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Abstract

Introduction Stromal cell-derived factor (SDF)-1 (CXC
chemokine ligand-12) is a member of the CXC subfamily of
chemokines, which, through its cognate receptor (CXC
chemokine receptor [CXCR]4), plays an important role in
chemotaxis of cancer cells and in tumour metastasis. We
conducted the present study to evaluate the effect of SDF-1 on
the invasiveness and migration of breast cancer cells, and we
analyzed the expression of SDF-1 and its relation to
clinicopathological features and clinical outcomes in human
breast cancer.

Method Expression of SDF-1 mRNA in breast cancer,
endothelial (HECV) and fibroblast (MRC5) cell lines and in
human breast tissues were studied using RT-PCR. MDA-MB-
231 cells were transfected with a SDF-1 expression vector, and
their invasiveness and migration was tested in vitro. In addition,
the expression of SDF-1 was investigated using
immunohistochemistry and quantitative RT-PCR in samples of
normal human mammary tissue (n = 32) and mammary tumour
(n = 120).

Results SDF-1 expression was identified in MRC5, MDA-MB-
435s and MDA-MB-436 cell lines, but CXCR4 expression was

detected in all cell lines and breast tissues. An autocrine loop
was created following transfection of MDA-MB-231 (which was
CXCR4 positive and SDF-1 negative) with a mammalian
expression cassette encoding SDF-1 (MDA-MB-231SDF1+/+)
or with control plasmid pcDNA4/GFP (MDA-MB-231+/-). MDA-
MB-231SDF1+/+ cells exhibited significantly greater invasion
and migration potential (in transfected cells versus in wild type
and empty MDA-MB-231+/-; P < 0.01). In mammary tissues
SDF-1 staining was primarily seen in stromal cells and weakly in
mammary epithelial cells. Significantly higher levels of SDF-1
were seen in node-positive than in node-negative tumours (P =
0.05), in tumours that metastasized (P = 0.05), and tumours
from patients who died (P = 0.03) than in tumours from patients
who were disease free. It was most notable that levels of SDF-1
correlated significantly with overall survival (P = 0.001) and
incidence-free survival (P = 0.035).

Conclusion SDF-1 can increase the invasiveness and migration
of breast cancer cells. Its levels correlated with node
involvement and long-term survival in patients with breast
cancer. SDF-1 may therefore have potential value in assessing
clinical outcomes of patients with breast cancer.

Introduction
Breast cancer is the most common female cancer in the UK

and USA. One in ten women will develop breast cancer in their

lifetime in Western countries [1,2]. The poor prognosis of

patients with breast cancer is related to tumour recurrence

and metastasis [3,4]. Breast cancer is characterized by metas-

tasis to regional lymph nodes, bone marrow, lungs and the liver

[5]. Previous studies [6,7] demonstrated that sites of metasta-

sis are determined not only by the characteristics of neoplastic

cells but also by the microenvironment of the specific organs.

CXCL = CXC chemokine ligand; CXCR = CXC chemokine receptor; ER = oestrogen receptor; RT-PCR = reverse transcription polymerase chain 
reaction; SDF = Stromal cell derived factor.
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Organ specific attractant molecules can promote homing of

tumour cells to particular sites [5,7].

Stromal cell-derived factor (SDF)-1 (CXC chemokine ligand-

12) is a member of CXC chemokine family, which was initially

cloned from murine bone marrow and characterized as a pre-

B-cell growth stimulating factor [8-10]. SDF-1 exerts effects

through its cognate receptor CXC chemokine receptor

(CXCR4), which is the only physiological receptor for SDF-1

and is known to play roles in chemotaxis [11,12], haematopoi-

esis [13,14], vasculogenesis [15-17] and tumour spread and

metastasis [6,18,19]. It was recently shown that CXCR4 is

involved in homing of tumour cells to specific organs and in

tumour progression [6,18-20]. Muller and coworkers [19]

found that SDF-1/CXCR4 plays a critical role in determining

the metastatic destination of breast cancer cells. Moreover,

they demonstrated that neutralization with a specific mono-

clonal antibody against CXCR4 effectively inhibited the metas-

tasis of breast cancer cells to the lung or lymph nodes in mice

[19].

However, despite the accumulated information on CXCR4,

few studies have been conducted to evaluate SDF-1 expres-

sion and its prognostic value in patients with breast cancer. In

the present study we evaluated the effect of the SDF-1 gene

in breast cancer cells on their invasive and migration proper-

ties, using a SDF-1 transfection technique. Furthermore, we

analyzed SDF-1 expression by real-time quantitative RT-PCR

and immunohistochemical staining, and its relation with clin-

icopathological features and clinical outcomes in human

breast cancer.

Materials and method
Materials

The RNA extraction kit and reverse transcription kit were

obtained from AbGene Ltd (Epsom, Surrey, UK). PCR primers

were designed using Beacon Designer (Palo Alto, CA, USA)

and synthesized by Invitrogen Ltd (Paisley, UK). Molecular

biology grade agarose and DNA ladder were obtained from

Invitrogen. The master mix for routine PCR and quantitative

PCR was from AbGene Ltd. Goat anti-human SDF-1 polyclo-

nal antibodies and rabbit anti-human CXCR4 polyclonal anti-

body were purchased from Santa Cruz Biotechnology Ltd

(Santa Cruz, CA, USA). Peroxidase conjugated anti-goat and

anti-rabbit antibodies were obtained from Sigma (Poole, Dor-

set, England, UK) and a biotin universal staining kit was from

Vector Laboratories (Nottingham, England, UK). Matrigel

(reconstituted basement membrane) was purchased from Col-

laborative Research Products (Bedford, MA, USA). A tran-

swell plate equipped with a porous insert (pore size 8 µm] was

obtained from Becton Dickinson Labware (Oxford, UK).

Cell lines and culture conditions

The following human breast cancer cell lines were used: MDA-

MB-157, MDA-MB-231, MDA-MB-435s, MDA-MB-436,

MDA-MB-453, MCF7, BT549 and ZR751 (purchased from

the European Collection of Animal Cell Cultures, Salisbury,

UK). Human foetal lung fibroblast cell line MRC5 (from the

European Collection of Animal Cell Cultures) and human vas-

cular endothelial cell line HECV (from the Biology and Cellular

and Molecular Pathology Department, Naples, Italy) were also

used. The cell lines were maintained in Dulbecco's modified

Eagle's medium with 10% foetal calf serum, 100 units/ml pen-

icillin and 100 µg/ml streptomycin, and at 37°C in a humid

atmosphere of 5% carbon dioxide/95% air.

Construction of SDF-1 expression cassette

Full-length human SDF-1 cDNA was obtained by amplifying

the mRNA from normal human fibroblasts, using RT-PCR with

the following primers: sdf1exf1 (5'-atgaacgccaaggtcgtg-3']

and SDF1ExR1 (5'-tcacatcttgaacctcttgtt-3'). The discrete

SDF-1 product was subsequently TA cloned into pcDNA4/

GFP-NT vector (Invitrogen Ltd), followed by transformation

using One-Shot E. coli (Invitrogen Ltd), verification, and ampli-

fication. Purified plasmid, or control plasmid, was used to

transfect MDA-MB-231 cells by electroporation using an elec-

troporator, EasyJet Plus (Flowgen, Boughton, Kent, England,

UK), followed by selection with G418 (Sigma). Stable SDF-1

transfectant (MDA-MB-231SDF1+/+), or stable control plas-

mid transfectant (MDA-MB-231+/-), was subsequently estab-

lished and verified.

In vitro invasion analysis

This technique was previously reported and modified in our

laboratory [21]. Briefly, transwell inserts with 8 µm pore size

were coated with 50 µg Matrigel and dried, before being rehy-

drated. Breast cancer cells (20 × 103) were added to each

well. After 96 hours cells that had migrated through the matrix

and stuck to the other side of the insert were fixed (4% forma-

lin), stained with 0.5% (weight/volume) crystal violet and

counted under a microscope.

Migration assay

The migration assay was based on a method established in our

laboratories [22]. Confluent cells were first overlaid with light

mineral oil and then placed on a stage heated to 37°C. The cell

monolayer was scratched using a fine plastic pipette, creating

wounds of approximate 250 µm in width. These wounds were

then continuously monitored using a digital camera and time-

lapse video recorder. Images were subsequently obtained at

10-min intervals and analyzed using a motion analysis package

(Optimas 6) (Optimas Corporation, Bothell, Washington,

USA). The accumulated distance that cells travelled over a

period of 10 min was analyzed. More than 20 cells were ana-

lyzed in each setting, and data were automatically processed

using Excel software.

Tissue samples

Tissue samples were collected from patients with breast can-

cer who had undergone mastectomy. Breast cancer tissue
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samples (n = 120) and normal mammary tissue samples (from

the same patients but away from tumours, and free from

tumour cells, as confirmed by subsequent histological analy-

sis; n = 32) were collected immediately after surgery and

stored at -80°C until use. Patients were routinely followed clin-

ically after surgery and details were stored in a database. The

median follow-up period was 72 months. Details of histology

were obtained from pathology reports (Table 1).

RT-PCR and real-time Quantitative PCR

Frozen sections of tissues were cut at a thickness of 5–10 µm

and kept for immunohistochemistry and routine histology. An

additional 15–20 sections were mixed and homogenized

using a hand-held homogenizer, in ice-cold RNA extraction

solution. Total RNA extraction from frozen tissues and culture

cells was performed using standard RNA isolation kit. The

concentration of RNA was determined using an ultraviolet

spectrophotometer. Reverse transcription was conducted

using a reverse transcription kit with an anchored oligo [dT]

primer supplied by AbGene Ltd, using 1 µg total RNA in a 96-

well plate. The quality of cDNA was verified using β-actin prim-

ers (5'-caggaggttgaaggactaaa-3' and 5'-gggatcagttttctttgtca-

3').

Conventional PCR was performed with specific primers for

SDF-1 and CXCR4. Amplication conditions were as follows:

94°C for 5 min, followed by 40 cycles of 94°C for 30 s, 55°C

for 1 min and 72°C for 1 min. This was followed by a final

extension for 5 min at 72°C. The products were visualized on

2% agarose gel after stain with ethidium brominde.

The level of SDF-1 and CXCR4 transcripts from the prepared

cDNA was determined using a real-time quantitative PCR,

based on Amplifluor technology, modified from a method

reported previously [23]. (TCS Biologicals Oxford, England,

UK) Briefly, pairs of PCR primers were similarly designed

using Beacon Designer software, version 2 (Biosoft Interna-

tional, Palo Alto, California, USA) (primer sequence: sense

SDF-1 5'-ttcaggagtacctggagaaa-3', CXCR4 5'-cttcttaact-

ggcattgtgg-3'; antisense SDF-1 5'-actgaacctgaccgtacac-

ctaacactggt-3', CXCR4 5'-

actgaacctgaccgtacagtgatgacaaag-3'), but an additional

sequence was added to one of the primers [24]. This is known

as the Z sequence (5'-actgaacctgaccgtaca-3') which is com-

plementary to the universal Z probe (Intergen Inc, Oxford, UK).

The primers used for quantitation of oestrogen receptor (ER)

and ER-β were as we reported previously [23] (ER; 5'-cctac-

tacctggagaacgag-3' and 5'-ctcttcggtcttttcgtatg-3'; and ER-β:

5'-aaaagaatcattcaatgaca-3' and 5'-attaacacctccatccaaca-3').

Primers used to quantify CK19 were as previously reported

(5'-caggtccgaggttactgac-3' and 5'-actgaacctgaccgtacacactt-

tctgc cagtgtgtcttc-3', respectively) [23,25].

The reaction was carried out using the following: Hot-start Q-

master mix (AbGene Ltd); 10 pmol of specific forward primer;

1 pmol reverse primer, which has the Z sequence; 10 pmol of

FAMtagged probe (Intergen Inc), and cDNA from ~50 ng of

RNA. The reaction was conducted using IcyclerIQ (Bio-Rad,

Hemel Hempstead, Herts, England, UK), which is equipped

with an optic unit that allows real-time detection of 96 reac-

tions, under the following conditions: 94°C for 12 min and 50

cycles of 94°C for 15 s, 55°C for 40 s, and 72°C for 20 s [15].

The levels of transcripts were generated from a standard that

was simultaneously amplified with the samples.

Immunohistochemical staining of SDF-1 proteins

In the present study, normal breast tissue samples (n = 32)

and their respective matched breast tumour samples (n = 32)

were used for immunohistochmemical analysis. Tissues were

frozen and sectioned at a thickness of 6 µm using a cryostat.

The sections were mounted on SuperFrostPlus microscope

slides (Ramond A Lamb, London, England, UK) and were air-

dried and then fixed in a mixture of 50% acetone and 50%

methanol. The sections were then placed in Optimax wash

buffer (San Ramon, California, USA) for 5–10 min to rehy-

Table 1

Clinical features of patients included in the study

Clinical feature n

Node status

Node negative 65

Node positive 55

Grade

1 23

2 41

3 56

Histology

Ductal 88

Lobular 14

Others 8

TNM staging

1 69

2 40

3 7

4 4

Clinical outcome

Disease free 87

With metastasis 6

With local recurrence 5

Died from breast cancer 16

Died of unrelated disease 6
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drate. Sections were incubated for 20 min in a 0.6% bovine

serum albumin blocking solution and were then probed with

the primary antibody for 1 hour. After extensive washings in

buffer, sections were incubated for 30 min in the secondary

biotinylated antibody (Multilink Swine anti-goat and anti-rabbit

immunoglobulin; Dako Inc., Angel Drove, Ely, Cambridgeshire,

England, UK). After washing, avidin biotin complex (Vector

Laboratories) was then applied to the sections followed once

more by extensive washings. Diaminobenzidine chromogen

(Vector Laboratories) was then added to the sections, which

were then incubated in the dark for 5 min. Sections were then

counterstained in Gill's haematoxylin and were dehydrated in

ascending grades of methanol before clearing in xylene and

mounting under a coverslip.

Statistical analysis

Statistical analysis was carried out using the Mann–Whitney

U-test and the Kruskal–Wallis test, survival analysis was using

Kaplan–Meier survival analysis and Cox hazardous proportion

analysis, using the SPSS version 11 program (SPSS Inc., Chi-

cago, IL, USA). P < 0.05 was considered statistically

significant.

Results
Expression of SDF-1/CXCR4 mRNA in cell lines and in 

human breast cancer tissures

SDF-1 mRNA was identified in MRC5, MDA-MB-435s, MDA-

MB-436 and breast cancer tissues, but not in other breast

cancer cell lines and HECV cells. It has been suggested that

the MDA-MB-435 cell line is of melanocyte origin, and MDA-

MB-436 was the only SDF-1 positive breast cancer cell line of

all the lines tested in the present study. In contrast, CXCR4

mRNA expression was detected in all eight breast cancer cell

lines, in MRC5 and HECV cells (Fig. 1), and in breast cancer

tissue (data not shown). Quantitative analysis of the SDF-1

transcript revealed that breast tumour tissues had high levels

of SDF-1 transcript (mean ± standard deviation: 195 ± 103

copies) as compared with normal mammary tissues (85.6 ±

54), but the difference was not statistically significant (P =

0.35). To take into account the contribution made by cellularity

in mammary tissues, levels of SDF1 were normalized to the

level of CK19. Dispite a higher SDF1:CK19 ratio in tumour tis-

sues (39.3 ± 13.6) than in normal breast tissue (30.7 ± 3.97),

the difference was not significant (P = 0.84). With respect to

ER, those tumours negative for ER had higher levels of SDF-1

(246 ± 138) than did ER-positive tumours (57.9 ± 45.4; P =

0.20). A similar, insignificant trend was seen with ER-β (248.0

± 131 for ER-β- tumours and 1.3 ± 0.72 for ER-β+ tumours).

The SDF-1:CK19 ratio for ER-negative tumours was 52.7 ±

41.6 and that for ER-positive tumours was 30.8 ± 14.4 (P =

0.62). The ratio was 41.2 ± 17.3 for ER-β-negative and 8.3 ±

5.1 for ER-β-positive tumours (P = 0.072).

SDF-1 has the potential to promote invasion and 

migration

MDA-MB-231SDF1+/+ cells, which stably expressed SDF-1

(Fig. 2a), and MDA-MB-231+/- (stable control plasmid trans-

fectant) and wild-type MDA-MB-231 cells, which were SDF-1

negative, were tested for their invasiveness and migration.

MDA-MB-231SDF1+/+ cells exhibited greater invasiveness

through Matrigel than did wild-type and MDA-MB-231+/- cells

(P < 0.01; Fig. 2b). In addition, the migration speed of MDA-

MB-231SDF1+/+ cells was markedly increased compared with

the respective controls (Fig. 2c).

Figure 1

SDF-1/CXCR4 expression in various cell linesSDF-1/CXCR4 expression in various cell lines. 1: MDA-MB-157; 2: 
MDA-MB-231; 3: MDA-MB-435s; 4: MDA-MB-436; 5: MDA-MB-453; 
6: MCF7; 7: BT549; 8: ZR751; 9: MRC5; 10: HECV; 11: negative 
control. CXCR, CXC chemokine receptor; SDF, stromal cell-derived 
factor.

Figure 2

Manipulation of expression of SDF-1 in breast cancer cellsManipulation of expression of SDF-1 in breast cancer cells. (a) The effi-
ciency of stromal cell-derived factor (SDF)-1 transfected in MDA-MB-
231 cells was confirmed by PCR. M: marker; 1: negative control; 2: 
MDA-MB-231 wild-type; 3: empty vector control MDA-MB-231+/-; 4: 
SDF-1-transfected MDA-MB-231SDF1+/+. (b) Invasiveness of trans-
fected cells. *P < 0.01 versus control and wild-type. (c) Cellular 
migration.
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SDF-1/CXCR4 immunohistochemical staining in human 

breast cancer

Immunohistochemical staining confirmed expression of SDF-1

at the protein level in breast cancer tissue samples. In contrast

to the adjacent nonmalignant tissue, we were able to demon-

strate heterogeneous but consistent expression of SDF-1 anti-

gen in tumour tissue. Immunohistochemical staining of SDF-1

appeared in most tumour cells and in stromal cells (Fig. 3a,b).

As expected, staining of CXCR4 were seen in both normal and

tumour cells (Fig. 3c,d), with staining in tumour cells being

markedly stronger.

SDF-1 expression and lymphatic nodal status, 

histological types, grades and staging

We analyzed the levels of SDF-1 in relation to nodal status

(Fig. 4a). Node-positive tumours had significantly higher levels

of SDF-1 than did node-negative ones. The expression level of

SDF-1 tended to be higher in the node-positive group,

although there was no statistically significant difference

between node-positive and node-negative groups (P = 0.05).

The data were further analyzed by dividing node-positive and

node-negative tumours into ER-positive and ER-negative

groups. For SDF-1 no significant differences between sub-

groups were observed (ER-/node- versus ER-/node+, P =

0.25; ER-/node- versus ER+/node-, P = 0.57; P values for

SDF1:CK19 were 0.27 and 0.32, respectively). No significant

difference in SDF-1 was seen between ER-positive/node-neg-

ative and ER-positive/node-positive subgroups (P = 0.24; for

SDF1:CK19 P = 0.27). Similarly, when node-positive and

node-negative tumours were subdivided into ER-β-positive

and ER-β-negative subgroups, no significant difference was

seen.

We examined expression of SDF-1 relative to tumor types,

grade and staging (Table 2). There was a trend in the differ-

ences in SDF1 expression between tumour grades, in that

grade 3 and grade 2 tumours tended to have higher SDF1 lev-

els than did grade 1 tumours, but this was not statistically sig-

nificant. There were no significant relations between

expression level of SDF-1 and tumor type and stage.

SDF-1 expression correlated with prognosis and long 

term survival

The expression level of SDF-1 correlated with clinical out-

come; patients with local recurrence (P = 0.05) and those

who died from breast cancer (P = 0.03) had signfiantly higher

levels of SDF-1 transcript (Fig. 4b). Those patients with metas-

tasis and local recurrence, and who died from breast cancer

had significantly higher levels of SDF-1 than did the disease-

free group (P = 0.01; Fig. 4c).

To determine whether SDF-1 transcript levels were associ-

ated with long-term survival, we divided patients into those

with high levels (n = 79) and those with low levels (n = 41) of

SDF-1. The cutoff point was determined using the Nottingham

Prognostic Index, and was set at the level at which patients

had moderate prognoses (Nottingham Prognostic Index 3.4–

5.4). As shown in the Kaplan–Meier survival curve (Fig. 5),

high levels of SDF-1 significantly correlated with shorter over-

all survival (mean survival 94.1 months [95% confidence inter-

val 65.4–122.9 months] versus 143.6 months [95%

confidence interval 135.2–152.0 months] months for those

with low levels of SDF-1; P = 0.001; Fig. 5a). Further analysis

taking tumour grade into account was not possible because

the sample number in each subgroup was too small. Similarly,

high SDF-1 levels were associated with reduced incidence-

free survival (P = 0.035 by Cox proportion analysis; Fig. 5b).

Discussion
Chemokines are a family of small molecular weight proteins

(8–10 kDa) that are classified into four distinct groups,

depending on the positioning of the cysteine motif at the NH2

terminus. The family members include CXC, CC, C and

CXXXC chemokines [26,27]. The specific effects of chemok-

ines on their target cells are mediated by members of a family

of seven-transmembrane-spanning, G-protein-coupled recep-

tors [14,28].

SDF-1 is a member of the CXC subfamily of chemokines and

its receptor is CXCR4. SDF-1 is constitutively expressed in

various organs including bone, lung, liver, brain, thymus and

lymph nodes [10,14,19], but SDF-1 is mainly produced by

stromal cells, such as osteoblasts, fibroblasts and endothelial

cells in the bone marrow [29,30]. Despite numerous studies

on CXCR4 in breast cancer, reports on SDF-1 in human

breast cancer are limited.

Figure 3

Immunohistochemical analysis of SDF1 and its receptorImmunohistochemical analysis of SDF1 and its receptor. Imunohisto-
chemical staining of (a,b) SDF-1 and (c,d) the SDF-1 receptor CXCR4 
in mammary tissues. The left panels show normal tissues, and the right 
panels show breast tumour tissues. CXCR, CXC chemokine receptor; 
SDF, stromal cell-derived factor.
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In the present study the expression of CXCR4 was detected

in various cell lines and in malignant and nonmalignant breast

tissues, but SDF-1 expression was only observed in two out of

the eight breast cancer cell lines and in the fibroblast cell line

MRC5. These results indicate that certain breast cancer cells

co-express SDF-1 and CXCR4, which may act as a potential

autocrine mechanism in breast cancer. We have reported that

the fibroblast cell line, MRC5, strongly expressed SDF-1. Fur-

thermore, in the present study immunohistochemical staining

of SDF-1 was apparent in most tumour cells and in stromal

cells. Collectively, from the results, we suggest that SDF-1 in

breast cancer is produced by both tumour cells and stromal

cells. The other potential source is the infiltrated immune cells,

which frequently express CXCR4 and SDF1. The present

study did not examine the proportion of these cells that pro-

Figure 4

Levels of SDF-1 transcript in human breast tumoursLevels of SDF-1 transcript in human breast tumours. (a) Stromal cell-derived factor (SDF)-1 expression level and lymph node metastasis, showing 
SDF-1 expression in node-negative and node-positive samples (0.89 ± 0.47 versus 399 ± 210; P = 0.05). (b) Significantly raised SDF-1 transcript 
in patients with local recurrence and with mortality. (c) Expression level of SDF-1 and clinical outcome (disease-free versus poor out come: 0.83 ± 
0.35 versus 670 ± 346; P = 0.01).

Table 2

SDF-1 expression and correlation with clinical pathology

Clinical pathology SDF-1 level (mean ± SD) P

Type

Ductal 237 ± 131

Lobular 88.9 ± 88.8 0.67

Others 0.89 ± 0.9

Grade

Grade 1 12.8 ± 12.5

Grade 2 27 ± 27 0.07

Grade 3 371 ± 206 0.08

Staging

TNM1 5.6 ± 4.5

TNM2 290 ± 165 0.09

TNM3 1628 ± 1530 0.34

TNM4 1.1 ± 1.1

SDF, stromal cell-derived factor.
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duced SDF1 or the degree of expression, which would be an

interesting focus for future studies.

The present study provides strong evidence that, when the

SDF-1/CXCR4 complex existed (i.e. in MDA-MB-231SDF1+/

+ cells, which expressed both SDF-1 and CXCR4), breast can-

cer cells exhibited significant increases in invasiveness and

faster migration. These findings suggest that breast cancer

cells that co-express SDF-1 and CXCR4 may be more aggres-

sive. In the present study we were unable to transfect fibrob-

lasts with the current bacterial vector because no fibroblasts

subsequently survived the electroporation and genetic marker

selection process. It will be useful to develop viral expression

for the purpose for future work. In addition, high levels of SDF-

1 expression tended to be present in grade 3 and grade 2

tumors as compared with grade 1 tumours, further supporting

the contention that breast cancer cells that express high levels

of SDF-1 are more invasive.

Recently, studies implicated CXCR4 in chemotaxis, invasive-

ness and metastasis of tumours, particularly in metastasis of

breast cancer, in an organ-specific manner. Muller and cow-

orkers [19] found CXCR4 to be highly expressed in breast

cancer cells, malignant breast tumours and metastases. On

the other hand, peak levels of CXC chemokine ligand

(CXCL)12 occurred in those organs that represent the initial

destinations of breast cancer metastasis (i.e. lymph nodes,

lung, liver and bone marrow). Furthermore, neutralizing the

interaction between CXCL12 and CXCR4 significantly

impaired metastasis to regional lymph nodes and lung in mice.

Other reports have also shown that the SDF-1/CXCR4 biolog-

ical axis is involved in regulating metastasis of tumours

[6,18,31,32]. In the present study we found that that node-

positive tumours had significantly higher levels of SDF-1 than

did node-negative tumors, suggesting that SDF-1 may be

involved in the lymph node metastatic process. Given that

lymph node metastasis directly affects the prognosis of

patients with breast cancer [4], we propose that SDF-1, via

the CXCR4 pathway, is potentially a marker of nodal involve-

ment. It was recently reported that SDF-1 can act as a direct

target for ER-α in breast cancer cells (e.g. MCF-7 cells)

[33,34]. In the present study it is noteworthy that EF-negative

and ER-β-negative tumours tended to have higher levels of

SDF-1. Although differences between these subgroups were

not statistically significant, the trend, together with the in vitro

studies, indicate that this link warrants further investigation. It

is also noteworthy that SDF-1 expression in mammary tissues

was primarily confined to stromal cells and, to some degree,

cancer cells. We did not observe SDF-1 staining in vascular

endothelial cells, HECV, and in vascular endothelial cells in the

tissues – observations echoed by other studies [35,36]. This

finding indicates that paracrine regulation may be the main

pathway in breast cancer but that autocrine pathways may

also exist. Secretion and production of SDF-1 are regulated by

other factors. For example, expression of SDF-1 is decreased

by IL-1, tumour necrosis factor and inflammation [37], whereas

oestradiol can induce the production and secretion of SDF-1

in breast cancer cells [38]. On the other hand, tumour cells

exposed to high concentrations of SDF-1 induce reduction in

CXCR4 expression [18]. Furthermore, vascular edothelial

grwoth factor can also induce CXCR4 expression in breast

cancer cells [39,40]. Factors contributing to over-expression

of SDF-1 in breast cancer thus warrant further investigation.

Finally, we demonstrated a significant correlation between

SDF-1 expression and overall and disease-free survival in

Figure 5

Kaplan–Meier survival curvesKaplan–Meier survival curves. (a) Overall survival (P = 0.01). (b) Dis-
ease-free survival (P = 0.035). Median follow up: 72.2 months. Stromal 
cell-derived factor (SDF)-1 (H), patients with high levels of SDF-1 tran-
script (n = 79); SDF-1 (L), patients with low levels of SDF-1 transcript 
(n = 41).
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patients with breast cancer. The high level of SDF-1

expression suggests that there is a high likelihood of node

metastasis, local recurrence and death from breast cancer in

these patients. We and others found the expression pattern of

CXCR4 to be significantly correlated with the degree of lymph

node metastases but not with haematogenous metastases

[41-43]. Therefore, SDF-1, together with its receptor CXCR4,

may have potential value when assessing long-term clinical

outcome in breast cancer.

Conclusion
The present study demonstrated that breast cancer cells that

express SDF-1, and therefore that have an active SDF-1/

CXCR4 pathway, are more invasive and motile, thus have a

more aggressive phenotype. In clinical breast cancers, and

supported by data from cell lines, we found that SDF-1

appears to exist primarily in stromal cells and, to some degree,

in breast cancer cells. That levels of SDF-1 are significantly

correlated with nodal status, recurrence and, most notably,

both overall and disease-free survival indicates that SDF-1 –

and indeed the SDF-1 receptor complex – have strong predic-

tive value in assessing long-term clinical outcome.
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