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PHYSICS

Stripe order in the underdoped
region of the two-dimensional
Hubbard model
Bo-Xiao Zheng,1,2*† Chia-Min Chung,3* Philippe Corboz,4,5* Georg Ehlers,6*
Ming-Pu Qin,7* Reinhard M. Noack,6 Hao Shi,7* Steven R. White,3

Shiwei Zhang,7 Garnet Kin-Lic Chan1†

Competing inhomogeneous orders are a central feature of correlated electron
materials, including the high-temperature superconductors. The two-dimensional
Hubbard model serves as the canonical microscopic physical model for such systems.
Multiple orders have been proposed in the underdoped part of the phase diagram,
which corresponds to a regime of maximum numerical difficulty. By combining the
latest numerical methods in exhaustive simulations, we uncover the ordering in the
underdoped ground state.We find a stripe order that has a highly compressible wavelength
on an energy scale of a few kelvin, with wavelength fluctuations coupled to pairing
order. The favored filled stripe order is different from that seen in real materials. Our
results demonstrate the power of modern numerical methods to solve microscopic
models, even in challenging settings.

C
ompeting inhomogeneous orders are a
common feature in many strongly corre-
lated materials (1). A famous example is
found in the underdoped region of the
phase diagram of the high-temperature

cuprate superconductors (HTSCs). Here, mul-
tiple probes—including neutron scattering, scan-
ning tunneling microscopy, resonant x-ray
scattering, and nuclear magnetic resonance
spectroscopy—all lend support to various pro-
posed inhomogeneous orders, such as charge,
spin, and pair density waves, with suggested
patterns ranging from unidirectional stripes
to checkerboards (2, 3). Recent experiments
on cuprates indicate that the observed inhomo-
geneous orders are distinct from, and compete
with, pseudogap physics (4, 5).
Much theoretical effort has been directed

toward explaining the origin of the inho-
mogeneities (6). Numerical calculations on
microscopic lattice models have provided il-
luminating examples of the possible orders.
The prototypical lattice model used to under-
stand HTSCs is the two-dimensional (2D)

Hubbard model on a square lattice, with the
Hamiltonian

H ¼ �
X

hiji;s∈f↑;↓g
ta†isajs þ U

X

i

ni↑ni↓

where a† (a) denotes the usual fermion crea-
tion (annihilation) operators; n is the number
operator; t and U are the kinetic and repulsion
energies, respectively; and i and j are lattice
site indices, where hiji indicates that the sum-
mation is over nearest neighbors. A large num-
ber of numerical techniques have been applied
to compute the low-temperature and ground-
state phase diagram of this model. Early evi-
dence for unidirectional stripe ordering in the
Hubbard model came from Hartree-Fock cal-
culations (7–10), whereas the nonconvex energy
versus filling curves in exact diagonalization
of small clusters of the t-J model (derived from
the Hubbard model at large U where double
occupancy is eliminated) were interpreted as
signs of macroscopic phase separation (11, 12).
Since then, inhomogeneous orders have been
obtained, both in the Hubbard and t-J models,
from calculations using the density matrix re-
normalization group (DMRG) (13–15), variational
quantum Monte Carlo (16) and constrained-
path (CP) auxiliary-field quantum Monte Carlo
(AFQMC) (17), infinite projected entangled pair
states (iPEPS) (18), density matrix embedding
theory (DMET) (19), and functional renormaliza-
tion group (20), among others, although the
type of inhomogeneity can vary depending on
the model and numerical method. However,
there are other sophisticated simulations—for
example, with variational and projector quan-
tum Monte Carlo (21, 22) and cluster dynam-

ical mean-field theory—which do not see, or are
unable to resolve, the inhomogeneous order
(23, 24). The most recent studies with iPEPS (18)
and DMET (19), as well as some earlier varia-
tional calculations (16, 25–27), further show that
both homogeneous and inhomogeneous states
can be stabilized within the same numerical
methodology, with a small energy difference be-
tween homogeneous and inhomogeneous states
on the order of ~0.01t per site.
The small energy differences between orders

mean that very small biases in ground-state
simulations, such as those from an incomplete
treatment of fluctuations, using insufficiently
accurate constraints to control the sign problem,
or from finite-size effects, can easily stabilize one
order over the other. Similarly, the low temper-
atures needed to resolve between orders is a
challenge for finite temperaturemethods (28, 29).
Settling the resulting debate between candidate
states has thus far been beyond reach. In this
work, we demonstrate that, with the latest nu-
merical techniques, obtaining a definitive char-
acterization of the ground-state order in the
underdoped region of the 2D Hubbard model is
now an achievable goal. As a representative point
in the phase diagram, we chose the well-known
1/8 doping point at strong coupling (U/t = 8).
Experimentally, this doping corresponds to a re-
gion of maximal inhomogeneity in many HTSCs,
and, in the strong coupling regime, it is recog-
nized as a point of maximum numerical diffi-
culty and uncertainty in simulations (24). Using
state-of-the-art computations with detailed cross-
checks and validation—including newer meth-
odologies such as iPEPS and DMET, as well as
recent developments in established method-
ologies such as CP-AFQMC and DMRG—and
with exhaustive accounting for finite size effects
combined with calculations directly in the ther-
modynamic limit, we are able to finally answer
the question, What is the order and physics
found in the underdoped ground state of the
2D Hubbard model?

Computational strategy

An important strategy we use to address this
part of the Hubbard-model phase diagram is
to combine the insights of multiple numer-
ical tools with complementary strengths and
weaknesses. This approach, pioneered in (24),
greatly increases the confidence of the nu-
merical characterization. To understand what
each method contributes, we briefly summarize
the theoretical background and correspond-
ing sources of error. Further details are pro-
vided in (30).

Auxiliary-field quantum Monte Carlo

AFQMC expresses the ground state of a finite
system through imaginary time evolution,
limb→∞e�bH jF0i, where jF0i is an initial state.
The projection is Trotterized, and the evolution
reduces to a stochastic single-particle evolution
in the presence of auxiliary fields generated by
the Hubbard-Stratonovich decoupling of the
Hubbard repulsion. Away from half-filling, this

RESEARCH

Zheng et al., Science 358, 1155–1160 (2017) 1 December 2017 1 of 6

1Division of Chemistry and Chemical Engineering,
California Institute of Technology, Pasadena,
CA 91125, USA. 2Department of Chemistry, Princeton
University, Princeton, NJ 08544, USA. 3Department
of Physics and Astronomy, University of California–Irvine,
Irvine, CA 92697, USA. 4Institute for Theoretical
Physics, University of Amsterdam, Science Park 904,
1098 XH Amsterdam, Netherlands. 5Delta Institute for
Theoretical Physics, University of Amsterdam, Science
Park 904, 1098 XH Amsterdam, Netherlands. 6Fachbereich
Physik, Philipps-Universität Marburg, 35032 Marburg,
Germany. 7Department of Physics, The College of William
and Mary, Williamsburg, VA 23187, USA.
*These authors contributed equally to this work.
†Corresponding author. Email: boxiao.zheng@gmail.com
(B.-X.Z.); gkc1000@gmail.com (G.K.-L.C.)

on D
ecem

ber 19, 2017
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


decoupling has a sign problem. We use the CP
approximation to eliminate the sign problem at
the cost of a bias dependent on the quality of
the trial state (31, 32). In this work, the Trotter
error is well converged, and we report the sta-
tistical error bar. To minimize the CP bias, we
use several different trial states, including a self-
consistently optimized trial state (33). The cal-
culations are carried out on finite cylinders with
open, periodic, and twist-averaged boundary
conditions, with widths of up to 12 sites and
lengths of up to 72 sites. This method can reach
large sizes, and finite-size effects are mini-
mized. The uncontrolled error is from the CP
approximation.

Density matrix renormalization group

DMRG is a variational wave function approxi-
mation usingmatrix product states (MPS), which
are low-entanglement states with a 1D entangle-
ment structure. The quality of the approximation
is determined by the bond dimension (matrix
dimension) of the MPS. The calculations are
carried out on finite cylinders with widths of
up to 7 sites and lengths of up to 64 sites, with
periodic boundary conditions in the short direc-
tion and open boundaries in the long direction.
Two different DMRG algorithms were used: one
formulated in a pure (real-space) lattice basis and
the other in a mixed momentum and lattice
(hybrid) basis, with the momentum representa-
tion along the short periodic direction (34). We
remove the bond-dimension error and finite
size error in the long direction by well-known
extrapolation procedures and report the asso-
ciated error bar (35). Consistency between the
lattice and hybrid DMRG algorithms provides a
strong validation of this error bar. The remain-
ing uncontrolled error is the finite-width error
in the periodic direction.

Density matrix embedding

DMET is a quantum embedding method that
works directly at the thermodynamic limit, al-
though interactions are only accurately treated
within an impurity cluster (36). To solve the im-
purity problem, which consists of a supercell of
the original lattice coupled to a set of auxiliary
bath sites, we use a DMRG solver.We treat super-
cells with up to 18 sites. The error bar reported in

DMET corresponds to the estimated error from
incomplete self-consistency of the impurity prob-
lem. The remaining uncontrolled error is the
finite impurity-size error.

Infinite projected entangled pair states

iPEPS is a variational approach that uses a low-
entanglement tensor network ansatz natural to
2D systems (37–39). The calculations are carried
out directly in the thermodynamic limit, where
different supercell sizes, including up to 16 sites,
are used to stabilize different low-energy states
(with different orders commensurate with the
supercell). As in DMRG, the accuracy of the
ansatz is systematically controlled by the bond
dimension D of the tensors. Estimates of quan-
tities in the exact D limit are obtained by using
an empirical extrapolation technique, which is
a potential source of uncontrolled error.

Cross-checks: Systematic errors and
finite-size biases

The use of multiple techniques allows us to esti-
mate the uncontrolled errors from one technique
using information from another. For example,
by carrying out simulations on the same finite
clusters in the AFQMC and DMRG calculations,
we can estimate the CP bias in AFQMC. Simi-
larly, in the AFQMC calculations, we can treat
larger-width cylinders than is possible in the
DMRG simulations; thus, we can estimate the
finite-width error in DMRG.
In all of the methods, there is a bias toward

orders commensurate with the shape of the
simulation cell, be it the finite lattice and bound-
ary conditions in AFQMC andDMRG, the impu-
rity cluster in DMET, or the supercell in iPEPS.
Using this bias, together with different boundary
conditions and pinning fields, we can stabilize
different metastable orders. For example, by
setting up clusters commensurate withmultiple
inhomogeneous orders and observing the order
that survives, we can determine the relative ener-
getics of the candidate states.We can fit the orders
along the short or the long axis of the cluster to
obtain two independent estimates of the energy.
We have carried out exhaustive studies of about
100 different combinations of clusters, cells, and
boundary conditions to fully investigate the low-
energy landscape of states. These detailed results

are presented in (30). To characterize the orders,
we use the local hole density 1� ðhn↑ þ n↓iÞ,
magnetic moment 1

2 hn↑ � n↓i, and pairing order
1ffiffi
2

p ða†i↑a†j↓ þ a†j↑a
†
i↓Þ (i adjacent to j ).

Characterizing the ground state at
1/8 doping

Using the above methods, we carried out calcu-
lations for the ground state of the 2D Hubbard
model at 1/8 doping at U/t = 8. The first check
of reliability is the independent convergence
of the methods for the energy per site. Although
the quality of the ground-state energy may be
a poor proxy for the quality of the correspond-
ing state when the overall accuracy is low (as
there are always many degenerate states far
above the ground state), calculations with well-
converged energies tightly constrain the ground-
state order, as any degeneracies must be below
the energy-convergence threshold. Figure 1 shows
the best energy estimate for the ground state
from the different methods (30). The two dif-
ferent DMRG formulations (in real-space and
hybrid basis) are in good agreement, providing
a strong independent check of the calculations;
in subsequent figures, we report only the single
consistent result. Note that the error bars for
AFQMC, DMRG, and DMET do not reflect the
uncontrolled systematic errors in the methods.
However, as described above, the systematic
errors can be estimated by cross-checks between
the methods. For example, DMRG and AFQMC
calculations on finite clusters with identical
boundary conditions provide an estimate of the
small CP bias [see (30, 33)] consistent with the
difference in the DMRG and AFQMC energies
in Fig. 1; similarly, AFQMC extrapolations to the
thermodynamic limit indicate that the DMRG
energies are essentially converged with respect
to cylinder width.
There is good agreement between all the

methods, and all energies lie in the range –0.767 ±
0.004t. If, for a typical HTSC material, we esti-
mate t~ 3000K, then this corresponds to a range
of about ±10 K per site, or ±100 K per hole. For a
numerical comparison, this is also more than an
order of magnitude lower than the temperatures
accessible in simulations using finite-temperature
methods in the thermodynamic limit in this part
of the phase diagram, indicating that we are
potentially accessing different physics (24, 29).
Shown in the inset are the corresponding best
estimates at half-filling from the same methods,
where the spread in energies is less than 0.001t.
This illustrates the substantially greater numer-
ical challenge encountered in the underdoped
region. Nonetheless, the accuracy and agreement
reached here represent a 10-fold improvement
over recent comparisons of numerical methods
at this point in the phase diagram (24).

Ground-state stripe order

For all the methods used, the lowest energies
shown in Fig. 1 correspond to a vertically striped
state. This is a codirectional charge and spin-
density wave state, with the region ofmaximum
hole density coinciding with a domain wall in
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Fig. 1. Ground-state energies.
Best estimates of ground-state
energy for the 1/8-doped 2D
Hubbard model at U/t = 8 from
DMET, AFQMC, iPEPS, and
DMRG in units of t. Inset shows
best estimates of ground-state
energy for the half-filled 2D
Hubbard model at U/t = 8.
Here and elsewhere, error bars
indicate only the estimable
numerical errors of each
method; uncontrolled system-
atic errors are not included. For
details, see (30).
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the antiferromagnetism. As mentioned, uni-
directional stripes of various kinds are a long-
standing candidate order in the doped Hubbard
and related models. Hartree-Fock calculations
give filled stripes (i.e., one hole per unit cell of
the charge order) in both vertical and diagonal
orientations, whereas one of the first applica-
tions of the DMRG to 2D systems found strong
evidence for half-filled stripes in the t-J model
(13). Finally, one of the earliest examples of in-
homogeneity in dopedHTSCs was the static half-
filled stripes in LaSrCuO at 1/8 doping (40).
The convergence to the same inhomogeneous

order in the ground state in the current study,
from multiple methods with very different ap-
proximations, strongly suggests that stripes in-
deed represent the true ground-state order of
the Hubbard model in the underdoped regime
and further highlights the accuracy that we
achieve with different techniques. However,
the stripe order that we find has some un-
usual characteristics. We return to the details
of the stripe order, its associated physics, and
its relationship with experimentally observed
stripes further below. First, however, we ex-
amine the possibility of other competing meta-
stable states.

Competing states: Uniform d-wave state

Recent work using iPEPS and DMET on the
t-J and Hubbard models suggested close com-
petition between a uniform d-wave super-
conducting ground state and a striped order
(18, 19). Uniform states did not spontaneously
appear in any of our calculations, which in-
dicates that they lie higher in energy than
do striped orders. We found that we could
stabilize a uniform d-wave state in the DMET
calculations by constraining the impurity cluster
to a 2 site–by–2 site or 2

ffiffiffi
2

p
site–by–

ffiffiffi
2

p
site

geometry and, in the iPEPS calculations, by
using a 2 site–by–2 site unit cell. DMET cal-
culations on similarly shaped larger clusters
(such as a 4 site–by–4 site cluster) spontane-
ously broke symmetry to create a nonuniform
state. From these calculations, we estimate that
the uniform state lies ~0.01t above the lowest-
energy state and is not competitive at the energy
resolution we can now achieve (30).

Competing states: Other
short-range orders

Although other types of orders have been pro-
posed in the underdoped region, such as spiral
magnetic phases (20, 41) and checkerboard order
(42), we find no evidence for other kinds of short-
range orders at this point in the phase diagram.
The lack of checkerboard order, which would
easily fit within the large clusters in our simula-
tions (e.g., up to 64 site–by–6 site in the DMRG
calculations), appears to rule them out as low-
energy states, in agreement with earlier DMRG
simulations on the t-J model (43). Though we
cannot rule out incommensurate orders, we have
found that the variation of energy with unit-cell
wavelength (see below) is quite smooth, and thus
we do not expect a dramatic energy gain from

incommensurability. We note that studies that
have found incommensurate magnetic orders
have focused on smaller values of U (20).

Diagonal versus vertical stripes

We find the ground-state order to be a ver-
tical stripe–type order, but other studies of
stripes indicate that different orientations can
form (44). On short-length scales, the relevant
question is whether diagonal stripes [with a

(p, p) wave vector] are competitive with ver-
tical stripes [with a (0, p) wave vector]. With
the boundary conditions used in this work,
diagonal stripes would be frustrated in the
DMRG and AFQMC calculations and thus
did not spontaneously appear. To stabilize di-
agonal stripes in the DMET and iPEPS cal-
culations, we used tilted n

ffiffiffi
2

p
site–by–

ffiffiffi
2

p
site

impurity clusters (n = 2 or n = 5) for DMET,
and a 16 site–by–16 site simulation cell with
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Fig. 2. Competing states. Shown are the energies of important competing states
relative to the striped ground state from DMET and iPEPS and the sketches of the
corresponding orders. (A) Relative energy of competing states in units of t compared
to the vertically striped state. Charge, spin, and pairing orders of the uniform d-wave
state from (B) DMET [blue circle in (A)] and (C) iPEPS [green squares in (A)]. (D) Charge
and spin orders of the diagonally striped state from iPEPS. Note that the spins are
flipped in the neighboring supercells. [For (B), (C), and (D), circle radius is proportional
to hole density, arrow height is proportional to spin density (red and blue arrows indicate
spin direction), and bond width (blue and tan lines) is proportional to pairing density]. For more
details, see (30).

Fig. 3. Wavelength of the
vertical-stripe order.
Energies of stripes with
different wavelengths relative
to that of the l = 8 stripe
from DMET, AFQMC, iPEPS,
and DMRG in units of t. To aid
readability, the data points
are shifted horizontally. Inset
shows relative energies of
stripes with different wave-
lengths from UHF, with an
effective coupling U/t = 2.7.
For details of calculations,
see (30).
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16 independent tensors in iPEPS. The 16 site–
by–16 site iPEPS cell gave a diagonal stripe
(Fig. 2) that was substantially higher in energy
than the vertical stripe, by 0.009t. The DMET
cluster gave rise to a frustrated diagonal order
that we also estimate to be higher in energy
by ~0.005t (30). Although it is likely that the
orientation of the stripe will depend on dop-
ing and coupling, vertical stripes appear to
be clearly preferred at this point in the phase
diagram.

Ground-state stripes: Detailed analysis

We now return to a more detailed discussion
of the vertical-stripe order found in the ground
state. Within the family of vertical stripes, we
can consider questions of wavelength (charge
and spin periodicity), type and strength of charge
and spin modulation (e.g., bond- versus site-
centered), and coexistence with pairing order.

We first discuss the wavelength l. At 1/8 dop-
ing, the filling of the stripe is related to the
wavelength by l/8. As described, we can access
different wavelength metastable stripes and
their relative energetics by carefully choosing
different total cluster dimensions and bound-
ary conditions (in the DMRG and AFQMC calcu-
lations) or unit cell (iPEPS) and impurity (DMET)
sizes (30). Figure 3 shows the energy per site of
the stripe versus its wavelength l for the mul-
tiple methods. Earlier DMRG calculations on
the Hubbard model had focused on l = 4 (half-
filled stripes), which are seen in HTSCs (13, 14),
but we now observe that these are relatively
high in energy. A striking feature is that for l =
5 to 8 the energies are nearly degenerate. This
is clearly seen in the DMET data, where stripes
of all wavelengths can be stabilized, as well as
from the averaged energy of the methods be-
tween l = 5 to 8 (stars in Fig. 3). The energy

difference between the l = 5 and l = 8 stripe in
the different methods is estimated to be be-
tween 0.0005t (DMRG) and 0.0041t (iPEPS).
This suggests that the magnetic domain walls
can fluctuate freely, consistent with proposals
for fluctuating stripes. In particular, the stripes
may be distorted at a small cost over long length
scales.
Although the different wavelengths are nearly

degenerate, there appears to be a slight min-
imum near wavelength l = 8 (a filled stripe)
in all the methods. Very recently, similar filled
stripes have been reported as the ground state
in part of the frustrated t-J model phase dia-
gram (45). The wavelength l = 9 appears much
higher in energy in both DMET and DMRG.
In the DMRG calculations, the l = 9 state was
not even metastable, as boundary conditions
and initial states were varied, so the high-energy
state shown was forced with a static potential.
The AFQMC results show a much weaker de-
pendence on wavelength for longer wavelengths;
for example, the l = 8 and l = 10 stripe energies
per site appear to be within 0.0015t. However,
when a mixture of the l = 8 and l = 10 stripe
states is set up on a 40 site–length cluster that is
commensurate with both, the state that survives
is the l = 8 stripe, suggesting a preference for
this wavelength. The increase in energy at
wavelengths l > 8 coincides with unfavorable
double occupancy of the stripe. This simple
interpretation is supported by a mean-field
[unrestricted Hartree-Fock (UHF)] calculation
with an effective interaction U/t = 2.7 chosen
within the self-consistent AFQMC procedure
(Fig. 3, inset). The mean-field result shows a
clear minimum at a wavelength l = 8 vertical
stripe. [This requires the use of an effective U/
t; at the bare U/t = 8, mean-field theory would
produce a diagonal stripe (46).] The corre-
spondence between the energies and densities
in the effective mean-field and correlated cal-
culations suggests that mean-field theory with
a renormalized interaction may be surprisingly
good at describing the energetics of stripes.
However, mean-field theory appears to some-
what underestimate the degeneracy of the
stripes as a function of wavelength, particularly
at shorter wavelengths.
The vertical-stripe order for the l = 8 stripe

from the different methods is depicted in Fig. 4.
We show the full period (16) for the spin
modulation. The stripe is a bond-centered stripe
in the AFQMC, DMRG, and DMET calculations.
In the iPEPS calculation, the stripe is nominally
site centered. In all the calculations, the width
of the hole domain-wall spans several sites,
blurring the distinction between bond- and
site-centered stripes, and we conclude that
the energy difference between the two is very
small. There is substantial agreement in the order
observed by the different numerical techniques,
with only some differences in the modulation
of the hole and spin densities.
For even wavelength stripes, the spin wave-

length must be twice that of the charge mod-
ulation to accommodate the stripe as well as

Zheng et al., Science 358, 1155–1160 (2017) 1 December 2017 4 of 6

Fig. 4. Charge and spin orders. Shown are sketches of the charge and spin orders in the
l = 8 stripes from (A) DMET, (B) AFQMC, (C) iPEPS, and (D) DMRG. The local magnetic
moments and hole densities are shown above and below the order plots, respectively. (Circle
radius is proportional to hole density, and arrow height is proportional to spin density.) The gray
dashed lines represent the positions of maximum hole density and the magnetic domain wall.
For more details, see (30).
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the antiferromagnetic order. At odd wave-
lengths, site-centered stripes appear in all the
calculations, and here, charge and spin order
can have the same wavelength. [This odd-even
alternation does not affect the peaks of the
structure factor near (p, p); see (30).]

Pairing order, fluctuations,
and superconductivity

A key question is whether pairing order coexists
with stripe order. Previous work on the t-Jmodel
with iPEPS found coexisting d-wave order for par-
tially filled (l < 8) stripes. We did not find d-wave
order in the Hubbard l = 8 stripe with any tech-
nique. However, d-wave order can be found at
other wavelengths. For example, for l = 5 and l =
7 stripes, iPEPS produces d-wave order along the
bonds (see Fig. 5), with a maximum d-wave ex-
pectation value of 0.026 and 0.021, respectively.
DMRG calculations with pinning pairing fields
on the boundary for a 32 site–by–4 site cylinder
also find d-wave order, with a maximum d-wave
order of 0.025, consistent with the iPEPS results.
In theDMET calculations, the lowest energy l = 5
stripe has no d-wave order; however, at slightly
higher energy (~0.003t), a l = 5 state similar to
the iPEPS stripe can be found with coexisting
d-wave order, but with a substantially smaller
maximum order parameter of 0.01. Overall, our
results support the coexistence of modulated
d-wave order with the striped state, although the
strength of pairing is dependent on the stripe
wavelength and filling. The pairing modulation
that we find (Fig. 5) is in-phase between cells.
Other kinds of pairing inhomogeneities, such as
pair density waves, have also been discussed in
the literature (6).
It has long been argued that fluctuating

stripes could promote superconductivity (47–49).
Our work provides some support for this con-
jecture, as there is a low-energy scale associated
with the deformation of stripe wavelength
as well as evidence for coupling between the
wavelength and the pairing channel. We can
imagine fluctuations in wavelength both at
low temperatures as well as in the ground
state. In the latter case, this could lead to a
stripe-liquid ground state rather than a stripe
crystal. Our calculations are consistent with
both possibilities.

Varying the coupling

We may also ask whether the U/t = 8, 1/8
doping point is an anomalous point in the
Hubbard phase diagram and if, for example,
moving away from this point would cause the
unusual stripe compressibility (with respect
to wavelength at fixed doping) to be lost. In
Fig. 6, we show the energies of various striped
states and the uniform state at U/t = 6 and
U/t = 12, 1/8 doping, computed using AFQMC,
DMET, and DMRG. At both couplings, the
stripes around wavelength l = 8 are nearly
degenerate, with the degeneracy increasing
as the coupling increases. At U/t = 6, we find
that the ground state is a filled stripe state
with wavelength l = 8, with a larger energy

stabilization than at U/t = 8. The trend is con-
sistent with the state observed at U/t = 4,
with a more sinusoidal spin-density wave,
more delocalized holes, and a more pronounced
minimum wavelength (17). At U/t = 12, we
find a filled stripe with AFQMC and DMRG
(width of six sites), but DMET and DMRG on
a narrower cylinder (width of four sites) find
l = 5 and l = 6. The similarity of the DMET
and DMRG (width of four sites) data suggests
that the shorter wavelength is associated with

a finite-width effect. We note that two-thirds-
filled stripes consistent with l = 5 and l = 6
were also seen in earlier DMRG studies on
six-site-width cylinders (15), but a more de-
tailed analysis shows that the filled stripe be-
comes favored when extrapolated to infinite
bond dimension (30). Thus, we conclude that
the ground state at U/t = 12 is also the l = 8
stripe, although stripes of other wavelengths
become even more competitive than at U/t =
8. Overall, the similarity in the physics over a
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Fig. 5. d-wave pairing. Shown are metastable stripe states with d-wave pairing from iPEPS,
DMET, and DMRG. (A) and (B) iPEPS stripes with l = 5 and l = 7. (C) DMETmetastable
l = 5 stripe with pairing. (Circle radius is proportional to hole density, arrow height is proportional
to spin density, and bond width is proportional to pairing density). (D) DMRG pairing order
parameters on a 32 site–by–4 site cylinder. The positive values are from the vertical bonds,
and the negative values are from the horizontal bonds. The x axis is the site number along the
long axis of the cylinder. For details, see (30).

Fig. 6. Varying the interaction strength. Relative energies of stripe states (versus wavelength)
and the uniform d-wave state at 1/8 doping for (A) weaker and (B) stronger couplings. For details,
see (30).
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wide range of U/t indicates that striped orders
with low-energy fluctuations of domain walls
remain a robust feature in the moderate to
strongly coupled underdoped region.

Connection to stripe order in HTSCs

In HTSCs, the accepted stripe wavelength at 1/8
doping (e.g., in LaSrCuO) is l ≈ 4.3 (close to half-
filled) (40). However, we find that the l = 4 stripe
is not favored in the 2D Hubbard model for the
coupling range (U/t=6 to 12) normally considered
most relevant to cuprate physics. This implies that
thedetailed charge orderingof realmaterials arises
from even stronger coupling or,more likely, quan-
titative corrections beyond the simple Hubbard
model. With respect to the latter, one possibility
is long-range hopping (such as a next-nearest-
neighbor hopping),whichhas been seen to change
the preferred stripe wavelength in the frustrated
t-J model (45). Another possibility is the long-
range Coulomb repulsion. Long-range repulsion
can play a dual role, in both driving charge in-
homogeneity as well as smoothing it out. In the
Hubbard model, where stripes naturally form,
the latter property canhelp drive the ground state
toward shorter stripe wavelengths. We have esti-
mated the effect of the long-range interactions on
the stripe energetics by computing the Coulomb
energy of the charge distributions in Fig. 4. We
use a dielectric constant of 15.5 [in the range
proposed for the cuprate plane (50)]. This gives
a contribution favoring the shorter wavelength
stripes that is on the order of ~0.01t per site for
the l = 4 versus l = 8 stripe (30). Although this
is only an order-of-magnitude estimate, it is on
the same energy scale as the stripe energetics in
Fig. 2 and thus provides a plausible competing
mechanism for detailed stripe physics in real
materials.

Conclusions

In this work, we have used state-of-the-art
numerical methods to determine the ground
state of the 1/8 doping point of the 2D Hubbard
model at moderate to strong coupling. Through
careful convergence of all the methods, and
exhaustive cross-checks and validations, we are
able to eliminate several of the competing orders
that have been proposed for the underdoped
region in favor of a vertically striped order with
wavelength near l ≈ 8. The striped order dis-
plays a remarkably low-energy scale associated
with changing its wavelength, which implies
strong fluctuations either at low temperature
or in the ground state itself. This low-energy
scale can roughly be accounted for at the mean-
field level with a strongly renormalized U. We
find coexisting pairing order with a strength
dependent on the stripe wavelength, indicat-
ing a coupling of stripe fluctuations to super-
conductivity. The stripe degeneracy is robust,
as the coupling strength is varied.
It has long been a goal of numerical sim-

ulations to provide definitive solutions of mi-
croscopic models. Our work demonstrates that
even in one of the most difficult condensed
matter models, such unambiguous simulations

are now possible. In so far as the 2D Hubbard
model is a realistic model of high-temperature
superconductivity, the stripe physics observed
here provides a firm basis for understanding the
diversity of inhomogeneous orders seen in the
materials, as well as a numerical foundation
for the theory of fluctuations and its connec-
tions to superconductivity. However, our work
also enables us to see the limitations of the
Hubbard model in understanding real HTSCs.
Unlike the stripes at this doping point in real
materials, we find filled stripes rather than
near-half-filled stripes. Given the very small
energy scales involved, terms beyond the
Hubbard model, such as long-range Coulomb
interactions, will likely play a role in the de-
tailed energetics of stripe fillings. The work
we have presented provides an optimistic per-
spective that achieving a comprehensive numer-
ical characterization of more-detailed models
of the HTSCs will also be within reach.
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and/orin check to discern the ground state of the HM. Both groups found evidence for stripes, or one-dimensional charge 
 used five complementary numerical methods that kept each otheret al.of the HM at finite temperature, whereas Zheng 

 studied a three-band versionet al.computationally challenging. Two groups have tackled this important problem. Huang 
is−−all of which applies in the case of correlated electron systems−−particles are fermions, and the temperature is low

 from one lattice site to the next. Although it appears simple, solving the HM when the interactions are repulsive, the
 The Hubbard model (HM) describes the behavior of interacting particles on a lattice where the particles can hop

Numerics converging on stripes
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