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ABSTRACT 

We describe a new problem solver called STRIPS that attempts to find a sequence o f  operators 

in a spcce o f  world models to transform a given initial world model into a model in which a 

given goal formula can be proven to be true. STRIPS represents a world n,~del as an arbitrary 

collection o f  first-order predicate calculus formulas and is designed to work with .models con- 

sisting o f  large numbers o f  formulas. It employs a resolution theorem prover to answer ques- 

tions o f  particular models and uses means-ends analysis to guide it to the desired goal-satisfying 

model. 

DESCRIFIIVE TERMS 

Problem solving, theorem proving, robot planning, heuristic search. 

1. Introduction 

This paper describes a new problem-solving program called STRIPS 

(STanford Research Institute Problem Solver). An initial version of the 

program has been implemented in LISP on a PDP-10 and is being used in 

conjunction with robot ~esearch at SRI. STRIPS is a member of the class of 

problem solvers that search a space of "world models" to find one in which a 

given goal is achieved. For any world model, we assume that there exists a set 

1 The research reported herein was sponsored by the Advanced Research Projects 

Agency and the National Aeronautics and Space Administr~ttion under Contract NAS12- 

2221. 
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190 RICHARD E. HKES AND NILS J. NILSSON 

of applicable operators, each of which transforms the world model to some 
other world model. The task of the problem solver is to find some composi- 
tion of operators that transforms a given initial world model into one that 

satisfies some stated goal condition, 
This framework for problem solving has been central to much of the 

research in artificial intelligence [1]. Our primary interest here is in the class 
o f  problems faced by a robot in re-arranging objects and in navigating, i.e., 
problems that require quite complex and general world models compared to 
those needed in the solution of puzzles and games. In puzzles and games, a 

simple matrix or list structure is usually adequate to represent a state of the 

problem3. The world model for a robot problem solver, however, must in- 

clude a large number of facts and relations dealing with the position of the 
robot and the positions and attributes of various objects, open spaces, and 
boundaries. In STRIPS, a world model is r~presented by a set of well- 
formed formulas (wffs) of the first-order predicate calculus. 

Operators are the basic elements from which a solution is built. For robot 
problems, each operator ~orresponds to an action routine 2 whose execution 

causes a robot to take certain actions. For example, we might have a routine 
that causes it to go through a doorway, a routine that causes it to push a box, 
and perhaps dozens of others. 

Green [4] implemented a problem-solving system that depended exclus- 
ively on formal theorem-proving methods to search for the appropriate 
seque~ice of operators. While Green's formulation represented a significant 
step in the development of problem-solvers, it suffered some serious disad- 
vantages connected with the "frame problem ''3 that prevented it from 
solving nontrivial problems. 

In STRIPS, we surmount these difficulties by separating entirely the pro- 
cesses of theorem proving from those of searching through a space of world 

models. This separation allows us to employ separate strategies for these two 
activities and thereby improve the overall performance of the system. Thco- 
rein-proving methods are used only within a given world model to answer 

questions about it concerning which operators are applicable and whether or 

not goals have been satisfied. For searching through the space of world 
models, STRIPS uses a GPS-like means-end analysis strategy [6]. This com- 

2 The reader should keep in mind the distinction between an operator and its associated 
action routine. Execution of action routines actually causes the robot to take actions. 
Application of operators to world models occurs during the planning (i.e., problem solving) 
phase when an attempt is being made to find a sequence of operators whose associated 
action routines will produce a desired state of the world. (See the papers by Munson [2] 
an~l Fikes [3] for discussions of the relationships between STRIPS and the robot executive 
and monitoring functions.) 

Space does not alow a full discussion of the frame problem; for a thorough treatment, 
see [5l. 
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bination of means-ends analysis and formal theorem-pro,/~ng methods allows 

objects (world models) much more complex and general than any of those 
used in GPS and provides more powerful search heuristics than those found 

in theorem-proving programs. 
We proceed by describing the operation of STRIPS in terms of the con- 

ventions used to represent the search space for a problem and the search 
methods used to find a solution. We then discuss the details of impIementa- 

tion and present some examples. 

2. The Operation of STRIPS 

2.1. The Problem Space 

The problem space for STRIPS is defined by the initial world model, the set 

of available operators and their effects on world models, and the goal state- 

ment. 
As already mentioned, STRIPS represents a world model by a set of well- 

formed formulas (wffs). For example, to describe a world model in which the 

robot is at location a and boxes B and C are at locations b and c we would 

include the following wffs: 

ATR(a) 
AT(B, b) 

AT(C, c). 

We might also include the wff 

(Vu Yx Vy){[AT(u, x) ^ (x # y)] ~ ~ AT(u, y)} 

to state the general rule that an object in one place is not in a different place. 
Using first-order predicate calculus wffs, we can represent quite complex 
world models and can use existing theorem-proving programs to answer 

questions about a model. 
The available operators are grouped into families called schemata. Con- 

sider for example the operator goto for moving the robot from one point on 

the floor to another. Here there is really a distinct operator for each different 
pair of points, but it is convenient to group all of these into a family goto 

(m, n) parameterized by the initial position4m and the final position n. We say 

that goto (m, n) is an operator schema whose members are obtained by sub- 

stituting specific constants for the parameters rn and n. In STRIPS, when an 
operator is applied to a world model, specific constants will already have 

been chosen for the operator parameters. 
Each operator is defined by an operator description consisting of two main 

, The parameters m and n are each really vector-valued, but we avoid vector n, ,tation here 
for simplicity. In general, we denote constants by letters near the beginning of ,ae alphabet 
(a, b, c , . . . ) ,  parameters by letters in the middle of the alphabet (m, n,. . .) ,  ~xtd quantified 
variables by letters near the end of the alphabet (x, y, z). 
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parts: a description of the effects of the operator, and the conditions under 
which the operator is applicable. The effects of an operator are simply 
defined by a list of wffs that must be added to the model and a list of wffs that 
are no longer true and therefore must be deleted. We shall discuss the process 
of calculating these effects in more detail later. It is convenient to state the 
applicability condition, or precondition, for an operator schema as ,~ wff 
schenu~. To determine whether or not there is an instance of an operator 
schema applicable to a world model, we must be able to prove that there is an 
instance of the corresponding wff schema that logically follows from the 
model. 

For example, consider the question of applying instances of the operator 
.subschema goto (m, b) to a world model containing the wff ATR(a), where a 
and b are constants. If the precondition wff schema ofgoto (m, n) is ATR(m~, 
then we find that the instance ATR(a) can be proved from the world model. 
Thus, an applicable instance of goto(m, b) is goto(a, b). 

It is important to distinguish between the parameters appearing in wff 
schemata and ordinary existentially snd universally quantified variables that 
may also appear. Certain modifications must be made to theorem-proving 
programs to enable them to handle wff schemata; these are discussed later. 

G0al statements are also represented by wfl's. For example, the task "Get 
Boxes B and C to Location a" might be stated as the wff: 

AT(B, a) A AT(C, a). 

To summarize, the problem space for STRIPS is defined by three entiti,¢s: 

(1) An initial world model, which is a set of wffs describing the present 
state of the world. 

(2) A set of operators, including a description of their effects and their 
precondition wff schemata. 

(3) A goal cendition stated as a wff. 
The problem is solved when STRIPS produces a world model that satisfies 
the goal wff. 

2.2. The Search Strategy 

In a very simple problem-solving system, we might first apply all of the 
applicable operators to the initial world model to create a set of successor 
models. We would continue to apply all applicable operators to these suc- 
cessors and to their descendants (say in breadth-first fashion~ until a model 
was produced in which the goal formula was a theorem. However, since we 
envision uses in which the number of operators applicable to any given world 
model might be quite large, such a simple system would generate an 
undesirably large tree of world models and would thus be impractical. 
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Instead, we have adopted the GPS strategy of extracting "differences" 
between the present world model and the goal and of identifying operators 
that are "relevant" to reducing these differences [6]. Once a relevant operator 
has been determined, we attempt to solve the subproblem of producing a 
world model to which it is applicable. If such a model is found, then we 
apply the relevant operatoi and ieconsider the original goal in the resulting 
model. In this section, we review this basic GPS search strategy as employed 
by STRIPS. 

STRIPS begins by employing a theorem prover to attempt to prove that 
the goal wff Go follows from the set Mo of wtTs describing the initial world 
model. If Go does follow from Mo, the task is trivially solved in the initial 
model. Otherwise, the theorem prover will fail to find a proof. In this case, 
the uncompleted proof is taken to be the "difference" between Mo and Go. 
Next, operators that might be relevant to "reducing" this difference are 
sought. These are the operators whose effects on world models would enable 
the proof to be continued. In determining relevance, the parameters of the 
operators may be partially or fully instantiated. The corresponding instanti- 
ated precondition wffschemata (of the relevant operators) are then taken to be 
new subgoals. 

Consider the trivially simple example in which the task is for the robot to 
go to location b. The goal wff is thus ATR(b), and unless the robot is already 
at location b, the initial proof attempt will be unsuccessful. Now, certainly 
the instance goto(m, b) of the operator goto(m, n) is relevant to reducing the 
difference because its effect would allow the proof to be continued (in this 
case, completed). Accordingly, the corresponding precondition wff schema, 
say ATR(m), is used as a subgoal. 

STRIPS works on a subgoal using the same technique. Suppose the pre- 
condition wff schema G is selected as the first subgoal to be worked on. 
STRIPS again uses a theorem prover in an attdmpt to find instances of G 
that follow from the initial world model Mo. Here again, there are two possi- 
bilities. If no proof can be found, STRIPS uses the incomplete proof as a 
difference, and sets up (sub) subgoals corresponding to their precondition 
wffs. If STRIPS does find an instance of G that follows from Mo, then the 
corresponding operator instance is used to t,~ansform Mo into a new world 
model M1. In our previous simple example, the subgoal wff schema G was 
ATR(m). If the initial model contains the wffATR(a), then an instance of G-- 
namely ATR(a) can be proved from Mo. In this case, the corresponding op- 
erator instance goto(a, b) is applied to Mo to produce the new model, MI. 
STRIPS then continues by attempting to prove Go from MI. In our example, 
Go trivially follows from M~ and we are through. However, if no proof could 
be found, subgoals for this problem would be set up and the process would 

continue. 
Artij~ial Intelligence 2 (1971), 189-208 
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The hierarchy of goal, subgoals, and models generated by the search 
process is represented by a search tree. Each node of the search tree has the 
form (~world model~, (goal list)), and represents the problem of trying to 
achieve the sub-goals on the goal list (in order) from the indicated world 
model. 

An example of such a search tree is shown in Fig. 1. The top node (Mo, 
(Go)) represents the main task of achieving goal Go from world model Mo. 

'",'%" I I"o"°c'%'% ', 

OP 
c 

("1,(%,%))1 i("=,(%0%)) 

! % 
I 

("3" (c;l'Co) ~" ] 

FIo. 1. A typical STRIPS search tree. 

In this case, two aRernative subgoals Ga and Gb are set up. These are added 
to the front of the goal lists in the two successor nodes. Pursuing one of these 
subgoals, suppose that in the node (Mo, (Ga, Go)), goal Go is satisfied in Mo; 
the corresponding operator, say OPo, is then applied to Mo to yield M1. Thus, 
along this branch, the problem is now to satisfy goal Go from Ml, and this 
problem is represented by the node (MI, (Go)). Along the other path, suppose 
Gc is set up as a subgoal for achieving Gb and thus the node (Mo, (Go, Gb, Go)) 
is created. Suppose Gc is satisfied in -44o and thus OPc is applied to Mo yield- 
ing M2. Now STRIPS must still solve the subproblem Gb before attempting 
the main goal Go. Thus, the result of applying OPc is to replace Mo by M2 
and to remove Gc from the goal list to produce the node (M2, (Gb, Go)). 
Artificial Intelligence 2 (1971), 189-20{, 
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This process continues until STRIPS produces the node (M,, (Go)). Here 

suppose Go can be proved directly from M,  so that this node is terminal. The 

solution sequence of operators is thus (OPt, OPb, OPe). 
This example search tree indicates clearly that when an operator is found 

to be relevant, it is not known where it will occur in the completed plan;that 

is, it may be applicable to the initial model and therefore be the first operator 

applied, its effects may imply the goal so that it is the last operator applied, 

or it may be some intermediate step toward the goal. This flexible search 

strategy embodied in STRIPS combines many of the advantages of both 

forward search (from the initial model toward the goal) and backward 

search (from the goal toward the initial model). 
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F]o. 2. Flow chart for STRIPS. 

Whenever STRIPS generates a successor node, it immediately tests to see 

if the first goal on the goal list is satisfied in the new node's model. If so, the 

corresponding operator is applied, generating a new successor node; if not, 
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the difference (i.e., the uncompleted proof) is stored with the node. Except 
for those successor nodes generated as a result of applying operators, the 
process of successor generation is as follows: STRIPS selects a node and 
uses the difference stored with the node to select a relevant operator. It uses 
the precondition of this operator to generate a new successor. (If all of the 
node's successors have already been generated, STRIPS selects some other 
node still having uncompleted successors.) A flowchart summarizing the 
STRIPS search process is shown in Fig. 2. 

STRIPS has a heuristic mechanism to select nodes with uncompleted suc- 
cessors to work on next. For this purpose we use an evaluation function that 
takes into account such factors as the number of remaining goals on the goal 
list, the number and types of predicates in the remaining goal formulas, and 
the complexity of the difference attached to the node. 

3. Implementation 

3.1. Theorem-Proving with Parameters 

In this section, we discuss the more important details of our implementation 
of STRIPS; we begin by describing the automatic theorem-proving com- 
ponent. 

STRIPS uses the resolution theorem-prover QA3.5 [7] when attempting 
to prove goal and sub-goal wffs. We assume that the reader is familiar with 
resolution proof techniques for the predicate calculus [1]. These techniques 
must be extended to handle the parameters occurring in wff schemas; we 
discuss these extensions next. 

The general situation is that we have some goal wff schema G(p), say, that 
is to be proved from a set M of clauses where ~ is a set of schema parameters. 
Following the general strategy of resolution theorem provers, we attempt to 
prove ~he inconsistency of the set (MU ~ G(p)). That is, we attempt to 
find an instance p' of ~ for which (M U ~ G(,~')} is inconsistent. 

We have been able to use the standard unification algorithm of the resolu- 
tion method to compute the appropriate instances of schema variables during 
the search for a proof This algorithm has the advantage that it finds the most 
general instances of parameters needed to effect unification. To use the unifi- 
cation algorithm we must specify how it is to treat parameters. The following 
substitution types are allowable components of the output of the modified 
unification algorithm: 

• Terms that can be substituted for  a variable: variables, constants, para- 
meters, and functionel terms not containing the variable 

• Terms that can be substituted for  a parameter: constants, parameters, 
and functional terms not containing Skolem functions, variables, or 
the parameter. 

Artificial Intelligence 2 (1971), 189-208 
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The fact that the same parameter may have multiple occurrences in a set of 
clauses demands another modification to the theorem prover. Suppose tw~ 
clauses Ct and C2 resolve to form clause C and that in the process some term 
t is substituted for parameter p, Then we must make sure that p is replaced 
by t in all of the clauses that are descendants of C. 

3.2. Operator Descriptions and Applications 

We have already mentioned that to define an operator, we must state the 
preconditions under which it is applicable and its effects on a world model 
schema. Preconditions are stated as wff schemata. For example, suppose 
G~)  is the operator precondition schema of an operator O(~), p is a set of 
parameters, and M is a world model. Then if p' is a constant instance of p 
for which {M U ~ G(p')} is contradictory, then STRIPS can apply operator 
O~ ' )  to world model M. 

We next need a way to state the effects of operator application on world 
models. These effects are simply described by two lists. On the delete list we 
specify those clauses in the original model that might no longer be true in 
the new model. On the add list are those clauses that might not have been true 
in the original model but are true in the new model. 

For example, consider an operator push(k, m, n) for pushing object k 
from m to n. Such an operator might be described as follows: 

push(k, m, n) 

Precondition: 

delete list 

add list 

ATR(m) 
A AT(k, m) 

ATR(m); 
AT(k, m) 

ATR(n); 
AT(k, n) . 

The parameters of an operator schema are instantiated by constants at 
the time of operator application. Some instantiations are made while de- 
ciding what instances of an operator schema are relevant to reducing a 
difference, and the rest are made while deciding what instances of an oper- 
ator are applicable in a given world model. Thus, when the add and delete 
lists are used to create new world models, all pataa,~crs occurring in them 

will have been replaced by constants. 
(We can make certain modifications to STRIPS to allow it to apply oper- 

ators with uninstantiated parameters. These applications will produce world 
model schemata. This generalization complicates somewhat the simple add 
and delete-list rules for computing new world models and needs further 

study.) 
Artifzcial Intell'genea 7 (1971), 189-208 
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For certain operators it is convenient to be able merely to specify the form 
of clauses to be deleted. For example, one of the effects of a robot goto oper- 
ator must be to delete information about the direction that the robot was 
originally facing even though such information might not have been repre- 
sented by one of the parameters of the operator. In this case we would in- 
clude the atom FACING(I;) on the delete list ofgoto with the convention that 
any atom of the form FACING(S), regardless of the value of $, would be 
deleted. 

When an operator description is written, it may not be possible to name 
explicitly all the atoms that should appear on the delete list. For example, it 
may be the case that a world model contains clauses that are derived from 
other clauses in the model. Thus, from AT(BI, a )and  from AT(B2, a+A), 
we might derive NEXTTO(BI, 132) and insert it into the model. Now, if one 
of the clauses on which the derived clause depends is deleted, then the derived 
clause must also be deleted. 

We deal with this problem by defining a set of primitive predicates (e.g., 
AT, ATR) and relating all other predicates to this primitive set. In particular, 
we require the delete list of an operator description to indicate all the atoms 
containing primitive predicates that should be deleted when the operator is 
applied. Also, we require that any nonprimitive clause in the world model 
have associated with it those primitive clauses on which its validity depends. 
(A primitive clause is one which contains ~nly primitive predicates.) For 
example, the clause NEXTTO(BI, B2) would have associated with it the 
clauses AT(BI, a) and AT(B2, a +A). 

By using these conventions, we can be assured that primitive clauses will 
be correctly deleted during operator applications, and that the validity of 
nonprimitive clauses can be determined whenever they are used in a deduc- 
tion by checking to see if all of the primitive clauses on which the non- 
primitive clause depends are still in the world model. 

3.3. Computing Differences and Relevant Operators 

STRIPS uses the GPS strategy of attempting to apply those operators that 
are relevant to reducing a difference between a world model and a goal or 
subgoal. We use the theorem prover as a key part of this mechanism. 

Suppose we have just created a new node in the search tree represented by 
(M, (Gt, Ga_t,..., Go)). The theorem prover is called to attempt to find a 
contradiction for the set {M U ~ Gt}. If one can be found, the operator ~ 
whose precondition was Gs is applied to M and the process continues. 

Here, though, we are interested in the case in which no contradiction is 
obtained after investing some prespecified amount of theorem-proving effort. 
The uncompleted proof P is represented by the set of clauses that form the 
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negation of the goal wff, plus all of their descendants (if any), less any clauses 
eliminated by editing strategies (such as subsumption and predicate evalua- 
tion). We take P to be the differevee between M and Gl and attach P :to the 
node. s 

Later, in attempting to compute a successor to this node with incomplete 
proof P attached, we first must select a relevant operator. The quest for 
relevant operators proceeds in two steps. In the first step an ordered list of 
candidate operators is created. The selection of candidate operators is based 
on a simple comparison of the predicates in the difference clauses with those 
on the add lists of the operator descriptions. For example, i f  the difference 
contained a clause having in it the negation of a position predicate AT, then 
the operator push would be considered as a candidate for this difference. 

The second step in finding an operator relevant to a given difference in- 
volves employing the theorem prover to determine if clauses on the add list of 
a candidate operator can be used to "resolve away" clauses in the difference 
(i.e., to see if tire proof can be continued based on the effects of the operator). 
If the theorem prover can in fact produce new resolvents that are descen- 
dants of the add list clauses, then the candidate operator (properly instant- 
iated) is considered to be a reievant operator for the difference set. 

Note that the consideration of one candid~.te operator schema may pro- 
duce several relevant operator instances. For example, if the difference set 
contains the unit clauses ~ ATR(a) and ~ ATR(b), then there are two rele- 
vant instances of goto(m, n), namely goto(m, a) and goto(m, b).  Each new 
resolvent that is a descendant of the operator's add list clauses is used to 
form a relevant instance of the operator by applying to the operator's para- 
meters the same substitutions that were made during the production of the 

resolvent. 

3.4. Efficient lRepresentafion of World Models 

A primary design issue in the implementation of a system such as STRIP5 
is how to satisfy the storage requirements of a search tree in which each node 
may contain a different world model. We would like to use STRIPS in a 
robot or question-answering environment where the initial world model 
may consist of  hundreds of wffs. For such applications it is infeasible to 
recopy completely a world model each time a new model is produced by 
application of an operator. 

We have dealt with this problem in STRIPS by first assuming that most of the 
wits in a problem's i,itial world model will not be changed by the application 
of operators. This is certainly true for the class of robot problems with which 
we are currently concerned. For these problems most of the wffs in a model 
describe rooms, walls, doors, and objects, or specify general properties of the 

s If  P is very large we can heuristically select some part of  P as the difference. 
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world, which are true in all models. The only wffs that might be changed in 
this robet environment are the ones that describe the status of the robot and 
any objects which it manipulates. 

Given this assumption, we have implemented th~ following scheme for 
handling multiple world models. All the wffs for all world models are stored 
in a common memory structure. Associated with each wfl" (i.e., clause) is a 
visibility flag, and QA3.5 has been modified to consider only clauses from the 
memory structure that are marked as visible. Hence, we can "define" a par- 
ticular world model for QA3.5 by marking that model's clauses visible and 
all other clauses invisible. When clauses are entered into the initial world 
model, they are all marked as visible. Clauses that are not changed remain 
visible throughout STRIPS' search for a solution. 

Each world model produced by STRIPS is defined by two clause lists. The 
first list, DELETIONS, names all those clauses from the initial world model 
that are no longer present in the model being defined. The second list, 
ADDITIONS, names all those clauses in the model being defined that are 
not also in the initial model. These lists represent the changes in the initial 
model needed to form the model being defined, and our assumption implies 
they will contain only a small number of clauses. 

To specify a given world model to QA3.5, STRIPS marks visible the clauses 
on the model's ADDITIONS list and marks invisible the clauses on the 
model's DELETIONS list. When the call to QA3.5 is completed, the visi- 
bility markings of these clauses are returned to their previous settings. 

When an operator is applied to a world model, the DELETIONS list of the 
new world model is a c.)py of the DELETIONS list of the old model plus 
any clauses from the initial model that ere deleted by the operator. The 
ADDITIONS list of the new model consists of the clauses from the old 
model's ADDITIONS list, as transformed by the operator, plus the clauses 
from the operator's add list. 

3.5. An Example 

Tracing through the main points of a simple example helps to illustrate the 
various mechanisms in STRIPS. Suppose we want a robot to gather together 
three objects and that the initial world model is given by: 

Mo. AT(BOX , b) . 

AT(BOX2, c) 
ATtBOX3, d) 

The goal wff describing this task= is 

Go: (3x) [AT(~OXI, x) ^ AT(BOX2, x) 
^ AT(BOX3, x)]. 
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It*. negated form is 

~ Go: ~ AT(BOX1, z) v ~ AT(BOX2, x) 
v ~ A T ( B O X 3 ,  x) .  

(In ~ Go, the term x is a universally quantified variable.) 

We admit the following operators: 

(1) push (k, m, n): Robot pushes object k from place m to place n. 

Precondition: AT(k, m) A ATR(m) 
Negated precondition : ~ AT(k, m) v ~ ATR(m) 

Delete list: ATR(m) 
AT(k, m) 

Add list: AT(k, n) 
ATR(n) 

(2) goto(m, n): Robot goes from place m to place n. 

Precondition: ATR(m) 
Negated precondition: ~ ATR(m) 

Delete list: ATR(m) 
Add list: ATR(n) . 

Following the flow chart of Fig. 2, STRIPS first creates the initial node 
(Mo, (Go)) and attempts to find a contradiction to {Mo U ~ Go}. This 
attempt is unsuccessful; suppose the incomplete proof is: 

-,, AT(BOXI, x) v ~ AT(BOX2, x) v ~ AT(BOX3, x) 

AT(BOXI, c) v ~ AT(BOX3. c ) ~  / 

,,, AT(BOX2, b) v AT(BOX3, b) ~ ]  
' v  

~ AT(BOXI, a') v ~ AT(BOX2, d) 

We attach this incomplete proof to the node and then select the node to have 
a successor computed. 

The only candidate operator is push(k, m, n). Using the add list clause 
AT(k, n), we can continue the uncompleted proof in one of several ways 
depending on the substitutions made for k ~nd n. Each of these substitutions 
produces a relevant instance of push. One of these is: 

OPI : push(BOX2, m, b) 

given by the substitutions BOX2 for k and b for n. Its associated precondi- 
tion (in negated form) is: 

~ G~: -- AT(BOX2, m) v ~ ATR(m). 
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Suppose OPI is selected and used to create a successor node. (Later in the 
search process another successor using one of the otLer relevant instances of 
push might be computed if our original selection did not lead to a solution.) 
Selecting OPI leads to the computation of the successor node (Mo, (GI, Go)). 

STRIPS next attempts to find a contradiction for {Mo tJ ~ G l}. The un- 
completed proof (difference) attached to the node contains: 

~ AT(BOX2. m ) v  ~ ATR(m) 

AT(BOX2, e) ~ ~ R ( a )  

~ A T R ( c )  ~ A T ( B O X 2 ,  a) 

When this node is later selected to have a successor computed, one of the 
candidate operators is g o t o ( m ,  n). The relevant instance is determined to be 

OP2: goto(m, c)  

with (negated) precondition 

~ Gz:  ATR(m). 

This relevant operator results in the successor node (Mo, (6;2, G~, Go)). 
Nest STRIPS determines that (Mo t3 ,-- G2) is contradictory with m = a. 

Thus, STRIPS applies the operator goto(a, c) to Mo to yield 

ATR(c) / 
M,- AT(BOXI, b) . 

AT(BOX2, c) 
AT(BOX3, d) 

The successor node is (M~, (G~, Go)). Immediately, STRIPS determines that 
(M~ U ~ Go) is contradictory with m - c. Thus, STRIPS applies the oper- 
ator push(BOX2, c, b) to yield 

ATR(b) 
Mz: AT(BOX1, b) 

AT(BOX2, b) " 
AT(BOX3, d) 

The resulting successor node is (M2, (Go)), and thus STRIPS reconsiders the 
original problem but now beginning with world model Mz. The rest of the 
solution proceeds in similar fashion. 

Our implementation of STRIPS easily produces the solution {goto(a, c), 
push(BOX2, c, b), goto(b, d), push(BOX3, d, b)}. (Incidentally, Green's 
theorem-proving problem-solver [4] has not been able to obtain a solution 
to this version of the 3-Boxes problem. It did solve a simpler version of the 
problem designed to require only two operator applications.) 
Artificial Intelligence 2 (1971), 189-208 
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4. Example Problems Selved by STRIPS 

STRIPS has been designed to be a general-purpose problem solver for robot 

tasks, and thus must be able to work with a variety of operators and with a 

world model containing a large number of facts and relations. This section 
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describes its performance on three different tasks. The initial world model for 

all three tasks consists of a corridor with four rooms and doorways (see 

Fig. 3) and is described by the list of  axioms in Table 1. Initially, the robot 

TABLE 1. Formulation for STRIPS Tasks. 

Initial World Model 
(VxVyVz)[CONNECTS(x,y,z)=~ C C N N E CTS(x,z,y)] 
C O N N E ~ R I , R O O M I , R O O M S )  
C O N N E ~ R 2 ,  ROOM2, ROOM 5) 
CONNECTS(DOOR3,ROOM3,ROOMS) 
CONNECTS(DOOR4,ROOM4,ROOMS) 
LOCINROOM(f, ROOM4) 
AT(BOXl,a) 
AT(BOX2,b) 
AT(BOX3,c) 
AT(LIGHTSWlTCH l,d) 
ATROBOT(e) 
TYPE(BOXI,BOX) 
TYPE(BOX2,BOX) 
TYPE(BOX3,BOX) 
TYPE(IM,DOOR) 
TYPE(D3,DOOR) 
TYPE(D2,DOOR) 
TYPE(DI,DOOR) 

INROOM(BOXI,ROOMD 
INROOM(BOX2,ROOMI) 
INROOM(BOX3,ROOMI) 
INROOM(ROBOT, ROOM 1) 
INROOM(LIGHTSWITCHI,ROOM 1 ) 
PUSHABLF.(BOXI) 
PUSHABLE(BOX2) 
PUSHABLE(BOX3) 
ONFLOOR 
STATUS(LIGHTSWITCHI,OFF) 
TYPE(LIGHTSWITCHI,LIGHTSWITCH) 

Operators 
gotol(m): Robot goes to coordinate location m. 

Preconditions: 
(ONFLOOR) A (3x)[INROOM(ROBOT,x) A LOCINROOM(m,x)] 

Delete list: ATROBOT($),NEXTTO(ROBOT,$) 
Add list: ATROBOT(m) 

g6,o2(m): Robot goes next to item m. 

Preconditions: 
(ONFLOOR) ^ {(3x)[INROOM(ROBOT,x) A INROOM(m,x)] V (3x)(3y) 

[INROOM(ROBOT,x) A CONNECTS(m,x,y)]} 
Delete list: ATROBOT($),NEXTrO(ROBOT,$) 

Add list: NEXTTO(ROBOT, m) 
pushto(m,n): robot pushes object m next[to item n 

Precondition: 
PUSHABLE(m) ̂  ONFLOOR A NEXTTO(ROBOT,m) ̂  {(~lx)[INROOM(m,x) 

^ INROOM(n,x)] v Ox3y)[INROOM(m,x) A CONNECTS(n,x,y)]} 
Delete list: AT ROBOT ($) NEXTrO (ROBOT $) NEXTI'O ($,m) 

AT ( m S )  NEXTTO fm$) 

Add list: NEXTTO(m,n) 

NEXTTO(n,m) 
NEXTFO(ROBOT, m) 
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turnonlight(m): robot turns on lightswitch m. 
Precondition: {(3n)[TYPE(n,BOX) A ON(ROBOT, n) A NEXTO(n,m)I} 

A TYPE(m, LIGHTSWITCH) 
Delete list: STATUS(re,OFF) 

Add list: STATUS(re,ON) 
dimbonbox(m): Robot climbs up on box m. 

Preconditions: 
ONi LOOR A TYPE(re,BOX) A NEXTFO(ROBOT, m) 

Delete list: ATROBOT($),ONFLGOR 
Add list: ON(ROBOT#n) 

climboffbox(m): Robot climbs off box m. 
Preconditions: 

TYPE(re,BOX) A ON(ROBOT, m) 
Delete list: ON(ROBOT, m) 

Add list: ONFLOOR 
oothrudoar (k,l,m): Robot goes through door k from room I into room m. 

Preconditions: 
NEXTTO(ROBOT, R) A CONNECTS~,k,I,m) A INROOM(ROBOT,0 A ONFLOOR 

Delete list: ATROBOT($),NEXTTO(ROBOT,$),INROOM(ROBOT, $) 
Add list: INROOM(ROBOT,m) 

Tasks 

1. Turn on the lightswitch 

Goal wfl': STATUSOLIGHTSWITCHI,ON) 
STRIPS solution: {goto2(BOXl),climbonbox(BOXl),climboffbox(BOXl), 

pushto(BOXI,LIGHTSWlTCHl),climbonbox(BOXl), 
turnonlight(LIGHTSWITCHI)} 

2. Push three boxes together 

Goal wff: NEXTTO(BOXI,BOX2) A NEXTTO(BOX2,BOX3) 
STRIPS solution: {goto2(BOX2),pushto(BOX2,BOXl),goto2(BOX3),pushto 

(BOX3,BOX2)} 

3. Go to a location in another room 

Goal wff: ATROBOT(f) 
STRIPS solution: {goto2(DOORl), gothrudoor(DOOR1,ROOM 1 ,ROOMS), 

gogo2(DOOR4),gothrudoor(DOOR4,ROOMS,ROOM4), 
gotol(f)} 

is in R O O M I  at location e. Also in ROOMI  are three boxes and a lightswitch: 

BOXI at location a, BOX2 at location b, and BOX3 at location c; and a light- 

switch, L I G H T S W I T C H  I at location d. The lightswitch is high on a wall out 

of normal reach of tht ~obot. 

The first task is to turn on the lightswitch. The robot can solve this problem 

by going to one of the three bt,xes, pushing it to the lightswitch, climbing on 

the box e and turning oil the light3witch. The sct:ond task is to push the three 

boxes in R O O M I  together. (This task is a more realistic elaborat_ion of the 

6 Th; s task is a robot version of the so-called "Monkey and Bananas" problem. STRIPS 
can solve the problem even though the current SRI robot is incapable of climbing boxes 
and turning on lightswitches. 
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three-box problem used as an example in the last section.) The third task is for 

the robot to go to a designated location, f ,  in ROOM4. 
The operators that are given to STRIPS to solve these problems are 

described in Table 1. For convenience we define two "goto" operators, gotol 
and goto2. The operator gotol(m) takes the robot to any coordinate location 

m in the same room as the robot. The operator goto2(m) takes the robot next 
to any i tem m (e.g., ~ightswitch, door, or box) in the same room as the robot. 

The operator pushto(m, n) pushes any pushable object m next to any i tem n 

(e.g., lightswitch, door or box) in the same room as the robot. Additionally, 
we have operators for turning on lightswitches, going through doorways, and 
climbing on and off boxes. The precise formulation of the preconditions and 

the effects of these operat3rs is contained in Table 1. 

TASLE 2. Performance of STRIPS on "Ihree Tasks. 

Number of operator 
Time taken Number of n o d e s  applications 

(in seconds) On solution In search On solution In search 
Tota! Theorem-proving tyath tree path tree 

Turn on the 
iightswitch 113.1 83.0 13 21 6 6 
Push three 
boxes together 66.0 49.6 9 9 4 4 
Go to a locat",n 
in another room 123.0 104.9 11 12 5 5 

We also list in Table 1 the goal wffs for the three tasks and the solutions 
obtained by STRIPS. Some performance figures for these solutions are 

shown in Table 2. In Table 2, the figures in the "Time Taken" column repre- 
sent the CPU time (excluding garbage collection) used by STRIPS in finding 

a solution. Although some parts of our program are compiled, most of the 

time is spent running interpretive code; hence, we do not attach much 
importance to these times. We note that in all cases most of the time is spent 
doing theorem proving (in QA3.5). 

The next columns of Table 2 indicate the number of nodes generated and 

the number of operator applications both in the search tree and along the 
solution path. (Recall from Fig. 2 that some successor nodes do not corres- 

pond to operator applications.) We see from these figures that the general 
search heuristics built into STRIPS provide a highly directed search toward 

the goal. These heuristics presently give the search a large "depth-first" 

component, and for this reason STRIPS obtains an interesting but non- 

optimal solution to the "turn on the light-switch" problem. 
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5. Future Plans and Problems 

The current implementation of STRIPS can be extended in several directions. 
These extensions will be the subject of much of our problem-solving research 
activities in the immediate future. We mention some of these briefly. 

We have seen that STRIPS constructs a problem-solving tree whose nedes 
represent subproblems. In a problem-solving process of this sort, there must 
be a mechanism to decide which node to work on next. Currently, we use an 
evaluation function that incorporates such factors as the number and the 
estimated difficulty of the remaining subgoals, the cost of the operators 
applied so far, and the complexity of the current difference. We expect to 
devote a good deal of effort to devising and experimenting with various 
evaluation functions and other ordering techniques. 

Another area for future research concerns the synthesis of more complex 
procedures than those consisting of simple linear sequences of operators. 
Specifically, we want to be able to generate procedures involving iter~tion (or 
recursion) and conditional branching. In short, we would like STRIPS to be 
able to generate computer programs. Several researchers [4, 8, 9] have 
already considered the problem of automatic program synthesis and we 
expect to be able to use some of their ideas in STRIPS. 

We are also interested it, getting STRIPS to "learn" by having it define 
new operators for itself on the basis of previous problem solutions. These new 
operators could then be used to solve even more difficult problems. It would 
be important to be able to generalize to parameters any constants appearing 
in a new operator; otherwise, the new operatorlwould not be general eneugh 
to warrant saving. On~ - approach [10] that appears promising is to modify 
STRIPS so that it sol,~cs every problem presented to it in terms uf general- 
ized parameters rather than in terms of constants appearing in the specific 
problem statements. Hewitt [11] discusses a related process that he calls 
"procedural abstraction". He suggests that, from a few instants  of a pro- 
cedure, a general version can sometimes be synthesized. 

This type of learning provides part of our rationale for working on auto- 
matic problem solvers such as STRIPS. Some researchers have questioned the 
value of systems for automatically chaining together operators into higher- 
level procedures that themselves could have been "hand coded" quite easily 
in the first place. Their viewpoint seems to be that a robot system should be 
provided a priori with a repertoire of all of the operators and procedures that 
it will ever need. 

We agree that it is desirable to provide a priori a large number of specialized 
operators, but such a repertoire will nevertheless be finite. To accomplish 
tasks just outside the boundary of a priori abilities requires a process for 
chaining together existing operators into more complex ones. We are in- 
terested in a system whose operator repertoire ~.an "grow" in this fashion. 

Artiftcial Intelligence 2 (1971), 189-208 
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Clearly one must not give such a system a problem too far away from the 

boundary of known abilities, because the combinatorics of  search will then 

make a solution unlikely. However, a truly "intelligent" system ought 

always to be able to solve slightly more difficult problems than any it has 

solved before. 

ACKNOWLEDGEMENT 

The development of the ideas embodied in STRIPS has been the result of the combined 
efforts of the present authors, Bertrmn Raphael, Thomas Garvey, John Mtmson, a:~d 
Richard Waldinger, all members of the Artificial Intelligence Group at SRL 

The research reported herein was sponsored by the Advanced Research Projects Agency 
andthe National Aeronautics and Space Administration under Contract NAS12-2221. 

REFERENCES 

1. Nilsson, N. J. Problem.Solving Methods in Artificial Intelligence. McGraw-Hill Book 
Company, New Y~rk, New York, 1971. 

2. Munson, J. H. Robot planning, execution, and monitoring in an uncertain environ- 
ment. Proc. 2nd Int'l. Joint Conf. Artificial Intelligence, London, England (September 
13, 1971). 

3. Fikes, R. E. Monitored execution of robot plans produced by STRIPS. Proc. IFIP 71, 
Ljubljana, Yugoslavia (August 1971). 

4. Green, C. Application of theorem proving to problem solving. Proc. Int'l. Joint Conf. 
Artificial Intelligence, Washington, D.C. (May 1969). 

5. Raphael, B. The frame problem in problem-solving systems. Proc. Adv. Study In_vt. on 
Artificial Intelligence and Heuristic Programming, Menaggio, Italy (August 1970). 

6. Ernst, G. and .~4ewell, A. GPS: A Case Study in Generality and Problem Solving. ACM 
Monograph Series. Academic Press, New York, New York, 1969. 

7. Garvey, T. and Kling, R. User's guide to QA3.5 Question-Answering System. Stanford 
Research Institute Artificial Intelligence Group Technical Note 15, Menlo Park, 
California [December 1969). 

8. Waldinger, R. and Lee, R. PROW: A step toward automatic program writing. Proc. 
lnt'l. Conf. Artificial Intelligence, Washington, D.C. (May 1969). 

9. Manna, Z. and Waldinger, R. Towards automatic program synthes,.%. Comm. ACM. 
14, No. 3 (March 1971). 

10. Hart, P. E. and Nilsson~ N. J. The constt, tion of generalized plans as an approach 
toward learning. Stanford Research Instit..'. Artificial Intelligence Group Memo, 
Menlo Park, California (5 April 1971). 

11. Hewitt, C. PLANNER: A language for Manipulating models and proving theorems 
in a robot. Artificial Intelligence Memo No. 168 (Revised), Project MAC, Massa- 
chusetts Institute of Technology, Cambridge, Massachusetts (August 1970). 

Artificial Intelligence 2 (1971), 189-208 


