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Since the early days of the pandemic, there have been several reports of cerebrovascular

complications during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

infection. Numerous studies proposed a role for SARS-CoV-2 in igniting stroke. In

this review, we focused on the pathoetiology of stroke among the infected patients.

We pictured the results of the SARS-CoV-2 invasion to the central nervous system

(CNS) via neuronal and hematogenous routes, in addition to viral infection in peripheral

tissues with extensive crosstalk with the CNS. SARS-CoV-2 infection results in

pro-inflammatory cytokine and chemokine release and activation of the immune system,

COVID-19-associated coagulopathy, endotheliitis and vasculitis, hypoxia, imbalance in

the renin-angiotensin system, and cardiovascular complications that all may lead to

the incidence of stroke. Critically ill patients, those with pre-existing comorbidities and

patients taking certain medications, such as drugs with elevated risk for arrhythmia or

thrombophilia, are more susceptible to a stroke after SARS-CoV-2 infection. By providing

a pictorial narrative review, we illustrated these associations in detail to broaden the scope

of our understanding of stroke in SARS-CoV-2-infected patients. We also discussed

the role of antiplatelets and anticoagulants for stroke prevention and the need for a

personalized approach among patients with SARS-CoV-2 infection.
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INTRODUCTION

As a member of the coronavirus family, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), the etiological agent
of coronavirus disease of 2019 (COVID-19), is an enveloped
virus with a positive-sense single-stranded RNA genome,
that exhibits ∼80 and 50% genetic similarity with severe
acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and
Middle East respiratory syndrome coronavirus (MERS-CoV),
respectively (1, 2). While the pathogenesis of SARS-CoV-2
remains to be clarified, its similarities with SARS-CoV-1 and
MERS-CoV pathogenesis may provide insights into SARS-
CoV-2 pathogenesis. With few exceptions, coronaviruses are
generally associated with respiratory infections. Reports of a
wide range of neurologic symptoms including stroke (3, 4), in
addition to reports of virus detection in the cerebrospinal fluid
(CSF) (5) and brain tissues from autopsies (6–8) introduced
a neuroinvasive potential of SARS-CoV-2. Although a causal
relationship between coronaviruses and stroke has not yet been
established, supporting evidence exists in several publications.
First, there is an independent association between COVID-19
and acute ischemic stroke after controlling for other vascular
risk factors (9). Further, in a study of 17,799 hospitalized
patients with SARS-CoV-2 infection, our team reported a pooled
stroke risk of 0.9% while ischemic stroke occurred in 79%
of patients, hemorrhagic stroke in 17%, and 4% had cerebral
venous thrombosis (10). Other meta-analyses reported a stroke
incidence rate of 1.1–1.6% among patients with COVID-19
(11–14) which appears higher than 0.6–0.8% incidence in the
general population (15). Evidence has shown a significant
decrease in the rate of myocardial infarction and ischemic
stroke in the emergency department during the pandemic (16).
This phenomenon, which may be attributable to the fear of
SARS-CoV-2 infection among the population, suggests the
underdiagnosis of stroke and a possible higher incidence of
stroke in SARS-CoV-2 infected patients. Moreover, the risk of
stroke in SARS-CoV-2 infection is 7.6-fold higher than that of
influenza infection (17). Finally, cerebrovascular diseases were
an independent predictor of severity and fatality of COVID-19
illness based on adjusted effect estimates (18).

Moreover, stroke in SARS-CoV-2 infected patients is reported
to have specific features. It is more commonly reported in young
patients (mean age <55 years) without classic vascular risk
factors (19–21), with a high prevalence of cryptogenic stroke
(11, 22), and an increased incidence of large vessel stroke (11,
21, 23, 24), even in patients with mild SARS-CoV-2 infection
(25). These reports highlight the importance of acknowledging
the association between stroke and SARS-CoV-2 infection.

Given the former considerations, we conducted a narrative
review of possible pathways responsible for neuroinvasion by
SARS-CoV-2. We also provided a pictorial overview of the topic
to better summarize the potential etiopathogenic mechanisms
underlying the stroke in patients with SARS-CoV-2 infections.

SARS-CoV-2 CELLULAR ENTRY

The main transmission route for SARS-CoV-2 is the direct
contamination of mucosal linings (26) (Figure 1). Epithelial cells

in the mucosal linings of the respiratory and gastrointestinal
tracts can spread the virus by expressing the main receptor
of SARS-CoV-2—angiotensin-converting enzyme-2 (ACE2)—
and the main cofactor—transmembrane serine protease 2
(TMPRSS2) (27). TMPRSS2 is an activating protease that
is necessary for cleaving the spike protein of SARS-CoV-2,
facilitating the viral binding to the receptor, and leading to
viral internalization (28). In addition to ACE2, the cluster of
differentiation 147 (CD147), which acts through interaction
with spike glycoprotein, was introduced as a novel receptor
for SARS-CoV-2 (29). A furin cleavage site, which was not
present in the spike glycoprotein of SARS-CoV-1, has also been
discovered in SARS-CoV-2 as a host factor participating in viral
infection (30). Furin is a ubiquitous protease that participates
in activating surface proteins of viruses such as coronaviruses
and influenza (31, 32). Although not consistently expressed in all
cell types, ACE2, TMPRSS2, CD147, and furin are present in the
human respiratory tract (33). Furthermore, neuropilin-1 (NRP1),
a cellular transmembrane receptor, has been introduced to act
as a specific receptor for SARS-CoV-2 (34, 35). Epithelial cells
of respiratory and gastrointestinal linings highly express NRP1
(34). NRP1 has been shown to mediate viral infection even in the
absence of TMPRSS2 and ACE2. However, the infection is milder
compared to the sole expression of ACE2 (34).

After passing through themucosal linings, the systemic spread
of SARS-CoV-2 to tissues, blood and lymphatic circulation,
and peripheral nerve endings can enable the spread to the
central nervous system (CNS). The brain is privileged by having
various barriers such as the blood-brain barrier (BBB) and the
blood-cerebrospinal fluid barrier (36). However, the integrity
of these barriers is not complete and pathologic conditions
may disrupt them (37). After crossing the barriers, SARS-CoV-
2 neuroinvasion needs the presence of viral receptors in the host
brain cells. Human brain cell lines express ACE2, CD147, NRP1,
and TMPRSS2 (38, 39).

Proposed Mechanisms for Neuroinvasion
Two possible routes can be hypothesized for SARS-CoV-
2 neuroinvasion, including neuronal and hematogenous
transmission. Figure 1 pictures the possible mechanisms of
stroke associated with SARS-CoV-2 in each of these routes.

Neuronal Route of Neuroinvasion
Transneuronal transport of the SARS-CoV-2 through peripheral
nerve endings can occur via specific viral receptors (40)
(Figure 1A). In addition, peripheral nerve endings may use other
mechanisms for uptake of the virus. For example, viral uptake
can occur via trans-synaptic membranous-coating-mediated
endocytosis (similar to other coronaviruses) (41) or fusion of
virus envelope with the host neuron via the axonal membrane
of the next-order-neuron (similar to herpesviruses) (42).

Like other mucosal linings, nasal mucosa (the respiratory
mucosa and olfactory mucosa) may be an entry site for
SARS-CoV-2. The human nasal mucosa and olfactory bulb
express different levels of NRP1, ACE2, CD147, TMPRSS2,
and Furin, which may explain the smell and taste disturbance
(34, 43–45). The expression of ACE2 and TMPRSS2 was not
obvious in the neurons of the olfactory mucosa and olfactory
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FIGURE 1 | Flowchart diagram summarizes possible routes for neuroinvasion and potential mechanisms of stroke. SARS-CoV-2 penetrates through its receptors,

ACE2, CD147, or NRP1 and co-receptors, TMPRSS2, or FURIN present on the epithelial cells of the surface mucosal lining. Transportation occurs via viral invasion

into (A) peripheral nerve endings and transneuronal transmission, (B) peripheral lymphatic vessels connected to the blood or cerebral lymphatic circulation, and (C)

the blood vessels and invasion into the CNS (yellow box on the left). In blood, the virus spreads inside infected leukocytes (aka “Trojan horse”) or as free particles. Viral

invasion through the hematogenous route requires crossing the intact blood-brain barrier (BBB) or penetrating the CNS through circumventricular organs (CVOs) that

lack BBB. Intact BBB may allow a limited number of leukocytes to enter the CNS via transcellular diapedesis. Viral particles and macro-molecules can breach the BBB

via receptor-mediated transcytosis or adsorptive transcytosis. Finally, SARS-CoV-2 can directly infect the endothelium and cross. A disrupted BBB enables unlimited

paracellular transportation. Once In the CNS, the virus can invade the vascular system and increase stroke risk by causing endotheliitis/vasculitis (Figure 2), activating

the inflammation and coagulation cascades (Figure 2), overactivation of angiotensin II signaling pathways (Figure 3), or causing local hypoxia (Figure 3). There is

crosstalk between the inflammatory and coagulation systems in the central and peripheral environments because their products are transported bidirectionally. Viral

invasion into peripheral tissues, including pulmonary and cardiovascular systems, occurs through direct mucosal surfaces or hematogenous dissemination (D).

Activation of inflammation and coagulation systems increases pro-inflammatory and pro-coagulant products, which are then transported to the CNS accompanying

angiotensin II through BBB and CVOs. Lung and cardiovascular injury and elevated metabolism cause systemic hypoxia increasing the risk of stroke. Cardiovascular

damage (Figures 1–6) can cause a stroke by arrhythmia and cardioembolism or by decreased cardiac output resulting in cerebral hypoperfusion. Clinical features of

critical illness (Figure 4), especially in patients with some comorbidities or risk factors (Figure 5) and side effects of certain medications (Figure 6) may be related to

increased risk of stroke. SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; CD147, Cluster of differentiation 147; ACE2, Angiotensin-converting enzyme

2; NRP1, Neuropilin-1; TMPRSS2, Transmembrane Serine Protease 2; CN, Cranial Nerve; RT, Respiratory tract; GIT, Gastrointestinal tract; CNS, Central nervous

system; Fig, Figure; Ang II, Angiotensin 2; BBB, Blood-brain barrier; CVOs, Circumventricular organs; MPs, Microparticles; RAS, Renin-angiotensin system; CMP,

Cardiomyopathy; MI, Myocardial infarction.
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bulb, however, they were detected in the non-neuronal cells
(such as support cells, stem cells, and perivascular cells) (43).
Neuropathological analysis of COVID-19 deceased patients
showed high expression of NRP1 in SARS-CoV-2 infected cells
of the olfactory epithelium, and tracts (34).

The neuroinvasive potential of respiratory coronaviruses
through the olfactory nerve was previously examined in mice
models inoculated with intranasal SARS-CoV-1. Viral antigens
were primarily detected in the olfactory bulb, areas of the brain
connected directly to the olfactory bulb, and then dissemination
throughout the brain (46). Further studies on the autopsy
of a COVID-19 patient with anosmia, dysgeusia, and seizure
revealed diffuse tissue damage in the olfactory pathway, rectus
gyrus, and medulla oblongata. Neurons, glial cells, axons, and
nerve sheaths were damaged, and particles resembling virions of
SARS-CoV-2 were detected in these structures (47). In another
study, asymmetric olfactory bulb with or without olfactory cleft
obliteration was present in 4 out of 19 early postmortem MRI
examinations of patients who died from COVID-19; however,
downstream olfactory tract changes were not evident (48).
Moreover, a recentMRI study reported that persistent anosmia in
COVID-19 patients evaluated with objective olfactory tests may
be associated with olfactory bulb atrophy (49).

Intranasal inoculation of murine coronavirus resulted in
widespread infection, including the detection of viral genome
in the trigeminal and olfactory nerves, and areas in the brain
connected to them (50). Observing this pattern of viral spread
by following known neuroanatomical pathways supports trans-
neural transmission through this nerve (50). Trigeminal nerve
involvement was proposed as a possible mechanism of headache
in COVID-19 patients (51).

ACE2 and TMPRSS2 are present in the human conjunctiva
and the cornea (52). Ocular manifestations (53) and SARS-
CoV-2 presence in tears and conjunctival secretions (54) were
reported. Eyes may provide an entry for SARS-CoV-2 through
the trigeminal nerve into the CNS.

The involvement of trigeminal, facial, glossopharyngeal, and
vagus nerves in the nasal and oral mucosa, which are responsible
for the detection and transport of taste signals, maybe the reason
for a high incidence of taste disturbance in the COVID-19
patients up to 88% (55, 56). As presented in animal models of
influenza virus, viral spread to reach the brain via the vagus nerve
is possible (57). The virus may hypothetically invade the vagus
nerve in respiratory and gastrointestinal tracts and retrogradely
infect the CNS (58).

Hematogenous Route for Neuroinvasion
Infection of mucosal linings may provide access to the
lymphatic system (Figure 1B) and the bloodstream (Figure 1C)
as endothelial cells express the SARS-CoV-2 receptors (59, 60).
These pathways may disseminate the virus to the peripheral
tissues such as the lungs and cardiovascular system (Figure 1D),
or end up in the CNS. The brain has a functional lymphatic
pathway connected to the deep cervical lymph nodes which
is capable of transferring fluid and immune cells (61). The
lymphatic pathway can be hypothesized to be an entry for
the SARS-CoV-2.

BBB tightly protects the CNS micro-environment.
However, peripheral leukocytes can minimally cross the
BBB via transcellular diapedesis (37). During an inflammation,
damaged tight junctions of endothelial cells make trafficking
via paracellular routes possible (37). SARS-CoV-2 might cross
the intact BBB and cause BBB damage directly or through
induction of pro-inflammatory cytokines (e.g., IFN-γ) and
chemokines (62). A monolayer culture of human endothelial
cells showed low ACE2 levels. However, ACE2 upregulation has
been noted due to shear stress in the 3-dimensional model of
the middle cerebral artery, particularly in stenotic portions. In
this model, recombinant SARS-CoV-2 spike protein attachment
to ACE2 of endothelial cells induced various gene expression
including the offending proteins in COVID-19 such as IL-4,
IL-10, and complement C3. These findings further support the
susceptibility of human brain endothelial cells to SARS-CoV-2
infection (63). Moreover, a model of human BBB showed
disruption of endothelial barrier after introduction of SARS-
CoV-2 spike protein via inducing a pro-inflammatory response
on brain endothelium. This model added another evidence
for neuroinvasive nature of the virus (64). Investigation of
cadavers revealed SARS-CoV-2 particles packed in vesicles
capillary endothelial cells and the neurons of the frontal lobe (6).
Exocytosis and endocytosis of viral particles were also observed
in endothelial cells which support the hematogenous route for
viral invasion (6).

SARS-CoV-2 invasion to the lung appears to happen directly
through viral disruption of alveolar and bronchial epithelial
cells and macrophages, and indirectly via systemic inflammatory
mediators. The type II alveolar epithelial cells and macrophages
found in alveoli and pulmonary hilum lymphoid tissues are
infected by SARS-CoV-2. COVID-19 patients with severe
signs of pneumonia and acute respiratory distress syndrome
(ARDS) have characteristics of systemic hyper-inflammation
known as “cytokine storm” with exaggerated production of
pro-inflammatory cytokines and chemokines, and also pro-
coagulant factors (1, 65). Infection of respiratory epithelial
cells, dendritic cells, and alveolar macrophages by SARS-CoV-
2 might drive the cytokine storm (1, 65, 66). Pro-inflammatory
products might result in damages in pulmonary tissues, and
transfer of these products in the systemic circulation to other
organs and failure of multiple organs such as cardio- and
cerebrovascular systems. Mast cells, which are found in the
submucosa of the respiratory system, are also hypothesized
to have a crucial role in SARS-CoV-2 hyper-inflammation
by releasing histamine and proteases and pro-inflammatory
cytokines and chemokines (67). Through various mechanisms
such as the expression of ACE2, mast cells recognize SARS-
CoV-2 and recruit immune cells (68). Hypoxia, an outcome
of respiratory failure and elevated metabolism, and elevated
levels of angiotensin 2 may also link the pulmonary infection
with cardiovascular events and stroke. Indirect effects of
peripheral infection via transportation of these local products
to the CNS may trigger a stroke even in the absence of
viral neuroinvasion.

Moreover, reallocation of SARS-CoV-2-containing
macrophages migrating out of the lungs to other tissues
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such as CNS is plausible in the context of viral spread. Infecting
the leukocytes and using them as a reservoir was known in
SARS-CoV-1 and some other neuroinvasive viruses (69, 70).

In addition to disruption of BBB, circumventricular organs
(CVOs) are a candidate for entry to the brain. CVOs are
specialized sensory areas of the brain participating in fluid
homeostasis, cardiovascular regulation, and energy balance.
CVOs have fenestrated capillaries that make them windows
for the entrance of blood-borne products and pathogens
to the brain (71). CNS infection through CVOs has not
been reported in humans; however, animal models have
demonstrated CVOs as a route for pathogens to invade the
CNS (72).

FACTORS ASSOCIATED WITH STROKE IN
PATIENTS INFECTED WITH SARS-CoV-2

Endothelial Cells
Endothelial cells maintain vascular hemostasis and blood flow.
Due to a large surface area, cells are exposed to intravascular
signals from pathogens and inflammatory products (Figure 2C).
Cells actively respond to stimuli by structural alterations,
leading to increased vascular permeability and secretion of the
pro-inflammatory cytokines. Cytokines recruit immune cells,
such as neutrophils and platelets, and combine with pro-
coagulant factors to form a thrombus that encases pathogens
(73). Activated endothelial cells also influence the balance
of vascular tone, resulting in diminished blood flow and
ischemia (74). In addition to chemical signals from the virus,
inflammatory cells, and platelets, direct viral invasion to
endothelial cells also happens in SARS-CoV-2 infection. Diffuse
endotheliitis, presence of viral particles in endothelial cells,
and tissue infarction in various organs, including the lungs,
heart, kidney, small intestine, liver (59), and brain (6), were
reported in patients with SARS-CoV-2. Biomarkers associated
with activated endothelial cells and platelets were significantly
higher in SARS-CoV-2 infected ICU patients than non-ICU
admitted patients (75). These markers were also associated with
mortality, highlighting the prominent role of endotheliopathy in
COVID-19 (75).

Viral-induced vasculopathy was reported in different viruses
and may be a predisposing factor for stroke in SARS-CoV-
2 infection as well. For instance, the varicella-zoster infection
that has been associated with vasculopathy of large and small
vessels may induce transmural involvement of the vessels,
which in turn leads to ischemic and hemorrhagic strokes (76).
SARS-CoV-1 infections are associated with systemic vasculitis,
featuring leukocyte infiltration and endothelial cell proliferation,
swelling, and apoptosis (77). Similarly, there are reports of
patients with SARS-CoV-2 presenting with cerebral vasculitis and
vasculopathy with micro- and macrohemorrhage (48, 78–80).

Platelets
Platelets can restrict pathogens by releasing pro-coagulant and
pro-inflammatory mediators, forming thrombus, and directly
interacting with pathogens, endothelium, and immune cells (81)
(Figure 2). Thrombocytopenia is a common complication of

viral infections, with diverse etiologies including SARS-CoV-2,
(82) and may increase bleeding tendency. Thrombocytopenia
and thrombocytosis were both associated with the severity
and mortality of COVID-19 (83, 84). Thrombocytosis may
be induced by thrombopoietin, released in the presence of
pro-inflammatory cytokines such as IL-6 (85). Platelet count
elevation was reported as a distinctive feature in SARS-
CoV-2-induced pneumonia vs. other etiologies (86). There
is a low risk of venous and arterial thrombus formation
following reactive thrombocytosis (87, 88). In a group of
hospitalized SARS-CoV-2 patients, platelet counts >450 ×

109/L, were predictive of thrombotic events and platelet
counts below 150 × 109/L were predictive of hemorrhagic
events (89).

Inflammatory System
Direct activation of the immune system, platelets, and endothelial
cells by SARS-CoV-2 appears to play a pivotal role in further
activation of the inflammatory system and chemical release
(Figure 2A). The exaggerated inflammatory responses may cause
vascular events including stroke through various mechanisms
that are being further discussed.

Mast Cells
Mast cells that reside in the cerebral perivascular spaces and are
presumed to be the first responders in inflammatory reactions
in the CNS have a key role in the disruption of BBB (90)
(Figure 2B). Mast cells produce various types of vasoactive
mediators such as histamine, proteases (e.g., tryptase and
chymase), cytokines, and chemokines. Release of these products
causes endothelial dysfunction, BBB disruption, expression
of adhesion molecules leading to leukocyte trafficking to the
affected tissue, and neuroinflammation (90, 91). Therefore, they
may be implicated in the initiation or deterioration of stroke.
Activated mast cells participate in the pathogenesis of ischemic
and hemorrhagic stroke, and hemorrhagic transformation
of ischemic stroke after treatment with recombinant tissue
plasminogen activator (92). Release of vasodilatory and
proinflammatory substances, damage to the BBB, recruitment
of immune cells, and neuroinflammation have been related to
the role of mast cells in stroke (92, 93). Although it has not been
observed in the CNS, degranulating mast cells were observed in
the vessel wall of an infarcted spleen associated with SARS-CoV-
2 vasculitis (94). Moreover, experimental models revealed the
role of mast cells in the pathogenesis of cerebral aneurysm via
induction of inflammation in the vessel wall. The inhibition of
activated mast cells successfully prevented the progression of an
aneurysm (95). Human studies confirmed abundant mast cells in
the cerebral aneurysm wall and significant elevation in ruptured
aneurysms (96). The formation of a cerebral aneurysm was also
associated with the activation of macrophages, neutrophils, and
leukocytes with the production of pro-inflammatory cytokines
and matrix metalloproteinases (MMPs). In addition, endothelial
dysfunction and vascular smooth muscle cell degeneration, and
apoptosis leading to vessel wall thinning were also linked with
cerebral aneurysm (97).
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FIGURE 2 | Flowchart diagram shows the roles of endothelial cells, platelets, the inflammatory system, and the coagulation system in SARS-CoV-2-associated stroke

and cardiovascular events. Viral infection of epithelial cells of the mucosal linings stimulates them for the production of pro-inflammatory cytokines and activation of the

immune system. Macrophages and mast cells residing in the mucosal tissues also participate in the activation of the immune system in the early stages of infection.

Activation of and interaction between the immune system, endothelial cells, and platelets (A) in circulation result in stroke complications. Common sequelae include

endotheliitis, or vasculitis (C), atherogenesis, or destabilization of pre-existing atherosclerotic plaques (D), and COVID-19-associated coagulopathy (E). Different

mechanisms that are attributable to COVID-19-associated coagulopathy are depicted in detail (1–8). The possible role of mast cells in the blood-brain barrier (BBB)

disruption, initiation and/or aggravation of inflammation, neuroinvasion, and stroke are summarized in the left side of the figure (B). Mast cells, one of the two resident

immune cells (microglia is the second one), cause BBB damage leading to the recruitment of peripheral immune cells and the virus into the brain and inflammation in

the cerebral vasculature and subsequent stroke. SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; BBB, Blood-brain barrier; NF-κB, Nuclear

factor-kappa B; MMPs, Matrix metallopeptidases; AMs, Adhesion molecules; TF, Tissue factor; IFN-γ, Interferon-gamma; ROS, Reactive oxygen species; EC,

endothelial cell; VSMC, Vascular smooth muscle cell; PLT, Platelet; RBC, Red blood cell; UL-VWF, Ultra large-von Willebrand factor; PA, Plasminogen activator; PAI-1,

Plasminogen activator inhibitor-1; Pr, Protein; AT, Antithrombin; DIC, Disseminated intravascular coagulation; WBC, White blood cell; NETs, Neutrophil extracellular

traps; APA, Antiphospholipid antibodies; APS, Antiphospholipid syndrome; MPs, Microparticles.
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Atherogenesis and Destabilization of Plaques
Infection increases pro-inflammatory cytokines that in turn
activate inflammatory cells inside the atherosclerotic plaques
(98) (Figure 2D). Cytokines and intraplaque inflammatory
cells destabilize the preexisting atherosclerotic plaques via
increasing proteins such as metalloproteinases and oxidative
stress (98, 99). Moreover, hyper-secretion of cytokines and
chemokines during SARS-CoV-2 infection are hypothesized
to stimulate the formation of new-onset vascular plaques
(100). Inflammatory products cause oxidative stress, damage
the endothelium and overlying fibrous cap of atherosclerotic
plaques, activate the platelets and stimulate the vascular smooth
muscle cells to migrate into the intima, and produce fibrous
products which lead to the production of fatty streaks (100).
In addition, acute infection and inflammation increase pro-
coagulant products and cause a hypercoagulable state. Arterial
surface breakdown at the site of plaque rupture in the presence
of a hypercoagulability state increases the risk for acute
thrombogenesis (98, 99).

COVID-19-Associated Coagulopathy
Although not completely understood, COVID-19-associated
coagulopathy (CAC, Figure 2E) shares characteristics with
sepsis-induced coagulopathy, disseminated intravascular
coagulopathy (DIC), or thrombotic microangiopathies
(101). Nonetheless, CAC has distinctive features, such as
a higher incidence of thrombotic events than sepsis, the
prominent role of inflammatory cytokines, complements,
and antiphospholipid antibodies (101). Moreover, despite
frequent thrombotic events in severe COVID-19, milder
thrombocytopenia, and milder prolongation of prothrombin
time (PT) compared to sepsis-induced DIC occurs
(101). Important characteristics of CAC that may be
hypothesized to stimulate cardiovascular events and stroke
are explained.

Direct damage and activation of endothelial cells by SARS-
CoV-2may initiate a procoagulant state, as it occurs during sepsis
(73). Direct interaction with platelets and inflammatory cells, and
secretion of pro-coagulant factors, such as tissue factor (TF) and
von Willebrand factor (vWF), follows. Furthermore, activation
of the coagulation cascade, inhibition of the anticoagulation
system and fibrinolysis, and change in blood flow are associated
with inflammation-induced coagulopathy (73) (Figure 2-E1,
E2). Inflammatory cytokines may induce endothelial cells to
secrete hyperactive ultra-large vWF multimers and prevent the
cleavage of vWF to less active fragments (102). Furthermore,
in patients with COVID-19, hyperactivation of the fibrinolysis
system has been reported due to endothelial injury, elevated
plasminogen activators, and elevated D-dimer levels (103).
However, despite the elevated D-dimer levels, which usually
suggest a hyperfibrinolytic state, a paradoxical fibrinolysis
shutdown was shown in patients with COVID-19 (104).
This hyperfibrinolytic state is not expected in sepsis-induced
coagulopathy or DIC and is unique in COVID-19. The counter-
balance of hyperfibrinolysis by elevated levels of fibrinolytic
inhibitors, such as plasminogen activator inhibitor-1 (PAI-1),

may in part explain the frequent thrombotic events in SARS-
CoV-2 infection (105).

An abnormal elevation of plasma macromolecules such
as immunoglobulins and fibrinogen in addition to cellular
elements (erythrocytes, leukocytes, or platelets) increase the
blood viscosity, impairs blood flow in the microvasculature, and
damages endothelium (106, 107). Hyperviscosity is associated
with hypercoagulability, blood stasis, and tissue ischemia
complications (106, 107) (Figure 2-E4, Figure 3). COVID-19-
associated hyperviscosity has been reported in patients with
thrombotic complications which may be linked with hyper-
fibrinogenemia or exaggerated cytokine release in SARS-CoV-2
infection (108).

Neutrophils secret an extracellular network consisting
of proteolytic enzymes and chromatin (Figure 2-E5). The
network, which attacks local pathogens, are called neutrophil
extracellular traps (NETs). If uncontrolled, NETs cause cellular
damage, endothelial injury, thrombosis, or vascular rupture
and hemorrhage and they may have a pivotal role in the
pathogenesis of severe COVID-19 (109). Plasma NETs are
associated with disease severity in COVID-19 patients and
micro-thrombosis through interaction with platelets (110). By
forming intravascular clumps, NETs occlude the vessels, and
accelerate thrombus formation leading to micro-vasculopathy
in COVID-19 (111). The association between plasma NETs in
patients with acute stroke and the severity of the stroke suggests
the prominent role of neutrophils in arterial thrombosis (112).
Neutrophils and NETs were detected in cerebral clots that
were retrieved during endovascular reperfusion therapies from
patients with large vessel occlusions. The specimens showed
successful ex vivo thrombolysis after adding DNase-1 (to disrupt
NETs) to tissue plasminogen activator (t-PA) (113).

Complement proteins are parts of the innate immunity that
are implicated in coagulopathy and thrombosis (114) (Figure 2-
E6). Pathologic examination of lung tissue and purpuric skin
lesions of five patients with severe COVID-19 showed pauci-
inflammatory thrombogenic vasculopathy with complement
deposition (115). Based on data describing the co-localization of
SARS-CoV-2 spike glycoproteins with complement products in
these patients, direct activation of complement was hypothesized
(115). Other evidences support that complement-induced
endothelial injury is a chief contributor to the development of
inflammation, thrombotic events, and organ failure in COVID-
19 (116). SARS-CoV-2 spike protein subunits seem to directly
activate the alternative complement pathway on the cellular
surface (117). Attachment of SARS-CoV-2 spike protein to
endothelial cells upregulates the expression of C3 (63). C3
reduction, due to overactivation and conversion to active
components, was related to the poor prognosis of COVID-19
patients (118). Besides, elevated levels of activated complement
products have been associated with the biomarkers of endothelial
damage and the severity of COVID-19 (119).

Secondary antiphospholipid antibody syndrome (APS) may
explain stroke in relatively young patients with COVID-19 (120).
Elevation of antiphospholipid antibodies (APA) (Figure 2-E7)
is associated with a higher incidence of thromboembolic events
during viral infections (121). In a cohort of ICU-admitted
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FIGURE 3 | Flowchart diagram shows the contribution of the renin-angiotensin system and hypoxia to stroke in SARS-CoV-2 infection. Overactivation of angiotensin II

signaling pathways and hypoxia directly activate inflammation and coagulation systems, in addition to indirect activation through induction of NADPH, to produce

reactive oxygen species (yellow box). Ang II acts through its main receptor, angiotensin type 1 receptor, and hypoxia mediates its effects through transcription factors,

hypoxia-inducible factors. CV, Cardiovascular; EPO, Erythropoietin; HCT, Hematocrit; ICP, Intracranial pressure; CBF, Cerebral blood flow; TGF-β, Transforming growth

factor-beta; MMPs, Matrix metallopeptidases; NADPH, Nicotinamide adenine dinucleotide phosphate; ROS, Reactive oxygen species; PLT, Platelet; TF, Tissue factor;

PAI-1, Plasminogen activator inhibitor-1; HIFs, Hypoxia-inducible factors; NF-κB, Nuclear factor-kappa B; HIF-1, Hypoxia-inducible factor-1; MPs, Microparticles;

AMs, Adhesion molecules; NETs, neutrophil extracellular traps; NO, Nitric oxide; EC, Endothelial cell; VSCM, Vascular smooth muscle cell; ICAMs, Intercellular

adhesion molecules; VCAMs, Vascular cell adhesion molecules; BBB, Blood-brain barrier; HTN, Hypertension; CNS, Central nervous system; RBCs, Red blood cells;

BP, Blood pressure; HR, Heart rate; EPCs, Endothelial progenitor cells; Ang II, Angiotensin II; AT1R, Angiotensin type 1 receptor; HIFs, Hypoxia-inducible factors.
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COVID-19 patients with frequent thrombotic complications,
positive APA was reported in 88% of patients (122). Multi-
territory ischemic stroke was also reported in patients with
COVID-19 and positive APA (123). Increased expression of
adhesion molecules by endothelium, induction of TF, inhibition
of endogenous anticoagulants in the protein C pathway, and
activation of the complement system have been suggested as
causes for APA-related thrombosis (124). Catastrophic APS is a
rare entity and a severe form of APS with a high mortality rate. It
causes microvascular thrombosis, rapid multi-organ dysfunction
(125), and could be associated with the microvasculopathy
observed in some severe COVID-19 infections.

Microparticles (MPs) are plasma membrane-derived vesicles
blebbing during activation or apoptosis of different cell types,
mainly including platelets, endothelial cells, and leukocytes. MPs
present antigens similar to their cell of origin (126) (Figure 2-E8).
In pathologic conditions such as sepsis and vascular diseases, the
circulating levels of MPs elevate and participate in inflammation,
coagulation, vascular dysfunction, and oxidative stress (126).
Platelet-derived MPs are implicated in acute ischemic stroke
(127). Their pro-coagulant activity is mainly associated with
the presence of phosphatidylserine in the outer cell surface,
providing a catalytic surface for the assembly of coagulation
factors and thrombin generation and expression of TF (128).
Higher levels of pro-coagulant MPs were detected in hospitalized
COVID-19 patients compared to patients without the disease
(129). Circulating MPs are correlated with the expression of
pro-inflammatory cytokines in patients with COVID-19 and a
possible predictor of the severity of COVID-19 (130).

CLASSIC AND ALTERNATIVE
RENIN-ANGIOTENSIN SYSTEM

The renin-angiotensin system (RAS) is primarily responsible for
regulating blood pressure, water, and electrolytes (131) (Figure 3,
green and orange pathways). Angiotensin II (Ang II) is produced
from angiotensin I by the angiotensin-converting enzyme (ACE).
Ang II is a potent vasoconstrictor and acts via its main receptor,
angiotensin II receptor type 1 (AT1R), which is expressed in
several tissues. Angiotensin II receptor type 2 (AT2R) with a
lower affinity for Ang II counteracts with AT1R (131). On the
other hand, ACE2, the homolog of ACE, is the main regulator
of the classic RAS (132). ACE2 cleaves Ang II to Ang (1–7) and
diverts the system to the alternative RAS with vasoprotective
outcomes such as decreasing blood pressure, inflammation, and
atherosclerosis. The main receptor of Ang (1–7) is Mas, but it
also triggers AT2R. Ang (1–7) increases bradykinin levels by
inhibiting ACE from its degradation and promotes vasodilation
and fibrinolysis by bradykinin (132).

Consequences of ACE2 Reduction and
Angiotensin II Overactivation
Receptor-mediated endocytosis of SARS-CoV-2 with ACE2
causes an elevation in the ACE/ACE2 ratio (133). Overactivation
of the classic RAS may increase the risk of both hemorrhagic
and ischemic stroke (134). The brain has an independent RAS

that does not interact with peripheral RAS because of the BBB
(135). However, blood-borne Ang II enters the CNS across the
disrupted BBB or the circumventricular organs (136).

Ang II stimulates vascular events with activation of
inflammation and coagulation. AT1R inhibition was shown
to be a useful immunosuppressive therapy (137). It directly
activates toll-like receptors on the leukocytes to stimulate
“nuclear factor kappa B” (NF-κB) and produce cytokines,
chemokines, adhesion molecules, and metalloproteinases. It
also damages the endothelium resulting in atherosclerosis,
destabilization of plaques, and thrombosis. Ang II decreases
the anti-inflammatory effects of insulin by inhibiting its signal
transduction, further increasing inflammation (138). Ang II
promotes coagulation via stimulation of tissue factor expression
and platelet aggregation. Conversely, by increasing PAI-1 and
decreasing t-PA via breakdown of bradykinin, Ang II inhibits
fibrinolysis (139).

Ang II and Oxidative Stress
Ang II downregulates the expression of nitric oxide (NO) by
endothelium. NO is vasoprotective and prevents atherosclerosis
by influencing endothelial cells, platelets, and vascular tone (140).
NO is a potent endogenous vasodilator that counteracts with Ang
II to increase regional blood flow and regulate BP. NO prevents
coagulation and inflammation by inhibiting platelet aggregation
and leukocyte adhesion (141). Ang II also decreases NO
bioavailability by induction of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase to produce reactive oxygen species
(ROS) (142). The significant role of NADPH oxidase activity
in disease severity was shown in COVID-19 as its activity
was higher in patients than controls and was observed to be
markedly elevated in patients who required ICU admission.
It was also higher in patients with thrombotic events than
patients without thrombosis independent from other vascular
risk factors suggesting the implication of oxidative stress in
COVID-19-associated coagulopathy (143). The role of ROS in
Ang II signaling has been specifically observed in CNS (144).
Pathologic ROS levels are cytotoxic and cause vascular oxidative
stress involved in the pathogenesis of stroke (145). ROS trigger
NETs production which in turn promote vascular events (146).
Through oxidative stress, Ang II increases endothelial progenitor
cell apoptosis and decreases re-endothelialization and vascular
regeneration after injury (147).

Cardiovascular Effects of Ang-II
The other well-established effect of Ang II is the enhancement
of sympathetic activity, impacting cardiovascular responses
such as heart rate and blood pressure (148). NO modulates
this effect with anti-sympathetic activity (149). Ang II also
promotes atherosclerosis and vascular dysfunction by creating
oxidative stress. ROS stimulate vascular smooth muscle cell
proliferation and migration (150) which elevate the risk for
future cardiovascular and cerebrovascular events in SARS-CoV-2
infected survivors.

Cardiomyocytes undergo hypertrophy and remodeling with
stimulation of AT1R (151). Through induction of transforming
growth factor beta 1 and MMP-9 (associated with myocardial
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matrix remodeling) and induction of myocardial fibrosis,
hypoxia-inducible factor 1α and Ang II are associated with
pathogenesis and maintenance of atrial fibrillation (AF) (152).

HYPOXIA

Hypoxia was an independent prognostic factor for severity in
patients with COVID-19. Hypoxia was associated with elevated
white blood cell counts, C-reactive protein, and D-dimer levels
in patients with COVID-19, possibly indicating a relationship
between hypoxia, inflammation, and coagulopathy in severe
infection (153). Hypoxia causes cerebral vasodilation and tissue
edema by increasing substances like NO and prostacyclin (154).
Continued or severe hypoxia causes anaerobic metabolism and
lactic acidosis, which additionally enhances vasodilation and
tissue edema (154). These events may increase intracranial
pressure, limit the cerebral blood flow, and cause cerebral
ischemia (Figure 3- blue and orange pathways).

Role of Hypoxia-Inducible Factors
Hypoxia activates the expression of hypoxia-inducible factors
(HIF1 and HIF2). These transcription factors have extensive
crosstalk with the family of transcription factors NF-κB (155).
Activation of inflammation requires nuclear translocation of NF-
κB, which leads to the expression of the target genes. Enhanced
activation of the NF-κB byHIFs is the keymechanism connecting
hypoxia to inflammation (156). Hypoxia activates pro-coagulant
factors such as TF by up-regulating the transcription factor
early growth response-1 and restricts thrombolysis by increasing
PAI-1 and reducing plasminogen activators (157). HIFs also
increase NETs production that further promote thrombus
formation (158). Platelets produce stabilized HIF-2α and PAI-1
and enhance thrombogenesis when stimulated by hypoxia (159).
In addition, HIF-1-induced up-regulation of erythropoietin
increases hematocrit, and blood viscosity and stimulates venous
thrombosis (160).

Hypoxia and Oxidative Stress
Hypoxia also stimulates of NADPHoxidase to increase ROS. ROS
cause lipid peroxidation, endothelial injury, increased vascular
permeability, and disruption of BBB, which may further enhance
the tissue edema (161). HIF-1 and ROS are involved in the
pathogenesis, progression, and rupture of atherosclerotic plaques
and arterial thrombosis (162).

Cardiovascular Effects of Hypoxia
Hypoxic cardiovascular injury results in lower cardiac output,
which is further augmented by concomitant acidosis and elevated
workload due to hypoxia-induced peripheral vasoconstriction
(163). Hypoxia triggers cardiac arrhythmia, possibly due to the
detrimental effects of anaerobic metabolism and ROS on the
normal functions of ion channels. This association may highlight
the role of antioxidants in preventing arrhythmia during hypoxic
conditions (164).

CARDIOVASCULAR COMPLICATIONS

Risk factors for cardiovascular complications in SARS-CoV-2
infection that increase stroke risk are shown in Figures 1–6.
The incidence of acute cardiac injury was reported 15% by a
meta-analysis of patients with COVID-19 (165). Among 138
hospitalized patients with SARS-CoV-2 infection, cardiovascular
complications such as acute cardiac injury (7%) and arrhythmia
(16.7%) were more prevalent in patients who required ICU
admission (166). Another study of 416 hospital-admitted patients
with SARS-CoV-2 reported cardiac injury in 20% of cases.
Similarly, this study reported a higher rate of complications,
such as coagulation disorders and mortality among patients
with cardiac injury than patients without cardiac injury
(167). Cardiovascular complications can increase the risk of
stroke. Cardioembolic stroke accounted for 22% of ischemic
stroke among 32 patients with SARS-CoV-2 and 15.7% in
patients included in a meta-analysis (11, 22). On the other
hand, it should be noted that COVID-19 shares common
risk factors with cardiovascular and cerebrovascular diseases.
Consequently, the association between SARS-CoV-2 infection
and cardiovascular/cerebrovascular complications may not be
causative and may only represent potential comorbidities (168).

Myocardial injury, can be a direct or indirect consequence of
ischemic and non-ischemic insults to the myocardium. Cardiac
muscles and vessels are potential targets for direct SARS-
CoV-2 infection since ACE2 receptors have been detected in
cardiomyocytes, vascular endothelial cells, pericytes -important
in sustaining endothelium function-, and smooth muscle cells
(169, 170). Previously injured hearts are more susceptible to
direct damage due to upregulated ACE2 (170, 171). Direct
invasion is supported by endomyocardial biopsy of infected
patients with detection of the SARS-CoV-2 genome in five
patients and endomyocardial damage due to the infiltration of
immune cells (172). Direct injury of coronary arteries could
cause macrovascular dysfunction, acute coronary syndrome,
and myocardial infarction (MI). The other possible mechanism
for ischemic myocardial injury is coronary microvascular
dysfunction (CMD). CMD has various pathogenic mechanisms
and despite the significant prevalence has diagnostic and
treatment pitfalls (173). Endothelial cells are implicated as key
contributors to both macro- and microvascular dysfunction in
COVID-19; therefore, evaluation of the endothelial biomarkers
has been suggested for risk assessment of COVID-19 patients
(174). In addition to endothelial cells, direct injury of pericytes
has been associated with COVID-19 microvasculopathy (170,
175). Pericytes express ACE2 abundantly and are considered
major targets for SARS-CoV-2 in the heart (176) which may
cause non-obstructive MI (177). Histological study of human
lung specimens proposed the pivotal role of pericyte loss
in COVID-19-induced microvasculopathy (178). Endothelial
barrier dysfunction (as seen in diabetes or hypertension) is
necessary for the virus to reach the pericytes. Based on the
COVID-19-pericyte hypothesis, SARS-CoV-2 infected pericytes
induce adjacent endothelium to release vWF and result in a pro-
coagulant state (179). This finding suggests pericytes as a new
therapeutic target for SARS-CoV-2. Takutsubo syndrome, which
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FIGURE 4 | Flowchart diagram shows features of critical illness predisposing the patients with SARS-CoV-2 infection to cardiovascular events and stroke. Patients

with a critical illness are mostly admitted to the intensive care unit (ICU) for prolonged periods. Clinical complications associated with critical illness including prolonged

hospitalization, temperature instability, severe infection, and immune dysregulation, severe hypoxia, drug toxicity, comorbidities (e.g., diabetes mellitus, cardiovascular

disease, and hypertension), insufficient oral intake, and sedative drugs are shown in association with their consequences that may result in cardiovascular events and

stroke. PLTs, Platelets; CV, Cardiovascular; EC, Endothelial cells; Mg, Magnesium; HTN, Hypertension; CO, Cardiac output; CNS, Central nervous system.

has been reported in patients with SARS-CoV-2 infection (180),
could be another consequence of CMD (181).

Indirect injury can occur due to severe lung infection,
an imbalance between oxygen supply and consumption,
hyperinflammation, endothelial damage, and coagulopathy.
Subsequently, they can induce various cardiovascular
complications involving arrhythmia, myocarditis, hypertension,
vasculopathy, and inflammation-induced atherogenesis or
plaque instability leading to thrombosis and MI (177, 182).
Additionally, Ang II further exacerbates the inflammation and
coagulation which may aggravate cardiovascular complications.
Atherosclerosis, hypertension, myocardial fibrosis, impaired
contractility, and increased risk of AF are among the possible
complications induced by Ang II (183).

Arrhythmia may be a consequence of direct viral invasion and
subsequent myocarditis, or other viral infection complications,
such as anxiety, sympathetic overactivity, arrhythmogenic
cytokines, hypoxia and acidosis, and electrolyte disturbance,
and medications (184). New-onset AF has been reported
even as the presenting manifestation of the COVID-19
without clinical or imaging findings indicating COVID-
19 pneumonia (184, 185). It was previously reported that
sepsis-induced AF occurs in 6–20% of patients, and it
increases the risk for ischemic stroke and death during
hospitalization (186). Although the sepsis-induced AF
is often transient, there might be a higher risk for 5-
year AF recurrence and in-hospital and long-term stroke
occurrence (187).
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FIGURE 5 | Flowchart diagram shows acquired and inherited factors with a higher risk for vascular events and possible associated mechanisms. DM, Diabetes

mellitus; HLP, Hyperlipidemia; HTN, Hypertension; CVD, Cardiovascular disease; CKD, Chronic Kidney disease; RD, Rheumatic disease; COPD, Chronic obstructive

respiratory disease; BBB, blood-brain barrier; CLD, Chronic Liver Disease; PLT, Platelet; HPA, Hypothalamic-pituitary-adrenal; CMP, Cardiomyopathy; CADASIL,

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; PFO, Patent foramen ovale; ASD, Atrial septal defect; AF, Atrial

fibrillation; SAH, Subarachnoid hemorrhage; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2.

CRITICAL ILLNESS

Critical illness and prolonged hospitalization raise the risk of
strokes. Some of the factors associated with vascular events in
patients with severe disease are presented in Figure 4.

Prolonged hospitalization causes immobility and increases
the risk of venous thrombosis due to blood stasis and
local hypoxia. Moreover, catheter-related thrombosis is a
common complication of indwelling central venous catheters
due to endothelial injury, blood stasis (188), and deep
hypothermia (189).

Temperature instability in critical illness has been attributed
to hemostatic disorders (190). Hyperthermia and decreased
central blood volume have activated the sympathetic system
and coagulation (showed by decreased activated partial
thromboplastin time and elevated D-dimer) in the absence
of concurrent sepsis, infection products, or evidence of
endothelium injury (191). Although uncommon, there are
reports of bleeding tendency due to consumption coagulopathy
in severe hyperthermia (189). Despite the neuroprotective
role of hypothermia in conditions such as brain ischemia
(192), hypothermia-induced coagulopathy in ill patients may
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FIGURE 6 | Flowchart diagram shows drugs associated with stroke and possible underlying mechanisms. The left side of the diagram represents drugs with elevated

risk for hemorrhagic stroke. The right side of the diagram shows drugs that increase the risk for ischemic stroke. Proposed mechanisms of stroke related to the drugs

are provided attached to each drug. Some of the drugs are under investigation for COVID-19 which are marked by asterisks. SSRIs, Selective serotonin reuptake

(Continued)
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FIGURE 6 | inhibitors; PLT, Platelet; VEGF, Vascular endothelial growth factor; t-PA, Tissue plasminogen activator; CYP, Cytochrome P450; MI, Myocardial infarction;

IE, Infective endocarditis; CMP, Cardiomyopathy; PDE5, Phosphodiesterase type 5; IVIG, Intravenous immunoglobulin; TNF-α, tumor necrosis factor-alpha; 5-FU,

5-Fluorouracil; AF, Atrial Fibrillation; HIT, Heparin-induced thrombocytopenia; HTN, Hypertension; APS, Antiphospholipid antibody syndrome.

lead to hemorrhage by inhibiting platelet and coagulation
factors (193).

Hepatic injury is one of the most common complications of
COVID-19 and a predictor of disease severity and ICU admission
(194). Hepatic injury was observed in the autopsy of COVID-
19 patients (195). Pro-inflammatory cytokines, hypoxia, and
drug-induced hepatotoxicity (194) in addition to direct viral
invasion (196) are possible causes of liver injury in COVID-19.
Considering the role of the liver in the coagulation system and
drug metabolism, it is important to investigate the outcomes
of COVID-19 liver injury, such as coagulation imbalance and
risk for vascular events. As reported previously, other viruses
such as cytomegalovirus, Epstein-Barr virus, and Hepatovirus
A and B viruses have been related to thrombotic events in the
setting of acute hepatitis (197). Although a causal relationship
is not obvious, elevated liver tests are reported in patients who
develop acute stroke in the course of SARS-CoV-2 infection
(198, 199).

Up to 25% of critically ill patients with SARS-
CoV-2 infection have been reported to develop acute
kidney injury (AKI). Different mechanisms ranging
from direct viral invasion to indirect effects such
as RAS overactivation, hypovolemia, inflammation,
hypercoagulability, and nephrotoxic drugs contribute to
the development of AKI (7, 200). In addition to the risk
of coagulation imbalance due to reduced medication
excretion, AKI may also cause electrolyte disturbance and
cardiac arrhythmia.

ICU patients with a critical illness are predisposed
to nutritional deficiency due to insufficient oral intake
and high metabolic demand. Electrolyte disturbance is
one of the severe consequences of nutritional deficiency
leading to arrhythmia and stroke. Magnesium has a
significant role in immunomodulation via mediating
many critical enzymatic reactions. By stimulating a pro-
inflammatory state, increasing cytokine release, and endothelial
dysfunction, hypomagnesemia may have an important role
in COVID-19-associated coagulopathy (201). Magnesium
supplementation has been used as an adjuvant treatment
for COVID-19 patients and recommended for prevention
and treatment, particularly in patients at risk for severe
infection (202). Moreover, there is an association between
hypomagnesemia and ischemic stroke due to vasoconstriction
and hypertension (203).

Inadequate oral intake also leads to dehydration and
hypovolemia that may predispose the CNS to hypoperfusion
and ischemia, particularly in combination with cardiovascular
dysfunction or administration of sedative medications that
are frequently used among ICU patients. Hypovolemia also
increases blood viscosity and stasis, predisposing patients to
venous thrombosis.

COMORBIDITIES/RISK FACTORS

Figure 5 summarizes the possible comorbidities and risk factors
associated with stroke in patients with COVID-19.

Comorbidities With Proinflammatory and
Procoagulant Phenotype
Pre-existing comorbidities such as older age, hyperlipidemia,
diabetes, hypertension, cardiovascular disease, chronic kidney
disease, chronic obstructive pulmonary disease (COPD),
rheumatic diseases, malignancy, obesity, and smoking are related
to the severe COVID-19 (204–206). These comorbidities are
vascular risk factors with an increased risk for stroke in patients
with SARS-CoV-2 infection (207). Endothelial dysfunction is
a marker for atherosclerosis and is associated with vascular
risk factors such as smoking, aging, hypercholesterolemia,
hypertension, and hyperglycemia (208). Considering that
endothelial cells are one of the main targets for SARS-CoV-2
(75), patients with pre-existing endothelial dysfunction are
possibly more susceptible to endotheliopathy and vascular
events. The chronic inflammatory state is a low-grade but long-
term inflammation with elevated pro-inflammatory cytokines
which occurs in conditions such as older age, stress, diabetes,
hypertension, cardiovascular disease, rheumatic diseases, COPD,
obesity, and smoking (209–211). A hypercoagulable state with
elevated pro-inflammatory and pro-coagulant factors, impaired
endogenous fibrinolytic system, and platelet hyperactivity
is also related to these stroke risk factors such as older age
(212), smoking (213), obesity (214), hypertension (215), and
diabetes (216). Small vessel disease due to hypertension,
diabetes, and hyperlipidemia may disrupt the BBB (217). In
addition, comorbidities such as diabetes, hypertension, and
hyperlipidemia are risk factors for hypomagnesemia (218, 219)
which in turn elevates the risk of cardiovascular disease and
stroke (203, 220–222).

Liver has an essential role in hemostasis by producing the
coagulation and anti-coagulation factors, and the regulation
of platelet synthesis by producing thrombopoietin (223, 224).
Chronic liver disease can lead to coagulation imbalance and both
thrombotic and bleeding disorders (223, 224).

Patients with chronic kidney disease (CKD) are at elevated
risk for stroke, both hemorrhagic and ischemic, and poor
outcome after stroke (225). Accelerated atherosclerosis,
endothelial dysfunction, impaired cerebral autoregulation,
anemia, uremic toxins, hyperhomocysteinemia, proteinuria,
impaired calcium/phosphate metabolism have been suggested
to increase the risk of stroke in patients with CKD (225–
227). Cerebral small vessel disease that may be a marker of a
multi-system endothelial disorder has been associated with the
severity of renal impairment (228). CKD was suggested to have
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a predictive role in the presence and severity of cerebral small
vessel disease (229).

Patients with different types of malignancy are vulnerable
to both hemorrhagic and ischemic stroke (230). Stroke may
result from direct effects of a primary or metastatic tumor in
the CNS, or indirect effects of chemotherapeutic agents, higher
susceptibility to infection, and cancer-associated coagulopathy
(230, 231).

Patients with neurotrauma or pre-existing neurologic
conditions such as multiple sclerosis and Alzheimer’s
disease may have BBB breakdown lasting for a longer time
potentially increasing the risk for viral neuroinvasion and
neuroinflammation (217, 232, 233).

Thyroid hormones influence the cardiovascular system and
thyroid imbalance is associated with vascular diseases including
stroke (234, 235). Supraventricular dysrhythmias including AF
are associated with both overt and subclinical hyperthyroidism
with elevated risk for cardioembolism (234). Hypothyroidism
has a depressive effect on the cardiac conduction system that
may be beneficial in patients who are at risk for cardiac
ischemia and arrhythmia (236). However, hypothyroidism causes
autonomic dysfunction with adverse cardiovascular effects (237)
and increases the risk for QT prolongation and atrioventricular
block (236). Hypothyroidism, even at subclinical levels, has been
associated with vascular risk factors such as hypertension and
hyperlipidemia that promote atherosclerosis (234, 238, 239). A
hypercoagulable state, although has not been established, may
occur in hyperthyroidism with elevated levels of fibrinogen
and von Willebrand antigen (234, 239). Through various
mechanisms, either elevation or reduction in thyroid hormone
levels causes endothelial dysfunction, hypertension, impaired
cardiac function (239). The significant prevalence of subclinical
thyroid disease, 3–12% for subclinical hypothyroidism and 1–
6% for subclinical hyperthyroidism (240), suggests assessing the
thyroid function in patients with features of severe COVID-19.

Genetic Predisposition to Cardiovascular
Disease and Stroke
Although SARS-CoV-2 infection makes patients with existing
cardiometabolic diseases more vulnerable to have severe
vascular consequences such as stroke, currently, there is no
report of genome-wide association studies findings on stroke
(ischemic stroke or hemorrhagic stroke) in COVID-19 patients.
Whether individual genetic risk and polygenic theory for
chronic cardiometabolic diseases and stroke play a role in the
susceptibility to severe clinical manifestation in COVID-19 is
still unknown.

The performance of polygenic risk scores (PRS) over the life
course in several cardiometabolic diseases and neoplasms have
been evaluated in a prospective setting and their value, when
integrated with the known clinical risk factors and biomarkers,
have been revealed (241). The cumulative risk for coronary artery
disease, diabetes mellitus type 2, and AF was disproportionally
increased after 40 years old when patients were stratified
by categorical PRS from higher (>97.5%) to lower (<2.5%)
scores. Genetic overlaps between stroke risk, early neurological

changes, and some of the cardiovascular risk factors (diabetes
and hypertension) have been identified (242). Because of the
pleiotropy of genetic risk factors for both ischemic stroke and
chronic diseases (243), we expect ischemic stroke will show
a similar pattern. The cumulative disease rate for ischemic
stroke will be disproportionally higher in the top PRS category.
The polygenic contribution to early-onset was much higher
than to late-onset in the same disease (241). Our retrospective
study from the sensitivity analysis alternatively confirmed this
disproportional increased PRS burden for ischemic stroke using
younger cases vs. three tiers of older controls (from 59, 69
to 79) (243). Gene sets analyses highlighted the association of
PRS with Gene Ontology terms (vascular endothelial growth
factor, amyloid precursor protein, and atherosclerosis). All these
pathways, as we reviewed here, could be potential targets of
COVID-19. Future studies on this topic would help to lineate the
potential capability of PRS in determining the genetic liability to
the stroke or its subtypes as well as predicting the outcome in
patients with COVID-19 infection.Whether patients having high
PRS value for specific pathways may indicate the potential causal
mechanism of ischemic stroke is still unknown and requires
further investigation to validate. It is unclear to what extent PRS
contributes to ischemic stroke in younger vs. older patient with
COVID-19 infection.

Congenital Predisposition to
Cardiovascular Disease and Stroke
Inherited stroke syndromes are among the disorders affecting
the circulation and predisposing the patients to stroke. Cerebral
autosomal-dominant arteriopathy with subcortical infarcts
and leukoencephalopathy (CADASIL) is the most common
hereditary stroke disorder. A patient with COVID-19 and
CADASIL presented with multiple acute small vessel infarctions
in subcortical areas that highlight the vulnerability of high-risk
patients for stroke during COVID-19 infection (244). Inherited
thrombophilias such as factor V Leiden and protein C deficiency
increase vascular thrombosis risk (245). Also, patients with
inherited arrhythmia syndrome such as congenital long QT
syndrome, and Brugada syndrome might be at greater risk for
COVID-19-related arrhythmia (246). In addition, the prevalence
of patent foramen ovale is reported in about 25% of the general
population and twice more in people with cryptogenic stroke
(247). Patent foramen ovale associated stroke represents an
important consideration when taking into account the high
incidence of venous thrombosis among COVID-19 patients in
the ICU ranging between 40% (248), and 69% (249).

Miscellaneous Risk Factors
Stress has been shown by a meta-analysis to be associated
with a higher risk of cardiovascular mortality and stroke (250).
This association is multifactorial and different neurohormonal
mechanisms may be implicated. One mechanism might be the
induction of toxic neuropeptides such as beta-amyloid that
persists for a long time, activate the hypothalamic-pituitary-
adrenal axis to produce a corticotropin-releasing hormone,
increase neuroinflammation by activating mast cells (233, 250).
Mast cells produce and respond to corticotropin-releasing
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hormone and can play a significant role in the cerebral
pathologies in COVID-19 such as vascular dysfunction and
BBB disruption (233). The incidence of stress cardiomyopathy
(also known as Takotsubo syndrome) has been raised during
the COVID-19 pandemic compared with the pre-pandemic
period (251).

Cough is one of the most common presenting symptoms
in COVID-19 (252). Though extremely rare, severe cough can
suddenly increase intrathoracic pressure and cause a vascular
rupture. A case of spontaneous spinal subarachnoid hemorrhage
due to a severe cough that presented with a severe and sudden
onset back pain and a headache was reported previously (253).
A case of carotid artery dissection in a previously healthy adult
patient was also reported during a course of severe cough due to
pertussis (254).

Prosthetic valves and vascular prosthetic grafts are prone
to thrombosis and subsequent vascular events. A patient with
COVID-19 developed acute limb ischemia due to complete
occlusion of the abdominal aortic prosthetic graft (255).

MEDICATIONS

Figure 6 demonstrates the medications that have been associated
with either ischemic or hemorrhagic stroke. Here, we briefly
cover these medications by considering the presence (section
Medications with Potential Benefit for COVID-19 Therapy)
or absence (section Medications without Possible Effects on
COVID-19) of potential benefit on COVID-19 therapy.

Medications With Potential Benefit for
COVID-19 Therapy
Except for remdesivir, and a combination of baricitinib and
remdesivir that have been recently approved for COVID-19
treatment (256, 257), the efficacy of other therapeutic agents
in SARS-CoV-2 infected patients has not been approved.
However, several medications are under investigation or being
used off-label since the beginning of the pandemic (258).
Some of these medications may be associated with serious
complications such as stroke. Prolonged QT interval increases
the risk of stroke independent of traditional risk factors (259).
Administration of chloroquine and hydroxychloroquine (e.g.,
NCT04353336), favipiravir (e.g., NCT04359615, NCT04464408),
lopinavir/ritonavir (e.g., NCT04372628, NCT04499677),
atazanavir (e.g., NCT04468087, NCT04452565), remdesivir, and
azithromycin (e.g., NCT04334382, NCT04359316), which are
proposed as therapeutic options in SARS-CoV-2 infection, have
the potential for QT interval prolongation and increasing the
risk of arrhythmia (260–262). Some other medications from
anesthetics, antipsychotics, antiemetics, and antiarrhythmics
also have the QT prolongation potential. This complication is
amplified by metabolism reduction (drug-induced, liver- and/or
renal-induced), concomitant use of other medications with
a potential for QT prolongation, electrolyte disturbance, and
congenital long QT syndromes (263, 264).

Numerous drugs have the potential to inhibit the cytochrome
P450 (CYP) system and increase the adverse effects of drugs

that are inactivated by CYP enzymes. Azithromycin and antiviral
agents such as lopinavir/ritonavir, atazanavir, remdesivir are
inhibitors of CYP3A4 isoenzyme. The risk of QT prolongation
is expected to be higher in combination use with other drugs
that are metabolized by CYP3A4 such as chloroquine and
hydroxychloroquine (265).

Antiretroviral protease inhibitors including
lopinavir/ritonavir and atazanavir reduce viral replication
and pro-inflammatory cytokines (266). Protease inhibitors
are potent inhibitors of CYP, particularly CYP3A4, CYP2C9,
and CYP2C19 (267). Protein inhibitors decrease the active
metabolites of warfarin and increase the required warfarin
maintenance dose (267), and change the active metabolites
of antiplatelets (265, 268). For example, the antiplatelet
function of clopidogrel was inadequate when administered in
combination with antiretroviral agents (ritonavir and cobicistat,
and atazanavir) (265, 268). Prasugrel remained effective despite
a slight reduction in active metabolites (268). Thereby, when an
antiplatelet is needed in combination with ritonavir, prasugrel
is the best candidate. Conversely, ticagrelor is an activated
medication and combined use with CYP inhibitors (such as
ritonavir) increases its antiplatelet activity by 4-fold, which
may induce bleeding (269). Combination therapy of ticagrelor
with atazanavir is also restricted, atazanavir may increase the
active metabolite of ticagrelor (265). The drug-drug interaction
also exists between lopinavir/ritonavir and atazanavir, with
direct oral anticoagulants such as rivaroxaban and apixaban
(265). Patients infected with SARS-CoV-2 who were on direct
oral anticoagulants showed a marked elevation in the plasma
levels of anticoagulants after initiation of antiviral agents (270).
Several antiarrhythmic drugs, such as amiodarone, lidocaine,
and beta-blockers, are also metabolized by the hepatic CYP
system. Close monitoring with measurement of serum drug
concentration and electrocardiogram are recommended in a
combinational regimen with antivirals (271).

Tumor necrosis factor alpha (TNF-α) inhibitors were
proposed for the treatment of severe COVID-19 (272). From this
family, Infliximab is being investigated for moderately or severely
ill patients with COVID-19 (NCT04593940, NCT04425538).
TNF-α inhibitors have been associated with the induction of
antiphospholipid antibody syndrome and vasculitis (273, 274).
These drugs are generally well-tolerated and the mentioned side
effects are rare and reversible with drug cessation (274). However,
arterial and venous thromboembolism have been reported in
association with consumption of adalimumab, infliximab, and
etanercept (275, 276). The observed thrombotic events with
TNF-α inhibitors have been mainly related to the induction of
antiphospholipid antibodies (277–279).

Tocilizumab is a monoclonal antibody that inhibits IL-
6 receptors and is suggested as a therapeutic option for
cytokine storm in COVID-19 pneumonia due to the prominent
role of IL-6 in severe infection (280, 281) and is currently
being investigated by several clinical trials (e.g., NCT04356937,
NCT04445272). Although it may be beneficial in reducing the
severity of stroke (282), there are rare cases of thrombotic
microangiopathy involving multifocal cerebral lesions developed
after administration of tocilizumab (283, 284). Tocilizumab was
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hypothesized as a trigger rather than a cause since patients had
other risk factors for vascular events such as factor rheumatoid
arthritis and factor V Leiden mutation.

Glucocorticoids are being used in the treatment of
patients with severe COVID-19 (e.g., NCT04438980,
NCT04395105, NCT04513184), whereas their use is associated
with cardiovascular, cerebrovascular disease (285), and
thromboembolic events with increased risk for AF (286).

Efficacy of high dose intravenous immunoglobulin (IVIG)
has been observed in severe COVID-19 and has been suggested
as a therapeutic option (287). IVIG is under evaluation
by several clinical trials (e.g., NCT04432324, NCT04521309,
NCT04480424). Previous evidence showed arterial and venous
thrombosis after treatment with IVIG (288–291) even in
young patients without risk factors for vascular diseases (290).
Prothrombotic state in high dose IVIG therapy was attributed to
hyperviscosity, vasospasm, platelet activation, and the presence
of antiphospholipid antibodies and activated factor XI in some
IVIG preparations (288–291).

Sildenafil, a cyclic guanosine monophosphate-specific
phosphodiesterase type 5 inhibitor, is another candidate for
the treatment of COVID-19 due to its role in inflammation
reduction (NCT04489446, NCT04304313). Sildenafil was
associated with a transient ischemic attack, ischemic stroke,
and cerebral venous sinus thrombosis (292, 293). Endothelial
dysfunction, hypoperfusion due to arterial dilation, and blood
stasis due to vasodilation in patients with predisposing factors
have been associated with vascular events in sildenafil users
(292, 293). Rare cases of AF in patients with concomitant cardiac
pathology have been related to sildenafil (294, 295).

Cannabis is used for its therapeutic effects in reducing chronic
pain, nausea, and vomiting in patients under chemotherapy
(296). Furthermore, it showed a beneficial role in animal models
of ARDS by the reduction in pro-inflammatory cytokines,
promotion of apoptosis in activated immune cells (297, 298),
and upregulation of apelin (299), a peptide with protective
role during ARDS (300). Due to the immunomodulatory effects
of cannabis components, several clinical trials are registered
to investigate its efficacy in the prevention and treatment of
COVID-19 in addition to COVID-induced psychologic disorders
such as anxiety and depression (NCT04467918, NCT03944447,
NCT04731116, NCT04603781). On the other hand, several cases
have been reported on the relationship between cannabis use
and stroke and some of the cases were young and low risk for
stroke (301, 302). However, the observed association may be
related to concomitant smoking or the use of other unknown
toxins in synthetic marijuana (302, 303). Cannabis exposure may
be related to cerebral vasoconstriction, cardioembolism due to
cardiac ischemia and arrhythmia, and thrombophilia (304, 305).
Cannabis may rarely cause hemorrhagic stroke due to a sudden
rise in blood pressure (305).

Heparin is the most widely used anticoagulant which can also
be classified as an anti-inflammatory agent due to the inactivation
of pro-inflammatory cytokines (306). In addition, the interaction
of heparin with SARS-CoV-2 S1 spike protein supports the
repurposing of heparin as an antiviral agent (307). Therefore,
heparin has been added to the list of medications under

investigation for COVID-19 (eg, NCT04530578, NCT04485429).
Although heparin has a satisfactory safety profile and the
risk of major bleeding events is low, there are some rare
reports on severe and fatal bleeding such as intracranial
hemorrhage in association with heparin administration (308,
309). Heparin-induced thrombocytopenia (HIT) is a relatively
rare immune-mediated adverse reaction of heparin indicating
by low platelet counts, as a result of anti-heparin-platelet factor
4 (PF4) antibodies, and arterial and venous thrombosis in
almost 50–70% of patients with HIT (310). Thrombocytopenia
and hypercoagulability are shared features betweenCOVID-19
coagulopathy and HIT. HIT is a life-threatening etiology for
thrombocytopenia and hypercoagulability that appears to have a
higher incidence during COVID-19. Among critically ill patients
with COVID-19, the incidence of HIT was reported to be about
8%, which was 10-fold higher than control patients without
COVID-19 (311). False-positive results of HIT during COVID-
19 was also suggested by a study due to reasons such as the
high prevalence of antiphospholipid syndrome and inaccurate
laboratory assessment (312). There is a report of five patients
with positive anti-heparin PF4 antibodies but confirmatory test
for HIT returned positive for only one patient. The authors
attributed the observation to the production of anti-heparin
PF4 antibodies as a consequence of severe COVID-19 which
was suggested by another study (313). To avoid overdiagnosis
of HIT and unnecessary discontinuation of heparin, they
recommended using the standard tests instead of antibody
assessment alone (312).

Tissue plasminogen activator (t-PA) is under investigation
for treating ARDS in COVID-19 (e.g., NCT04356833,
NCT04357730). t-PA is the standard treatment for acute ischemic
stroke that may adversely cause intracranial hemorrhage (314).
Surprisingly, t-PA can cause a secondary hypercoagulability and
increase the risk for thrombotic events (315).

Ivermectin is an anthelmintic agent with in vitro inhibition
of SARS-CoV-2 replication (316). It is proposed as a treatment
for COVID-19 and is under investigation (e.g., NCT04529525,
NCT04425707). This medication was attributed to coagulopathy,
possibly through interaction with coagulation factors (e.g.,
factors II and VII). This adverse reaction has been related to a
case of warfarin toxicity after treatment with ivermectin (317).

Vascular endothelial growth factor (VEGF) antagonists are
related to thrombotic and hemorrhagic side effects (318). VEGF-
induced angiogenesis plays a significant role in acute lung injury
of COVID-19 (319). For this reason, bevacizumab -an anti-VEGF
agent- is under examination for the inhibition of angiogenesis
in COVID-19 pneumonia (NCT04275414, NCT04344782,
NCT04305106). Bevacizumab has been previously associated
with venous and arterial thrombosis and hemorrhage, including
stroke (320, 321).

Medications Without Possible Effects on
COVID-19
In addition to medications under trials for SARS-CoV-2
infection, there are other medications with elevated risk for
stroke. Prior routine consumption of these medications or
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use for acute conditions unrelated to COVID-19, such as
trauma or surgery, might increase the risk of stroke which in
addition to other stroke risk factors can lead to an attack in a
patient with SARS-CoV-2 infection. Some of these medications,
which are more widely used, are discussed here to remind the
clinicians of other drugs with elevated risk of stroke particularly
cryptogenic stroke.

AF can be stimulated by several mechanisms including
medications. As discussed in earlier sections, patients with
COVID-19 are prone to cardiovascular damage and new-
onset arrhythmia as a consequence of comorbidities and
infection. Drugs that have been associated with the induction
of AF and the possible mechanisms are comprehensively
reviewed by previous studies (322–324). Based on these studies,
drug-induced AF is believed to have the following principal
mechanisms: alterations in autonomic tone through either
adrenergic or vagal stimulation, changing the atrial automaticity
and conduction, direct cardiovascular toxicity such as coronary
vasoconstriction/ischemia and electrolyte disturbances, local or
systemic inflammation, oxidative stress, hyperthermia (322–324).
A comprehensive discussion of all medications that are being
associated with AF in addition to the possible mechanisms are
not in the scope of this review; however, more commonly used
medications are presented in Figure 6.

Some chemotherapeutic agents such as busulfan, bleomycin,
cis-platinum, and fluorouracil increase the risk of thrombosis
(325) and are also associated with cardiotoxicity (326).
Angiogenesis inhibitors are also reported to be cardiotoxic with
elevated risk for hypertension, arterial thromboembolism, and
myocardial ischemia (327). L-asparaginase is an antineoplastic
agent that causes a hypercoagulable state leading to thrombotic
events. This drug causes reduced protein synthesis such as
antithrombin III (328).

Exogenous estrogens, oral contraceptives, hormone
replacement therapy, and estradiol produced from the
conversion of exogenous testosterone are associated with
the risk of venous and arterial thrombosis mainly through
induction of hypercoagulability (329, 330). Tamoxifen has
also an estrogenic effect and may be related to both venous
thromboembolism and stroke (331).

Supraphysiologic doses of anabolic steroids are reported to
cause ischemic stroke and myocardial infarction mostly in young
patients with unremarkable vascular risk factors (332–334). A
thrombogenic and an atherogenic state have been proposed as a
result of AF, increased erythropoietin and hematocrit, increased
thrombin and fibrin formation and platelet aggregation, vascular
spasm, hypertension, insulin resistance, and dyslipidemia (332,
335, 336).

Antipsychotics are associated with increased risk for both
stroke and MI possibly related to platelet aggregation, metabolic
effects, and obesity (337). Serotonin is a vasoactive amine with
both vasoconstrictive and vasodilative effects on cerebral arteries
of different sizes (325). Selective serotonin reuptake inhibitor
(SSRI) antidepressants and new antipsychotics such as clozapine
and olanzapine have been reported to cause cardiodepression
and arrhythmia (338). Based on a meta-analysis, patients with
a one-time stroke under antidepressant therapy (including SSRI

and tricyclic antidepressants) may be at elevated risk for stroke
recurrence, particularly ischemic type. The risk was highest in
patients under therapy with multiple antidepressants (339). SSRI
use has also been shown to cause an elevated risk of ischemic
stroke in patients 65 years and older (340). Platelets release
serotonin at the site of endothelial injury to promote platelet
aggregation (341). SSRI may decrease serotonin reuptake by
platelets and cause platelet dysfunction and bleeding. Several
studies have supported the increased risk of bleeding in patients
with SSRI use (342, 343). According to a meta-analysis, SSRI is
associated with a slightly increased risk of hemorrhagic cerebral
events which is potentiated with concomitant use with oral
anticoagulants (344).

Opioids, although rarely reported, are accused of being
associated with ischemic stroke. Possible mechanisms might
be cardioembolism due to recurrent infective endocarditis,
hypotension, and bradycardia leading to global hypoperfusion
and ischemia, and vasculitis (345).

Some of the illicit drugs including amphetamines and
cocaine cause elevated incidence and mortality of stroke by
sympathomimetic activity (346). Vascular spasm, an acute rise in
blood pressure, aneurysm formation and rupture, and vasculitis
are the reasons by which sympathomimetics may stimulate a
stroke (346). Chronic use of these illegal sympathomimetics
stimulates ischemic stroke. The proposed mechanisms are
vasospasm and tissue hypoperfusion, accelerated atherosclerosis,
increased platelet aggregation, vasculitis and cardioembolism
due to infective endocarditis, arrhythmia, cardiomyopathy and
myocardial infarction (305, 347). Sympathomimetic compounds
in over-the-counter cold medications and appetite suppressants
such as phenylpropanolamine and pseudoephedrine are also
increase the risk of hemorrhagic and ischemic stroke and
myocardial infarction (348, 349). Vascular events are more
probable in chronic drug consumption or in higher doses than
the recommended dose and the proposedmechanisms are related
to sympathomimetic effects such as vasospasm and hypertension
(348, 349).

DISCUSSION AND FUTURE PERSPECTIVE

Patients with SARS-CoV-2 infection need prevention for
vascular events, especially during hospitalization. According to
the International Society of Thrombosis and Hemostasis, all
hospitalized patients infected with SARS-CoV-2 benefit from
coagulation monitoring with D-dimer level, prothrombin time,
platelet count, and fibrinogen. Prophylactic low molecular
weight heparin therapy is also beneficial (350). Considering the
hypercoagulability in COVID-19, higher doses of anticoagulants
with extended duration of anticoagulation may be needed,
and laboratory and clinical follow-ups should occur in shorter
intervals. Notably, a high incidence of arterial and venous
thrombosis occurs despite thromboprophylaxis (89, 249).
Among a cohort of infected patients who were discharged
without anticoagulants, 2.5% presented with a thrombotic event
post-discharge (mean of 30 days), including one ischemic
stroke at day 40 post-discharge (351). However, therapeutic or
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prophylactic doses of anticoagulation may result in severe and
fatal intracranial hemorrhage in SARS-CoV-2 infected patients
(89, 352), possibly due to endotheliopathy and vascular fragility.
Based on the current literature, it cannot be anticipated for how
long COVID-19 survivors would be prone to the elevated risk of
stroke. Previous experiences with other pathologies may provide
an insight into the duration of the preventive strategies. Follow
up of hospitalized pneumonia patients revealed an increased risk
of cerebro- and cardiovascular diseases, even up to 10 years.
After adjustment for cardiovascular risk factors, the risk was
highest in the first month, had been progressively declined in
the first year, and remained as high as 1.5-fold of the risk in the
controls in the following years (353). Similarly, hospitalization
for sepsis increased the 1-year risk of stroke, particularly in
younger patients (354). In the influenza-like illnesses, the higher
odds of ischemic stroke was significant up to 60 days (355). Study
on twenty-five SARS-CoV-1 survivors after 12 years showed a
significant disruption in the lipid metabolism, cardiovascular
abnormalities, and altered glucose metabolism, compared to
healthy controls (356).

Finally, the role of antiplatelet agents in the secondary
prevention of stroke is clear (357). Patients with SARS-CoV-2
infection may further benefit from antiplatelets due to the role
of platelets in the coagulopathy related to severe COVID-19. On
the other hand, platelets are essential components of defense
against viruses and antiplatelets may inhibit the immune system

in the early stages of viral infection complicating antiplatelet
therapy. In this respect, previous studies have shown the lack
of cytotoxic T cell-mediated response and inhibition of viral
clearance in platelet-depleted animals (358) and also in animals
treated with dual aspirin/clopidogrel (359). Due to the lack of
clear evidence, it is most reasonable to personalize patient care.
While waiting for the results of standard trials for COVID-
19 treatment, uncontrolled administration of several drugs may
increase the risk for adverse reactions such as stroke.

In summary, the present narrative review highlighted the
potential pathways that may be associated with CNS invasion
by SARS-CoV-2. We pictured the potential etiopathogenic
mechanisms that may account for the causative association
between COVID-19 and stroke. Further research is required to
assist us in understanding the full spectrum of SARS-CoV-2
infection in triggering acute cardio- and cerebrovascular events.
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