
Stroboscopic Model and Bifurcations in TCP/RED
Mingjian Liu, Hui Zhang, and Ljiljana Trajković

Simon Fraser University
Vancouver, British Columbia, Canada
{jliu1, hzhange, ljilja}@cs.sfu.ca

Abstract— In this paper, we derive a simple first-order discrete-
time model for the Transmission Control Protocol (TCP) with
Random Early Detection (RED). We view the network as a
discrete feedback control system where TCP adjusts its sending
rate depending on whether or not it has detected a packet loss.
We then use a stroboscopic map to investigate bifurcations and
chaos in a TCP/RED system with a single connection.

I. INTRODUCTION

One important goal of modeling the Transmission Control
Protocol (TCP) [1], [2] is to investigate its nonlinear behavior.
We use an iterative map to derive a simple first-order discrete-
time model that captures the interactions between the TCP
congestion control algorithm and the Random Early Detection
(RED) mechanism [3]. We use the concepts proposed in [4]
and construct a nonlinear dynamical model of TCP/RED that
employs the average queue size as a state variable. The
average queue size captures the queue dynamics in the RED
gateway and reflects the dynamics of the TCP congestion
control mechanism. The novelty of the proposed model is in
its simplicity and ability to capture the detailed dynamical
behavior of TCP/RED systems. The model was verified via
ns-2 simulations.

We also investigate the bifurcation and chaos phenom-
ena [5] in a TCP/RED system with a single connection.
These phenomena are easily observed in the derived TCP/RED
iterative map. To visualize chaos and bifurcation, we use
bifurcation diagrams by varying a range of RED parameters
such as the weight factor, maximum packet drop probability,
and minimum and maximum queue thresholds. Of particular
interest is the observed “double-bifurcation” phenomenon: the
existence of chaos regions for both small and large values of
the RED queue thresholds.

The paper is organized as follows: in Section II, we briefly
describe TCP congestion control and the RED algorithm.
The nonlinear first-order discrete-time model is introduced
in Section III. In Section IV, we investigate the bifurcation
and chaos phenomena in a TCP/RED system with a single
connection. Conclusions are given in Section V.

II. TCP AND RED ALGORITHMS

A. TCP Congestion Control Algorithms

To adjust the window size, TCP congestion control mecha-
nism [1], [2] employs four algorithms: slow start, congestion

This research was supported by the NSERC Grant 216844-03 and Canada
Foundation for Innovation New Opportunities program.

Time

SS : Slow start
CA: Congestion avoidance
FR : Fast recovery

Co
ng

es
tio

n 
w

in
do

w
 si

ze

SS CA FR CA SS

Timeout

ssthresh

Fast retransmit

ssthresh =cwnd /2
cwnd =ssthresh +3

Fig. 1. Evolution of the window size in TCP Reno. It consists of slow start,
congestion avoidance, fast retransmit, and fast recovery phases.

avoidance, fast retransmit, and fast recovery, as shown in
Fig. 1. Older TCP implementations used a simple window-
based congestion control (early 1980s). TCP Tahoe employed
the slow start, congestion avoidance, and fast retransmit
algorithms (late 1980s). The fast recovery algorithm was
introduced in TCP Reno (early 1990s).

In order to avoid congesting the network with large bursts
of data, an established TCP connection first employs the slow
start algorithm to detect the available network bandwidth.
Typically, the TCP sender initializes its congestion window
cwnd to one or two segments, depending on the TCP im-
plementation. Upon receiving a new acknowledgment (ACK)
from the receiver, TCP increments the cwnd by one segment
size.

When cwnd exceeds a threshold (ssthresh), the sender’s con-
gestion control mechanism leaves the slow start and enters the
congestion avoidance phase. During the congestion avoidance
phase, cwnd is incremented by one segment size per round
trip time (RTT). A retransmission timer is set every time the
sender sends a packet. A packet loss is detected by the timeout
mechanism if the timer expires before the receipt of the packet
has been acknowledged. In this case, the TCP sender adjusts
its ssthresh and switches back to slow start.

The fast retransmit algorithm is used for recovery from
losses detected by triple duplicate ACKs. Whenever a TCP
receiver receives an out-of-order segment, it immediately
sends a duplicate ACK that informs the sender of the sequence
number of the packet that the receiver expects. The receipt of
triple duplicate ACKs (four consecutive ACKs acknowledging
the same packet) is used as an indication of packet loss. The
TCP sender reacts to the packet loss by halving the cwnd
and re-transmitting the lost packet without waiting for the
retransmission timer to expire.



The fast recovery algorithm is used to control data transmis-
sion after the fast retransmission of the lost packet. During this
phase, the TCP sender increases its cwnd for each duplicate
ACK received. The fast recovery algorithm recognizes each
duplicate ACK as an indication that one packet has reached
the destination. Since the number of outstanding packets has
decreased by one, the TCP sender is allowed to increment its
cwnd. When a non-duplicate ACK is received, TCP switches
from the fast recovery to the congestion avoidance phase.

B. RED Algorithm

The traditional DropTail queue management mechanism
drops the most recently arrived packet if the queue is full.
However, this method has two drawbacks. First, it may allow
few connections to monopolize the queue space so that other
flows are starved. Second, DropTail allows queues to be full
for a long period of time. During that period, incoming packets
are dropped in bursts. This causes severe reduction in the
throughput of the TCP flows. One solution is to deploy active
queue management (AQM) algorithms [3]. The purpose of
AQM is to react to incipient congestion before the queue
overflows. Active queue management allows responsive flows,
such as TCP flows, to react timely and reduce their sending
rates in order to prevent congestion and severe packet losses.

The most widely implemented active queue management
algorithm is RED [3]. The RED mechanism calculates an
exponentially weighted moving average of the queue size. At
every packet arrival, the RED gateway updates the average
queue size as:

q̄k+1 = (1 − wq)q̄k + wqqk+1, (1)

where wq is the weight factor and qk+1 is the current queue
size. The average queue size is compared to two parameters:
minimum queue threshold qmin and maximum queue thresh-
old qmax. If the average queue size is smaller than qmin, the
packet is admitted to the queue. If it exceeds qmax, the packet
is marked or dropped. If the average queue size is between
qmin and qmax, the packet is dropped with a drop probability
pk+1 that is a linear function of the average queue size:

pk+1 =




0 if q̄k+1 ≤ qmin

1 if q̄k+1 ≥ qmax
q̄k+1−qmin

qmax−qmin
pmax otherwise

. (2)

III. MODELING TCP/RED

Analytical TCP models may be classified in three categories
based on the duration of the TCP flows. Flow duration
determines the dominant TCP congestion control algorithms to
be modeled and the aspects of TCP performance that may be
captured by the model [6], [7]. The first category models short-
lived flows, where TCP performance is strongly affected by the
connection establishment and slow start phases. These models
typically approximate the average latency, defined as the time
necessary to complete a transfer of a certain amount of data.
The second category models long-lived flows that characterize

the steady-state performance of bulk TCP transfers during
the congestion avoidance phase. These models approximate
aspects such as the average throughput and window size
evolution. The final category includes models for flows of
arbitrary duration and may accommodate both short-lived and
long-lived flows.

From the control theory point of view, developed models
of TCP and TCP/RED may be classified into two types:
averaged models and iterative map models. An averaged model
is described by a set of continuous differential equations. It
neglects the detailed dynamics and only captures the “low-
frequency characteristics” of the system. It may be used to ana-
lyze the steady-state performance and to predict low-frequency
slow-scale bifurcation behavior, such as Hopf bifurcations. In
contrast, an iterative map model has a discrete-time form and
employs a set of difference equations. It provides relatively
complete dynamical information. Iterative maps are adequate
to explore nonlinear phenomena, such as period-doubling and
saddle-node bifurcations, which may appear across a wide
spectrum of frequencies and cause existence of solutions in
the high-frequency range.

A. Discrete-Time Dynamical Model of TCP/RED

The basic idea behind RED is to sense impending conges-
tion before it occurs and to try to provide feedback to senders
by either dropping or marking packets. Hence, from the control
theory point of view, the network may be considered as a
complex feedback control system. TCP adjusts its sending rate
depending on whether or not it has detected a packet drop
in the previous RTT interval. The drop probability of RED
may be considered as a control law of the network system.
The discontinuity in the drop probability function is the main
reason for oscillations and chaos in the system. Hence, it
is natural to model the network system as a discrete-time
model. In this paper, we model TCP/RED systems using a
“stroboscopic map”, which is the most widely used type of
discrete-time maps for modeling power converters [5]. This
map is obtained by periodically sampling the system state.
In our model, the sampling period is one RTT. Window and
queue sizes behave as step functions of RTT. Hence, one RTT
is the sampling period that captures their changes [4]. Higher
sampling rate would not significantly improve the accuracy
of the model, whereas lower sampling rate would ignore the
changes and would affect the model accuracy.

B. Stroboscopic Model of TCP/RED

We employ the average, rather than the instantaneous, queue
size as a state variable in the proposed model. The average
queue size captures the behavior of TCP and the queue
dynamics of RED. We consider a simple network consisting
of N TCP sources, N destinations, and two routers, with a
link between the routers. RED mechanism is employed in
the router connected to the sources. TCP Reno connections
are established between the sources and the destinations. Data
packets are sent from a source to a destination, while traffic
in the opposite direction consists of ACK packets only.



We made several assumptions in order to construct a simple
TCP/RED model. We assume that ACK packets are never lost.
The connections are long-lived and the sources always have
sufficient data to send. The link that connects the two routers
is the only bottleneck in the network. All connections are TCP
Reno with identical and constant round trip propagation delay
and data packet size. The receivers’ advertised window size
(rwnd), the largest amount of data that a receiver could accept
in one round, is sufficiently large and it does not influence
TCP sending rate. We also assume that timeouts are caused
only by packet loss and that the duration of the timeout period
is 5 RTTs [4].

The state variable of the system is sampled at the end of
every RTT period. We assume that the queue size is constant
during each sampling period. The average queue size (1)
depends on the instantaneous queue size qk+1 at the sampling
period k + 1. qk+1, in turn, depends on the remaining queue
size qk from the previous sampling period and the number of
incoming and outgoing packets in the current round.

In our derivation, we employ the following variables:
q̄k+1=̇ average queue size in round k + 1
q̄k=̇average queue size in round k
wq=̇ queue weight in RED
N=̇ number of TCP connections
K=̇ constant (

√
3/2) [6]

pk=̇ drop probability in round k

C=̇ capacity of the link between the two routers
d=̇ round-trip propagation delay
M=̇ packet size
rwnd=̇ receiver’s advertised window size.

The model includes two cases, depending on the loss
probability in the previous RTT period.

Case 1: Drop probability pk �= 0:

qk+1 = qk + B(pk) · RTTk+1 · N − C·RTTk+1
M

= qk + K√
pk·RTTk+1

· RTTk+1 · N − C
M (d + qkM

C )
= K·N√

pk
− C·d

M ,

(3)
where B(pk) is the TCP sending rate [6]. B(pk) ·RTTk+1 ·N
and C ·RTTk+1/M are the number of incoming and outgoing
packets in round k + 1, respectively. Substituting qk+1 in (1)
gives:

q̄k+1 = (1 − wq) · q̄k + wq · max(
N · K√

pk
− C · d

M
, 0). (4)

Case 2: Drop probability pk = 0:

qk+1 = qk + B(pk) · RTTk+1 · N − C·RTTk+1
M

= qk + rwnd
RTTk+1

· RTTk+1 · N − C
M (d + qkM

C )
= rwnd · N − C·d

M .

(5)

Substituting qk+1 (5) into (1) gives the average queue size:

q̄k+1 = (1 − wq) · q̄k + wq · (rwnd · N − C · d
M

). (6)

Finally, the dynamic model of TCP/RED is:

q̄k+1 =

{
(1 − wq) · q̄k + wq · max(N ·K√

pk
− C·d

M , 0) if pk �= 0
(1 − wq) · q̄k + wq · (rwnd · N − C·d

M ) if pk = 0.
(7)

C. Model Validation

The accuracy of the proposed model is validated by com-
paring its performance with results obtained from ns-2 sim-
ulations. The simulated network consists of one source, one
sink, and two routers, with a bottleneck link between the two
routers. System parameters are: C = 1.54 Mbps, M = 4, 000
bits, N = 1, wq = 0.002, pmax = 0.1, qmin = 5 packets,
and qmax = 15 packets. The average values of the queue
size during steady state are 5.71 (model) and 5.77 (ns-2 sim-
ulations), indicating a difference of ∼ 1.05%. The proposed
model is also validated by varying system parameters: queue
weight wq, drop probabilities pmax, and thresholds qmin and
qmax. The average queue size during the steady state for
wq ∈ [0.001, 0.01] is shown in Fig. 2.

2 4 6 8 10

x 10
−3

5

5.5

6

6.5

7

w
q

A
ve

ra
ge

 q
ue

ue
 s

iz
e 

(p
ac

ke
ts

)
ns−2

TCP/RED model

Fig. 2. Comparison of the average queue size for various wq .

IV. BIFURCATION AND CHAOS PHENOMENA IN TCP/RED

We investigate bifurcation and chaos in the TCP/RED
iterative map that we derived. Similar observations have been
reported in a TCP/RED system with multiple connections [8],
[9]. Chaos and bifurcation phenomena may be visualized
using time-waveforms of the state variables, phase portraits,
Poincare or first-return maps, and bifurcation diagrams [5].
We employ here bifurcation diagrams to investigate these
nonlinear phenomena. They capture a periodic steady state
of the system by recording the periodicity of the system for
a fixed parameter. In the case of chaotic systems, numerous
points are plotted indicating infinity period because the points
never fall at the same position. We investigate the change of
behavior in a TCP/RED system with a single connection when
RED parameters, such as the weight factor wq, the maximum
packet drop probability pmax, the minimum queue threshold
qmin, and the maximum queue threshold qmax, are varied.
Other system parameters are: C = 1.54 Mbps, K =

√
3/2,

d = 0.0228 sec, M = 4, 000 bits, rwnd = 1, 000 packets,
and N = 1.



A. Bifurcation Parameter: RED Weight Factor wq

We vary wq from 0.14 to 0.27, with step 0.001. The bifurca-
tion diagram is shown in Fig. 3. The TCP/RED system transits
to chaos via a period-doubling route. A small periodic window
is embedded in the chaos region. It exhibits period-doubling
cascade (starting with period-3) when wq ∈ [0.244, 0.246].

Fig. 3. Bifurcation diagram of the average queue size with wq as a parameter
(pmax = 0.1, qmin = 5, and qmax = 15).

B. Bifurcation Parameter: Maximum Drop Probability pmax

The RED maximum drop probability pmax is varied from
0.1 to 0.9, with step 0.001, producing a bifurcation diagram
shown in Fig. 4. The TCP/RED system exhibits a period-
doubling route to chaos. A small periodic window embedded
in the chaos region is observed when pmax ∈ [0.76, 0.79].

Fig. 4. Bifurcation diagram of the average queue size with pmax as a
parameter (wq = 0.04, qmin = 5, and qmax = 15).

C. Bifurcation Parameters: RED Minimum and Maximum
Queue Thresholds qmin and qmax

The RED queue thresholds qmin and qmax may also serve
as bifurcation parameters, producing similar bifurcation dia-
grams. Of particular interest is the diagram shown in Fig. 5.

The TCP/RED system bifurcates and enters chaos via “double-
bifurcation”. It exhibits chaos for both small and large values
of qmin.

Fig. 5. Bifurcation diagram of the average queue size with qmin and qmax

as parameters (wq = 0.2, pmax = 0.1, qmax = 3 · qmin).

V. CONCLUSIONS

In this paper, we developed a nonlinear first-order discrete
model for TCP Reno with the RED algorithm. TCP/RED
is a feedback control system where TCP adjusts its sending
rate depending on the packet loss probability determined by
the RED mechanism. The proposed model takes into account
the slow start and timeout events and captures the dynamical
behavior of TCP/RED in terms of the average queue size. We
validated the model for various RED parameters by comparing
its performance with ns-2 simulation results. The model was
used to observe the bifurcation and chaos phenomena in a
TCP/RED system with a single connection.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” ACM Computer Com-
munication Review, vol. 18, no. 4, pp. 314–329, Aug. 1988.

[2] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” IETF
Request for Comments, RFC 2581, Apr. 1999.

[3] S. Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” IEEE/ACM Trans. Networking, vol. 1, no. 4, pp. 397–413,
Aug. 1993.

[4] V. Firoiu and M. Borden, “A study of active queue management for
congestion control,” in Proc. IEEE INFOCOM, Tel Aviv, Israel, Mar.
2000, vol. 3, pp. 1435–1444.

[5] M. di Bernardo and C. K. Tse, “Chaos in power electronics: an overview,”
Chaos in Circuits and Systems, New York: World Scientific, pp. 317–340,
2002.

[6] J. Padhye, V. Firoiu, and D. F. Towsley, “Modeling TCP Reno perfor-
mance: a simple model and its empirical validation,” IEEE/ACM Trans.
Networking, vol. 8, no. 2, pp. 133–145, Apr. 2000.

[7] I. Khalifa and Lj. Trajković, “An overview and comparison of analytical
TCP models,” in Proc. IEEE ISCAS, Vancouver, BC, Canada, May 2004,
vol. V, pp. 469–472.

[8] P. Ranjan, E. H. Abed, and R. J. La, “Nonlinear instabilities in TCP-
RED,” in Proc. IEEE INFOCOM, New York, NY, USA, June 2002, vol.
1, pp. 249–258.

[9] R. J. La, P. Ranjan, and E. H. Abed, “Nonlinearity of TCP and instability
with RED,” in Proc. SPIE ITCom, Internet Performance and Control of
Network Systems III, Boston, MA, USA, July 2002, vol. 4865, pp. 283–
294.


