
ARTIFIC~L r~rELUOE~CE 189

STRIPS: A New Approach to the
Application of .Theorem Proving to
Problem Solving'

Richard E. Fikes

Nils J. NHsson

Stanford Research Institute, Menlo Park, California

Recommended by B. Raphael

Presented at the 2nd IJCAI, Imperial College, London, England, September

1-3, 1971.

ABSTRACT

We describe a new problem solver called STRIPS that attempts to find a sequence o f operators

in a spcce o f world models to transform a given initial world model into a model in which a

given goal formula can be proven to be true. STRIPS represents a world n,~del as an arbitrary

collection o f first-order predicate calculus formulas and is designed to work with .models con-

sisting o f large numbers o f formulas. It employs a resolution theorem prover to answer ques-

tions o f particular models and uses means-ends analysis to guide it to the desired goal-satisfying

model.

DESCRIFIIVE TERMS

Problem solving, theorem proving, robot planning, heuristic search.

1. Introduction

This paper describes a new problem-solving program called STRIPS

(STanford Research Institute Problem Solver). An initial version of the

program has been implemented in LISP on a PDP-10 and is being used in

conjunction with robot ~esearch at SRI. STRIPS is a member of the class of

problem solvers that search a space of "world models" to find one in which a

given goal is achieved. For any world model, we assume that there exists a set

1 The research reported herein was sponsored by the Advanced Research Projects

Agency and the National Aeronautics and Space Administr~ttion under Contract NAS12-

2221.

Artificial Intelligence 2 (1971), 189--208

Copyright ~ 1971 by North-Holland Publishing Company

190 RICHARD E. HKES AND NILS J. NILSSON

of applicable operators, each of which transforms the world model to some
other world model. The task of the problem solver is to find some composi-
tion of operators that transforms a given initial world model into one that

satisfies some stated goal condition,
This framework for problem solving has been central to much of the

research in artificial intelligence [1]. Our primary interest here is in the class
o f problems faced by a robot in re-arranging objects and in navigating, i.e.,
problems that require quite complex and general world models compared to
those needed in the solution of puzzles and games. In puzzles and games, a

simple matrix or list structure is usually adequate to represent a state of the

problem3. The world model for a robot problem solver, however, must in-

clude a large number of facts and relations dealing with the position of the
robot and the positions and attributes of various objects, open spaces, and
boundaries. In STRIPS, a world model is r~presented by a set of well-
formed formulas (wffs) of the first-order predicate calculus.

Operators are the basic elements from which a solution is built. For robot
problems, each operator ~orresponds to an action routine 2 whose execution

causes a robot to take certain actions. For example, we might have a routine
that causes it to go through a doorway, a routine that causes it to push a box,
and perhaps dozens of others.

Green [4] implemented a problem-solving system that depended exclus-
ively on formal theorem-proving methods to search for the appropriate
seque~ice of operators. While Green's formulation represented a significant
step in the development of problem-solvers, it suffered some serious disad-
vantages connected with the "frame problem ''3 that prevented it from
solving nontrivial problems.

In STRIPS, we surmount these difficulties by separating entirely the pro-
cesses of theorem proving from those of searching through a space of world

models. This separation allows us to employ separate strategies for these two
activities and thereby improve the overall performance of the system. Thco-
rein-proving methods are used only within a given world model to answer

questions about it concerning which operators are applicable and whether or

not goals have been satisfied. For searching through the space of world
models, STRIPS uses a GPS-like means-end analysis strategy [6]. This com-

2 The reader should keep in mind the distinction between an operator and its associated
action routine. Execution of action routines actually causes the robot to take actions.
Application of operators to world models occurs during the planning (i.e., problem solving)
phase when an attempt is being made to find a sequence of operators whose associated
action routines will produce a desired state of the world. (See the papers by Munson [2]
an~l Fikes [3] for discussions of the relationships between STRIPS and the robot executive
and monitoring functions.)

Space does not alow a full discussion of the frame problem; for a thorough treatment,
see [5l.

Artificial Intelligence 2 (1971), 189--208

STRn~S 191

bination of means-ends analysis and formal theorem-pro,/~ng methods allows

objects (world models) much more complex and general than any of those
used in GPS and provides more powerful search heuristics than those found

in theorem-proving programs.
We proceed by describing the operation of STRIPS in terms of the con-

ventions used to represent the search space for a problem and the search
methods used to find a solution. We then discuss the details of impIementa-

tion and present some examples.

2. The Operation of STRIPS

2.1. The Problem Space

The problem space for STRIPS is defined by the initial world model, the set

of available operators and their effects on world models, and the goal state-

ment.
As already mentioned, STRIPS represents a world model by a set of well-

formed formulas (wffs). For example, to describe a world model in which the

robot is at location a and boxes B and C are at locations b and c we would

include the following wffs:

ATR(a)
AT(B, b)

AT(C, c).

We might also include the wff

(Vu Yx Vy){[AT(u, x) ^ (x # y)] ~ ~ AT(u, y)}

to state the general rule that an object in one place is not in a different place.
Using first-order predicate calculus wffs, we can represent quite complex
world models and can use existing theorem-proving programs to answer

questions about a model.
The available operators are grouped into families called schemata. Con-

sider for example the operator goto for moving the robot from one point on

the floor to another. Here there is really a distinct operator for each different
pair of points, but it is convenient to group all of these into a family goto

(m, n) parameterized by the initial position4m and the final position n. We say

that goto (m, n) is an operator schema whose members are obtained by sub-

stituting specific constants for the parameters rn and n. In STRIPS, when an
operator is applied to a world model, specific constants will already have

been chosen for the operator parameters.
Each operator is defined by an operator description consisting of two main

, The parameters m and n are each really vector-valued, but we avoid vector n, ,tation here
for simplicity. In general, we denote constants by letters near the beginning of ,ae alphabet
(a, b, c , . . .) , parameters by letters in the middle of the alphabet (m, n,. . .) , ~xtd quantified
variables by letters near the end of the alphabet (x, y, z).

Artificial Intelh'gence 2 (i971), 189-208

192 RICHARD E. FIKES AND NILS J. NILSSON

parts: a description of the effects of the operator, and the conditions under
which the operator is applicable. The effects of an operator are simply
defined by a list of wffs that must be added to the model and a list of wffs that
are no longer true and therefore must be deleted. We shall discuss the process
of calculating these effects in more detail later. It is convenient to state the
applicability condition, or precondition, for an operator schema as ,~ wff
schenu~. To determine whether or not there is an instance of an operator
schema applicable to a world model, we must be able to prove that there is an
instance of the corresponding wff schema that logically follows from the
model.

For example, consider the question of applying instances of the operator
.subschema goto (m, b) to a world model containing the wff ATR(a), where a
and b are constants. If the precondition wff schema ofgoto (m, n) is ATR(m~,
then we find that the instance ATR(a) can be proved from the world model.
Thus, an applicable instance of goto(m, b) is goto(a, b).

It is important to distinguish between the parameters appearing in wff
schemata and ordinary existentially snd universally quantified variables that
may also appear. Certain modifications must be made to theorem-proving
programs to enable them to handle wff schemata; these are discussed later.

G0al statements are also represented by wfl's. For example, the task "Get
Boxes B and C to Location a" might be stated as the wff:

AT(B, a) A AT(C, a).

To summarize, the problem space for STRIPS is defined by three entiti,¢s:

(1) An initial world model, which is a set of wffs describing the present
state of the world.

(2) A set of operators, including a description of their effects and their
precondition wff schemata.

(3) A goal cendition stated as a wff.
The problem is solved when STRIPS produces a world model that satisfies
the goal wff.

2.2. The Search Strategy

In a very simple problem-solving system, we might first apply all of the
applicable operators to the initial world model to create a set of successor
models. We would continue to apply all applicable operators to these suc-
cessors and to their descendants (say in breadth-first fashion~ until a model
was produced in which the goal formula was a theorem. However, since we
envision uses in which the number of operators applicable to any given world
model might be quite large, such a simple system would generate an
undesirably large tree of world models and would thus be impractical.

Artificial Intelligence 2(1971), 189-208

STRWS 193

Instead, we have adopted the GPS strategy of extracting "differences"
between the present world model and the goal and of identifying operators
that are "relevant" to reducing these differences [6]. Once a relevant operator
has been determined, we attempt to solve the subproblem of producing a
world model to which it is applicable. If such a model is found, then we
apply the relevant operatoi and ieconsider the original goal in the resulting
model. In this section, we review this basic GPS search strategy as employed
by STRIPS.

STRIPS begins by employing a theorem prover to attempt to prove that
the goal wff Go follows from the set Mo of wtTs describing the initial world
model. If Go does follow from Mo, the task is trivially solved in the initial
model. Otherwise, the theorem prover will fail to find a proof. In this case,
the uncompleted proof is taken to be the "difference" between Mo and Go.
Next, operators that might be relevant to "reducing" this difference are
sought. These are the operators whose effects on world models would enable
the proof to be continued. In determining relevance, the parameters of the
operators may be partially or fully instantiated. The corresponding instanti-
ated precondition wffschemata (of the relevant operators) are then taken to be
new subgoals.

Consider the trivially simple example in which the task is for the robot to
go to location b. The goal wff is thus ATR(b), and unless the robot is already
at location b, the initial proof attempt will be unsuccessful. Now, certainly
the instance goto(m, b) of the operator goto(m, n) is relevant to reducing the
difference because its effect would allow the proof to be continued (in this
case, completed). Accordingly, the corresponding precondition wff schema,
say ATR(m), is used as a subgoal.

STRIPS works on a subgoal using the same technique. Suppose the pre-
condition wff schema G is selected as the first subgoal to be worked on.
STRIPS again uses a theorem prover in an attdmpt to find instances of G
that follow from the initial world model Mo. Here again, there are two possi-
bilities. If no proof can be found, STRIPS uses the incomplete proof as a
difference, and sets up (sub) subgoals corresponding to their precondition
wffs. If STRIPS does find an instance of G that follows from Mo, then the
corresponding operator instance is used to t,~ansform Mo into a new world
model M1. In our previous simple example, the subgoal wff schema G was
ATR(m). If the initial model contains the wffATR(a), then an instance of G--
namely ATR(a) can be proved from Mo. In this case, the corresponding op-
erator instance goto(a, b) is applied to Mo to produce the new model, MI.
STRIPS then continues by attempting to prove Go from MI. In our example,
Go trivially follows from M~ and we are through. However, if no proof could
be found, subgoals for this problem would be set up and the process would

continue.
Artij~ial Intelligence 2 (1971), 189-208

194 RICHARD E. FIKES AND NILS J. NILSSON

The hierarchy of goal, subgoals, and models generated by the search
process is represented by a search tree. Each node of the search tree has the
form (~world model~, (goal list)), and represents the problem of trying to
achieve the sub-goals on the goal list (in order) from the indicated world
model.

An example of such a search tree is shown in Fig. 1. The top node (Mo,
(Go)) represents the main task of achieving goal Go from world model Mo.

'",'%" I I"o"°c'%'% ',

OP
c

("1,(%,%))1 i("=,(%0%))

! %
I

("3" (c;l'Co) ~"]

FIo. 1. A typical STRIPS search tree.

In this case, two aRernative subgoals Ga and Gb are set up. These are added
to the front of the goal lists in the two successor nodes. Pursuing one of these
subgoals, suppose that in the node (Mo, (Ga, Go)), goal Go is satisfied in Mo;
the corresponding operator, say OPo, is then applied to Mo to yield M1. Thus,
along this branch, the problem is now to satisfy goal Go from Ml, and this
problem is represented by the node (MI, (Go)). Along the other path, suppose
Gc is set up as a subgoal for achieving Gb and thus the node (Mo, (Go, Gb, Go))
is created. Suppose Gc is satisfied in -44o and thus OPc is applied to Mo yield-
ing M2. Now STRIPS must still solve the subproblem Gb before attempting
the main goal Go. Thus, the result of applying OPc is to replace Mo by M2
and to remove Gc from the goal list to produce the node (M2, (Gb, Go)).
Artificial Intelligence 2 (1971), 189-20{,

s33~Jps 195

This process continues until STRIPS produces the node (M,, (Go)). Here

suppose Go can be proved directly from M, so that this node is terminal. The

solution sequence of operators is thus (OPt, OPb, OPe).
This example search tree indicates clearly that when an operator is found

to be relevant, it is not known where it will occur in the completed plan;that

is, it may be applicable to the initial model and therefore be the first operator

applied, its effects may imply the goal so that it is the last operator applied,

or it may be some intermediate step toward the goal. This flexible search

strategy embodied in STRIPS combines many of the advantages of both

forward search (from the initial model toward the goal) and backward

search (from the goal toward the initial model).

t l IV . I

G I ~ I A T ~ O K O~ A
IUCCQIOn ~,OD!

~ m G m qll

GOAL ~ T ~ L ~ fa~mm
~ I, om GOAL-LIST

NOM ~ M , GOAL-L~TI

I M.O*tJ*ToAt. ~w.o ~ L i

(~C)AL.LISTqPIIdAIN GOAL| I c , . , . i n , l t l N I

~) ~ l M . GO&L-LISTI I

iii i |1 .[11

l

I ! ~ALoLOST

,. i,...
P.T?A¢H OIFFIIqtlvCE TO

NO~ AkD
IVOR|

,~ ,

r
S l t | f ~ ! A i l rO I l | | ~ NOt)~ NAVINI~

~ U T I O S~CfUOAS

; '
i

1

A L * L t S T ~ N | GOAL,L~T O~ 1HI, NODI[
J

l
~ ¢ E M O I I NO~

A t ~ Io

GOAL-L~T~L~; fwml l l I v I

F]o. 2. Flow chart for STRIPS.

Whenever STRIPS generates a successor node, it immediately tests to see

if the first goal on the goal list is satisfied in the new node's model. If so, the

corresponding operator is applied, generating a new successor node; if not,

Artificial Intelligence 2 (1971), 189-208

196 RICHARD E. lIKES AND NILS J. NILSSON

the difference (i.e., the uncompleted proof) is stored with the node. Except
for those successor nodes generated as a result of applying operators, the
process of successor generation is as follows: STRIPS selects a node and
uses the difference stored with the node to select a relevant operator. It uses
the precondition of this operator to generate a new successor. (If all of the
node's successors have already been generated, STRIPS selects some other
node still having uncompleted successors.) A flowchart summarizing the
STRIPS search process is shown in Fig. 2.

STRIPS has a heuristic mechanism to select nodes with uncompleted suc-
cessors to work on next. For this purpose we use an evaluation function that
takes into account such factors as the number of remaining goals on the goal
list, the number and types of predicates in the remaining goal formulas, and
the complexity of the difference attached to the node.

3. Implementation

3.1. Theorem-Proving with Parameters

In this section, we discuss the more important details of our implementation
of STRIPS; we begin by describing the automatic theorem-proving com-
ponent.

STRIPS uses the resolution theorem-prover QA3.5 [7] when attempting
to prove goal and sub-goal wffs. We assume that the reader is familiar with
resolution proof techniques for the predicate calculus [1]. These techniques
must be extended to handle the parameters occurring in wff schemas; we
discuss these extensions next.

The general situation is that we have some goal wff schema G(p), say, that
is to be proved from a set M of clauses where ~ is a set of schema parameters.
Following the general strategy of resolution theorem provers, we attempt to
prove ~he inconsistency of the set (MU ~ G(p)). That is, we attempt to
find an instance p' of ~ for which (M U ~ G(,~')} is inconsistent.

We have been able to use the standard unification algorithm of the resolu-
tion method to compute the appropriate instances of schema variables during
the search for a proof This algorithm has the advantage that it finds the most
general instances of parameters needed to effect unification. To use the unifi-
cation algorithm we must specify how it is to treat parameters. The following
substitution types are allowable components of the output of the modified
unification algorithm:

• Terms that can be substituted for a variable: variables, constants, para-
meters, and functionel terms not containing the variable

• Terms that can be substituted for a parameter: constants, parameters,
and functional terms not containing Skolem functions, variables, or
the parameter.

Artificial Intelligence 2 (1971), 189-208

!

STgtPS 197

The fact that the same parameter may have multiple occurrences in a set of
clauses demands another modification to the theorem prover. Suppose tw~
clauses Ct and C2 resolve to form clause C and that in the process some term
t is substituted for parameter p, Then we must make sure that p is replaced
by t in all of the clauses that are descendants of C.

3.2. Operator Descriptions and Applications

We have already mentioned that to define an operator, we must state the
preconditions under which it is applicable and its effects on a world model
schema. Preconditions are stated as wff schemata. For example, suppose
G~) is the operator precondition schema of an operator O(~), p is a set of
parameters, and M is a world model. Then if p' is a constant instance of p
for which {M U ~ G(p')} is contradictory, then STRIPS can apply operator
O~ ') to world model M.

We next need a way to state the effects of operator application on world
models. These effects are simply described by two lists. On the delete list we
specify those clauses in the original model that might no longer be true in
the new model. On the add list are those clauses that might not have been true
in the original model but are true in the new model.

For example, consider an operator push(k, m, n) for pushing object k
from m to n. Such an operator might be described as follows:

push(k, m, n)

Precondition:

delete list

add list

ATR(m)
A AT(k, m)

ATR(m);
AT(k, m)

ATR(n);
AT(k, n) .

The parameters of an operator schema are instantiated by constants at
the time of operator application. Some instantiations are made while de-
ciding what instances of an operator schema are relevant to reducing a
difference, and the rest are made while deciding what instances of an oper-
ator are applicable in a given world model. Thus, when the add and delete
lists are used to create new world models, all pataa,~crs occurring in them

will have been replaced by constants.
(We can make certain modifications to STRIPS to allow it to apply oper-

ators with uninstantiated parameters. These applications will produce world
model schemata. This generalization complicates somewhat the simple add
and delete-list rules for computing new world models and needs further

study.)
Artifzcial Intell'genea 7 (1971), 189-208

198 I n C H e D E. FIKES AND NILS J. NILSSON

For certain operators it is convenient to be able merely to specify the form
of clauses to be deleted. For example, one of the effects of a robot goto oper-
ator must be to delete information about the direction that the robot was
originally facing even though such information might not have been repre-
sented by one of the parameters of the operator. In this case we would in-
clude the atom FACING(I;) on the delete list ofgoto with the convention that
any atom of the form FACING(S), regardless of the value of $, would be
deleted.

When an operator description is written, it may not be possible to name
explicitly all the atoms that should appear on the delete list. For example, it
may be the case that a world model contains clauses that are derived from
other clauses in the model. Thus, from AT(BI, a)and from AT(B2, a+A),
we might derive NEXTTO(BI, 132) and insert it into the model. Now, if one
of the clauses on which the derived clause depends is deleted, then the derived
clause must also be deleted.

We deal with this problem by defining a set of primitive predicates (e.g.,
AT, ATR) and relating all other predicates to this primitive set. In particular,
we require the delete list of an operator description to indicate all the atoms
containing primitive predicates that should be deleted when the operator is
applied. Also, we require that any nonprimitive clause in the world model
have associated with it those primitive clauses on which its validity depends.
(A primitive clause is one which contains ~nly primitive predicates.) For
example, the clause NEXTTO(BI, B2) would have associated with it the
clauses AT(BI, a) and AT(B2, a +A).

By using these conventions, we can be assured that primitive clauses will
be correctly deleted during operator applications, and that the validity of
nonprimitive clauses can be determined whenever they are used in a deduc-
tion by checking to see if all of the primitive clauses on which the non-
primitive clause depends are still in the world model.

3.3. Computing Differences and Relevant Operators

STRIPS uses the GPS strategy of attempting to apply those operators that
are relevant to reducing a difference between a world model and a goal or
subgoal. We use the theorem prover as a key part of this mechanism.

Suppose we have just created a new node in the search tree represented by
(M, (Gt, Ga_t,..., Go)). The theorem prover is called to attempt to find a
contradiction for the set {M U ~ Gt}. If one can be found, the operator ~
whose precondition was Gs is applied to M and the process continues.

Here, though, we are interested in the case in which no contradiction is
obtained after investing some prespecified amount of theorem-proving effort.
The uncompleted proof P is represented by the set of clauses that form the

Artificial Intelligence 2 (1971), 18.9--208

STRIPS]99

negation of the goal wff, plus all of their descendants (if any), less any clauses
eliminated by editing strategies (such as subsumption and predicate evalua-
tion). We take P to be the differevee between M and Gl and attach P :to the
node. s

Later, in attempting to compute a successor to this node with incomplete
proof P attached, we first must select a relevant operator. The quest for
relevant operators proceeds in two steps. In the first step an ordered list of
candidate operators is created. The selection of candidate operators is based
on a simple comparison of the predicates in the difference clauses with those
on the add lists of the operator descriptions. For example, i f the difference
contained a clause having in it the negation of a position predicate AT, then
the operator push would be considered as a candidate for this difference.

The second step in finding an operator relevant to a given difference in-
volves employing the theorem prover to determine if clauses on the add list of
a candidate operator can be used to "resolve away" clauses in the difference
(i.e., to see if tire proof can be continued based on the effects of the operator).
If the theorem prover can in fact produce new resolvents that are descen-
dants of the add list clauses, then the candidate operator (properly instant-
iated) is considered to be a reievant operator for the difference set.

Note that the consideration of one candid~.te operator schema may pro-
duce several relevant operator instances. For example, if the difference set
contains the unit clauses ~ ATR(a) and ~ ATR(b), then there are two rele-
vant instances of goto(m, n), namely goto(m, a) and goto(m, b). Each new
resolvent that is a descendant of the operator's add list clauses is used to
form a relevant instance of the operator by applying to the operator's para-
meters the same substitutions that were made during the production of the

resolvent.

3.4. Efficient lRepresentafion of World Models

A primary design issue in the implementation of a system such as STRIP5
is how to satisfy the storage requirements of a search tree in which each node
may contain a different world model. We would like to use STRIPS in a
robot or question-answering environment where the initial world model
may consist of hundreds of wffs. For such applications it is infeasible to
recopy completely a world model each time a new model is produced by
application of an operator.

We have dealt with this problem in STRIPS by first assuming that most of the
wits in a problem's i,itial world model will not be changed by the application
of operators. This is certainly true for the class of robot problems with which
we are currently concerned. For these problems most of the wffs in a model
describe rooms, walls, doors, and objects, or specify general properties of the

s If P is very large we can heuristically select some part of P as the difference.

Artific~l Intelligence 2 (1971), 189-208

200 RICHARD E. lIKES AND ~ J. NILSSON

world, which are true in all models. The only wffs that might be changed in
this robet environment are the ones that describe the status of the robot and
any objects which it manipulates.

Given this assumption, we have implemented th~ following scheme for
handling multiple world models. All the wffs for all world models are stored
in a common memory structure. Associated with each wfl" (i.e., clause) is a
visibility flag, and QA3.5 has been modified to consider only clauses from the
memory structure that are marked as visible. Hence, we can "define" a par-
ticular world model for QA3.5 by marking that model's clauses visible and
all other clauses invisible. When clauses are entered into the initial world
model, they are all marked as visible. Clauses that are not changed remain
visible throughout STRIPS' search for a solution.

Each world model produced by STRIPS is defined by two clause lists. The
first list, DELETIONS, names all those clauses from the initial world model
that are no longer present in the model being defined. The second list,
ADDITIONS, names all those clauses in the model being defined that are
not also in the initial model. These lists represent the changes in the initial
model needed to form the model being defined, and our assumption implies
they will contain only a small number of clauses.

To specify a given world model to QA3.5, STRIPS marks visible the clauses
on the model's ADDITIONS list and marks invisible the clauses on the
model's DELETIONS list. When the call to QA3.5 is completed, the visi-
bility markings of these clauses are returned to their previous settings.

When an operator is applied to a world model, the DELETIONS list of the
new world model is a c.)py of the DELETIONS list of the old model plus
any clauses from the initial model that ere deleted by the operator. The
ADDITIONS list of the new model consists of the clauses from the old
model's ADDITIONS list, as transformed by the operator, plus the clauses
from the operator's add list.

3.5. An Example

Tracing through the main points of a simple example helps to illustrate the
various mechanisms in STRIPS. Suppose we want a robot to gather together
three objects and that the initial world model is given by:

Mo. AT(BOX , b) .

AT(BOX2, c)
ATtBOX3, d)

The goal wff describing this task= is

Go: (3x) [AT(~OXI, x) ^ AT(BOX2, x)
^ AT(BOX3, x)].

Artificial Intelligence 2 (1971), 189-208

s'rtn, s 201

It*. negated form is

~ Go: ~ AT(BOX1, z) v ~ AT(BOX2, x)
v ~ A T (B O X 3 , x) .

(In ~ Go, the term x is a universally quantified variable.)

We admit the following operators:

(1) push (k, m, n): Robot pushes object k from place m to place n.

Precondition: AT(k, m) A ATR(m)
Negated precondition : ~ AT(k, m) v ~ ATR(m)

Delete list: ATR(m)
AT(k, m)

Add list: AT(k, n)
ATR(n)

(2) goto(m, n): Robot goes from place m to place n.

Precondition: ATR(m)
Negated precondition: ~ ATR(m)

Delete list: ATR(m)
Add list: ATR(n) .

Following the flow chart of Fig. 2, STRIPS first creates the initial node
(Mo, (Go)) and attempts to find a contradiction to {Mo U ~ Go}. This
attempt is unsuccessful; suppose the incomplete proof is:

-,, AT(BOXI, x) v ~ AT(BOX2, x) v ~ AT(BOX3, x)

AT(BOXI, c) v ~ AT(BOX3. c) ~ /

,,, AT(BOX2, b) v AT(BOX3, b) ~]
' v

~ AT(BOXI, a') v ~ AT(BOX2, d)

We attach this incomplete proof to the node and then select the node to have
a successor computed.

The only candidate operator is push(k, m, n). Using the add list clause
AT(k, n), we can continue the uncompleted proof in one of several ways
depending on the substitutions made for k ~nd n. Each of these substitutions
produces a relevant instance of push. One of these is:

OPI : push(BOX2, m, b)

given by the substitutions BOX2 for k and b for n. Its associated precondi-
tion (in negated form) is:

~ G~: -- AT(BOX2, m) v ~ ATR(m).

Artificial Intelligence 2 (1971), 189-208

15

202 RICHARD E. lIKES AND NILS J. NILSSON

Suppose OPI is selected and used to create a successor node. (Later in the
search process another successor using one of the otLer relevant instances of
push might be computed if our original selection did not lead to a solution.)
Selecting OPI leads to the computation of the successor node (Mo, (GI, Go)).

STRIPS next attempts to find a contradiction for {Mo tJ ~ G l}. The un-
completed proof (difference) attached to the node contains:

~ AT(BOX2. m) v ~ ATR(m)

AT(BOX2, e) ~ ~ R (a)

~ A T R (c) ~ A T (B O X 2 , a)

When this node is later selected to have a successor computed, one of the
candidate operators is g o t o (m , n). The relevant instance is determined to be

OP2: goto(m, c)

with (negated) precondition

~ Gz: ATR(m).

This relevant operator results in the successor node (Mo, (6;2, G~, Go)).
Nest STRIPS determines that (Mo t3 ,-- G2) is contradictory with m = a.

Thus, STRIPS applies the operator goto(a, c) to Mo to yield

ATR(c) /
M,- AT(BOXI, b) .

AT(BOX2, c)
AT(BOX3, d)

The successor node is (M~, (G~, Go)). Immediately, STRIPS determines that
(M~ U ~ Go) is contradictory with m - c. Thus, STRIPS applies the oper-
ator push(BOX2, c, b) to yield

ATR(b)
Mz: AT(BOX1, b)

AT(BOX2, b) "
AT(BOX3, d)

The resulting successor node is (M2, (Go)), and thus STRIPS reconsiders the
original problem but now beginning with world model Mz. The rest of the
solution proceeds in similar fashion.

Our implementation of STRIPS easily produces the solution {goto(a, c),
push(BOX2, c, b), goto(b, d), push(BOX3, d, b)}. (Incidentally, Green's
theorem-proving problem-solver [4] has not been able to obtain a solution
to this version of the 3-Boxes problem. It did solve a simpler version of the
problem designed to require only two operator applications.)
Artificial Intelligence 2 (1971), 189-208

s1~n,s 203

4. Example Problems Selved by STRIPS

STRIPS has been designed to be a general-purpose problem solver for robot

tasks, and thus must be able to work with a variety of operators and with a

world model containing a large number of facts and relations. This section

I i I " I1~

!
i

i | l I ~ l l

8
[

c ~ ~
:j "

" N
N -

i i iii

FIo. 3. Room plan for the robot tasks.

tt

I I

J I

Ii
Artificial Intelh'gence 2 (1971), 189-208

204 RICHARD E. lIKES AND NILS J. NILSSON

describes its performance on three different tasks. The initial world model for

all three tasks consists of a corridor with four rooms and doorways (see

Fig. 3) and is described by the list of axioms in Table 1. Initially, the robot

TABLE 1. Formulation for STRIPS Tasks.

Initial World Model
(VxVyVz)[CONNECTS(x,y,z)=~ C C N N E CTS(x,z,y)]
C O N N E ~ R I , R O O M I , R O O M S)
C O N N E ~ R 2 , ROOM2, ROOM 5)
CONNECTS(DOOR3,ROOM3,ROOMS)
CONNECTS(DOOR4,ROOM4,ROOMS)
LOCINROOM(f, ROOM4)
AT(BOXl,a)
AT(BOX2,b)
AT(BOX3,c)
AT(LIGHTSWlTCH l,d)
ATROBOT(e)
TYPE(BOXI,BOX)
TYPE(BOX2,BOX)
TYPE(BOX3,BOX)
TYPE(IM,DOOR)
TYPE(D3,DOOR)
TYPE(D2,DOOR)
TYPE(DI,DOOR)

INROOM(BOXI,ROOMD
INROOM(BOX2,ROOMI)
INROOM(BOX3,ROOMI)
INROOM(ROBOT, ROOM 1)
INROOM(LIGHTSWITCHI,ROOM 1)
PUSHABLF.(BOXI)
PUSHABLE(BOX2)
PUSHABLE(BOX3)
ONFLOOR
STATUS(LIGHTSWITCHI,OFF)
TYPE(LIGHTSWITCHI,LIGHTSWITCH)

Operators
gotol(m): Robot goes to coordinate location m.

Preconditions:
(ONFLOOR) A (3x)[INROOM(ROBOT,x) A LOCINROOM(m,x)]

Delete list: ATROBOT($),NEXTTO(ROBOT,$)
Add list: ATROBOT(m)

g6,o2(m): Robot goes next to item m.

Preconditions:
(ONFLOOR) ^ {(3x)[INROOM(ROBOT,x) A INROOM(m,x)] V (3x)(3y)

[INROOM(ROBOT,x) A CONNECTS(m,x,y)]}
Delete list: ATROBOT($),NEXTrO(ROBOT,$)

Add list: NEXTTO(ROBOT, m)
pushto(m,n): robot pushes object m next[to item n

Precondition:
PUSHABLE(m) ̂ ONFLOOR A NEXTTO(ROBOT,m) ̂ {(~lx)[INROOM(m,x)

^ INROOM(n,x)] v Ox3y)[INROOM(m,x) A CONNECTS(n,x,y)]}
Delete list: AT ROBOT ($) NEXTrO (ROBOT $) NEXTI'O ($,m)

AT (m S) NEXTTO fm$)

Add list: NEXTTO(m,n)

NEXTTO(n,m)
NEXTFO(ROBOT, m)

Artificial Intelligence 2 (1971), 189-208

STRIPS 205

turnonlight(m): robot turns on lightswitch m.
Precondition: {(3n)[TYPE(n,BOX) A ON(ROBOT, n) A NEXTO(n,m)I}

A TYPE(m, LIGHTSWITCH)
Delete list: STATUS(re,OFF)

Add list: STATUS(re,ON)
dimbonbox(m): Robot climbs up on box m.

Preconditions:
ONi LOOR A TYPE(re,BOX) A NEXTFO(ROBOT, m)

Delete list: ATROBOT($),ONFLGOR
Add list: ON(ROBOT#n)

climboffbox(m): Robot climbs off box m.
Preconditions:

TYPE(re,BOX) A ON(ROBOT, m)
Delete list: ON(ROBOT, m)

Add list: ONFLOOR
oothrudoar (k,l,m): Robot goes through door k from room I into room m.

Preconditions:
NEXTTO(ROBOT, R) A CONNECTS~,k,I,m) A INROOM(ROBOT,0 A ONFLOOR

Delete list: ATROBOT($),NEXTTO(ROBOT,$),INROOM(ROBOT, $)
Add list: INROOM(ROBOT,m)

Tasks

1. Turn on the lightswitch

Goal wfl': STATUSOLIGHTSWITCHI,ON)
STRIPS solution: {goto2(BOXl),climbonbox(BOXl),climboffbox(BOXl),

pushto(BOXI,LIGHTSWlTCHl),climbonbox(BOXl),
turnonlight(LIGHTSWITCHI)}

2. Push three boxes together

Goal wff: NEXTTO(BOXI,BOX2) A NEXTTO(BOX2,BOX3)
STRIPS solution: {goto2(BOX2),pushto(BOX2,BOXl),goto2(BOX3),pushto

(BOX3,BOX2)}

3. Go to a location in another room

Goal wff: ATROBOT(f)
STRIPS solution: {goto2(DOORl), gothrudoor(DOOR1,ROOM 1 ,ROOMS),

gogo2(DOOR4),gothrudoor(DOOR4,ROOMS,ROOM4),
gotol(f)}

is in R O O M I at location e. Also in ROOMI are three boxes and a lightswitch:

BOXI at location a, BOX2 at location b, and BOX3 at location c; and a light-

switch, L I G H T S W I T C H I at location d. The lightswitch is high on a wall out

of normal reach of tht ~obot.

The first task is to turn on the lightswitch. The robot can solve this problem

by going to one of the three bt,xes, pushing it to the lightswitch, climbing on

the box e and turning oil the light3witch. The sct:ond task is to push the three

boxes in R O O M I together. (This task is a more realistic elaborat_ion of the

6 Th; s task is a robot version of the so-called "Monkey and Bananas" problem. STRIPS
can solve the problem even though the current SRI robot is incapable of climbing boxes
and turning on lightswitches.

Artificial Intelligence 2 (1971), 189-208

206 mCnAaD E. ~ AND NItS J. Ng, SSON

three-box problem used as an example in the last section.) The third task is for

the robot to go to a designated location, f , in ROOM4.
The operators that are given to STRIPS to solve these problems are

described in Table 1. For convenience we define two "goto" operators, gotol
and goto2. The operator gotol(m) takes the robot to any coordinate location

m in the same room as the robot. The operator goto2(m) takes the robot next
to any i tem m (e.g., ~ightswitch, door, or box) in the same room as the robot.

The operator pushto(m, n) pushes any pushable object m next to any i tem n

(e.g., lightswitch, door or box) in the same room as the robot. Additionally,
we have operators for turning on lightswitches, going through doorways, and
climbing on and off boxes. The precise formulation of the preconditions and

the effects of these operat3rs is contained in Table 1.

TASLE 2. Performance of STRIPS on "Ihree Tasks.

Number of operator
Time taken Number of n o d e s applications

(in seconds) On solution In search On solution In search
Tota! Theorem-proving tyath tree path tree

Turn on the
iightswitch 113.1 83.0 13 21 6 6
Push three
boxes together 66.0 49.6 9 9 4 4
Go to a locat",n
in another room 123.0 104.9 11 12 5 5

We also list in Table 1 the goal wffs for the three tasks and the solutions
obtained by STRIPS. Some performance figures for these solutions are

shown in Table 2. In Table 2, the figures in the "Time Taken" column repre-
sent the CPU time (excluding garbage collection) used by STRIPS in finding

a solution. Although some parts of our program are compiled, most of the

time is spent running interpretive code; hence, we do not attach much
importance to these times. We note that in all cases most of the time is spent
doing theorem proving (in QA3.5).

The next columns of Table 2 indicate the number of nodes generated and

the number of operator applications both in the search tree and along the
solution path. (Recall from Fig. 2 that some successor nodes do not corres-

pond to operator applications.) We see from these figures that the general
search heuristics built into STRIPS provide a highly directed search toward

the goal. These heuristics presently give the search a large "depth-first"

component, and for this reason STRIPS obtains an interesting but non-

optimal solution to the "turn on the light-switch" problem.

Artbqcial Intelligence 2 (1971), 189--208

slmn, s 207

5. Future Plans and Problems

The current implementation of STRIPS can be extended in several directions.
These extensions will be the subject of much of our problem-solving research
activities in the immediate future. We mention some of these briefly.

We have seen that STRIPS constructs a problem-solving tree whose nedes
represent subproblems. In a problem-solving process of this sort, there must
be a mechanism to decide which node to work on next. Currently, we use an
evaluation function that incorporates such factors as the number and the
estimated difficulty of the remaining subgoals, the cost of the operators
applied so far, and the complexity of the current difference. We expect to
devote a good deal of effort to devising and experimenting with various
evaluation functions and other ordering techniques.

Another area for future research concerns the synthesis of more complex
procedures than those consisting of simple linear sequences of operators.
Specifically, we want to be able to generate procedures involving iter~tion (or
recursion) and conditional branching. In short, we would like STRIPS to be
able to generate computer programs. Several researchers [4, 8, 9] have
already considered the problem of automatic program synthesis and we
expect to be able to use some of their ideas in STRIPS.

We are also interested it, getting STRIPS to "learn" by having it define
new operators for itself on the basis of previous problem solutions. These new
operators could then be used to solve even more difficult problems. It would
be important to be able to generalize to parameters any constants appearing
in a new operator; otherwise, the new operatorlwould not be general eneugh
to warrant saving. On~ - approach [10] that appears promising is to modify
STRIPS so that it sol,~cs every problem presented to it in terms uf general-
ized parameters rather than in terms of constants appearing in the specific
problem statements. Hewitt [11] discusses a related process that he calls
"procedural abstraction". He suggests that, from a few instants of a pro-
cedure, a general version can sometimes be synthesized.

This type of learning provides part of our rationale for working on auto-
matic problem solvers such as STRIPS. Some researchers have questioned the
value of systems for automatically chaining together operators into higher-
level procedures that themselves could have been "hand coded" quite easily
in the first place. Their viewpoint seems to be that a robot system should be
provided a priori with a repertoire of all of the operators and procedures that
it will ever need.

We agree that it is desirable to provide a priori a large number of specialized
operators, but such a repertoire will nevertheless be finite. To accomplish
tasks just outside the boundary of a priori abilities requires a process for
chaining together existing operators into more complex ones. We are in-
terested in a system whose operator repertoire ~.an "grow" in this fashion.

Artiftcial Intelligence 2 (1971), 189-208
¢

208 RICHARD E. FIKES AND NILS J. NILSSON

Clearly one must not give such a system a problem too far away from the

boundary of known abilities, because the combinatorics of search will then

make a solution unlikely. However, a truly "intelligent" system ought

always to be able to solve slightly more difficult problems than any it has

solved before.

ACKNOWLEDGEMENT

The development of the ideas embodied in STRIPS has been the result of the combined
efforts of the present authors, Bertrmn Raphael, Thomas Garvey, John Mtmson, a:~d
Richard Waldinger, all members of the Artificial Intelligence Group at SRL

The research reported herein was sponsored by the Advanced Research Projects Agency
andthe National Aeronautics and Space Administration under Contract NAS12-2221.

REFERENCES

1. Nilsson, N. J. Problem.Solving Methods in Artificial Intelligence. McGraw-Hill Book
Company, New Y~rk, New York, 1971.

2. Munson, J. H. Robot planning, execution, and monitoring in an uncertain environ-
ment. Proc. 2nd Int'l. Joint Conf. Artificial Intelligence, London, England (September
13, 1971).

3. Fikes, R. E. Monitored execution of robot plans produced by STRIPS. Proc. IFIP 71,
Ljubljana, Yugoslavia (August 1971).

4. Green, C. Application of theorem proving to problem solving. Proc. Int'l. Joint Conf.
Artificial Intelligence, Washington, D.C. (May 1969).

5. Raphael, B. The frame problem in problem-solving systems. Proc. Adv. Study In_vt. on
Artificial Intelligence and Heuristic Programming, Menaggio, Italy (August 1970).

6. Ernst, G. and .~4ewell, A. GPS: A Case Study in Generality and Problem Solving. ACM
Monograph Series. Academic Press, New York, New York, 1969.

7. Garvey, T. and Kling, R. User's guide to QA3.5 Question-Answering System. Stanford
Research Institute Artificial Intelligence Group Technical Note 15, Menlo Park,
California [December 1969).

8. Waldinger, R. and Lee, R. PROW: A step toward automatic program writing. Proc.
lnt'l. Conf. Artificial Intelligence, Washington, D.C. (May 1969).

9. Manna, Z. and Waldinger, R. Towards automatic program synthes,.%. Comm. ACM.
14, No. 3 (March 1971).

10. Hart, P. E. and Nilsson~ N. J. The constt, tion of generalized plans as an approach
toward learning. Stanford Research Instit..'. Artificial Intelligence Group Memo,
Menlo Park, California (5 April 1971).

11. Hewitt, C. PLANNER: A language for Manipulating models and proving theorems
in a robot. Artificial Intelligence Memo No. 168 (Revised), Project MAC, Massa-
chusetts Institute of Technology, Cambridge, Massachusetts (August 1970).

Artificial Intelligence 2 (1971), 189-208

