
Stringy Jacobi fields in Morse theory

Yong Seung Cho*
National Institute for Mathematical Sciences, 385-16 Doryong, Yuseong, Daejeon 305-340 Korea

and Department of Mathematics, Ewha Womans University, Seoul 120-750 Korea

Soon-Tae Hong†

Department of Science Education and Research Institute for Basic Sciences, Ewha Womans University, Seoul 120-750 Korea
(Received 3 April 2007; published 26 June 2007)

We consider the variation of the surface spanned by closed strings in a spacetime manifold. Using the
Nambu-Goto string action, we induce the geodesic surface equation and the geodesic surface deviation
equation which yields a Jacobi field, and we define the index form of a geodesic surface as in the case of
point particles to discuss conjugate strings on the geodesic surface.
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I. INTRODUCTION

It is well known that string theory [1,2] is one of the best
candidates for a consistent quantum theory of gravity to
yield a unification theory of all four basic forces in nature.
In D-brane models [2], closed strings represent gravitons
propagating on a curved manifold, while open strings
describe gauge bosons such as photons, or matter attached
on the D-branes. Moreover, because the two ends of an
open string can always meet and connect, forming a closed
string, there are no string theories without closed strings.

On the other hand, the supersymmetric quantum me-
chanics has been exploited by Witten [3] to discuss the
Morse inequalities [4–6]. The Morse indices for a pair of
critical points of the symplectic action function have also
been investigated based on the spectral flow of the Hessian
of the symplectic function [7], and on the Hilbert spaces
the Morse homology [8] has been considered to discuss the
critical points associated with the Morse index [9]. The
string topology was initiated in the seminal work of Chas
and Sullivan [10]. Using the Morse theoretic techniques,
Cohen in Ref. [11] constructs string topology operations on
the loop space of a manifold and relates the string topology
operations to the counting of pseudoholomorphic curves in
the cotangent bundle. He also speculates about the relation
between the Gromov-Witten invariant [12] of the cotan-
gent bundle and the string topology of the underlying
manifold. Recently, the Jacobi fields and their eigenvalues
of the Sturm-Liouville operator associated with the particle
geodesics on a curved manifold have been investigated
[13], to relate the phase factor of the partition function to
the eta invariant of Atiyah [14,15].

In this paper, we will exploit the Nambu-Goto string
action to investigate the geodesic surface equation and the
geodesic surface deviation equation associated with a
Jacobi field. The index form of a geodesic surface will
also be discussed for the closed strings on the curved
manifold.

In Sec. II, the string action will be introduced to inves-
tigate the geodesic surface equation in terms of the world
sheet currents associated with � and � world sheet coor-
dinate directions. By taking the second variation of the
surface spanned by closed strings, the geodesic surface
deviation equation will be discussed for the closed strings
on the curved manifold. In Sec. III, exploiting the ortho-
normal gauge, the index form of a geodesic surface will
also be investigated together with breaks on the string
tubes. The geodesic surface deviation equation in the or-
thonormal gauge will be exploited to discuss the Jacobi
field on the geodesic surface.

II. STRINGY GEODESIC SURFACES IN MORSE
THEORY

In analogy to the relativistic action of a point particle,
the action for a string is proportional to the area of the
surface spanned in spacetime manifold M by the evolution
of the string. In order to define the action on the curved
manifold, let �M;gab� be an n-dimensional manifold asso-
ciated with the metric gab. Given gab, we can have a unique
covariant derivative ra satisfying [6] ragbc � 0, ra!b �
@a!

b � �bac!
c, and

 �rarb �rbra�!c � Rabc
d!d: (2.1)

We parametrize the closed string by two world sheet
coordinates � and �, and then we have the corresponding
vector fields �a � �@=@��a and �a � �@=@��a. The
Nambu-Goto string action is then given by [1,2,16]

 S � �
ZZ

d�d�f��;�� (2.2)

where the coordinates � and � have ranges 0 � � � T and
0 � � � 2�, respectively, and

 f��; �� � ��� � ��2 � �� � ���� � ��	1=2: (2.3)

We now perform an infinitesimal variation of the tubes
����;�� traced by the closed string during its evolution in
order to find the geodesic surface equation from the least
action principle. Here we impose the restriction that the
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length of the string circumference is � independent. Let the
vector field �a��@=@��a be the deviation vector which
represents the displacement to an infinitesimally nearby
tube, and let � denote the three-dimensional submanifold
spanned by the tubes ����;��. We then may choose �, �,
and � as coordinates of � to yield the commutator rela-
tions,

 L ��
a � �brb�

a � �brb�
a � 0;

L��
a � �brb�

a � �brb�
a � 0;

L��a � �brb�a � �brb�a � 0:

(2.4)

Now we find the first variation as follows [17]:

 

dS
d�
�
ZZ

d�d��b��araPb� � �araPb��

�
Z
d�Pb��bj��T��0 �

Z
d�Pb��bj��2�

��0 ; (2.5)

where the world sheet currents associated with � and �
directions are, respectively, given by [17]

 Pa� �
1

f
��� � ���a � �� � ���a	;

Pa� �
1

f
��� � ���a � �� � ���a	:

(2.6)

Using the endpoint conditions �a�0� � �a�T� � 0 and
periodic condition �a��� 2�� � �a���, we have the geo-
desic surface equation [17]

 �araP
b
� � �

araP
b
� � 0; (2.7)

and the constraint identities [17]

 P� � � � 0; P� � P� � � � � � 0;

P� � � � 0; P� � P� � � � � � 0:
(2.8)

Let ����;�� denote a smooth one-parameter family of
geodesic surfaces: for each �2R, the tube �� is a geo-
desic surface parametrized by affine parameters � and �.
For an infinitesimally nearby geodesic surface in the fam-
ily, we then have the following geodesic surface deviation
equation:
 

�brb��
crcP

a
�� � �

brb��
crcP

a
��

� Rbcd
a��bPd� � �

bPd���
c 
 ����a � 0: (2.9)

For a small variation �a, our goal is to compare S��� with
S�0� of the string. The second variation d2S=d�2�0� is then
needed only when dS=d��0� � 0. Explicitly, the second
variation is given by
 

d2S

d�2

����������0
� �

ZZ
d�d����crcPb����ara�b�

� ��crcPb����ara�b�

� Racb
d��aPb� � �aPb���c�d	

�
Z
d�Pb��

ara�bj
��T
��0

�
Z
d�Pb��

ara�bj
��2�
��0 : (2.10)

Here the boundary terms vanish for the fixed endpoint and
the periodic conditions, even though on the geodesic sur-
face we have breaks which we will explain later. After
some algebra using the geodesic surface deviation equa-
tion, we have

 

d2S

d�2

����������0
�
ZZ

d�d��a����a: (2.11)

III. JACOBI FIELDS IN ORTHONORMAL GAUGE

The string action and the corresponding equations of
motion are invariant under reparametrization ~� � ~���; ��
and ~� � ~���; ��. We then have gauge degrees of freedom
so that we can choose the orthonormal gauge as follows
[17]:

 � � � � 0; � � �� � � � � 0; (3.1)

where the plus sign in the second equation is due to the fact
that � � � is timelike and � � � is spacelike. Note that the
gauge fixing (3.1) for the world sheet coordinates means
that the tangent vectors are orthonormal everywhere up to a
local scale factor [17]. In this parametrization the world
sheet currents (2.6) satisfying the constraints (2.8) are of
the form

 Pa� � ��a; Pa� � �a: (3.2)

The geodesic surface equation and the geodesic surface
deviation equation read

 � �ara�
b � �ara�

b � 0 (3.3)

and
 

��brb��crc�a� � �brb��crc�a�

� Rbcd
a��b�d � �b�d��c � ����a � 0: (3.4)

We now restrict ourselves to strings on a constant scalar
curvature manifold such as Sn. We take an ansatz that on
this manifold the string shape on the geodesic surface �0 is
the same as that on a nearby geodesic surface �� at a given
time �. We can thus construct the variation vectors �a��� as
vectors associated with the centers of the string of the two
nearby geodesic surfaces at the given time �. We then
introduce an orthonormal basis of spatial vectors eai (i �
1; 2; . . . ; n� 2) orthogonal to �a and �a and parallelly
propagated along the geodesic surface. The geodesic sur-
face deviation equation (3.4) then yields for i, j �
1; 2; . . . ; n� 2,

 

d2�i

d�2
� �R�j�

i � R�j�
i��j � 0: (3.5)

The value of�i at time �must depend linearly on the initial
data �i�0� and d�i

d� �0� at � � 0. Since by construction
�i�0� � 0 for the family of geodesic surfaces, we must
have

 �i��� � Aij���
d�j

d�
�0�: (3.6)
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Inserting (3.6) into (3.5) we have the differential equation
for Aij���,

 

d2Aij
d�2

� �R�k�
i � R�k�

i�Akj � 0; (3.7)

with the initial conditions

 Aij�0� � 0;
dAij
d�
�0� � 	ij: (3.8)

Note that in (3.7) we have the last term originated from the
contribution of string property.

Next we consider the second variation equation (2.10)
under the above restrictions,

 

d2S

d�2

����������0
�
ZZ

d�d�
�
d�i

d�
�i
d�
� �R�j�

i � R�j�
i��j�i

�
:

(3.9)

We define the index form I� of a geodesic surface � as the
unique symmetric bilinear form I�: T� � T� ! R such
that

 I��V; V� �
d2S

d�2

����������0
(3.10)

for V 2 T�. From (3.9) we can easily find
 

I��V;W� �
ZZ

d�d�
�
dWm

d�
dVm
d�

� �R�j�
m � R�j�

m�WjVm

�
: (3.11)

If we have breaks 0 � �0 < � � �< �k�1 � T, and the re-
striction of � to each set ��i�1; �i	 is smooth, then the tube
� is piecewise smooth. The variation vector field V of � is
always piecewise smooth. However, dV=d� will generally
have a discontinuity at each break �i (1 � i � k). This
discontinuity is measured by

 �
dV
d�
��i� �

dV
d�
���i � �

dV
d�
���i �; (3.12)

where the first term derives from the restrictions
�j��i; �i�1	 and the second from �j��i�1; �i	. If � and V 2
T� have breaks �1 < � � �< �k, we have

 

Xk
i�0

Z �i�1

�i

d
d�

�
Vm

dWm

d�

�
d� � �

Xk
i�0

Vm�
dWm

d�
��i�

(3.13)

to yield

 I��V;W���
ZZ

d�d�Vm
�
d2Wm

d�2 ��R�j�
m�R�j�

m�Wj
�

(3.14)

 �
Xk
i�0

Z
d�Vm�

dWm

d�
��i�: (3.15)

Here note that if we do not have breaks, (3.9) yields

 

d2S

d�2

����������0
� �

ZZ
d�d��i

�
d2�i

d�2 � �R�j�
i � R�j�

i��j
�
:

(3.16)

A solution �a of the geodesic surface deviation equation
(3.5) is called a Jacobi field on the geodesic surface �. A
pair of strings p, q � � defined by the centers of the closed
strings on the geodesic surface is then conjugate if there
exists a Jacobi field �a which is not identically zero but
vanishes at both strings p and q. Roughly speaking, p and
q are conjugate if an infinitesimally nearby geodesic sur-
face intersects � at both p and q. From (3.6), q will be
conjugate to p if and only if there exists nontrivial initial
data: d�i=d��0� � 0, for which �i � 0 at q. This occurs if
and only if detAij � 0 at q, and thus detAij � 0 is the
necessary and sufficient condition for a conjugate string to
p. Note that, between conjugate strings, we have detAij �

0 and thus the inverse of Aij exists. Using (3.7) we can
easily see that

 

d
d�

�dAij
d�

Aik � Aij
dAik
d�

�
� 0: (3.17)

In addition, the quantity in parentheses in (3.17) vanishes at
p, since Aij�0� � 0. Along a geodesic surface �, we thus
find

 

dAij
d�

Aik � Aij
dAik
d�
� 0: (3.18)

If � is a geodesic surface with no string conjugate to p
between p and q, then Aij defined above will be non-
singular between p and q. We can then define Yi �
�A�1�ij�

j or �i � AijY
j. From (3.16) and (3.18), we can

easily verify that

 

d2S

d�2

����������0
�
ZZ

d�d�
�
Aij

dYj

d�

�
2

 0: (3.19)

Locally � minimizes the Nambu-Goto string action, if � is
a geodesic surface with no string conjugate to p between p
and q.

On the other hand, if � is a geodesic surface but has a
conjugate string r between strings p and q, then we have a
nonzero Jacobi field Ji along � which vanishes at p and r.
Extend Ji to q by putting it to zero in �r; q	. Then
dJi=d��r�� � 0, since Ji is nonzero. But dJi=d��r�� �
0 to yield

 �
dJi

d�
�r� � �

dJi

d�
�r�� � 0: (3.20)

We choose any ki 2 T� such that

 ki�
dJi

d�
�r� � c; (3.21)
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with a positive constant c. Let �i be �i � 
ki � 
�1Ji

where 
 is some constant; then we have

 I���;�� � 
2I��k; k� � 2I��k; J� � 

�2I��J; J�: (3.22)

By taking 
 small enough, the first term in (3.22) vanishes
and the third term also vanishes due to the definition of the
Jacobi field and (3.15). Substituting (3.21) into (3.15) we
have I��k; J� � �2�c and thus

 

d2S

d�2

����������0
� �4�c; (3.23)

which is negative definite. From the above arguments, we
conclude that, given a smooth timelike tube � connecting
two strings p, q � M, the necessary and sufficient condi-
tion that � locally minimizes the surface of the closed
string tube between p and q over smooth one-parameter
variations is that � is a geodesic surface with no string
conjugate to p between p and q. It is also interesting to see
that, on Sn, the first nonminimal geodesic surface has n�
1 conjugate strings as in the case of the point particle.
Moreover, on the Riemannian manifold with the constant
sectional curvature K, the geodesic surfaces have no con-
jugate strings for K < 0 or K � 0, while conjugate strings
occur for K > 0 [18].

IV. CONCLUSIONS

The Nambu-Goto string action has been introduced to
study the geodesic surface equation in terms of the world
sheet currents associated with � and � directions. By
constructing the second variation of the surface spanned

by closed strings, the geodesic surface deviation equation
has been discussed for the closed strings on the curved
manifold.

Exploiting the orthonormal gauge, the index form of a
geodesic surface has been defined together with breaks on
the string tubes. The geodesic surface deviation equation in
this orthonormal gauge has been derived to find the Jacobi
field on the geodesic surface. Given a smooth timelike tube
connecting two strings on the manifold, the condition that
the tube locally minimizes the surface of the closed string
tube between the two strings over smooth one-parameter
variations has also been discussed in terms of the conjugate
strings on the geodesic surface.

In the Morse theoretic approach to the string theory, one
could consider the physical implications associated with
geodesic surface congruences and their expansion, shear,
and twist. It would also be desirable for the string topology
and the Gromov-Witten invariant to be investigated by
exploiting the Morse theoretic techniques. These works
are in progress and will be reported elsewhere.
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