
STROBE: SUPPORT FOR STRUCTURED OBJECT KNOWLEDGE REPRESENTATION 

Reid G. Smith 

Schlumberger-Doll Research 
Old Quarry Road 

Ridgefield, Connecticut 06877 

ABSTRACT 
STROBE is a system that provides object-oriented 
programming support tools for INTERLISP. It offers a 
primitive foundation with which more complex structured 
object representation schemes can be constructed. STROBE 
implements multiple resident knowledge bases, tangled 
generalization hierarchies, flexible inheritance of properties, 
procedural attachment, and event-sensitive procedure 
invocation. 

1. INTRODUCTION 
The goal of designing second generation expert systems that 
are able to reason from causal models as well as the familiar 
compiled expertise encoded in rules is dependent on 
flexible tools for representing knowledge. In recent years 
there has been considerable interest in structured object 
representation. Within this framework, a programmer can 
encapsulate packets of knowledge and link them together via 
a variety of relationships to form knowledge bases. 
Inheritance of properties through generalization hierarchies is 
standard. 

A problem facing the representation system designer is that 
many decisions he might make are implicitly biased toward a 
particular problem domain. The result is a system that may 
be too brittle to be easily applied to other domains. One 
approach to the problem is a low-level system that imposes a 
flexible structure and provides tools that allow a user to 
adjust the operation of the system and to embed it in 
higher-level systems that offer increased structure. 

This is the motivation for STROBE, a low-level system for 
support of structured objects in INTERLISP. It is to be 
viewed more as an augmentation to INTERLISP that 
simplifies programming with structured objects than as a 
powerful representation system. In this light, major concerns 
in its design have been flexibility and efficiency. Mechanisms 
are provided through which a user can encode in his 
knowledge bases explicit information to adjust the skeletal 
STROBE structure in a manner specific to particular 
applications.1 

2. STROBE: OVERVIEW 

A STROBE knowledge base is a collection of objects whose 
characteristics are elucidated through a number of slots. 
Alternatively it can be viewed as a semantic network of 
nodes and unidirectional links. 
1. RLL [Greiner, 19801 has a similar flavor but emphasizes self-

description over efficiency. GLISP [Novak, 19821 places more 
emphasis on efficiency and less on flexibility. 

(DEFOBJECT <object> <type> 
<generalizations> <groups> <slots>) 

constructs a new <object> whose <type> is one of the 
standard STROBE object types (e.g., class or individual). 
<generalizations> is one or more objects of which <object> 
is to be a specialization and from which it will inherit 
properties. <groups> is one or more collections of objects to 
which <object> should be added. Groups are not related to 
generalization hierarchies. <slots> is a list of object 
descriptors to be initially associated with <object>. 
Additional slots may be dynamically defined. Each slot is 
specified by a set of facets as follows. 
(<name> (<facetname1> . <facetvalue1>) ... 

(<jaeetnamen> . <facetvaluen>)). 
The DUNE object below is defined to be a specialization of 
COASTAL-BARRIER-ISLAND. It denotes a CLASS of 
objects as opposed to a particular example of a COASTAL-
BARRIER-ISLAND. It is defined to be a member of the 
SILICICLASTIC-ROCKS and GEOLOGY groups. Three 
slots are defined: PATTERN, CROSS-SECTION, and PLAN-
VIEW. 
(DEFOBJECT DUNE CLASS COASTAL-BARRIER-ISLAND 

(SILICICLASTIC-ROCKS GEOLOGY) 
((PATTERN (DATATYPE. OBJECT) 

(VALUE. GREEN-OVER-BLUE)) 
(CROSS-SECTION (DATATYPE. BITMAP)) 
(PLAN-VIEW (DATATYPE. BITMAP)))) 

STROBE defines a value facet for every slot. This facet effects 
the linkage from one node in the network to another. The 
contents of the value facet is the node (or list of nodes) 
pointed to by the slot. For DUNE, the value of the 
PATTERN slot is to be initially filled with the object 
GREEN-OVER-BLUE. 

A datatype facet is also defined for every slot. Not all nodes 
in a STROBE knowledge base need be objects. They may be 
LISP functions, S-expressions, bitmaps, arrays, and so on. 
These nodes have the characteristics that: (i) they have no 
additional STROBE structure, and 00 they are leaf nodes-
they do not point to any other nodes. The datatype facet of a 
slot points to an object that specifies how the node pointed to 
by the value facet is to be interpreted.2 In the DUNE object, 
the value facet of PATTERN is to be filled with an object. 
The value facets of CROSS-SECTION and PLAN-VIEW are 
to be filled with bitmaps. 

2. This idea was used in UNITS [Stefik, 19791. 



856 R. Smith 

Figure 1 shows the screen of the Xerox 1100 running the 
STROBE editor.3 BARCHAN-DUNE, a specialization of 
DUNE, is shown. It has inherited the slots of DUNE and the 
value facets of the CROSS-SECTION and PLAN-VIEW slots 
have been filled with bitmaps. 

3. INHERITANCE 

If necessary, STROBE performs a run-time breadth-first 
search through the ancestors of an object to find the contents 
of a facet of a slot in that object.4 The ancestors actually only 
provide a default for inheritance. Every STROBE slot access 
function allows the user to specify a partial path of objects to 
use as starting points for a search for inherited properties. 
This generality enables construction of objects that inherit 
slots from objects that are linked to them by relationships 
other than generalization (e.g., parts). 

4. PROCEDURAL ATTACHMENT AND INDIRECT 
PROCEDURE INVOCATION 

A procedure may be associated with a slot facet and 
invoked indirectly by sending a STROBE message to that 
facet. For example, a message sent to the value facet of the 
BUILD slot of a BOX object will cause the BUILDBOX 
procedure to be invoked. Many other objects may have 
BUILD slots-filled with procedures specific to the objects 
themselves. 
(DEFOBJECT BOX CLASS (GEOMETRIC-STRUCTURE ICON) NIL 

((BUILD (DATATYPE. LISP) 
(VALUE (LAMBDA (OBJECT SLOT FACET WIDTH HEIGHT) 

(BUILDBOX WIDTH HEIGHT)))))) 

If the facet to which the message is addressed is not found in 
the slot of the object (even after an inheritance search), then 
STROBE reroutes the message to the object that is the 
datatype for the slot. This indirection enables a programmer 
to encapsulate information about how to deal with actions 
that are generic to a datum of a particular datatype. 

5. EVENT-SENSITIVE PROCEDURE INVOCATION 

STROBE checks for procedures to be invoked whenever 
one of a number of significant events occurs. This gives a 
user considerable freedom to adjust the basic mechanisms of 
the system in ways that are specific to particular objects or 
classes of object. 

Object Creation/Deletion Procedures: Invoked after an 
object has been created or before an object is deleted. They 
can be used to perform specialized initialization or cleanup. 
For example, when an instance of TEST is created, 
FillTESTSlots is invoked to initialize its slots. Upon deletion, 
SummarizeTESTSlots is invoked to summarize information 
contained in the slots before it is lost. 
(DEFOBJECT TEST CLASS ROOT NIL 

((OBJECT-CREATION-PROCEDURES 
(DATATYPE. LISP) 
(VALUE FillTESTSlots)) 

(OBJECT-DELETION-PROCEDURES 
(DATATYPE. LISP) 
(VALUE SummarizeTESTSlots)))) 



R. Smith 857 

Slot Creation/Deletion Procedures: Invoked after a slot 
has been created or before a slot is deleted. In the following 
example, the functions AddObjectToSlot and 
RemoveObjectFromSlot maintain an association list that 
indexes a knowledge base by slot name. (STROBE provides 
a mechanism that enables a user to store such a data 
structure with a knowledge base.) 
(DEFOBJECT INDEX CLASS ROOT NIL 

((SLOT-CREATION-PROCEDURES 
(DATATYPE. LISP) 
(VALUE AddObjectToSlot)) 

(SLOT-DELETION-PROCEDURES 
(DATATYPE. LISP) 
(VALUE RemoveObjectFromSlot)))) 

Slot Access/Alteration Procedures: Invoked before and 
after every attempt to access or alter the value of a slot. In 
the following example, the value of the AREA slot is 
computed from the WIDTH and LENGTH slots via the 
procedure found in the ACCESS-PROCEDURES facet. The 
keyword AFTER indicates that the procedure should be fired 
after the value has been retrieved via lookup. SOURCE-
OBJECT is the object in which the slot was found (perhaps 
via inheritance), and VAL is the value retrieved via lookup 
(ignored in this example). GETVALUE is a STROBE 
function for accessing the value of a slot.5 

(DEFOBJECT COMPOSITE CLASS ROOT NIL 
((WIDTH (DATATYPE. EXPR) (VALUE. 3)) 
(LENGTH (DATATYPE. EXPR) (VALUE. 2)) 
(AREA (DATATYPE. EXPR) 

(ACCESS-PROCEDURES 
AFTER 
(LAMBDA (OBJECT SOURCE-OBJECT SLOT VAL) 

(ITIMES (GETVALUE OBJECT 'WIDTH) 
(GETVALUE OBJECT 'LENGTH))))))) 

In the following example, the value of the SI slot can only 
be filled with BITMAP or EXPR. This is accomplished with a 
RESTRICTIONS facet and an alteration procedure that 
enforces the restriction. (If a procedure fired before the new 
value is placed returns *FA1L*, then placement of the new 
value is prevented.) VAL is the new value to be placed. 
GETFACET? is a STROBE function for accessing a facet. 
(DEFOBJECT RI CLASS ROOT NIL 

((SI (DATATYPE. OBJECT) (RESTRICTIONS BITMAP EXPR) 
(AL TERA TION-PROCEDURES 
BEFORE 
(LAMBDA (OBJECT SOURCE-OBJECT SLOT VAL) 

(COND ((FMEMB VAL 
(GETFACET? OBJECT SLOT 'RESTRICTIONS)) 
VAL) 

(T ''FAIL*))))))) 
In the following example, the before procedure associated 
with the PARTS and PARTOF slots of 7V redefines the 
operation of placing a value in those slots. The new operation 
adds an object without duplication to a list of objects. It also 
sets a variable (NewValue) for use by the after procedure. 

That procedure sets up a back pointer. If object Part I is 
added to the PARTS slot of object 77, then 77 is added to 
the PARTOF slot of Parti. Note that this kind of symmetric 
operation must be carried out after the new value has been 
placed to avoid infinite regress. It demonstrates the utility of 
both before and after procedures.6 

(DEFOBJECT Tl CLASS ROOT NIL 
((PARTS (DATATYPE. OBJECT) 

(ALTERA TION-PROCEDURES 
(BEFORE 

(LAMBDA (OBJECT SOURCE-OBJECT SLOT VAL) 
(COND ((NULL (SLOTVALUEP OBJECT SLOT)) 

(SETQ NewValue VAL) (LIST VAL)) 
((FMEMB VAL (GETVALUE OBJECT SLOT)) 

(SETQ NewValue '*FAIL*)) 
(T (SETQ NewValue VAL) 

(CONS VAL (GETVALUE OBJECT SLOT)))))) 
(AFTER 

(LAMBDA (OBJECT SOURCE-OBJECT SLOT VAL) 
(COND ((NEQ NewValue '*FAlL*) 

(PUTVALUE New Value PART OF OBJECT))))))) 
(PAR TOF (DA TA TYPE . OBJECT) 

(ALTERA TION-PROCEDURES 
(BEFORE... < identical to PARTS procedures ... ) 
(AFTER 

(LAMBDA (OBJECT SOURCE-OBJECT SLOT VAL) 
(COND ((NEQ NewValue '*FAIL*) 

(PUTVALUE NewValue PARTS OBJECT))))))))) 
SLOTVALUEP returns NIL if no value has been set for a 
slot. PUTVALUE is a STROBE function for setting the value 
of a slot. 

6. OTHER STROBE FEATURES 
• Multiple Resident Knowledge Bases: A user may 

have several knowledge bases in memory at the same 
time. 

• Synonyms: All STROBE functions resolve references to 
synonyms for objects and slots. 

• Instantiation from Complex Descriptions: STROBE 
uses the description object type to specify templates for 
instantiating class objects. When an object whose slots 
contain descriptions is instantiated, STROBE creates new 
objects for each of the descriptions and resolves inter-
object references. 

• Standard INTERLISP Source Files: STROBE is 
integrated with the INTERLISP file package and 
constructs knowledge base files in standard source file 
format. 

• Object-Centered Memory Management: A user can 
selectively page objects to secondary storage.7 

6. The LOOPS (Bobrow, 1982] active value effectively corresponds to the 
STROBE before alteration procedure. There is no direct 
correspondence to the after procedure. 

5. In general, a list of procedures may be invoked on slot access or 
alteration. 7. This is useful on a limited address machine like the DEC-20. It has 

not yet been needed on the Xerox 1100. 



858 R. Smith 

7. APPLICATIONS 
STROBE has been used to structure information about data 
and control flow for two large well-log interpretation 
programs. The system has also been used to construct a 
two-dimensional equation prettyprinter as part of the 
interface to an automatic programming system for well-log 
interpretation software. In future it will be used to represent 
the domain knowledge, software knowledge, and 
intermediate stages of program development. 

STROBE has been used as a rapid prototyping tool in the 
development of graphics facilities by Schlumberger's Houston 
Interpretation Engineering staff. These facilities are intended 
to generate the graphics for all commercial Schlumberger 
products. 

Finally, as an experiment in adjusting the STROBE skeleton 
in the manner shown in this paper, a basic implementation of 
the class and inheritance structures of Smalltalk-80 was 
developed. It required the definition of a small number of 
objects, slots, and attached procedures and was completed in 
a few days.8 

Acknowledgements: The design of STROBE has benefited 
greatly from its use by Stephen Smoliar, Eric Schoen, David 
Barstow, Roger Duffey, and Scott Marks. Gilles Lafue provided a 
number of helpful comments on this paper. The local network 
support provided by Stanley Vestal, Eric Schoen, and Ed Dolph has 
simplified the workstation implementation. The intellectual 
stimulation of object-oriented programming discussion group and 
the managerial support of James Baker are also appreciated. 

REFERENCES 
D. G. Bobrow and M. J. Stefik, A Virtual Machine for 
Experiments in Knowledge Representation. Unpublished 
Memorandum, Xerox Palo Alto Research Center, April 
1982. 
R. Greiner and D. B. Lenat, A Representation Language 
Language. Proceedings of the National Conference on Artificial 
Intelligence, August 1980, pp. 165-169. 
G. S. Novak, GLISP: A High-Level Language For A.I. 
Programming. Proceedings of the National Conference on 
Artificial Intelligence, August, 1982, pp. 238-241. 
M. J. Stefik, An Examination Of A Frame-Structured 
Representation System. Proceedings of the Sixth International 
Joint Conference On Artificial Intelligence, August 1979, pp. 
845-852. 

8. This was done by David Barstow. 


