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ABSTRACT 

I 

The use of curves as a representation of two dimensional structures is 
an important part of many scientific fields. For example, geographers make 
extensive use of curves as a representation for map features such as contour 
lines, roads and rivers; circuit layout designers use curves to specify the 
wiring between circuits. Owing to the very large amount of data involved, 
and the need to perform operations on this data efficiently, the representation 
of such curves ~s a crucial issue. We describe a hierarchical representation
that consists of binary trees with a special datum at each node. This datum is 
called a strip and the tree that contains such data is called a strip tree. 
Lower levels in the tree correspond to finer resolution representations of the 
curve. The strip tree structure is a direct consequence of using the method 
for digitizing lines given by [Duda & Hart, 1973; Turner, 1974; Douglas & 
Peucker, 1973J and retaining all intermediate steps. This representation 
has several desirable properties. For features which are well-behaved, 
calculations such as point-membership and intersection can be resolved in" 
O(log n) where n is the number of feature poi nts. The curves can be effi ci ently 
coded and displayed at various resolutions. The representation is closed under 

I 
intersection and union and these operations can be carried out at different 
resolutions. All these properties depend on the hierarchical tree structure 
which allows primitive operations to be performed at the lowest possible 
resolution with great computational savings. 

The price paid for the improved performance is an increased storage cost.
1 This is approximately 4n, where n is the storage needed to represent the xy

coordinates. 
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1. Introduction 

We present a general representation for planar curves. This 

representation allows operations such as union and intersection 

to be performed efficiently and is thus of great interest to 

fields using data bases of such curves. Two such fields are 

geography and computer-aided circuit design. 

Consider the application to geography. A map has several 

interesting kinds of features such as contour lines, lakes, 

rivers, and roads. These can be roughly divided into four 

feature classes for representation in the computer. 

feature examples in map domain 

points towns (large scale maps) 
bridges (small scale maps) 

lines roads, coastlines 

strips wide roads, rivers 

areas lakes, counties 

Our main interest is in representing lines and regions. A point 

is such a simple datum that it can be easily treated as a 

primitive in any representation. Collections of pOints from a 

single class can be efficiently represented as k-d trees [Bently, 

1975; Barrow et.al., 1977] and so pOints are not the focus of 

our interest, although they do interact with our representation. 

A strip feature is essentially a line where a locally varying 

thickness is important, examples of which are rivers and roads. 

As we shall see, our representation for lines will also encompass 

this type of feature. 
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We regard collections of these map features as a data base 

that might be used to perform the following tasks: 

.Find where a road intersects a river 

.Display a subset of map features that appear in a given map 

sector 

.Find out if a given point is in a region 

.Search an aerial image near the edge of a dock for ships. 

A very important aspect of all these tasks is that we may be 

satisfied if they are performed at resolution lower than the 

ultimate resolution represented. 

Our representation for curves consists of a binary tree 

structure where, in general, lower levels in the tree correspond 

to finer resolutions. The tree structure is a direct consequence 

of using the method for digitizing lines given by [Duda and Hart, 

1973; Turner, 1974] and retaining all intermediate steps in the 

digitization process. As an example of the representation, Fig. 

1 shows a curve represented at two levels (resolutions) in the 

tree structure. 

An idea similar to that of representing a line by strips was 

recognized by [Peucker, 1976]. In particular he was able to find 

line intersection and point in polygon algorithms by using sets 

of bands. Another related idea is that of Burton [1977] who 

covers curves with tree hierarchies of rectangles of a single 

orientation. Strip trees is an improvement over both of these 

ideas because the notion of a strip is a more intuitive and 
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computationally cleaner way of covering curves. As a result, the 

algorithms are simpler and more efficient, line-area 

interesection and area-area intersection and union can now be 

dealth with, and the tree structures are closed under these 

operations. 

Figure 1. A curve displayed at two resolutions 
using the hierarchical structure. 
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2. The Strip Tree 

2.1 Notation 

We define a strip S to be a six-tuple (~b' ~, wI)wr ' 

where 1 
~b = (x b ' Yb) denotes the beginning of the strip, !e 

denotes the end, and w 
r and wI are right and left distances of 

the strip borders from the directed line segment (~b' !e)' These 

definitions are depicted in Fig. 2. We define w as wr + wI' We 

use six parameters even though only five are needed to define a 

strip. The usefulness of the redundant characterization will 

become clear after we look at strip tree operations. When the 

strip consists of a line segment, w = 1, it is important to be 

precise in defining the end points !b and ~e' Thus we will 

regard ~b as being included in the segment and ~e as not, i.e. 

the primitive strip is the half open segment (~b' !c)' 

Figure 2. Definition of a Strip Segment. 

A curve is approximated by an open polygonal line given by 

an ordered list of discrete points !o""'!n subsets of which may 

be colinear. For the moment we require these points to be 

considered as connected; later we will relax this condition. We 

say a polyline is represented at resolution w* if there exists an 

ordered sequence of m strip segments 

Sk' k=O, ••• , m-1 

1 Throughout this paper we will use x to denote a point in the 
plane with coordinates (x, y). 
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such that 

k= 0, ••• , m 

m 
x. E U Sk 

1 k=O 
i =1, ••• , n 

If within a strip segment there is a point y that touches all 

four sides, then the strip segment is said to be compact. The 

compactness property is a very important part of most of the 

algorithms which follow. 

2.2. Digitization 

Suppose we have a curve C denoted by [xO, ••• xn) like that 

such as shown by Figure 3a. For any resolution w* we can 

approximate this line with strip segments as follows: 

Consider the line L defined by [xO' x ). For eachn

point x in C find the perpendicular distance d(x) from 

! to this line. Denote the subset of ! in C such that 

x.L)O as C+. C-= C-C+. Now find wr = max d(X) and wl!E-C," 

= malt d(~). If w < w* then the polyline is compactly 
~~C 

represented at resolution w by the strip tree 

consisting of a single root strip S(!O' x ' w ' wl ).n r 

If not then the desired strip tree is obtained by 

recursively applying the algorithm to the curves [x
O

' 

••• , Xk ) and [xk ' ••• , x ) where xk is the larger ofn

the points which define and wr and making thew
l 

results the left son and right son respectively of the 

strip tree. In the case of ties for x at maximum
k 

distance d, we will arbitrarily pick the point nearest 
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the mid point (in arc length). 

For the purposes of simplifying the algorithms to follow, we 

regard the strip trees as completely expanded down to unit line 

segments, even though they may be colinear. Figure 3 shows an 

example of two levels of recursion of this algorithm. 

The digitization scheme can be visualized as finding the 

smallest rectangle which has a side parallel to the line segment. 

This scheme works for closed curves, where !o if distances= .!n' 

are measured with respect to the tangent to the point !.O· To 

define the tree unambiguously, the point !o can be picked as the 

end of the largest diameter of the closed curve. 

Figure 3. Steps in the Digitization Process. 

To see formally that the convergence is guaranteed, note 

that a curve C of k points can always be approximated by a single 

strip segment with length k assuming eight-connectedness. Thus 

for any w there must be a strip tree with leaves consisting of no 

more than n/w strip segments which approximate C. Since the 

digitization algorithm splits each segment into two parts such 

that each part has finite length, the process must ultimately 

consider segments of w points or less. 

2.3 Strip Tree definitions 
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The binary tree resulting from the digitization process is 

called a strip tree, where the datum at each node is a strip, S. 

The nodes of the tree are initially ordered on arc length. 

(Later we will see that when intersecting two areas which are 

represented in strip trees, this property is sometimes not 

preserved). 

We formally define a strip tree T as either null or a node 

consisting of the eight-tuple (S, Lson, Rson) where Lson and Rson 

are strip trees which are either null or have strips Sl and Sr 

which are related to S by the digitization scheme. 

2.q. Why Binary Trees? 

The curves can also be represented as a tree with nodes of 

more than two siblings. In fact,nodes could have different 

numbers of siblings which would still be ordered. Figure 4 shows 

an example of the alternate encoding scheme. In certain cases 

this may be a more concise representation for the curve and for 

all the algorithms tht follow we can extend the operations from 

two sons to multiple sons. However, this change does not alter 

the complexity of the operations that we would like to perform 

and can be more inefficient than the binary tree representation. 

Figure 4. A portion of an encoding using m-ary trees. 

3. Basic Operations on Strip Trees 
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Computational complexity of the various operations is 

difficult to characterize, as it depends on the particular 

geometry of polylines. If the polylines are "well-behaved", that 

is they are relatively smooth and do not self-intersect for more 

than a few points, then the algorithms are very efficient. What 

this means for a particular operation in terms of the strip tree 

is that if at any node we only have to look at one of the two 

sons, then the complexity of the operation is a(log n). 

3.1. Testing the Proximity of a Point 

If we would like to find out if a point is near a curve, 

this may be discovered early using the strip tree. We can make 

this more precise by exploiting the following property: 

Property P1: 

A. If a point z is inside a compact strip S then it can be 

at most w(S) units away from the curve C. 

B. If a point z is outside a compact strip S then the 

distance of the point from the P is bounded by 

o ~ z ~ d(z, S) + w(S) 

It is interesting to study these bounds as the depth in the 

resolution tree increases. Although the convergence is not 

monotonic, the bounds do converge to the actual set-theoretic 

distance d(z,C). Now suppose we want to answer the question: is 

d(z,C) < dO? If this can be answered affirmatively we will find 

this out at the point where ~ upper bound is less than d. If 

the answer is no, then this will be discovered when the tree has 

been explored to the point where all minimum bounds are greater 
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than do. Similar arguments can be made for the qualitative 

level-of-effort required to answer: is d(z,C) > dO? From this 

discussion we can see that the search will be inefficient only if 

a large number of the strips are nearly d from z. Figure 5a 

shows this case together with a more representative example. 

Figure 5. Two of many Possible Geometries When Testing  

the Distance of a Point from a Curve.  

To summarize this discussion, we provide the algorithms to test 

for d(z,C) < dO and d(z,C) > dO. These algorithms use the 

1 notion of the distance of a point to a set which is defined as 

I follows. For any strip S, if a point is outside S then its 

distance to S is characterized by the set theoretic distance

i d(z,S) = min d(z,x) where d is the euclidean distance between the 
xes 

points x and z. For clarity, the algorithms are presented as 

procedures in a pseudo-Algol language. Rigor has been sacrificed 

mainly in the specification of data types, but these should be 

obvious from the earlier definitions. 

Algorithm A1: Is a point within dO of a polyline? 

boolean procedure Within (z,dO,T) 

begin 

if doi d(z,S(T» + 2·w(T) then return (true); 

if z - SeT) and dO > d(z,S(T» then return (false); 

return (Within·(z,dO,LSon(T» or Within (z,dO,RSon(T»); 

end; 
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Algorithm A2: Is a point further than dO from a polyline? 

boolean procedure Further (z,dO,T) 

begin 

if dO i d{z,S(T» + 2·w(T) then return (false); 

if z e Set) and dO > d(z,S(T» then return (true); 

return (Further (z,dO,LSon(T» and Further (z,dO,RSon(T»); 

end; 

3.2 Displaying a Curve at Different Resolutions 

As previously demonstrated in Section 2, a polyline may be 

represented as a set of strip segments such that each strip 

segment S has a resolution delta less than some fixed value. The 

algorithm to display such a representation using the strip tree 

is as follows. This algorithm uses a device-dependent subroutine 

DisplayRectangle which paints the rectangle on the particular 

display device. 

Algorithm A3: Display a Curve at Resolution w 

procedure CurveDisplay (T,w) 

begin 

if Wl(T) + wr(T) < w then DisplayRectangle (S{T» 

else (CurveDisplay (LSon(T),w» and {CurveDisplay 

(RSon{T),w»; 

end; 
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3.3 Intersecting Two Trees 

One of the important features of the representation is the 

ability to compute intersections between curves. Strip trees 

provide the facility to not only compute intersection points, 

but, in the case where lower resolution is satisfactory, to 

compute small areas containing the intersection points at great 

computational savings. In order to develop the intersection 

methodology, we need the following definitions: 

A.  Two strip segments (S, derived from C,) and 

(S2 derived from C2 ) do not intersect iff 

S,(\S2 =2 

!  B. Two strip segments have a clearS" S2 

I  intersection iff all the sides parallel to the 

I  segments given by and [!b' !e)' [!b' !e)2 

intersect. 

C.  Two strip segments S, and S2 have a possible 

intersection if condition B is not satisfied 

yet s,n S2 =2. 

These cases are illustrated by Fig. 6. A fairly obvious but 

very important lemma is: 

Clear Intersection Lemma. If two strip segments 

have a clear intersection and the strips are both 

compact, then the corresponding Ps must also 

intersect. 
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(Peucker showed this was true for the similar case of bands 

[1976]. To see this for condition B, consult Fig. 6b. C1 

divides the region R into two parts and C2 must cross from one to 

the other. The only way the C2 can do this is by intersecting 

Cl. A simple refinement of the clear intersection lemma is that 

is strips have a clear intersection, then the underlying curves 

must intersect an odd number of times. 

Figure 6: Different Ways Strips can Intersect 

The algorithms to check for intersections between two 

polylines are recursive, and assume the existence of an integer 

procedure StripIntersection which will return the type of 

intersection. 

Algorithm A4: Finding out whether two polylines 

intersect 

Comment. If the two root strip segments do not  

intersect then the curves do not intersect. If  

the root segments have a clear intersection then  

the curves intersect. Since the task is to just  

determine whether or not an intersection exists,  

the algorithm terminates upon finding a clear  

intersection.  

boolean procedure Intersection (Tl,T2,) 
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begin 

Case StripIntersection (S(T1),S(T2» into 

[Null] return (false), 

[Possible] if (w(T1»w(T2» or (Primitive Flag) 

then 

return (Intersection(LSon(T1),T2) or 

(Intersection(RSon(T1),T2»; 

else return 

(Intersection(T1,LSon(T2» or 

Intersection(T1,RSon(T2»); 

[Clear] return(true); 

end; 

This procedure is easily modified to return a set of 

parallelograms comprising intersection points. Further easy 

modifications can be made to constrain these parallelograms to be 

of a certain size related to the w(T1) and w(T2); i.e., they can 

be made to be as small as we want. Fig. 7 shows an example of 

intersecting two curves at a given resolution. 

I 
I 

Figure 7: Intersecting Two Curves at Low Resolution 

Note, however, that smaller resolutions may be much more 

computationally expensive, as shown in the following example 

(Fig. 8) where intersection at the coarsest resolution is1 
j simple, but multiple intersections occur at lower levels.

I 
1 
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Figure 8: An 
and 

intersection may be simple at one 
complicated at lower levels. 

level 

If the two curves are not convoluted about each other the 

intersection should be computed in O(mlog(n» steps where m is 

the number of intersection points. If the curves do not 

intersect but have a closest distance d =ds(C
1

,C
2

) then this will 

be discovered at levels in the tree no deeper than a point where 

The worst case performance is intolerable as the algorithm's 

computation will grow exponentially as long as all the strip 

segments in one tree intersect all the strip segments in the 

other. In fact, the computation can be shown to be O(2 K ) where 

K is the sum of the depths in each tree where the comparisons are 

taking place! If this situation were encountered in a practical 

application, one way of handling it would be to report the 

possible intersection regions at the point where the limit of 

some bound on allotted resources was exceeded. 

3.4 The Union of Two Strip Trees 

The union of two strip trees can be accomplished by defining 

a strip that covers both of the two root strips. The two curves 

defined by [Yo', ."Yn'), [yO", ••• , y ") are treated as two 
m 

concatenated lists. That is, the resultant ordering is such that 

we have yo = Yo', Ym+n+1 = Ym"· 
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Algorithm  A5: Union of Two Strip Trees T, and T2 

Define a strip segment that covers the two 

root strips of T1 and T2• By construction, 

this strip can be made to satisfy all the 

properties of a strip segment (except 

compactness). Make this the root node of a 

new strip tree. 

This construction is shown in Fig. 9. 

Figure 9: Construction for Union of Strip Trees  

Representing Two Polylines  

This construction introduces a problem in that the new strip is 

no longer compact and therefore the Clear Intersection Lemma no 

longer holds. To overcome this problem we must add one bit of 

information to each node to mark whether the underlying polyline 

is compact. Since later algorithms may result in underlying 

polylines that are disconnected, we incl~de this in the following 

definition of S: 

CeT) The curve under SeT) is known to be compact and 
connected 

otherwise 

Now a strip is the seven-tuple (!b' ~e' wl ' w ' C). With thisr 

strategy we can preserve the eloquence of the previous algorithms 



Page 18 

in the following manner: When bit C(T) is not one we apply the 

recursion regardless of the intersection type. In algorithm A4 

this means that clear intersections are reported as possible if 

the bit C(T) is set. 

This technique can also be used as a digitization method for 

m non-connected segments (!o, ... , ~i)' [~i+l' ••• , ~i)' ••• , 

(!k' ••• , ~n)' These segments are given an ordering as shown. 

The previous digitization algorithm is applied to this set of 

points, and the perpendicular distance.~s computed from the set 

of disconnected curves and used to define the of the root 

strip as before. However now the set is divided into two subsets 

of connected segments (rather than using !*) and the digitization 

algorithm is applied recursively to the subsets. Once this 

process produces connected subsets, the earlier digitization 

scheme is applied. 

4. Closed Curves Represented by Strip Trees 

We represent an area by its boundary which is a closed 

curve. As we mentioned before, the digitization method described 

in Section 2 works for closed curves and, incidentally, also for 

self-intersecting polylines. Furthermore, if an area is not 

simply connected it can still be represented as a strip tree, 

which at some level has connected primitives. The method for 

doing so was described in the previous section. If a region has 

holes it can be represented by a single boundary curve using a 

construction as shown in Fig. 10. 
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Figure 10: A Region with a Hole 

If the holes are important, they themselves should be 

independently represented as strip trees. 

The most remarkable fact is that by representing an area in 

this way many useful operations can be carried within the strip 

trees formalism. Examples of such are intersection between a 

curve and an area, determining whether a point is inside an area, 

and intersecting two areas. 

4.1 Determining Whether a Point is Inside an Area 

The strip tree representation of an area by its boundary 

allows the determination of whether a point is inside the area in 

a straightforward manner. If any semi-infinite line terminating 

at the point intersects the boundary of the area an odd number of 

times, the point is inside. This result appears in [Minsky and 

Papert, 1969]. 
. . 

This result is computationally simplified for 

strip trees in the following manner: 

Point Membership Property 

To decide whether a point z is member of an 

area represented by a strip tree, we need 

only compute the number of clear 
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intersections of the strip tree with any 

semi-infinite strip L which has delta: 0 and 

emanates from z. If this number is odd then 

the point is inside the area. 

It is the extension to the clear intersection lemma which 

makes this property hold: the underlying curves may intersect 

more than once but must intersect an odd number of times. The 

following algorith~ uses this property to determine whether a 

point is inside an area: 

Algorithm A6: Point Membership 

boolean procedure Inside(z,T) 

begin 

CreateStrip(SO,z) 

comment CreateStrip creates a strip for the half line. 

if NoOfClearIntersections(So,T) is odd then return (true) 

else return (false);  

end;  

integer procedure NoOfClearIntersections(S,T)  

begin  

CaseStripIntersection(S,S(T» into  

[Null] return (0);  

[Possible] return (NoOfClearIntersections(S,LSon(T»  

+ NoOfClearIntersections (S,RSon(T»); 

[Clear] return (1);  

end;  
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Here StripIntersection will report possible instead of clear 

if either of the strips has C(S) = O. A potential difficulty 

exists with the procedure NoOfClearIntersections when the strip 

SO is tangent to the curve. Many tangent cases will not cause a 

problem as they will be under clear intersections in an 

arrangement similar to that of Fig. 7. However if the strip SO 

passes through an end point at the lowest level then there is no 

way of determining the parity of the intersection. Fig. 11 

shows this ambiguity. To overcome this difficulty in practice, a 

different SO is used but for the examples tried so far this 

problem rarely arises.1 
I 

f 

1 

I 
Figure 11: Indeterminancy of Endpoint Intersections 

I for Inside vs. Outside 

I 4.2 Intersecting a Curve with an Area 

The strategy behind intersecting a strip tree representing a 

curve with a strip tree representing an area is to create a new 

tree for the portion of the polyline which overlaps the area. 

This can be done by trimming the original curve strip tree. This 

is done efficiently by taking advantage of an obvious property of 

the intersection process: 

Pruning Property: Consider two strips Sc 

from TC and Sa from Ta. If the intersection 
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of Sc with Ta is null, then ( a) if any point 

on Sc is inside Ta the entire tree whose root 

strip is Sc is inside or on Ta and ( b) if any 

point on Sc is outside of Ta then the entire 

tree whose root strip is Sc is outside of Ta' 

This leads to the recursive procedure A1 for curve-area 

intersection using trees. Note that since strip nodes under a 

clear or possible strip intersection may be pruned, the bit c for 

the latter strip is set to 0 to denote that it no longer has the 

compactness property. Of course as repeated intersections are 

carried out with different areas more and more upper-level strips 

may have their bits set to o·, nevertheless, the intersected 

polyline is accurately represented at the leaves of the strip 

tree. This procedure can be trivially modified to return the 

part of the curve that is outside of the area, by changing 

"Inside" to "Not Inside". Similarly, the boundary of Ta can 

represent the area "outside" of the curve. This tree is denoted 

Ta and has an extra flag at its root to denote the change of 

parity to be used by "Inside". 

Note that if the polyline strip is "fatter," i.e., w(T1) > 

w(T2), we can copy the node and resolve the intersection at lower 

levels, whereas in the converse case we have to sequentially 

prune the tree by first intersecting the polyline strip with the 

left area strip and then intersecting the resultant pruned tree 

with the right area strip. 
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Algorithm A7: Curve-Area Intersection 

reference procedure PolyAreaInt(T1,T2) 

begin 

A: =T2  

comment A is a global used by PAInt;  

return(PAInt(T1,T2);  

end;  

reference procedure PAInt(T1,T2) 

begin 

Case Striplnt(T1,T2) into 

[Null or Primitive] 

if Intersection (T1,A, TRUE) = null then 

if Inside(T1,A) then return (T1) 

else return (null); 

else return (T1); 

[Clear or Possible] if w(T1»w(T2) then 

begin 

C(NT):=O 

comment non-compact strip 

S(NT) := S(T1) 

w(NT):= w(T1); 

LSon(NT):= PAInt (LSon(T1),T2); 

RSon(NT):= PAInt (RSon(T1),T2); 

return(NT); 

end 

else comment w(T1)~ w(T2) 

Return (PAInt(PAInt(T1,LSon(T2»,RSOn(T2»); 

end; 
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4.3 Intersecting Two Areas 

The problem of intersecting two areas is simple using their 

strip tree representations. Surprisingly, this problem can be 

decomposed into two curve area intersection problems (refer to 

Fig. 12). 

Figure 12: Decomposition of Area-Area Intersections 

If we treat the boundary of A1 as representing a polyline instead 

of representing an area and intersect its strip tree with the 

strip tree representing A2 the lowest level result is shown by 

the thick lines in Figure 11a. If we reverse the roles of the 

two strip trees the result is given by the thick lines in Figure 

11b. The union of these two strip trees (see Section 3.4) is the 

answer we want! Thus we would like to write the area-area 

intersection procedure in terms of strips as follows: 

Algorithm A8: Area-Area Intersection 

reference procedure AreaAreaInt (T1,T2) 

begin 

return (Union (CurveAreaInt (T1,T2»,(CurveAreaInt 

(T2,T1»); 

end; 
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where Union is a procedure that accomplishes the construction 

described in Section 3.4. The actual procedure is almost this 

simple but contains a modified version of CurveArealnt to handle 

special cases at the primitive level. Fig. 13 shows these 

cases. 

Figure 13: Special Cases for Area-Area Intersection 

Fig. 14 shows the result of an area-area intersection using 

strip trees. 

J 
Figure 14: Area-Area Intersection 

Note 

fragments 

that in the case of areas that intersect in a way that 

their boundaries, the order of the segments will not be 

preserved by the intersection procedure. (Until this point we 

were guaranteed that strips in the tree would be ordered 

according to the arc length of their underlying curves). 

However, the integrity of the tree representation is preserved; 

the new tree can be composed with other trees using any of the 

tree operations. 

4.4 The Union Operation 

The union operation is simpler than the intersection 

operation. For the union of an area-area strip with another, we 

use a construction similar to the digitization methods for 
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disconncted curves. The result is an area strip tree. If these 

two strip trees do not intersect, then the union is 

straightforward and is identical to the method for curves. 

However, if the contrary is true, then we must go to the trouble 

of defining a new strip tree that represents the union by finding 

the points of intersection in the same way as was done for area 

strip tree intersections. That is, the new tree T is defined as: 

T = ,Union (T1,T2) if T1nT2 =.0' 

(union (CurveAreaInt(T1,T2), CurveAreaIntIT2,T1» otherwise 
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5. Discussions and Conclusions 

For the purposes of simplifying the algorithms, the 

primitives in the tree were regarded as unit segments. In fact, 

they can be segments of arbitrary lengths, but the corresponding 

algorithms are more complicated. This is because it is often 

necessary to divide long segments and build new parts of the 

tree. The details of these algorithms will be discussed in 

Tanaka and Ballard [1979]. The advantage of using arbitrary 

length segments is that any level in the tree can be regarded as 

a primitive level by using its line segment [!b' ~e)' Thus all 

the operations can be carried out at any specified resolution. 

I 
Strip trees thus provide a powerful representation for 

curves. Current work is directed towards characterizing their 

i co~putational complexity more precisely but it can already be 
J 
I shown that the representation is superior to its competitors. 

The main drawback is that there is a large overhead in terms of 

space. If n is the required space to represent a polyline then 

its strip tree will take about 4n space units. Also the creation 

of a strip tree is a laborious process, requiring O(n log n) time 

units. However, neither of these drawbacks are thought to be 

important in the use of this representation for geographical data 

bases and computer-aided design. 

The representation defines strip segments as primitives to 

cover subsets of the line. Our organization of these segments 

into a tree may be viewed as a particular case of a general 

strategy of dividing features up and covering them with arbitrary 

shapes such as depicted by Fig. 15. Other attempts in this 
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class have been tr ied by [Barrow et al.,1977; Burton, 1977; 

Tanimoto, 1975], but they do not capture the notions of 

orientation and resolution anywhere nearly as precisely as strip 

segments, and do not have the union and intersection properties. 

Figure 15: The Notion of an Arbitrary Divide-And-Conquer Strategy 
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Figure 1: A curve displayed at two resolutions 
using the hierarchical structure. 



Figure 2: Definition of a Strip Segment. 
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Figure 5: Two of ~1any Possible Geometries When Testing 
the Distance of a Point from a Curve. 
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Figure 6: Different Ways Strips Can Intersect. 



Figure 7: Intersections at low Resolution. 

a. Two curves 

b. Results of Strip Tree Intersection 



Figure 8: An Intersection may be simple at one level 
and complicated at lower levels. 

Figure 9: Construction for Union of Strip Trees  
Representing Two polylines  

Figure 10: A Region with a Hole 



Figure 11: Indeterminancy of Endpoint Intersections 
for Inside vs. Outside 
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Figure 12: Decomposition of Area-Area Intersections 

a.  Desired Result A1n A2 b. Result of TL f\ TA 
1 2 

c.  Result of TL() TA d. Union of Two Results: the polyline 
2 1 segments covered by the result tree. 
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Figure 13: Special Cases for Area-Area Intersection 



Figure 14: Area-Area Intersection 
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Figure 15: The Notion of an Arbitrary Divide-And-Conquer Strategy 


