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Abstract: A fast, powerful and stable filter based on combined wavelet

and Fourier analysis for the elimination of horizontal or vertical stripes in

images is presented and compared with other types of destriping filters.

Strict separation between artifacts and original features allowing both,

suppression of the unwanted structures and high degree of preservation of

the original image information is endeavoured. The results are validated

by visual assessments, as well as by quantitative estimation of the image

energy loss. The capabilities and the performance of the filter are tested on

a number of case studies related to applications in tomographic imaging.

The case studies include (i) suppression of waterfall artifacts in electron

microscopy images based on focussed ion beam nanotomography, (ii)

removal of different types of ring artifacts in synchrotron based X-ray

microtomography and (iii) suppression of horizontal stripe artifacts from

phase projections in grating interferometry.
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1. Introduction

The reduction of horizontal or vertical stripe artifacts is an important topic in many imaging

systems using multiple-detectors, such as in satellite applications [1, 2, 3], spectroradiometry

[4, 5], as well as others [6]. Suppression of stripe artifacts is important also in the case of

tomographic microscopies, as such artifacts decrease the quality of obtained datasets. Ring
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artifacts in reconstructed tomographic slices are strictly related to stripe artifacts, since they

result from the back-projection of vertical lines or bands observed in the sinogram regime.

Successful removal of stripe artifacts implies, that (a) any horizonal or vertical stripe disap-

pears from an image after filtering, while (b) all structural features, which are different from

stripes, and (c) the quantitative values of the image information are optimally preserved. While

the human perception is appropriate for visually detecting even minute stripe residues and iden-

tifying missing structures, it fails when the quantitative information of an image needs to be as-

sessed. Yet for any automated image evaluation procedure, the quantitative aspect is essential.

Several different methods for stripe artifact reduction have been proposed ranging from mov-

ing average filtering [7, 8], histogram matching [9], interpolation approaches [10], frequency fil-

tering with fast Fourier transform (FFT) [3, 11], as well as approaches using wavelets [1, 5, 12].

A large number of algorithms to reduce ring artifacts in tomographic reconstructions, was also

suggested [7, 8, 12, 13, 14, 15, 16, 17], in addition to the standard flat field correction [18].

However, none of these techniques seems to completely satisfy the above mentioned re-

quirements (a) - (c). The authors acknowledge that they might show top-quality results in many

different cases. However, the general problem which is common to probably any ever exist-

ing filter is the fact that, while features that are supposed to be removed are never removed

completely, some information to be retained might be seriously damaged, instead. Or in other

words, the human capacity to visually discriminate undesired textures usually outperforms the

filter selectivity by far. The consequential approach to a solution with reference to the striping

filter is providing a methodology to (i) increase tight condensation of striping information into

strictly isolated values, and to (ii) provide further grouping of those values into well categorized

subclasses permitting even further and more subtle selection of the processed structure.

We developed and present hereinafter a new destriping filter based on wavelet decomposition

and Fourier filtering, which tackles both points (i) and (ii) simultaneously, while the other men-

tioned approaches lack in this aspect. The chosen decomposition approach allows for a more

strict separation between artifacts and original features, making the suppression of just the un-

wanted structure feasible. In this way, stripe and ring artifacts can be removed while preserving

the original image information.

Different approaches for such condensing / categorizing of striping information might be

possibly based also on other types of transforms. Especially, ridgelet transforms [19, 20, 21]

(which are well known for efficiently pinpointing edge features and, in particular, lines of the

size of the image), could be envisaged to be used for the condensation of striping artifacts under

arbitrary angle. The possible design, potential and drawback of a such approach would have to

be evaluated in detail in future studies.

After a short review of the required assumptions in wavelet and Fourier transforms, the new

filter is introduced and compared with two approaches from the literature, which are both part

of our new concept. The performance of the filter is assessed according to the requirements

(a)-(c). In addition, the role of some of the free parameters is examined and the quantitative

changes of the image values after filtering are investigated with the objective to keep them as

small as possible. Finally, some case studies are presented in the application part (Section 4),

with a particular focus on x-ray computed tomography.

1.1. Some considerations about wavelet and Fourier transforms

In both numerical wavelet and Fourier analysis, a discrete signal f (t) can be approximated by

a set of basis functions Γn(t),n ∈ {0, · · · ,N}, yielding

f (t) ≈
∑

n

an ·Γn(t) (1)
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where the basis functions are orthogonal to each other, that is, the scalar product of every two

Γn(t) meets

〈Γn(t),Γm(t)〉 =
∑

n

Γn(t) ·Γm(t) =

{

1, ∀ n = m

0, ∀ n 6= m
(2)

Thereby, f (t) will be unequivocally represented by the coefficients an.

The main motivation for the decomposition of a signal into orthogonal basis functions is the

deployment of the original signal information into coefficient classes that specifically group

interesting structural patterns. This aspect is particularly attractive for artifacts removal tech-

niques. In addition, orthogonal transforms often yield coefficients, which become partly small

or even zero. This characteristic of wavelet and Fourier analysis makes signal decomposition

especially attractive for data compression purposes [22]. Moreover, the calculation of the co-

efficients an is very efficient and achieved in linear time o(N) by simple evaluation of scalar

products:

an = 〈 f (t),Γn(t)〉 (3)

Furthermore, since Fourier and some wavelet transforms are separable, they can be applied

successively for each dimension in the case of two or more dimensional signals.

For the discrete Fourier transform (DFT), Γn(t) are sine and cosine functions at discrete

frequencies wn = 2 ·π · n, although the complex exponential notation Γn(t) = e−i·ωn·t is often

preferred. In the Fourier domain, all structural information of a signal is entirely represented

by frequencies, whereas any spatial information is completely distributed over the entire fre-

quency range and thus hidden. In contrast, for the wavelet transform [23, 24, 25], Γn(t) are

narrow groups of wavelets of different sizes and frequencies and both, spatial and frequency

information is retained. For the discrete wavelet transform (DWT), a variety of wavelet types

exist, which allow perfect reconstruction of the original signal, in particular the Daubechies

(DB) wavelets [26] (Fig.1).

haar db2 db4 db42

Fig. 1. Scaling (blue) and wavelet (red) functions of four different types of wavelets: Haar

(DB1), DB2, DB4 and DB42.

In dyadic, decimated wavelet transform, a single scale wavelet decomposition of a 1D sig-

nal f (t) consists in its fragmentation into a low and a high frequency part. This separation is

perfectly reversible. The low frequency part can then be iteratively decomposed in the same

way, while leaving the high frequency unchanged. After a decomposition step, the size N(l)
of the resulting low and high frequency parts is halved in order to maintain the total number

of coefficients constant. The next decomposition is therefore performed at half the number of

coefficients but with the same filter size, i.e. at lower spatial scale, what is equivalent to filter-

ing at double the filter size. A multiscale wavelet transform at a highest decomposition level L

is therefore the subdivision of f (t) into one low frequency part, which is represented by one

scaling function ΦL(t) together with its coefficients, and multiple high frequency parts, which
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are represented by a set of wavelet functions Ψl(t) and their coefficients at l = 1, · · · ,L different

scales, yielding

f (t) =
∑

n

cL,n ·ΦL,n(t)+

L
∑

l=1

∑

n

dl,n ·Ψl,n(t) (4)

For a given set consisting of one scaling function ΦL,n and a few wavelet functions Ψl,n(t) and

its translated versions, f (t) will be represented by the low frequency coefficients cL,n at the

scale of level L, and by the high frequency coefficients dl,n at the scales of l = 1, · · · ,L.

Due to the reduction of the number of coefficients by a factor of two after each decomposition

step, wavelet functions Ψl,n are attributed with dyadic values. In this way, all wavelets Ψl,n can

be derived from a so called mother wavelet Ψ0 with

Ψl,n(t) = 2−l/2 ·Ψ0

(

t −2l ·n

2l

)

(5)

In the case of a discrete signal f (ti), dyadic, decimated wavelet analysis can be implemented

with the help of quadrature mirror filters, as proposed by Mallat [23], by successively splitting

the input signal into a low frequency and a details band by applying a low pass and a high

pass filter, respectively. The resulting and downsampled low pass band, which represents the

approximation coefficients at a coarser scale, is successively decomposed in the same way by

filtering at the next scale. The set of low and high pass filters at different scales is called a filter

bank. The data flow of a 1D multiscale wavelet decomposition is sketched in Fig.2.

Fig. 2. A multiscale wavelet decomposition is the successive fragmentation of the previous

low frequency band signal into its high and low frequency bands by using a high pass (a)

and a low pass function (b), and successive downsampling (c) of the coefficients on each

band by a factor of 2, in order to preserve the total number of coefficients, which is 1024

for this example.

Looking at a single scale wavelet decomposition step of a 2D signal by using filter banks,

the signal f (x,y) is decomposed into a set of four coefficient bands cl , ch, cv, cd , where cl is the

low pass band, and ch, cv, cd the horizontal, vertical and diagonal details bands, respectively.

(C) 2009 OSA 11 May 2009 / Vol. 17,  No. 10 / OPTICS EXPRESS  8571

#108296 - $15.00 USD Received 5 Mar 2009; revised 9 Apr 2009; accepted 30 Apr 2009; published 6 May 2009



The number of coefficients in each band is 1/4 of the number in the original band. Thereby, 2D

multiscale wavelet decomposition of level L yields

f (x,y) =
∑

m

∑

n

cl L,m,n ·ΦL,m,n(x,y)+

L
∑

l=1

∑

m

∑

n

ch l,m,n ·Ψh l,m,n(x,y)

+

L
∑

l=1

∑

m

∑

n

cv l,m,n ·Ψv l,m,n(x,y)+

L
∑

l=1

∑

m

∑

n

cd l,m,n ·Ψd l,m,n(x,y) (6)

Consequently, the wavelet representation W of a 2D signal f (x,y) results in a set of coeffi-

cients

f (x,y) ⇐⇒W =
{

cl L,m,n, ch l,m,n, cv l,m,n, cd l,m,n

}

, l ∈ {1, · · · ,L} (7)

which allows recovery of the original information with zero-loss.

In Eq.6, the ΦL,m,n(x,y) scaling function and the wavelets Ψh l,m,n(x,y), Ψv l,m,n(x,y),
Ψd l,m,n(x,y) are 2D functions. However, since the wavelet transform is separable, the wavelet

coefficients in Eq.7 can be calculated by successive filtering of the signal in horizontal and

vertical directions applying either low (L) or high pass (H) filters (i.e. LL for cl L,m,n, LH for

ch l,m,n, HL for cv l,m,n, HH for cd l,m,n).

An example is shown in Fig.3: a wavelet decomposition at level L = 4 is applied to the

Lena image (Fig.3, left), a well known object in wavelet science [23, 24, 25]. The filter bank

corresponding to the Haar wavelet (DB1) (Fig.1, left) was used.

2. Concept and implementation of the stripe filter

2.1. Definition of a stripe artifact

An ideal “vertical stripe artifact” on an image f (x,y) is defined as a constant offset A of arbitrary

width (xe − xa),

a(x,y) =

{

A, ∀ x ∈ [xa, · · · ,xe]
0, otherwise

(8)

running over the entire vertical dimension y.

Bar-like patterns running only over a limited part of y ∈ [ya, · · · ,ye] of the image are not

considered as stripe artifacts, but as parts of the “correct” image information and should not be

removed. The subsequent considerations are assuming vertical stripes, the case of horizontal

ones can be handled analogously.

Although the proposed filter is specifically designed for the elimination of ideal stripes, its

performance will also be discussed for imperfect stripes. It will in particular be shown how the

filter parameters need to be tuned to extend the working range of the destripiong procedure to

more general stripe artifacts.

2.2. Basic idea

We assume that the original image f (x,y) is impaired by vertical stripe offsets as illustrated in

the Lena image to the left of Fig.3.

a) Wavelet filtering

Eq.6 shows that in 2D multiresolution wavelet decomposition, the vertical details components
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Fig. 3. Original Lena image impaired by two vertical stripe offsets (left). The wavelet de-

composition up to the level 4 is visualized in the centre. The low pass coefficients cl are

displayed at the upper left, the horizontal details coefficients ch for each decomposition

level are displayed in the vertical row to the left (3), the diagonal detail coefficients cd in

the diagonal row (2). The striping noise is condensed to the vertical details coefficients

cv in the horizontal row at the top (1). The details bands that are affected by the vertical

striping noise are enframed with red boxes (only as qualitative markers). After applying the

2D Fourier transforms to those bands (right), the information of the striping noise will be

completely condensed to the abscissa. The transforms have been applied to each R, G, B

channel separately and overlayed to color wavelet coefficients.

cv are successively detached from all remaining image components. Consequently, the infor-

mation from vertical stripes is exclusively condensed to cv l,m,n and to the coefficients of the

finally remaining low frequency band cl L,m,n. Due to the dyadic fractionation of the spatial

extensions of the wavelet basis functions (see Eq.5), each successive vertical details band

cv l,m,n, l ∈ {1, · · · ,L} is basically comprising a frequency band of dyadically decreasing fo-

cal frequency Ff ∼ 2−l . Accordingly, the amount of detached stripe information enclosed in

cv l,m,n at each decomposition level l depends on the spatial frequency spectrum of the stripes in

horizontal direction, which correlates with the stripe width. Hence, the highest decomposition

level L required is coupled with the maximum expected stripe width. For a sufficiently large L,

the impact of the stripe information to the low pass coefficients cl L,m,n becomes negligible.

In the example in Fig.3, centre, all information related to the vertical stripes impairing the

original Lena image is clearly detached exclusively to the vertical details bands (marked with

red frames) of the decomposed image. Blanking of cv l,m,n at some selected l and subsequent

inverse wavelet transform of the remaining wavelet coefficients will yield a modified version of

f (x,y), where vertical stripes are eliminated. This approach, here further refereced as “wavelet

filter”, has already been proposed by Torres and Infante [1] and applied to satellite images,

which are sometimes heavily damaged by striping noise due to gain and offset differences

among the elements of the detector arrays. The authors point out that the truncated wavelet

representation f ′(x,y) still approximates f (x,y) in a least squares sense (Parseval theorem).

However, this kind of stripe elimination is obviously associated with a notable loss of structural

information other than the striping noise. The left image of Fig.4 shows the denoised version

of the left image of Fig.3 obtained by using this approach. To suppress all stripe residuals, the

vertical details cv l,m,n at the first five decomposition levels l ∈ {0, · · · ,4} had to be completely

eliminated, yielding a poor quality image. For the satellite images in reference [1], truncation

of only the first three levels was sufficient for a successful destriping, leading to a considerably

better image quality.
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Fig. 4. Stripes elimination from the original Lena image (Fig.3, left) by using different

strategies. The left image displays the result after removing the relevant vertical details

bands [1] (wavelet: DB42), the centre image shows the result of damping the horizontal

frequencies in x̂ for ŷ close to zero, and the right image displays the results of the combined

method proposed in this work.

b) FFT filtering

In the spatial frequency domain F(x̂, ŷ) of f (x,y), ideal vertical stripes include high frequency

parts in the horizontal direction x̂, while in the vertical direction ŷ after the 2D FFT, the stripe

offset yields Dirac delta functions δ(ŷ) (i.e. unit impulse for discrete functions) at all x̂. In

other words, there are no frequency components stemming from vertical stripes in ŷ 6= 0. Con-

sequently by eliminating the Fourier coefficients F(x̂, ŷ) of f (x,y) at all x̂ for ŷ = 0, the entire

information arising from ideal vertical stripes will be erased. The concept of damping the values

of these coefficients is in fact the principal concept [4, 27] or an important part [3, 28] at the

base of several existing stripe removal procedures.

For this purpose, a simple approach in the Fourier space is the application of a bandpass

filter around ŷ ≈ 0. For instance, a selective damping of F(x̂, ŷ) on the x̂-axis can be obtained

by multiplication of the FFT coefficients with a Gaussian function g(x̂, ŷ),

g(x̂, ŷ) = 1− e
− ŷ2

2·σ2 (9)

The value of σ determines the width of the filter in ŷ-direction and is selected according to the

expected deviation from the vertical of the stripes in x-direction in the spatial domain. Note

that for this specific FFT filter, the Fourier coefficients at F(x̂ = 0, ŷ) represent average offsets

over the entire image width x and therefore should not be removed. For this reason, damping is

applied for ∀x̂ 6= 0 only.

This type of FFT stripe filter, here further referenced as “FFT filter”, has been applied to the

Lena image in Fig.3 (left). Since the two colored stripe artifacts are exactly vertical, in this case

a small σ → 0 has been selected so that essentially, F(x̂, ŷ) was set to zero at ŷ = 0 only. The

resulting destriped image is displayed in the centre of Fig.4.

c) Combined wavelet-FFT filtering

The new filtering technique proposed in this paper achieves, in the first step, a tight condensa-

tion of the stripe information by combining the wavelet and FFT transforms. It then performs a

damping of the relevant coefficients by using a Gaussian function.

In the first step, the original image f (x,y) (e.g. the left image in Fig.3) is wavelet decomposed

into W =
{

cl L,m,n, ch l,m,n, cv l,m,n, cd l,m,n

}

, l ∈ {1, · · · ,L} in order to separate the structural

information into horizontal, vertical and diagonal details bands at different resolution scales.
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Subsequently, the bands containing the stripe information (e.g. cv l,m,n for vertical stripes,

see portions enframed in red in the centre image of Fig.3) are FFT transformed to further

tighten the stripe information into narrow bands (e.g. to the x̂-axis in the FFT domain in case

of vertical stripes, see enframed horizontal regions in the right image of Fig.3). Vertical 1D

FFT transforms of all columns in the subregions cv l,m,n are sufficient to condensate the stripe

information to the x̂-axis. A further transform in the horizontal direction does not result in an

additional compaction. For the FFT filter in section 2.2, the additional transform in x̂ direction is

necessary to be able to condense the global offset values around F(0,0). This second transform

is instead not necessary for the combined wavelet-FFT filter, because for cv l,m,n, this global

offset value is close to zero since these coefficients contain high frequency information only. For

the proposed filter, the global offset values are practically entirely detached to the coefficients

cl L,m,n.

The stripe information condensed in such a way is then eliminated by multiplication with a

Gaussian damping function g(x̂, ŷ) according to Eq.9. Finally, the destriped image f ′(x,y) is

reconstructed from the filtered coefficients. The result is displayed in Fig.4 on the right image.

The proposed new filter is further referenced as “wavelet-FFT filter”.

2.3. Algorithm

The core algorithm performing the new “wavelet-FFT filter” is presented in Fig.5. It is written

in Matlab command language and envisaged for the case of vertical stripe artifacts removal.

1 function [nima]=xRemoveStripesVertical(ima,decNum,w name,sigma)
2
3 % wavelet decomposition
4 for ii=1:decNum
5 [ima,Ch{ii},Cv{ii},Cd{ii}]=dwt2(ima,wname);
6 end
7
8 % FFT transform of horizontal frequency bands
9 for ii=1:decNum

10 % FFT
11 fCv=fftshift(fft(Cv{ii}));
12 [my,mx]=size(fCv);
13
14 % damping of vertical stripe information
15 damp=1-exp(-[-floor(my/2):-floor(my/2)+my-1].ˆ2/( 2* sigmaˆ2));
16 fCv=fCv. * repmat(damp’,1,mx);
17
18 % inverse FFT
19 Cv{ii}=ifft(ifftshift(fCv));
20 end
21
22 % wavelet reconstruction
23 nima=ima;
24 for ii=decNum:-1:1
25 nima=nima(1:size(Ch{ii},1),1:size(Ch{ii},2));
26 nima=idwt2(nima,Ch{ii},Cv{ii},Cd{ii},wname);
27 end
28 return

Fig. 5. Matlab code for combined wavelet-FFT stripe filtering.

This algorithm, in addition to the input image ’ima’, employs three parameters for the filter-

ing process: the highest decomposition level L (’decNum’), the wavelet type (’wname’) and the

damping factor σ (’sigma’) from Eq.9. In our approach, σ is kept uniform for each decompo-

sition level l ∈ {0, · · · ,L}. Alternatively, σ could also be adjusted according to the resolution at
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each l.

The algorithm consists of three distinct parts. At lines 4-6, the wavelet decomposition

is calculated by recursive splitting of the original image and of the low resolution coeffi-

cients cl l−1,m,n from the former decomposition level l−1 into
{

cl l,m,n,ch l,m,n,cv l,m,n,cd l,m,n

}

.

The boundary conditions are met by symmetric mirroring. For all decomposition levels l ∈
{0, · · · ,L}, the vertical details coefficients cv l,m,n are then Fourier transformed to the coeffi-

cients ĉv l,m,n by a columnwise 1D FFT (lines 11-12). Subsequently at lines 15-16, these co-

efficients are multiplied with a Gaussian function, to eliminate those close to the x̂-axis in

the Fourier domain. After such damping, the coefficients ĉ′v l,m,n are transformed back to the

wavelet space (line 19). Finally, the destriped image is reconstructed at lines 23-27 from the re-

fined wavelet coefficients c′v l,m,n. The resizing command at line 25 is necessary for the Matlab

function ’idwt2’ to enforce the correct dimensions for the gradually reconstructed c′l l,m,n. The

resulting image is the destriped version of ’ima’.

3. Discussion of wavelet-Fourier filter characteristics

3.1. Conceptual objection: Fourier transform of the wavelet domain?

Considering the presented wavelet-FFT filtering concept, the question about the sense of a

Fourier transform within the wavelet domain arises. From a philosophical standpoint, a Fourier

transform of wavelet coefficients has a rather unclear meaning. In the context of the stripe filter,

the wavelet decomposition should, however, rather be interpreted from the signal analysis point

of view, which is the filtering of a signal with low and highpass filters. This filtering approach

allows to specifically select for further “curing” only those bands affected by stripe artifacts,

while leaving the remaining bands unchanged. The special property of this filtering procedure,

common to orthogonal transforms, is its reversibility. Using the filtering interpretation, the de-

tail bands can be thought as appearing in the spatial domain without need for the misleading

term “wavelet domain”. Accordingly, the subsequent Fourier transform converts them from the

spatial into the frequency space only.

3.2. Tight condensation of stripe information

The first innovative feature characterizing the high performance of the proposed wavelet-FFT

filter is the tight condensation of vertical (or horizontal) stripes into strictly isolated ĉv l,m,n

subsets. This characteristic is required to achieve the requirements (a) - (c) in Section 1, and

is visualized in Fig.6. The image to the left shows a pattern consisting exclusively of perfect

vertical colored stripes. The centre image displays the resulting wavelet coefficients after a

multiscale decomposition up to level L = 4 obtained using the Haar wavelet (DB1). The entire

image information is now condensed in the vertical details band cv l,m,n and the remaining low

pass band cl L,m,n. The latter can be further decomposed until the stripe characteristics disappear,

or due to the successive downsampling, until some few coefficients which are containing the

overall background offset is remaining only. All other coefficients ch l,m,n and cd l,m,n are zero

except for some values at the boundaries which occur due to border effects. After FFT transform

of cv l,m,n for all l yielding ĉv l,m,n (right image of Fig.6), the only non-zero coefficients are

localized on the abscissa and on the unchanged low pass band cl L,m,n.

Vice versa, these non-zero coefficients ĉv l,m,n=0 contain pure stripe information only. This

fact is demonstrated in Fig.7, where four artificial sets of coefficients in the FFT domain have

been created by assuming some random complex values for ĉv l,m,n=N at some horizontal lines

N , while assuming zero values for all remaining coefficients. Such randomly generated co-

efficient sets are then reconstructed to the spatial domain. Fig.7 displays the arising artificial

images for N = 0 (leftmost image), N = ±1, (2nd leftmost), N = ±2, (2nd rightmost), and at
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Fig. 6. Image consisting of vertical stripes only (left), its wavelet multiscale decomposition

with L = 4 obtained using the Haar wavelet (centre), and the subsequent FFT transform

of the vertical details coefficients cv (right), illustrating that by applying this transforma-

tion chain, the entire image information is condensed into narrow frequency bands and the

remaining low pass coefficients cl only.

N = ±3 (rightmost). Obviously, only the image to the left, which was built from ĉv l,m,n=0 is

exclusively consisting of perfect stripes as defined in Section 2.1, while for increasing |N | > 0,

the pattern progressively deviates from the strict stripe definition.

Fig. 7. Four artificial images created by randomly selecting complex coefficients ĉv l,m,n=N

at N = 0 (left image), N = ±1, N = ±2, and N = ±3 (right image), while setting all

remaining coefficients to zero.

With respect to the wavelet-FFT filter, the range {0, · · · ,N } of damped coefficients directly

depends on σ (Eq.9): while for small σ → 0, only stripes in the strict sense (i.e. at N = 0) will

be erased, partial striping will be damped as well for higher σ (i.e. particularly for σ > 1).

For instance, the Lena image of Fig.3 (left) and of Fig.9 (top left) are both ravaged by perfect

stripes in the sense of Section 2.1, wherefore damping was performed at σ → 0. Larger σ would

not contribute to an improvement in destriping, but rather cause original image information to

be further eliminated. In contrast, imperfect stripes (e.g. stripes that are not perfectly straight,

or with an offset value A, which is not constant over the whole length) must be eliminated at

increased σ . For example, the stripes in Fig.11 (top left — further explanation is provided in

Section 4.1) are slightly crooked, and furthermore contain varying offset values. Thus, filtering

has been performed at σ = 7, whereby the overall energy changes (see Section 3.8) have got

considerably larger and cannot be exclusively ascribed to the removed stripes.
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3.3. Separation of stripe information

The destriping procedure, i.e. Fourier filtering and coefficient damping, is applied only to some

selected detail bands of the wavelet coefficients. This is the key reason for the high performance

of this wavelet-FFT filter in removing stripe artifact. In fact, in this way, each processed detail

band holds structural information within a bounded scale only therefore enabling stripe filter-

ing to be optimized to the specific scale. In addition, a large number of detail bands remains

completely unchanged guaranteeing the preservation of all structural features outside the detail

bands affected by stripe artifacts.

After each single wavelet decomposition step, the remaining low pass coefficients cl l,m,n still

contain the self-similar full image information, yet at a lower resolution. In contrast, all other

bands only contain details, i.e. high pass information for getting increased resolution. Hence,

the mean image values at lower resolution are still completely preserved when coefficients

from the details bands are removed. This is not the case if coefficient damping is performed

in the Fourier space only (see Section 2.2), since these coefficients also contain quantitative

information about regional offset values, which will be affected during the filtering procedure.

The power of the strict discrimination between stripe information and other structures is

demonstrated in the extreme example in Fig.8. The Lena image (1) was first scaled by a value

of ≈ 1/50 in order to further fade out the original structures relative to the stripes. An image

consisting only of colored horizontal and vertical stripes (2) was then added to it. In the resulting

image (3), the stripe noise completely covers all other information. The image corruption is so

strong that the Lena or any other structure in the original image cannot be visually recognized.

Successive destriping in the horizontal and vertical directions using the proposed wavelet-

FFT filter at σ → 0, L = 8 and DB42 yields image (4), which shows a high preservation of

the structural information of the original Lena. Major discrepancies are observed in the color

structure. Shifts in the lower spatial frequencies are responsible for these differences. Such

shifts arise from the mean values of the heavy stripe pattern, which are not easily removed

and overcast the mean values of the Lena image (especially due to its scaling and therefore

minimal contribution to the overall image). The difference between the original Lena (1) and

the destriped version of the Lena ravaged by stripes (4) is displayed in image (5). The residual

image shows no evidence of any structural information related to the original Lena motive,

except for some horizontal or vertical stripe-like features (e.g. the doorframe to the left). It

therefore confirms the high structural preservation capabilities of the new proposed wavelet-

FFT filter, even when stripe contamination is so strong that the original image is not visually

recognizable.

3.4. Computation time

An outstanding advantage of the proposed filter is its minimal computational effort. The pro-

posed algorithm consists of a discrete wavelet transform (DWT), a discrete Fourier transform,

generally implemented by a fast Fourier transform (FFT), and damping of some coefficients,

which is basically a scalar multiplication with a Gaussian function (Section 2.2). All three tasks

can be performed with O(N) operations (N: number of image pixels), therefore the entire fil-

tering process runs in linear time. Since the wavelet decomposition is performed by means of

1D wavelet filtering, the computation time depends on the size lw of the discrete wavelets with

O(lw).

3.5. Translation invariance

In the proposed filtering process, a dyadic, decimated wavelet analysis is performed, followed

by an FFT of the coefficients corresponding to vertical details. This process is not translation

invariant, that is, the result of a translated signal is not the translated result. However, since the
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Fig. 8. This figure demonstrates the high structural preservation capability of the proposed

wavelet-FFT filter. For this purpose, the original Lena (1) was scaled by a factor of ≈ 1/50

and subsequently has been corrupted with a pattern of heavy horizontal and vertical stripes

(2). The resulting image (3) has then been treated with the wavelet-FFT filter and rescaled

(4). The difference between the original Lena (1) and the filtered image (4) is displayed in

(5).

stripe removal process involves a damping of the coefficients ĉv l,m,n, which is uniform along

the entire abscissa (Eq.9), the striping information is completely removed for all locations in the

case of ideal stripes (where g(x̂,0) = 0), or evenly damped for each class of non-ideal stripes

(Fig.7).

3.6. Dyadic detail levels

The dyadic scales of the detail levels offer the possibility to selectively apply the destriping pro-

cedure to artifacts of specific widths. In fact, the width of removed stripes is associated with the

levels of decomposition subjected to filtering (Section 2.2). If the width range of possible stripe

artifacts in an image is narrow, the decomposition levels submitted to the damping procedure

can be reduced and unnecessary loss of valid information avoided.

In Fig.9, the original Lena image (bottom rightmost image) was ravaged by seven stripes of

different colors and sizes (24, 16, 12, 8, 4, 2, 1 pixel, top leftmost image). Subsequently, it was

filtered using the DB15 wavelet and σ → 0, by assuming different highest decomposition levels

L = 0, · · · ,7. The remaining cl L,m,n for l > L were left untouched.

While the smallest stripe to the right of the image (blue) is not visible any more after L = 3
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Fig. 9. The Lena image ravaged by seven stripes of different colors and sizes (24, 16, 12,

8, 4, 2, 1 pixels, (Fig.3, top left) was filtered with the DB15 wavelet at σ → 0 by assuming

different highest decomposition levels L = 0, · · · ,7. The bottom rightmost image is the

original Lena.

(top rightmost), green shadows of the largest stripe to the left can still be well perceived at

L = 5.

Fig.9 also reveals that in some cases, specifically for images with blurred stripes, it might

even be favourable to perform the filtering on a subset of the decomposition numbers l =
{la, · · · , le} only. In particular, an image with the same type of stripes as the top rightmost

image would have to be filtered at the decompositions l = {4, · · · ,7} only.

3.7. Assessment of filter quality

For reliable validation of the filter quality, both, qualitative and quantitative aspects are decisive.

Qualitatively, the destriped images need to be free from stripes, while all other image details

have to be preserved. Quantitatively, local mean values of the filtered image away from stripes

must be maintained — an imporant requirement for quantitative image analysis.

We propose two different methods for the qualitative and quantitative assessment of the per-

formance of our new filter. Visual inspection is probably the most adequate and reliable ap-

proach to evaluate the destriping success and to validate the detail preservations. Though, the

human eye highly adapts to ambient changes and thus is not reliable to assess the quantitative

stability. An objective well known measure in signal processing for a quantitative evaluation of

the results is the total energy of a signal sx,x ∈ {0, · · · ,N} (from Parseval’s theorem), which is

defined as the sum of squared moduli

εs
.
=

1

N

N−1
∑

x=0

|sx|
2 (10)

In the ideal case, energy changes should arise solely from stripe suppression. In practice,

this is not the case, whereby the combination of visual rating with a minimal relative change

of εs between the original and the processed image is supposed to be a robust technique for the

assessment of the filter performance and the result quality.

The loss of the energy can be expressed by the energy of the difference of the original (so)

and the filtered (s f ) images, relative to the original one, resulting in the relative mean square
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error (MSE):

εr =

∑

|so − s f |
2

∑

|so|2
(11)

This relative energy metric (Eq.11) was applied to the images of Fig.4 and the relative energy

difference before and after filtering calculated. The resulting energy changes are:

wavelet: 2.275 [%] FFT: 2.854 [%] wavelet-FFT: 0.597 [%]

The Lena image processed using the proposed wavelet-FFT stripe filter shows the better

visual quality while achieving four times less energy change.

3.8. Choice of wavelets

For the same example as in the previous section, different types and sizes of wavelets have

been applied. The use of Daubechies (DB) wavelets [26] shows visually favourable results

even at low energy changes εs (Section 3.7). The reason for this has not been explored and

may presumably be accompanied with the wavelet smoothness. In Fig.10, the energy changes

in [%] after filtering with Daubechies wavelets of different size are displayed. Three images

have been treated: the Lena (see Section 1), cement particles (see Section 4.1), and a sinogram

(see Section 4.2). The values for the damping coefficients σ and for the highest decomposition

level L have been selected as small as possible, but large enough to make visible stripe remnants

disappear. This goal was achieved at damping coefficients of σ = 1.5 (Lena), σ = 7.0 (cement),

σ = 1.5 (sinogram), and for highest decomposition levels of L = 4, L = 8, L = 4, respectively.

While these values have been kept constant, the wavelet filters have been varied from DB1 to

DB43.

For all three images, the energy changes εs are tendentially decreasing with increasing

wavelet size. The use of the larger wavelet sizes however results in increasing calculating effort.

By using a wavelet size between 10 and 15, a reasonable compromise between minimal εs and

low processing time was found. Visual assessments agree with these findings. Since the visual

differences are subtle, no further illustrations are provided.

The largest εs occur for the cement image. This is due to (1) the large damping coefficient

and (2) highest decomposition level, and (3) to the heavy stripe artifacts.

4. Applications

4.1. Waterfall effect in focused ion beam nanotomography (FIB-nt)

FIB-nt is a technique that utilises dual (electron and ion) beam microscopy for 3D imaging with

nanometric resolution. The 3D datasets are produced by a repetitive ion milling and electron

imaging process. Further details can be read from the literature [29].

A severe problem in FIB-nt is the possible contamination of electron images by vertical

stripes, the so called waterfall effect. This artifact is caused by the occurrence of material phases

in the sample microstructure that exhibit a variable resistance to ion milling. It is especially

pronounced in cryo FIB-nt [30], where inhomogeneous regions occur in the metalorganic pro-

tective layer used in FIB-nt to avoid charging effects. The example in Fig.11 (top left) shows

a single slice from a 3D volume of unhydrated particles from cement paste with a total size of

17.1×14.6µm, recorded by cryo FIB-nt from Holzer et. al. [30, 31].

We have destriped the FIB-nt image using three types of filters (Section 2.2): wavelets only

(top right image), FFT only (bottom left), and wavelet-FFT (bottom right). Visual inspection
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Fig. 10. Three images (Lena, cement, sinogram), which have been filtered with Daubechies

wavelets at different size (DB1 to DB43). The damping coefficients are σ = 1.5 (Lena),

σ = 7.0 (cement), σ = 1.5 (sinogram), and the highest decomposition levels was L = 4,

L = 8, L = 4, respectively.

clearly shows the superior performace of the combined wavelet-FFT filter. The respective rela-

tive energy changes are 0.57 % for the wavelet-FFT filter, 1.40 % for the wavelet filter, and

1.52 % for the FFT filter. The optimum results with the combined filter were achieved when

the DB42 wavelet was used up to the highest decomposition level L = 8, and with a damp-

ing coefficient of σ = 7. To minimize the overall structural loss, the stripe removal with the

wavelet-only method was performed at L = 3 only.

Waterfall artifacts in FIB-nt represent an especially challenging application, as observed

stripes deviate from the ideal description of Eq.2.1, that is, they are (1) not perfectly verti-

cal, and (2) their offset values A are fluctuating. Hence, the original image in Fig.11 (top left)

is a good example for showing the effect of the damping coefficient σ , and the highest decom-

position level L. In Fig.12, different σ = 1,2,4,8 (rows) and L = 2,4,6,8 (columns) have been

applied.

The results clearly show that unlike for perfect stripes, where σ → 0 is sufficient (see Fig.9)

and the filtering must be adjusted according to L only, in this more general case the values for σ
need to be larger for the complete elimination of imperfect stripes. Due to some broad artifacts,

stripes don’t completely disappear below L = 8.

4.2. Ring artifacts in synchrotron based X-ray Tomographic Microscopy

a) Origin
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Fig. 11. Destriping of a single section from a 3D volume of unhydrated particles of cement

paste accessed by FIB-nt. The original image to the top left is severely affected by the

waterfall effect. The top right image is the result of wavelet, the bottom left the result of

FFT, and the bottom right the result of wavelet-FFT destriping procedure. The original

picture was taken from Holzer et al. [30].

In synchrotron based X-ray Tomographic Microscopy [32], a sample is rotated in a stationary

parallel monochromatic beam and 2D radiographs for many angular positions over 180º are

recorded with a high-resolution area detector (e.g. CCD camera). The information of the 2D

projections is usually rearranged in sinograms before reconstruction. Each sinogram contains

the information of a particular horizontal detector line for all angular positions. A single de-

tector element records, for every angular position, the intensity of one particular ray at one

particular position in the beam. The information of this detector pixel back-projects, in the re-

constructed slice, onto a half-circle centered on the rotation axis. Defective detector elements

(e.g. dead pixels in a CCD) with non linear responses to incoming intensity will therefore ap-

pear in the reconstructions as sharp rings with a width of one pixel (e.g. Fig.13(c), see [33]).

Similar artifacts also arise from dusty or damaged scintillator screens. Miscalibrated detector

pixels, e.g. due to beam instabilities not completely taken into account by a normalization cor-

rection, give instead rise to wider and less marked rings (e.g. Fig.20(a)).

Minimization of ring artifacts by using adequate scanning protocols, high quality scintillator

screens and CCD cameras is possible. It is, however, difficult to completely avoid such artifacts

and therefore achieve highest quality reconstruction solely by experimental measures. Software
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Fig. 12. Destriping of a single section from a 3D volume accessed by FIB-nt (see Fig.11,

top left) by using different damping coefficients σ = 1,2,4,8 (from left to right), as well as

different highest decomposition levels L = 2,4,6,8 (from top to bottom).
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routines are required to remove the remaining distortions and thus allow full qualitative and

quantitative exploitation of the acquired information.

b) Removal of sharp and marked ring artifacts

Fig. 13. Removal of sharp marked ring artifact from a reconstructed slice with the wavelet-

FFT filter (DB25 wavelet) by damping of the 1-5 components with σ = 2.4 - (a) Original

sinogram and (c) reconstruction, (b) Filtered sinogram and (d) reconstruction. Sample: 530

million-year-old fossilized embryo of an animal closely related to modern marine worms

(priapulids), pixel size: 0.375 µm. Sample courtesy: S. Bengtson, Swedish Museum of

Natural History, Stockholm, Sweden. Image acquired at the TOMCAT beamline [34], at

the SLS-PSI, Villligen, Switzerland.

Dead pixels in a CCD chip and damaged scintillator screens are responsible for sharp and

marked vertical stripes in sinograms, which back-project to half circles (ring artifacts) in to-

mographic reconstructions. These artifacts are clearly visible in the example in Fig.13 and

Fig.14. We used the wavelet-FFT filter to attenuate these features and improve the reconstruc-

tion quality. We tested different parameter combinations (wavelet type, damping coefficient σ
and decomposition level L) aiming at the best image quality, assessed visually and attested

with line profiles, and a minimal relative energy change. We experimented in particular with

different wavelet types and found that with DB25 the best compromise between image quality

and energy loss is achieved. For Daubechies wavelets of a smaller size (down to DB1), larger

discrepancies in the line profiles are observed; for larger wavelet sizes (up to DB40), artifacts

in the reconstructions appear. A decomposition level L larger than 6 needs to be avoided for this

example, because details of the image were also starting to be filtered out. Decomposition level

smaller than 5 are instead not enough to removed all ring artifacts. We therefore chose L = 5.
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Fig. 14. Magnified portion of Fig.13(c) and (d) around the image center - (a) Original

image, (b) Artifacts removed with a DB25 wavelet and by filtering the 1-5 components

with σ = 2.4. Features hidden in (a) by the rings are clearly revealed in (b) after artifact

removal (e.g. arrows).

Fig. 15. Horizontal (a) and vertical (b) line profile through the center of the reconstructed

slices in Fig.13(c) and (d).
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Based on visual inspection, the decomposition level l=0 was left unchanged. In fact, FFT fil-

tering all decomposition levels leads to a ”windmill” artifact in the center of the image, judged

to have a larger disturbing impact than the remaining faint tiny rings when l=0 is untouched.

Finally for σ smaller than 2.4, not all ring artifacts were properly removed, larger σ resulted in

a significant increase in relative energy loss. The images shown in Fig.13(b), (c) and Fig.14(b)

have therefore been obtained with a DB25 wavelet and filtering of the decomposition levels 1 to

5 with σ = 2.4. The relative energy change is 0.018% only. Visually, the quality improvement

is clear. Vertical stripes in the sinograms (Fig.13(b)) have disappeared as well as the marked

rings in the reconstructed slice (Fig.13(d)). Removal of these artifacts from the reconstructions

reveals new structural details (e.g. arrows in Fig.14(b)), which were only hardly discernible

in the corrupted image. Horizontal and vertical line profiles through the center of the image

(Fig.15) confirm the minimal changes to the reconstructed slices for regions not affected by the

ring artifacts.

Fig. 16. Removal of a wide strong ring artifact from a reconstructed slice with the wavelet-

FFT filter (DB30 wavelet) - (a) Original image, (b) Artifact removed by filtering the 1-

5 components with σ = 2.4 (c) Artifact removed by filtering the 0-6 components with

σ = 2.4. Sample: compacted purified smectite, pixel size: 0.74 µm. Sample courtesy: D.

Prêt, Poitiers University, Poitiers, France [35]. Image acquired at the TOMCAT beamline

[34], at the SLS-PSI, Villligen, Switzerland.

Fig. 17. Magnified portion of Fig.16 around the ring artifact - (a) Original image, (b) Ar-

tifact removed with a DB30 wavelet and by filtering the 1-5 components with σ = 2.4 (c)

Artifact removed with a DB30 wavelet and by filtering the 0-6 components with σ = 2.4.

Similar results are obtained in a second example, where the artifacts consist of a wider strong

ring (Fig.16(a)). In this case, we obtained the best results with the DB30 wavelet and FFT filter-

ing of the wavelet components 1 to 5 (Fig.16(b)) or 0 to 6 (Fig.16(c)) with σ = 2.4. A wavelet
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Fig. 18. Magnified portion of Fig.16 around the image center - (a) Original image, (b)

Artifact removed with a DB30 wavelet and by filtering the 1-5 components with σ = 2.4 (c)

Artifact removed with a DB30 wavelet and by filtering the 0-6 components with σ = 2.4.

Fig. 19. Horizontal (a) and vertical (b) line profile through the center of the reconstructed

slices in Fig.16.

decomposition up to level L = 6 allows to completely remove the ring artifact (Fig.17(c)) un-

raveling the hidden structure, though at the expenses of little (windmill) deformation and grey

level drop at the center of the image (Fig.18(c), 19(a) and 19(b)). Choosing a L lower than

6 has less influence on the grey level at the image center (Fig.18(b), 19(a) and 19(b)), leaves

though a faint dark shadow where the ring originally was (Fig.17(b)), nonetheless revealing the

lost features. The related relative energy change is small (0.17% and 0.14%, respectively): as

observed in the line profiles (Fig.19) changes are minimal away from the image center and the

artifact.

c) Removal of wide and faint ring artifacts

Miscalibrated detector pixels, e.g. due to beam instabilities not completely taken into account

by a normalization correction, give rise to wide and faint rings. An extreme example is shown

in Figs.20 and 21: the original image (Fig.20(a)) is so strongly contaminated by ring artifacts,

that the underlying structure is hardly discernible and a quantitative analysis completely impos-

sible. Sample details can however be unraveled by the wavelet-FFT filter. In particular, using

a DB15 wavelet to filter the 0 to 4 components with a σ = 2.4, encouraging results have been

obtained (Fig.20(b)). The choice of these parameters permits the removal of most rings from
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the reconstructed slice, with minimal distortion at the image center. Higher order wavelets have

a stronger effect on the center of the image, while at least the first 5 components need to be

filtered to be able to remove the observed rings. Taking more components into account results

into a larger energy loss, without an appreciable improvement in the image quality. Due to the

strong image corruption, the observed relative energy change of 18% for the chosen optimal

parameters is significantly higher than for the previous examples.

Fig. 20. Removal of wide and faint ring artifacts from a reconstructed slice with the wavelet-

FFT filter (DB15 wavelet) by damping of the 0-4 components with σ = 2.4 - (a) Original

and (b) Filtered reconstructed slice. Sample: 28µm cylinder of hardened cement paste, im-

pregnated with epoxy resin, pixel size: 100 nm. Image acquired at the TOMCAT beamline

[34], at the SLS-PSI, Villligen, Switzerland.

Fig. 21. Horizontal (a) and vertical (b) line profile through the center of the reconstructed

slices in Fig.20.

4.3. Horizontal stripe artifacts in phase projections obtained with grating based X-ray phase

contrast imaging

Phase sensitive X-ray imaging methods provide increased contrast over conventional absorp-

tion based imaging, and therefore new and otherwise inaccessible information. The Differen-
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tial Phase Contrast (DPC) imaging technique [36] uses a grating interferometer and a phase-

stepping approach to separate the phase information from other contributions. Projections of

the phase information obtained through integration of DPC radiographs show characteristic

horizontal stripes, arising from beam instabilities and sub-optimal background normalization.

An example is shown in Fig.22(a).

Fig. 22. Removal of horizontal stripes from a phase projection generated through integra-

tion of a DPC radiograph obtained with the Differential Phase Contrast (DPC) technique

[36] based on a grating interferometer and a phase stepping approach - (a) Original and (b)

Filtered projection (DB30, L = 3 and σ = 3). Sample: BaTiO3 sphere, pixel size: 100 nm.

Image acquired at the TOMCAT beamline [34], at the SLS-PSI, Villligen, Switzerland.

Such artifacts can successfully be minimized with the new filter. Best results have been ob-

tained with the DB30 wavelet L = 3 and σ = 3 (Fig.22(b)). The use of other wavelet lengths

did not result in an appreciable difference in the images. The chosen wavelet type produced

the minimal change in the relative energy confirmed by the smallest discrepancies between the

original and filtered projection in line profiles. Damping components of higher order than L = 3

caused a large change in the relative energy not justified by a significant improvement in the

image quality. Finally, an increase of σ was connected to a smoothing of the line profile and

fading of small stripes. The chosen parameters represent a good compromise between opti-

mal artifact suppression and high preservation of the original image information. The relative

energy change was 0.28%.

4.4. Conclusions

The presented combined wavelet-FFT filter represents a powerful approach for a wide range

of stripe artifact removal problems. It is designed for ideal stripe artifacts consisting of straight

horizontal or vertical constant offsets traversing the entire image. Tight contraction and clas-

sification of such stripe information is achieved by successive wavelet and Fourier transforms

guaranteeing high preservation of all structural information different from ideal stripes during

the filtering procedure.

Three free parameters allow to control the filter behavior and extend its applicability to arti-

facts deviating from ideal stripes: (1) the choice of the wavelet, (2) the highest decomposition

level L, and (3) the damping factor σ . Optimal results have been achieved for large Daubechies

wavelets (i.e. large number of vanishing moments, at least larger than DB3). The optimal choice
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of the highest decomposition level L depends on the largest stripe width, as well as on the sheer-

ness of the slopes at the stripe borders. As long as satisfactory stripe removal can be achieved,

small L are preferred in order to preserve the quantitative overall offset values as best as possi-

ble. The optimal damping factor σ depends on how ideal the stripes are in terms of straightness

and offset constancy. While σ must be increased for slightly distorted stripes and for stripes

with varying offset, it can instead be lowered to σ = 0 for ideal artifacts.

The outstanding benefits of this new filter are 1) the possibility to adjust the parameters to

selectively choose the bandwidth of the stripe information, which is to be removed. Moreover

2), the filter is softly responding to any parameter changes, therefore exhibiting a good stability.

Finally 3), the filter performs at linear calculation time.

In addition to qualitative visual assessment, the filter performance was validated quantita-

tively by evaluating the changes of the signal energy before and after filtering. If only few stripe

artifacts are present, a relatively small loss of signal energy is usually achieved, indicating that

most of the remaining image information is being preserved in a quantitative sense.

Several examples of color and gray level images containing both pronounced and subtle hor-

izontal and / or vertical stripes have been presented in the field of tomographic microscopies, in

particular in cryo FIB-nt and synchrotron microtomography. These various examples demon-

strate a wide range of applicability and a good adaptability of the filter to different situations

and requirements. Compared to previous approaches, the new technique shows a very high

selectivity.

A java application of the filter can be freely downloaded from

ftp://ftp.empa.ch/pub/empa/outgoing/BeatsRamsch/stripeFilter/xStripes.jar
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