = 14 CFT. The models

3, 4, 6 and 7 are seemingly new. The last two models are similar to the OSp(1|2)/U(1) coset

considered in [15] — they have AdS2 as the bosonic target space and no physical degrees

of freedom on shell. The latter is due to kappa-symmetry. Coupling of these sigma-models

to an external CFT breaks kappa-symmetry and revives their fermion degrees of freedom.

Other non-critical cosets do not admit a metric with the (− + · · ·+) signature and

the time direction should lie in the external CFT. Their compact versions (those with the

Euclidean metric) are listed below:

1) Type−U1(n = 3, p = 1, q = 1) : PSU(1, 2|3)/U(2) × U(2)

ĉ = 24 CP 2 × CP 2

2) Type−U1(n = 4, p = 1, q = 0) : PSU(4|4)/U(3) × SU(4)

ĉ = 22 CP 3

3) Type−O2(n = 2, p = 0) : OSp(6|4)/U(3) × Sp(4)

ĉ = 22 CP 3

4) Type−U1(n = 3, p = 1, q = 0) : PSU(3|3)/U(2) × SU(3)

ĉ = 16 CP 2. (5.3)

These models bear certain resemblance to the CPS−1|S Z2 sigma models [42].

6 Conclusions

The list of semi-symmetric superspaces potentially consistent as string backgrounds is not

very long. We should stress that we have computed the beta function and central charge

only at the one loop level. There is no guarantee that higher-order corrections identi-

cally vanish, and the list of consistent string backgrounds with the Z4 symmetry may be

13This background admits a hybrid description in terms of the sigma model on the supergroup manifold

PSU(1, 1|2) [28].
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even shorter. It is instructive to look at what happens in the principal chiral models andZ2 cosets of supergroups. In the case of the principal chiral field, it is possible to prove

finiteness to all orders in perturbation theory for the cosets with the vanishing one-loop

beta-function [29, 31]. Many one-loop finite Z2 cosets are two-loop finite as well [31], but

the full set of conformal Z2 cosets seems to be smaller than the set of Z2 cosets with

vanishing one-loop beta-function [43].

The semi-symmetric cosets with non-zero beta-function can also be interesting for the

AdS/CFT duality, if they are asymptotically free. A sigma-model with the AdS target

cannot develop a mass gap because of the non-compactness. The asymptotic freedom

at weak coupling then suggests that the beta-function has a non-trivial zero, which can

potentially be interpreted as string theory on the AdS space of fixed radius [8].14

The consistent Minkowski backgrounds, critical (5.1) and non-critical (5.2), all involve

an AdS factor and are potentially dual to CFTs in dimensions d 6 4. In all these cases the

worldsheet sigma-model is integrable and thus potentially solvable by Bethe ansatz. For

the string sigma-models on AdS5×S5 and AdS4×CP 3 the classical algebraic curve [44–46],

the worldsheet S-matrix [47, 48] and the asymptotic quantum Bethe equations [49, 50] are

known. The finite-volume TBA/Y-system solution is now also available [51–56]. It would

be interesting to derive a unifying Bethe-ansatz solution for a generic semi-symmetric coset.
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A Rank of kappa symmetry

In this appendix we compute the rank of the kappa-symmetry for all conformal Z4 cosets.

According to (2.14), the rank is equal to the dimension of the commutant of a generic

element K(or K̄) ∈ h2 in h1 and h3. In the supermatrix representation,

K(or K̄) =

(

A 0

0 B

)

. (A.1)

Commuting this with an odd element of the superalgebra, we find:

[(

A 0

0 B

)

,

(

0 Θ

Ψ 0

)]

=

(

0 AΘ − ΘB

BΨ − ΨA 0

)

.

14This argument was suggested to the author by A.M. Polyakov.
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The commutator vanishes if

AΘ = ΘB, BΨ = ΨA. (A.2)

The number of solutions to these equations determines the rank of the kappa-symmetry.

The dimension of the solution space for generic A and B determines the rank of the extrin-

sic kappa-symmetry N̂κ, N̂κ̃. To compute the rank of the intrinsic kappa-symmetries Nκ,

Nκ̃, one should in addition impose the Virasoro constraints (2.15). The matrices A and B

then satisfy

tr A2 = tr B2. (A.3)

Throughout the calculation we will use a number of simple algebraic facts, which we col-

lect below.

Consider an equation for an m × n matrix X:

MX = XN, (A.4)

where M and N are given quadratic matrices, which we assume to be sufficiently generic.

Since a generic matrix can be diagonalized by a similarity transformation, without loss of

generality we can assume that M and N are diagonal. Denoting their eigenvalues by µi,

i = 1, . . . ,m and νa, a = 1, . . . , n, we find

(µi − νa)Xia = 0. (A.5)

In the most general case of arbitrary M and N , all µi are different from νa, and conse-

quently (A.4) has no solutions other than X = 0. This might not be true if M and N

satisfy extra conditions. For instance, if M and N are 2 × 2 matrices constrained by

tr M = 0 = tr N, tr M2 = tr N2, (A.6)

their eigenvalues coincide pairwise: µ1 = −µ2 = ν1 = −ν2. In this case the equation (A.4)

has two linearly independent solutions. In general the rank of the linear system (A.4) is

equal to the number of pairs of coinciding eigenvalues of matrices M and N .

In analyzing the spectrum of various matrices we will repeatedly use the Stenzel theo-

rem [57, 58], which states that the non-zero eigenvalues of a product of two anti-symmetric

matrices are doubly degenerate. Namely, the spectrum of an n × n matrix M = A1A2,

where At
i = −Ai, consists of [n/2] pairs of eigenvalues µ1, µ1, . . . µ[n/2], µ[n/2] and, if n is

odd, an additional zero eigenvalue associated with the vector annihilated by A2.

A.1 Type-U1

The Z4 automorphism of the type-U1 coset acts on the supermatrices as

Ω ◦
(

A Θ

Ψ B

)

=

(

IpAIp iIpΘIq

−iIqΨIp IqBIq

)

, (A.7)
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where Ip, Iq are defined in (4.4). The Z4 decomposition in the supermatrix representation

is given by

h2 : A =

(

0 [A1]p×(n−p)

[A2](n−p)×p 0

)

, B =

(

0 [B1]q×(n−q)

[B2](n−q)×q 0

)

h1 : Θ =

(

[Θ1]p×q 0

0 [Θ2](n−p)×(n−q)

)

, Ψ =

(

0 [Ψ1]q×(n−p)

[Ψ2](n−q)×p 0

)

h3 : Θ =

(

0 [Θ1]p×(n−q)

[Θ2](n−p)×q 0

)

, Ψ =

(

[Ψ1]q×p 0

0 [Ψ2](n−q)×(n−p)

)

(A.8)

Let us assume that n− p > p and n− q > q. The non-zero eigenvalues of the matrix A

form p pairs ±α1, . . . ,±αp, where α2
i are the eigenvalues of the p×p matrix A1A2. In addi-

tion A, has n− 2p zero modes built from (n− p)-dimensional vectors vi annihilated by A1.

Analogously, the right action of B produces 2q non-zero eigenvalues ±β1, . . . ,±βq, whose

squares β2
j are eigenvalues of B1B2, and n−2q zero modes made of left n−q dimensional null

vectors of B2, which we denote by uj. There are (n− 2p)(n− 2q) pairs of zero eigenvalues

of A and B. In h1, they correspond to (n − 2p)(n − 2q) solutions to (A.2) of the form

Ψ = 0, Θ1 = 0, Θ2 = vi ⊗ uj (i = 1, . . . , n − 2p; j = 1, . . . , n − 2q). (A.9)

In general, the non-zero eigenvalues ±αi have no reasons to coincide with ±βj , so the

number of right-moving kappa-symmetries without Virasoro constraints is

N̂κ̃ = (n − 2p)(n − 2q). (A.10)

The computation for the left-movers (h3) is the same with the left and right action of A

and B interchanged and Θ replaced by Ψ, so

N̂κ = (n − 2p)(n − 2q). (A.11)

The null condition (A.3), in terms of the eigenvalues reads

p
∑

i=1

α2
i =

q
∑

j=1

β2
j . (A.12)

In general, this condition is too weak and does not imply any degeneracies. The only

exception is p = 1 = q, when each of the matrices A and B has only one pair of non-zero

eigenvalues. The eq. (A.12) then implies that these eigenvalues coincide up to a sign. We

thus find two extra solutions to (A.2) in both h1 and h3. In h1, the solutions are

Θ1 = A1A2, Θ2 = A2B1, Ψ = 0 (A.13)

and

Ψ1 = A1, Ψ2 = B2, Θ = 0. (A.14)

This solutions exist provided that A1A2 = B1B2, which for p = 1 = q is a consequence of

the Virasoro constraints. Hence,

Nκ = Nκ̃ = (n − 2)2 + 2 (p = 1 = q). (A.15)
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A.2 Type-U2

The Z4 automorphism of the type-U2 coset is

Ω ◦
(

A Θ

Ψ B

)

=

(

−At Ψt

−Θt −Bt

)

, (A.16)

which gives the following Z4 decomposition:

h2 : At = A, Bt = B

h1 : Ψ = iΘt

h3 : Ψ = −iΘt. (A.17)

To find the rank of the kappa-symmetry, we need to solve the equation

AΘ = ΘB (A.18)

for generic symmetric traceless matrices A and B. It general it has no solutions, so

N̂κ = 0 = N̂κ̃. (A.19)

If we impose the Virasoro condition (A.3), we are in the situation described around

eq. (A.6). The exceptional case is n = 2, in which the space of solutions to (A.18) is

two-dimensional. We thus find:

Nκ = Nκ̃ = 2 (n = 2). (A.20)

A.3 Type-U3

The Z4 automorphism in this case is

Ω ◦
(

A Θ

Ψ B

)

=

(

−Bt iΘt

iΨt −At

)

, (A.21)

which gives the following Z4 decomposition:

h2 : B = At

h1 : Θt = Θ, Ψt = Ψ

h3 : Θt = −Θ, Ψt = −Ψ. (A.22)

This case is rather special, because h1 and h3 have different dimensions: dim h1 −dim h3 =

2n, potentially leading to the mismatch of the central charges of left and right movers. We

will see that this mismatch is precisely compensated by the kappa-symmetry.

The equation (A.2), that determines the rank of the kappa-symmetry, becomes:

AΘ = ΘAt, AtΨ = ΨA. (A.23)
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The solutions of this equation in symmetric matrices give N̂κ̃, the number of solutions in

anti-symmetric matrices determines N̂κ. Without loss of generality we can assume that A

is diagonal: A = diag(a1, . . . , an). Then,

(ai − aj)Θij = 0, (ai − aj)Ψij = 0. (A.24)

In general, all the eigenvalues are different, and the solutions are diagonal matrix elements

Θii and Ψii. All of them belong to h1, thus giving:

N̂κ̃ = 2n, N̂κ = 0. (A.25)

The kappa-symmetry eliminates the extra right-moving degrees of freedom and reinstalls

the balance of central charges: cL = cR. The Virasoro condition does not impose any new

constraints, since the equation tr A2 = tr B2 automatically holds for any element of h2.

A.4 Type-U4

The type-U4 cosets are defined for PSU(n|n) with even n. We can also assume that n > 2,

as h2 is empty for15 n = 2. The Z4 symmetry acts as

Ω ◦
(

A Θ

Ψ B

)

=

(

JAtJ −JΨtJ

JΘtJ JBtJ

)

, (A.26)

and leads to the Z4 decomposition

h2 : At = −JAJ, Bt = −JBJ (A.27)

h1 : Ψ = −iJΘtJ

h3 : Ψ = iJΘtJ. (A.28)

The second equation in (A.2) is a consequence of the first for this coset. To find the

rank of the kappa-symmetry, we just need to solve

AΘ = ΘB. (A.29)

Non-trivial solutions to this equation correspond to pairs of equal eigenvalues of A and B.

A matrix that satisfies the condition (A.27) can be represented as a product of two

anti-symmetric matrices: A = −(AJ)J , and consequently has doubly-degenerate spectrum,

by Stenzel theorem. In addition, A and B are traceless and so have n/2 − 1 independent

eigenvalues. In general these eigenvalues have no reasons to coincide. Consequently, the

coset has no extrinsic kappa-symmetries:

N̂κ = N̂κ̃ = 0. (A.30)

The Virasoro condition (A.3) imposes the relationship on the sums of squares of the

eigenvalues of A and B. In general this is not enough to force them to coincide. The

only exception is the case of n = 4, when A and B have just one independent eigenvalue

each: {α,α − α,−α} and {β, β,−β,−β}. The Virasoro condition means that α = ±β.

Then (A.29) has an eight-dimensional space of solutions, and

Nκ = Nκ̃ = 8 (n = 4). (A.31)

15Once can however consider the coset of U(2|2) (or even U(1|1)) instead of PSU(2|2), then two bosonic

directions survive the Z4 projection [39].
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A.5 Type-O1

Since Ψ and Θ in osp(2n + 2|2n) are related, for type-O cosets we only need to solve one

equation in (A.2):

AΘ = ΘB, (A.32)

the other will automatically follow.

The Z4 automorphism of the type-O1 cosets in the supermatrix representation (4.2)

acts as follows:

Ω ◦
(

A Θ

Ψ B

)

=

(

IpAIp IpΘJ

−JΨIp −JBJ

)

=

(

IpAIp IpΘJ

−JΨIp −Bt

)

. (A.33)

The associated Z4 decomposition is

h2 : A =

(

0p×p [A1]p×(2n+2−p)

−[At
1](2n+2−p)×p 0(2n+2−p)×(2n+2−p)

)

,

B =

(

[B1]n×n [B2]n×n

[B2]n×n −[B1]n×n

)

, Bt
i = Bi

h1 : Θ =

(

[Θ1]p×n −i[Θ1]p×n

[Θ2](2n+2−p)×n i[Θ2](2n+2−p)×n

)

h3 : Θ =

(

[Θ1]p×n i[Θ1]p×n

[Θ2](2n+2−p)×n −i[Θ2](2n+2−p)×n

)

(A.34)

The kappa-symmetry condition (A.32) in h1/3 reduces to

A1Θ2 = Θ1B∓, −At
1Θ1 = Θ2B±, (A.35)

where

B± = B1 ± iB2. (A.36)

Then Θ2 = −At
1Θ1B

−1
± , and we are left with the equation

− A1A
t
1Θ1 = Θ1B∓B± (A.37)

for the p×n matrix Θ1. In general this equation has no solutions and, consequently, there

will be no kappa-symmetries:

N̂κ = N̂κ̃ = 0, (A.38)

because −A1A
t
1 and B∓B± have different eigenvalues for generic matrices A1, B1, B2. The

null condition (A.3) relates the sums of the eigenvalues, because

tr A2 = −2 tr A1A
t
1, tr B2 = 2 tr B∓B±. (A.39)

This is still insufficient for the eigenvalues to coincide, except for the special case of p = 1,

n = 1. Then both −A1A
t
1 and B∓B± are numbers rather than matrices, which must coin-

cide once the trace condition (A.3) is imposed. We thus find one solution in h1 and one in h3:

Nκ = Nκ̃ = 1 (p = 1, n = 1) . (A.40)
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There is also an extremely degenerate case of p = 0, n = 1. The target space then

is AdS2, without any extra factors. There are no propagating bosonic degrees of freedom.

The number of kappa-symmetries, and consequently the number of fermionic degrees of

freedom, depends on whether the string is left- or right-moving in the target space. In one

case, there is no kappa-symmetries, and in the other case the kappa-symmetry removes all

the fermions: Nκ = 4 = Nκ̃. The string then is purely topological.

A.6 Type-O2

The Z4 automorphism in this case acts as

Ω ◦
(

A Θ

Ψ B

)

=

(

−JAJ −JΘ1⊗ Ip1⊗ IpΨJ 1⊗ IpB1⊗ Ip

)

. (A.41)

It is convenient to work in the basis in which1⊗ Ip =

(12p×2p 0

0 1(2n−2p)×(2n−2p)

)

. (A.42)

The Z4 decomposition in this basis takes the form (we assume that n − p > p):

h2 : A =

(

[A1](n+1)×(n+1) [A2](n+1)×(n+1)

[A2](n+1)×(n+1) −[A1](n+1)×(n+1)

)

, At
i = −Ai

B =

(

02p×2p [B1]2p×(2n−2p)

J(2n−2p)×(2n−2p)[B
t
1](2n−2p)×2pJ2p×2p 0(2n−2p)×(2n−2p)

)

h1 : Θ =

(

[Θ1](n+1)×2p [Θ2](n+1)×(2n−2p)

−i[Θ1](n+1)×2p i[Θ2](n+1)×(2n−2p)

)

h3 : Θ =

(

[Θ1](n+1)×2p [Θ2](n+1)×(2n−2p)

i[Θ1](n+1)×2p −i[Θ2](n+1)×(2n−2p)

)

The zero-mode equation (A.32) in the h1/3 subspace boils down to a system of two

equations for matrices Θ1, Θ2:

A∓Θ1 = Θ2JBt
1J

A±Θ2 = Θ1B1, (A.43)

where

A± = A1 ± iA2. (A.44)

We need to distinguish even and odd n. Consider first odd n. The anti-symmetric

matrices A± are then non-degenerate and we can express Θ2 through Θ1: Θ2 = A−1
± Θ1B1,

substitute the result into the first equation and get:

A±A∓Θ1 = Θ1B1JBt
1J. (A.45)

Both A±A∓ and (B1JBt
1)J are products of two anti-symmetric matrices, their spec-

tra are thus degenerate and contain, respectively, (n + 1)/2 and p different eigenvalues:
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α1, α1, . . . , α(n+1)/2, α(n+1)/2 and β1, β1, . . . βp, βp. These eigenvalues are in general differ-

ent. Hence there are no non-trivial solutions for Θ1, and there are no kappa-symmetries:

N̂κ = N̂κ̃ = 0 (n odd). (A.46)

Imposing the Virasoro constraints does not change the situation, because the condi-

tion (A.3) imposes just one constraint on αi, βj :

∑

i

αi =
∑

j

βj. (A.47)

The only exception is the degenerate case of n = 1, p = 0, which is completely analogous

to the type-O1 coset with n = 1, p = 0, discussed at the end of section A.5.

If n is even, the matrix A± has one zero eigenvalue:

A±v = 0. (A.48)

This gives 2n−4p solutions of (A.43), in combination with 2n−4p null eigenvalues of JBt
1J :

uiJBt
1J = 0, i = 1, . . . 2n − 4p. (A.49)

The solutions due to the null eigenvalues are:

Θ1 = 0, Θ2 = v ⊗ ui. (A.50)

Potentially, there may also be solutions due to coincident non-zero eigenvalues of A and

B, which are given by the equation (A.45). This requires coincidence of some eigenvalues

of A±A±, α1, α1, . . . , αn/2, αn/2, 0, and B1JBt
1J , β1, β1, . . . , βp, βp. In general, this does

not happen, and thus

N̂κ = 2n − 4p = N̂κ̃ (n even). (A.51)

But if we impose the Virasoro condition, the eigenvalues satisfy (A.47), and for n = 2,

p = 1, the matrices A±A± and B1JBt
1J have two pairs of coinciding eigenvalues, leading

to 4 extra solutions:

Nκ = 4 = Nκ̃ (n = 2, p = 1). (A.52)

A.7 Type-Tu

The Z4 generator of the the tensor-product models (4.6) acts on g = p ⊕ p as

Ω(X,Y ) = (Y, (−1)F ◦ X), (A.53)

and gives the following Z4 decomposition:

h2 : (X,−X), X ∈ pbos

h1 : (Ξ,−iΞ), Ξ ∈ pferm

h3 : (Ξ, iΞ), Ξ ∈ pferm. (A.54)
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The kernel of ad K, K = (X,−X) ∈ h2 in h1/3 is determined by the equation

([X,Ξ],±i[X,Ξ]) = (0, 0) ⇐⇒ [X,Ξ] = 0, (A.55)

where Ξ is an odd (fermionic) element of p = psu(n|n). This reduces to (A.2) for generic

n× n matrices Θ and Ψ. In general, A and B have different eigenvalues, and there will be

no solutions yielding

N̂κ = 0 = N̂κ̃. (A.56)

The only exceptional case in which the null condition (A.3) makes a difference is n = 2.

Then there are two solutions for each of the matrices Θ and Ψ, and thus

Nκ = Nκ̃ = 4 (n = 2). (A.57)

A.8 Type-To

The matrices A and B in (A.2) never have common eigenvalues for p = osp(2n + 2|2n),

even if the null condition (A.3) is imposed. So,

N̂κ = N̂κ̃ = 0, (A.58)

and there are no exceptional cases.
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