
TECH REPORT
7?o

'gj J~

STRIP TREES:

~ Hierarchical Representation

for Curves

Dana H. Ballard
Computer Science Department

University of Rochester

TR 32

December 1978

revised
November 1979

ABSTRACT

I

The use of curves as a representation of two dimensional structures is
an important part of many scientific fields. For example, geographers make
extensive use of curves as a representation for map features such as contour
lines, roads and rivers; circuit layout designers use curves to specify the
wiring between circuits. Owing to the very large amount of data involved,
and the need to perform operations on this data efficiently, the representation
of such curves ~s a crucial issue. We describe a hierarchical representation
that consists of binary trees with a special datum at each node. This datum is
called a strip and the tree that contains such data is called a strip tree.
Lower levels in the tree correspond to finer resolution representations of the
curve. The strip tree structure is a direct consequence of using the method
for digitizing lines given by [Duda & Hart, 1973; Turner, 1974; Douglas &
Peucker, 1973J and retaining all intermediate steps. This representation
has several desirable properties. For features which are well-behaved,
calculations such as point-membership and intersection can be resolved in"
O(log n) where n is the number of feature poi nts. The curves can be effi ci ently
coded and displayed at various resolutions. The representation is closed under

I
intersection and union and these operations can be carried out at different
resolutions. All these properties depend on the hierarchical tree structure
which allows primitive operations to be performed at the lowest possible
resolution with great computational savings.

The price paid for the improved performance is an increased storage cost.
1 This is approximately 4n, where n is the storage needed to represent the xy

coordinates.

I CARLSON LIBRARY
The research described in this report was supported partially by DARPA
Grant # N00014-78-C-0164 and partially by NIH Grant #R23-HL-21253-01.

i

I

--

! •

Page 3

1. Introduction

We present a general representation for planar curves. This

representation allows operations such as union and intersection

to be performed efficiently and is thus of great interest to

fields using data bases of such curves. Two such fields are

geography and computer-aided circuit design.

Consider the application to geography. A map has several

interesting kinds of features such as contour lines, lakes,

rivers, and roads. These can be roughly divided into four

feature classes for representation in the computer.

feature examples in map domain

points towns (large scale maps)
bridges (small scale maps)

lines roads, coastlines

strips wide roads, rivers

areas lakes, counties

Our main interest is in representing lines and regions. A point

is such a simple datum that it can be easily treated as a

primitive in any representation. Collections of pOints from a

single class can be efficiently represented as k-d trees [Bently,

1975; Barrow et.al., 1977] and so pOints are not the focus of

our interest, although they do interact with our representation.

A strip feature is essentially a line where a locally varying

thickness is important, examples of which are rivers and roads.

As we shall see, our representation for lines will also encompass

this type of feature.

Page 4

We regard collections of these map features as a data base

that might be used to perform the following tasks:

.Find where a road intersects a river

.Display a subset of map features that appear in a given map

sector

.Find out if a given point is in a region

.Search an aerial image near the edge of a dock for ships.

A very important aspect of all these tasks is that we may be

satisfied if they are performed at resolution lower than the

ultimate resolution represented.

Our representation for curves consists of a binary tree

structure where, in general, lower levels in the tree correspond

to finer resolutions. The tree structure is a direct consequence

of using the method for digitizing lines given by [Duda and Hart,

1973; Turner, 1974] and retaining all intermediate steps in the

digitization process. As an example of the representation, Fig.

1 shows a curve represented at two levels (resolutions) in the

tree structure.

An idea similar to that of representing a line by strips was

recognized by [Peucker, 1976]. In particular he was able to find

line intersection and point in polygon algorithms by using sets

of bands. Another related idea is that of Burton [1977] who

covers curves with tree hierarchies of rectangles of a single

orientation. Strip trees is an improvement over both of these

ideas because the notion of a strip is a more intuitive and

Page 5

computationally cleaner way of covering curves. As a result, the

algorithms are simpler and more efficient, line-area

interesection and area-area intersection and union can now be

dealth with, and the tree structures are closed under these

operations.

Figure 1. A curve displayed at two resolutions
using the hierarchical structure.

Page 6

2. The Strip Tree

2.1 Notation

We define a strip S to be a six-tuple (~b' ~, wI)wr '

where 1
~b = (x b ' Yb) denotes the beginning of the strip, !e

denotes the end, and w
r and wI are right and left distances of

the strip borders from the directed line segment (~b' !e)' These

definitions are depicted in Fig. 2. We define w as wr + wI' We

use six parameters even though only five are needed to define a

strip. The usefulness of the redundant characterization will

become clear after we look at strip tree operations. When the

strip consists of a line segment, w = 1, it is important to be

precise in defining the end points !b and ~e' Thus we will

regard ~b as being included in the segment and ~e as not, i.e.

the primitive strip is the half open segment (~b' !c)'

Figure 2. Definition of a Strip Segment.

A curve is approximated by an open polygonal line given by

an ordered list of discrete points !o""'!n subsets of which may

be colinear. For the moment we require these points to be

considered as connected; later we will relax this condition. We

say a polyline is represented at resolution w* if there exists an

ordered sequence of m strip segments

Sk' k=O, ••• , m-1

1 Throughout this paper we will use x to denote a point in the
plane with coordinates (x, y).

Page 7

such that

k= 0, ••• , m

m
x. E U Sk

1 k=O
i =1, ••• , n

If within a strip segment there is a point y that touches all

four sides, then the strip segment is said to be compact. The

compactness property is a very important part of most of the

algorithms which follow.

2.2. Digitization

Suppose we have a curve C denoted by [xO, ••• xn) like that

such as shown by Figure 3a. For any resolution w* we can

approximate this line with strip segments as follows:

Consider the line L defined by [xO' x). For eachn

point x in C find the perpendicular distance d(x) from

! to this line. Denote the subset of ! in C such that

x.L)O as C+. C-= C-C+. Now find wr = max d(X) and wl!E-C,"

= malt d(~). If w < w* then the polyline is compactly
~~C

represented at resolution w by the strip tree

consisting of a single root strip S(!O' x ' w ' wl).n r

If not then the desired strip tree is obtained by

recursively applying the algorithm to the curves [x
O

'

••• , Xk) and [xk ' ••• , x) where xk is the larger ofn

the points which define and wr and making thew
l

results the left son and right son respectively of the

strip tree. In the case of ties for x at maximum
k

distance d, we will arbitrarily pick the point nearest

Page 8

the mid point (in arc length).

For the purposes of simplifying the algorithms to follow, we

regard the strip trees as completely expanded down to unit line

segments, even though they may be colinear. Figure 3 shows an

example of two levels of recursion of this algorithm.

The digitization scheme can be visualized as finding the

smallest rectangle which has a side parallel to the line segment.

This scheme works for closed curves, where !o if distances= .!n'

are measured with respect to the tangent to the point !.O· To

define the tree unambiguously, the point !o can be picked as the

end of the largest diameter of the closed curve.

Figure 3. Steps in the Digitization Process.

To see formally that the convergence is guaranteed, note

that a curve C of k points can always be approximated by a single

strip segment with length k assuming eight-connectedness. Thus

for any w there must be a strip tree with leaves consisting of no

more than n/w strip segments which approximate C. Since the

digitization algorithm splits each segment into two parts such

that each part has finite length, the process must ultimately

consider segments of w points or less.

2.3 Strip Tree definitions

Page 9

The binary tree resulting from the digitization process is

called a strip tree, where the datum at each node is a strip, S.

The nodes of the tree are initially ordered on arc length.

(Later we will see that when intersecting two areas which are

represented in strip trees, this property is sometimes not

preserved).

We formally define a strip tree T as either null or a node

consisting of the eight-tuple (S, Lson, Rson) where Lson and Rson

are strip trees which are either null or have strips Sl and Sr

which are related to S by the digitization scheme.

2.q. Why Binary Trees?

The curves can also be represented as a tree with nodes of

more than two siblings. In fact,nodes could have different

numbers of siblings which would still be ordered. Figure 4 shows

an example of the alternate encoding scheme. In certain cases

this may be a more concise representation for the curve and for

all the algorithms tht follow we can extend the operations from

two sons to multiple sons. However, this change does not alter

the complexity of the operations that we would like to perform

and can be more inefficient than the binary tree representation.

Figure 4. A portion of an encoding using m-ary trees.

3. Basic Operations on Strip Trees

Page 10

Computational complexity of the various operations is

difficult to characterize, as it depends on the particular

geometry of polylines. If the polylines are "well-behaved", that

is they are relatively smooth and do not self-intersect for more

than a few points, then the algorithms are very efficient. What

this means for a particular operation in terms of the strip tree

is that if at any node we only have to look at one of the two

sons, then the complexity of the operation is a(log n).

3.1. Testing the Proximity of a Point

If we would like to find out if a point is near a curve,

this may be discovered early using the strip tree. We can make

this more precise by exploiting the following property:

Property P1:

A. If a point z is inside a compact strip S then it can be

at most w(S) units away from the curve C.

B. If a point z is outside a compact strip S then the

distance of the point from the P is bounded by

o ~ z ~ d(z, S) + w(S)

It is interesting to study these bounds as the depth in the

resolution tree increases. Although the convergence is not

monotonic, the bounds do converge to the actual set-theoretic

distance d(z,C). Now suppose we want to answer the question: is

d(z,C) < dO? If this can be answered affirmatively we will find

this out at the point where ~ upper bound is less than d. If

the answer is no, then this will be discovered when the tree has

been explored to the point where all minimum bounds are greater

Page 11

than do. Similar arguments can be made for the qualitative

level-of-effort required to answer: is d(z,C) > dO? From this

discussion we can see that the search will be inefficient only if

a large number of the strips are nearly d from z. Figure 5a

shows this case together with a more representative example.

Figure 5. Two of many Possible Geometries When Testing

the Distance of a Point from a Curve.

To summarize this discussion, we provide the algorithms to test

for d(z,C) < dO and d(z,C) > dO. These algorithms use the

1 notion of the distance of a point to a set which is defined as

I follows. For any strip S, if a point is outside S then its

distance to S is characterized by the set theoretic distance

i d(z,S) = min d(z,x) where d is the euclidean distance between the
xes

points x and z. For clarity, the algorithms are presented as

procedures in a pseudo-Algol language. Rigor has been sacrificed

mainly in the specification of data types, but these should be

obvious from the earlier definitions.

Algorithm A1: Is a point within dO of a polyline?

boolean procedure Within (z,dO,T)

begin

if doi d(z,S(T» + 2·w(T) then return (true);

if z - SeT) and dO > d(z,S(T» then return (false);

return (Within·(z,dO,LSon(T» or Within (z,dO,RSon(T»);

end;

Page 12

Algorithm A2: Is a point further than dO from a polyline?

boolean procedure Further (z,dO,T)

begin

if dO i d{z,S(T» + 2·w(T) then return (false);

if z e Set) and dO > d(z,S(T» then return (true);

return (Further (z,dO,LSon(T» and Further (z,dO,RSon(T»);

end;

3.2 Displaying a Curve at Different Resolutions

As previously demonstrated in Section 2, a polyline may be

represented as a set of strip segments such that each strip

segment S has a resolution delta less than some fixed value. The

algorithm to display such a representation using the strip tree

is as follows. This algorithm uses a device-dependent subroutine

DisplayRectangle which paints the rectangle on the particular

display device.

Algorithm A3: Display a Curve at Resolution w

procedure CurveDisplay (T,w)

begin

if Wl(T) + wr(T) < w then DisplayRectangle (S{T»

else (CurveDisplay (LSon(T),w» and {CurveDisplay

(RSon{T),w»;

end;

Page '3

3.3 Intersecting Two Trees

One of the important features of the representation is the

ability to compute intersections between curves. Strip trees

provide the facility to not only compute intersection points,

but, in the case where lower resolution is satisfactory, to

compute small areas containing the intersection points at great

computational savings. In order to develop the intersection

methodology, we need the following definitions:

A. Two strip segments (S, derived from C,) and

(S2 derived from C2) do not intersect iff

S,(\S2 =2

! B. Two strip segments have a clearS" S2

I intersection iff all the sides parallel to the

I segments given by and [!b' !e)' [!b' !e)2

intersect.

C. Two strip segments S, and S2 have a possible

intersection if condition B is not satisfied

yet s,n S2 =2.

These cases are illustrated by Fig. 6. A fairly obvious but

very important lemma is:

Clear Intersection Lemma. If two strip segments

have a clear intersection and the strips are both

compact, then the corresponding Ps must also

intersect.

Page 14

(Peucker showed this was true for the similar case of bands

[1976]. To see this for condition B, consult Fig. 6b. C1

divides the region R into two parts and C2 must cross from one to

the other. The only way the C2 can do this is by intersecting

Cl. A simple refinement of the clear intersection lemma is that

is strips have a clear intersection, then the underlying curves

must intersect an odd number of times.

Figure 6: Different Ways Strips can Intersect

The algorithms to check for intersections between two

polylines are recursive, and assume the existence of an integer

procedure StripIntersection which will return the type of

intersection.

Algorithm A4: Finding out whether two polylines

intersect

Comment. If the two root strip segments do not

intersect then the curves do not intersect. If

the root segments have a clear intersection then

the curves intersect. Since the task is to just

determine whether or not an intersection exists,

the algorithm terminates upon finding a clear

intersection.

boolean procedure Intersection (Tl,T2,)

Page 15

begin

Case StripIntersection (S(T1),S(T2» into

[Null] return (false),

[Possible] if (w(T1»w(T2» or (Primitive Flag)

then

return (Intersection(LSon(T1),T2) or

(Intersection(RSon(T1),T2»;

else return

(Intersection(T1,LSon(T2» or

Intersection(T1,RSon(T2»);

[Clear] return(true);

end;

This procedure is easily modified to return a set of

parallelograms comprising intersection points. Further easy

modifications can be made to constrain these parallelograms to be

of a certain size related to the w(T1) and w(T2); i.e., they can

be made to be as small as we want. Fig. 7 shows an example of

intersecting two curves at a given resolution.

I
I

Figure 7: Intersecting Two Curves at Low Resolution

Note, however, that smaller resolutions may be much more

computationally expensive, as shown in the following example

(Fig. 8) where intersection at the coarsest resolution is1
j simple, but multiple intersections occur at lower levels.

I
1

Page 16

Figure 8: An
and

intersection may be simple at one
complicated at lower levels.

level

If the two curves are not convoluted about each other the

intersection should be computed in O(mlog(n» steps where m is

the number of intersection points. If the curves do not

intersect but have a closest distance d =ds(C
1

,C
2

) then this will

be discovered at levels in the tree no deeper than a point where

The worst case performance is intolerable as the algorithm's

computation will grow exponentially as long as all the strip

segments in one tree intersect all the strip segments in the

other. In fact, the computation can be shown to be O(2 K) where

K is the sum of the depths in each tree where the comparisons are

taking place! If this situation were encountered in a practical

application, one way of handling it would be to report the

possible intersection regions at the point where the limit of

some bound on allotted resources was exceeded.

3.4 The Union of Two Strip Trees

The union of two strip trees can be accomplished by defining

a strip that covers both of the two root strips. The two curves

defined by [Yo', ."Yn'), [yO", ••• , y ") are treated as two
m

concatenated lists. That is, the resultant ordering is such that

we have yo = Yo', Ym+n+1 = Ym"·

Page 17

Algorithm A5: Union of Two Strip Trees T, and T2

Define a strip segment that covers the two

root strips of T1 and T2• By construction,

this strip can be made to satisfy all the

properties of a strip segment (except

compactness). Make this the root node of a

new strip tree.

This construction is shown in Fig. 9.

Figure 9: Construction for Union of Strip Trees

Representing Two Polylines

This construction introduces a problem in that the new strip is

no longer compact and therefore the Clear Intersection Lemma no

longer holds. To overcome this problem we must add one bit of

information to each node to mark whether the underlying polyline

is compact. Since later algorithms may result in underlying

polylines that are disconnected, we incl~de this in the following

definition of S:

CeT) The curve under SeT) is known to be compact and
connected

otherwise

Now a strip is the seven-tuple (!b' ~e' wl ' w ' C). With thisr

strategy we can preserve the eloquence of the previous algorithms

Page 18

in the following manner: When bit C(T) is not one we apply the

recursion regardless of the intersection type. In algorithm A4

this means that clear intersections are reported as possible if

the bit C(T) is set.

This technique can also be used as a digitization method for

m non-connected segments (!o, ... , ~i)' [~i+l' ••• , ~i)' ••• ,

(!k' ••• , ~n)' These segments are given an ordering as shown.

The previous digitization algorithm is applied to this set of

points, and the perpendicular distance.~s computed from the set

of disconnected curves and used to define the of the root

strip as before. However now the set is divided into two subsets

of connected segments (rather than using !*) and the digitization

algorithm is applied recursively to the subsets. Once this

process produces connected subsets, the earlier digitization

scheme is applied.

4. Closed Curves Represented by Strip Trees

We represent an area by its boundary which is a closed

curve. As we mentioned before, the digitization method described

in Section 2 works for closed curves and, incidentally, also for

self-intersecting polylines. Furthermore, if an area is not

simply connected it can still be represented as a strip tree,

which at some level has connected primitives. The method for

doing so was described in the previous section. If a region has

holes it can be represented by a single boundary curve using a

construction as shown in Fig. 10.

Page 19

Figure 10: A Region with a Hole

If the holes are important, they themselves should be

independently represented as strip trees.

The most remarkable fact is that by representing an area in

this way many useful operations can be carried within the strip

trees formalism. Examples of such are intersection between a

curve and an area, determining whether a point is inside an area,

and intersecting two areas.

4.1 Determining Whether a Point is Inside an Area

The strip tree representation of an area by its boundary

allows the determination of whether a point is inside the area in

a straightforward manner. If any semi-infinite line terminating

at the point intersects the boundary of the area an odd number of

times, the point is inside. This result appears in [Minsky and

Papert, 1969].
. .

This result is computationally simplified for

strip trees in the following manner:

Point Membership Property

To decide whether a point z is member of an

area represented by a strip tree, we need

only compute the number of clear

Page 20

intersections of the strip tree with any

semi-infinite strip L which has delta: 0 and

emanates from z. If this number is odd then

the point is inside the area.

It is the extension to the clear intersection lemma which

makes this property hold: the underlying curves may intersect

more than once but must intersect an odd number of times. The

following algorith~ uses this property to determine whether a

point is inside an area:

Algorithm A6: Point Membership

boolean procedure Inside(z,T)

begin

CreateStrip(SO,z)

comment CreateStrip creates a strip for the half line.

if NoOfClearIntersections(So,T) is odd then return (true)

else return (false);

end;

integer procedure NoOfClearIntersections(S,T)

begin

CaseStripIntersection(S,S(T» into

[Null] return (0);

[Possible] return (NoOfClearIntersections(S,LSon(T»

+ NoOfClearIntersections (S,RSon(T»);

[Clear] return (1);

end;

Page 21

Here StripIntersection will report possible instead of clear

if either of the strips has C(S) = O. A potential difficulty

exists with the procedure NoOfClearIntersections when the strip

SO is tangent to the curve. Many tangent cases will not cause a

problem as they will be under clear intersections in an

arrangement similar to that of Fig. 7. However if the strip SO

passes through an end point at the lowest level then there is no

way of determining the parity of the intersection. Fig. 11

shows this ambiguity. To overcome this difficulty in practice, a

different SO is used but for the examples tried so far this

problem rarely arises.1
I

f

1

I
Figure 11: Indeterminancy of Endpoint Intersections

I for Inside vs. Outside

I 4.2 Intersecting a Curve with an Area

The strategy behind intersecting a strip tree representing a

curve with a strip tree representing an area is to create a new

tree for the portion of the polyline which overlaps the area.

This can be done by trimming the original curve strip tree. This

is done efficiently by taking advantage of an obvious property of

the intersection process:

Pruning Property: Consider two strips Sc

from TC and Sa from Ta. If the intersection

Page 22

of Sc with Ta is null, then (a) if any point

on Sc is inside Ta the entire tree whose root

strip is Sc is inside or on Ta and (b) if any

point on Sc is outside of Ta then the entire

tree whose root strip is Sc is outside of Ta'

This leads to the recursive procedure A1 for curve-area

intersection using trees. Note that since strip nodes under a

clear or possible strip intersection may be pruned, the bit c for

the latter strip is set to 0 to denote that it no longer has the

compactness property. Of course as repeated intersections are

carried out with different areas more and more upper-level strips

may have their bits set to o·, nevertheless, the intersected

polyline is accurately represented at the leaves of the strip

tree. This procedure can be trivially modified to return the

part of the curve that is outside of the area, by changing

"Inside" to "Not Inside". Similarly, the boundary of Ta can

represent the area "outside" of the curve. This tree is denoted

Ta and has an extra flag at its root to denote the change of

parity to be used by "Inside".

Note that if the polyline strip is "fatter," i.e., w(T1) >

w(T2), we can copy the node and resolve the intersection at lower

levels, whereas in the converse case we have to sequentially

prune the tree by first intersecting the polyline strip with the

left area strip and then intersecting the resultant pruned tree

with the right area strip.

I

Page 23

Algorithm A7: Curve-Area Intersection

reference procedure PolyAreaInt(T1,T2)

begin

A: =T2

comment A is a global used by PAInt;

return(PAInt(T1,T2);

end;

reference procedure PAInt(T1,T2)

begin

Case Striplnt(T1,T2) into

[Null or Primitive]

if Intersection (T1,A, TRUE) = null then

if Inside(T1,A) then return (T1)

else return (null);

else return (T1);

[Clear or Possible] if w(T1»w(T2) then

begin

C(NT):=O

comment non-compact strip

S(NT) := S(T1)

w(NT):= w(T1);

LSon(NT):= PAInt (LSon(T1),T2);

RSon(NT):= PAInt (RSon(T1),T2);

return(NT);

end

else comment w(T1)~ w(T2)

Return (PAInt(PAInt(T1,LSon(T2»,RSOn(T2»);

end;

Page 24

4.3 Intersecting Two Areas

The problem of intersecting two areas is simple using their

strip tree representations. Surprisingly, this problem can be

decomposed into two curve area intersection problems (refer to

Fig. 12).

Figure 12: Decomposition of Area-Area Intersections

If we treat the boundary of A1 as representing a polyline instead

of representing an area and intersect its strip tree with the

strip tree representing A2 the lowest level result is shown by

the thick lines in Figure 11a. If we reverse the roles of the

two strip trees the result is given by the thick lines in Figure

11b. The union of these two strip trees (see Section 3.4) is the

answer we want! Thus we would like to write the area-area

intersection procedure in terms of strips as follows:

Algorithm A8: Area-Area Intersection

reference procedure AreaAreaInt (T1,T2)

begin

return (Union (CurveAreaInt (T1,T2»,(CurveAreaInt

(T2,T1»);

end;

Page 25

where Union is a procedure that accomplishes the construction

described in Section 3.4. The actual procedure is almost this

simple but contains a modified version of CurveArealnt to handle

special cases at the primitive level. Fig. 13 shows these

cases.

Figure 13: Special Cases for Area-Area Intersection

Fig. 14 shows the result of an area-area intersection using

strip trees.

J
Figure 14: Area-Area Intersection

Note

fragments

that in the case of areas that intersect in a way that

their boundaries, the order of the segments will not be

preserved by the intersection procedure. (Until this point we

were guaranteed that strips in the tree would be ordered

according to the arc length of their underlying curves).

However, the integrity of the tree representation is preserved;

the new tree can be composed with other trees using any of the

tree operations.

4.4 The Union Operation

The union operation is simpler than the intersection

operation. For the union of an area-area strip with another, we

use a construction similar to the digitization methods for

Page 26

disconncted curves. The result is an area strip tree. If these

two strip trees do not intersect, then the union is

straightforward and is identical to the method for curves.

However, if the contrary is true, then we must go to the trouble

of defining a new strip tree that represents the union by finding

the points of intersection in the same way as was done for area

strip tree intersections. That is, the new tree T is defined as:

T = ,Union (T1,T2) if T1nT2 =.0'

(union (CurveAreaInt(T1,T2), CurveAreaIntIT2,T1» otherwise

Page 27

5. Discussions and Conclusions

For the purposes of simplifying the algorithms, the

primitives in the tree were regarded as unit segments. In fact,

they can be segments of arbitrary lengths, but the corresponding

algorithms are more complicated. This is because it is often

necessary to divide long segments and build new parts of the

tree. The details of these algorithms will be discussed in

Tanaka and Ballard [1979]. The advantage of using arbitrary

length segments is that any level in the tree can be regarded as

a primitive level by using its line segment [!b' ~e)' Thus all

the operations can be carried out at any specified resolution.

I
Strip trees thus provide a powerful representation for

curves. Current work is directed towards characterizing their

i co~putational complexity more precisely but it can already be
J
I shown that the representation is superior to its competitors.

The main drawback is that there is a large overhead in terms of

space. If n is the required space to represent a polyline then

its strip tree will take about 4n space units. Also the creation

of a strip tree is a laborious process, requiring O(n log n) time

units. However, neither of these drawbacks are thought to be

important in the use of this representation for geographical data

bases and computer-aided design.

The representation defines strip segments as primitives to

cover subsets of the line. Our organization of these segments

into a tree may be viewed as a particular case of a general

strategy of dividing features up and covering them with arbitrary

shapes such as depicted by Fig. 15. Other attempts in this

Page 28

class have been tr ied by [Barrow et al.,1977; Burton, 1977;

Tanimoto, 1975], but they do not capture the notions of

orientation and resolution anywhere nearly as precisely as strip

segments, and do not have the union and intersection properties.

Figure 15: The Notion of an Arbitrary Divide-And-Conquer Strategy

Page 29

Acknowledgements

The author wishes to thank R. Peet and P. Meeker for their

work in the preparation of this document. Thanks also go to H.

Tanaka and D. Weaver for their work in implementing the

algorithms in SAIL.

Page 30

References

Barrow, H.G., "Interactive Aids for Cartography and Photo
Interpretation" Semiannual Technical Report 121iay
1977-11Nov.1977, ARPA contract DAAG 29-76-C-0057, SRI
International.

Bently, J.L., "Multidimensional Search Trees Used for Associative
Searching" CACM Vo 1. 18, No.9, September, 1975.

Burton, W., "Representation of Many-Sided Polygons and Polygonal
Lines for Rapid Processing" CACM Vol. 20, No. 3, March,
1977.

Douglas, D.H. and Peucker, T., "Algorithms for the Reduction of
the Number of Points Required to Represent a Line or its
Caricature," The Canadian Cartographer, Vol 10, No.2,
December, 1973.

Duda, R.O. and P.E. Hart, Pattern Classification and Scene
Analysis, Wiley-Interscience 1973.

Minsky, M.L. and S. Papert, Perceptions:an introduction to
computatonal geometry, MIT Press, Cambridger Mass., 1969.

Peucker, T., "A Theory of the Cartographic Line," International
Yearbook of Cartography, 16, 1976.

Sloan, K.R., "Maps and Map Data Structures," forthcoming
Technical Report, Computer Science Department, University of
Rochester.

Tanaka, H. and D.H.Ballard, "Extensions of Strip Tree
Operations," Computer Science Dept., University of
Rochester, forthcoming Technical Report.

Tanimoto, S., and Pavlidis, T., "A Hierarchical Data Structure
for Picture Processing" Compo Graphics and Image
Processing, Vol. 4, No.2, June, 1975.

Turner, K.J., "Computer perception of curved objects using a
television camera", Ph.D. thesis, University of Edinburgh,
1974.

f

I

1
I

1

i
I

•

. ,

1
I

J
)

I
I
I

I
i
1

{

1

1

I

Figure 1: A curve displayed at two resolutions
using the hierarchical structure.

Figure 2: Definition of a Strip Segment.

......

l
i
.~ ED
1

I
1

I

I
1,

c

c

0.. b.

Figure 5: Two of ~1any Possible Geometries When Testing
the Distance of a Point from a Curve.

I

4.

c.

Figure 6: Different Ways Strips Can Intersect.

Figure 7: Intersections at low Resolution.

a. Two curves

b. Results of Strip Tree Intersection

Figure 8: An Intersection may be simple at one level
and complicated at lower levels.

Figure 9: Construction for Union of Strip Trees
Representing Two polylines

Figure 10: A Region with a Hole

Figure 11: Indeterminancy of Endpoint Intersections
for Inside vs. Outside

•

a.

b. c.

d.

Figure 12: Decomposition of Area-Area Intersections

a. Desired Result A1n A2 b. Result of TL f\ TA
1 2

c. Result of TL() TA d. Union of Two Results: the polyline
2 1 segments covered by the result tree.

I.
J
f

1
i
i

x

... if 1~ a.f'5u~t to:

Union plOcedv1"e.

Othel"wlse.

(Arro",,~ f'"erre.sent unit .st-rip pri mi tlves)

Figure 13: Special Cases for Area-Area Intersection

Figure 14: Area-Area Intersection

I
I

Figure 15: The Notion of an Arbitrary Divide-And-Conquer Strategy

