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1. Introduction

The Strominger–Yau–Zaslow (SYZ) conjecture [36] is the following: given a family of n-

dimensional polarised Calabi–Yau (CY) manifolds (Xs, gs, Js, ωs,Ωs) of holonomy SU(n)

degenerating to the large complex structure limit, then

• After suitable scaling, the metric spaces (Xs, gs) converge in the Gromov–Hausdorff

sense to a singular affine manifold B homeomorphic to Sn. The limiting metric g∞ is

a real Monge–Ampère metric on the smooth locus. (This part is also known as the

Kontsevich–Soibelman conjecture [29], [30].)

• Near the degenerating limit, the manifold Xs admits a special Lagrangian Tn

fibration over the base B with some singular fibres. The diameters of the fibres are much

smaller compared to diam(B). In the generic region on Xs, which covers most of the

measure on Xs, the metric gs is a small perturbation of a semiflat metric, meaning that

the Tn fibres are almost flat.

• Mirror manifolds should be constructed as another Tn fibration over the same

base B, by fibrewise replacing the Tn fibres with the dual tori.

An early achievement is Gross and Wilson’s gluing construction [21] of degener-

ating CY metrics on K3 surfaces with elliptic fibrations, which becomes a special La-

grangian T 2-fibration after hyperkähler rotation. In this setting the metric is known

semi-explicitly. The same period brought forth many insights concerning topological

[18], combinatorial [23], [24], and differential geometric [43] aspects of the SYZ conjec-

ture, until Joyce [27] discovered through his study of special Lagrangian singularities that

the SYZ fibration map cannot be näıvely expected to be smooth, indicating the difficulty

of the metric problem.
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Later research on the SYZ conjecture gradually shifted focus from its metric geo-

metric roots, in favour of softer approaches based on algebraic or symplectic methods,

taking the original SYZ conjecture mainly as an inspiration. This has led to spectac-

ular progress in the mathematical understanding of mirror symmetry, described in the

excellent survey [19].

In the metric vein, the SYZ conjecture fits into the more general question of under-

standing how CY metrics degenerate as the complex and Kähler structures vary. The

main dichotomy is whether the family of metrics are non-collapsed, meaning there is

a uniform lower bound on the volume, once the diameter is normalised to 1. In the

non-collapsing case much is known: for example, a polarised family of non-collapsed CY

manifolds can only degenerate to normal CY varieties with klt singularities, and the

notion of metric convergence agrees with the algebro-geometric notion of flat limit [14].

The collapsing case is widely open. Tosatti et al. made substantial progress on de-

scribing collapsing metrics associated with holomorphic fibrations [40], [20], in particular

generalising much of [21] to hyperkähler manifolds with holomorphic Lagrangian fibra-

tions. Recently there are many efforts to describe the degenerating CY metrics in special

cases, notably for K3 surfaces [17], [26], [34], and higher-dimensional generalisations [37].

The metric SYZ conjecture resisted most attempts, because the large complex struc-

ture limit is a very severe degeneration mechanism. An interesting program of Boucksom

et al. [3], [5] proposes that in the case of polarised algebraic degenerations the underlying

Calabi–Yau manifolds converge naturally into a non-archimedean (NA) space, and the

CY metrics should converge in a potential theoretic sense to their NA analogue. Their

greatest achievements so far is to define and solve the NA Monge–Ampère (MA) equa-

tion, building on heavy machinery from birational geometry. To make contact with the

SYZ conjecture, it would still remain to compare the non-archimedean MA equation with

the real MA equation, prove the potential theoretic convergence, and improve it to the

metric convergence. Notwithstanding these difficulties, this program has the promise to

prove the SYZ conjecture in great generality.

The viewpoint of this paper is much more concrete. We focus on the Fermat family

of projective hypersurfaces of any dimension n, approaching the large complex structure

limit:

Xs =

{
Z0Z1 ... Zn+1+e−s

n+1∑
i=0

Zn+2
i = 0

}
, s≫ 1.

The most striking aspect of our results is the following.
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Theorem 1.1. (Cf. §5.4) For the Fermat family, consider the Calabi–Yau metrics on

Xs in the polarisation class s−1[∆], where [∆] is a fixed Kähler class on CPn+1 restricted

to Xs. Then, for a subsequence of Xs as s!∞, there exists a special Lagrangian Tn-

fibration on the generic region Us⊂Xs such that

Vol(Us)

Vol(Xs)
! 1 as s!∞.

We also summarize informally the other results in this paper:

• (Cf. §5.3) Any subsequential Gromov–Hausdorff limit of the CY metrics contains

an open dense subset locally isometric to R⊂∂∆∨
λ carrying a smooth real MA metric,

where ∂∆∨
λ denotes the boundary of a certain (n+1)-dimensional simplex ∆∨

λ in Rn+1

arising naturally from tropical geometry, and ∂∆∨
λ \R has zero (n−1)-Hausdorff measure.

• (Cf. Proposition 5.12) The diameters of the subsequence of CY metrics are uni-

formly bounded.

• (Cf. §5.2) In the generic region of Xs for s≫1, the CY metrics are C∞
loc close to a

sequence of semiflat metrics. In particular the sectional curvature in the generic region

is uniformly bounded.

A basic feature of the complex geometry of CY hypersurfaces near the large complex

structure limit, is that in generic regions the local structure is a large annulus region in

(C∗)n, equipped with a holomorphic volume form which modulo a scale factor is very

close to dlog z1∧... dlog zn. An elementary observation is that plurisubharmonic (psh)

functions are intimately related to convex functions:

• Let ϕ be psh on an annulus {1<|zj |<Λ}⊂(C∗)n, then the fibrewise average func-

tion

ϕ̄(x1, ... xn) =−
∫
Tn

ϕ(ex1+iθ1 , ..., exn+iθn) dθ1 ... dθn

is convex.

• Let u be a convex function on {0<xj<log Λ}, then the pull-back of u to

{1< |zj |<Λ}⊂ (C∗)n

via the logarithm map is psh, and u solves the real MA equation det(D2u)=const if and

only if its pull-back solves the complex MA equation

det

(
∂2u

∂ log zi ∂log zj

)
= const.
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Our strategy is to show that in the highly collapsed regime s≫1, the local Kähler

potentials are C0-approximated by convex functions, whose regularity properties can be

then transferred back to the local Kähler potentials at least in the generic region. In effect,

this implies in the generic region the Calabi–Yau metrics are collapsing with uniformly

bounded sectional curvature; then the existence of the special Lagrangian fibration in

the generic region is a simple perturbation argument. Keeping in mind that the local

complex structure is an annulus in (C∗)n, the special Lagrangian fibration is just a small

C∞-perturbation of the logarithm map

(C∗)n−!Rn.

The essential problem is to obtain uniform estimates on the CY metrics as s!∞.

Our techniques differ very significantly from Yau’s proof of the Calabi conjecture. Our

Kähler potential estimates are largely based on Ko lodziej’s method in pluripotential

theory, which has the advantage of robustness even in collapsing settings. The technical

core of our contribution is to produce a regularisation of the Calabi–Yau potential, and

prove an improved version of the global Skoda inequality, which for large s forces the

potential to be very close to its regularisation. As convexity is built into the construction

of the regularisation, this furnishes a bridge between holomorphic and convex geometry,

and one can start to transfer the a-priori much better regularity from the convex world

into the holomorphic world near the collapsing limit s!∞. Our higher-order estimates

exploit the local regularity theory of real MA equations, and a result of Savin from

non-linear PDE theory.

The structure of the paper is as follows. We survey the rather extensive analytical

backgrounds in §2. The complex geometry of the degenerating hypersurfaces is discussed

in §3, with particular emphasis on its interplay with tropical geometry. We estimate

the Calabi–Yau potentials in §4; in particular, we prove the Skoda type estimates, the

uniform L∞ bound, and the C0-approximation by the convex regularisations. In §5, we

use uniform Lipschitz bounds on the regularisation to extract a subsequential limit, and

show that this defines a real MA metric. We then use the local regularity theory of real

MA metrics to show the higher order estimates on the CY local potentials, and prove

the existence of the special Lagrangian fibration.

We now discuss some directions of future research.

• It seems highly plausible that the SYZ conjecture on generic regions will hold

also on many other degenerating CY manifolds, or at least CY hypersurfaces. In fact

the only reason we restrict to the Fermat case is to utilize the large discrete symmetry

group to give a relatively simple proof of a technical extension property for locally convex

functions, which seems likely to generalize to other contexts.
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• One would like to study the existence, uniqueness, and regularity of the real

MA equation on compact polyhedral sets, which are covered by charts whose transition

functions are only piecewise linear but not smooth in general; the SYZ conjecture predicts

the solutions to such real MA equations should arise as possible limits of the collapsing

CY metrics. This question may be parallel to the non-archimedean MA approach taken

up in [4]. At present according to the author’s knowledge, it is not clear how to define the

real MA equation globally on such sets, and in fact we do not even have an established

notion of local convexity.

Such questions on the real MA equations have direct bearings on improving our

main theorem. For instance, if one can establish uniquenss, then there is no need to pass

to subsequences in all of our results. If one can establish sufficient regularity, then it may

be possible to prove the Gromov–Hausdorff limit is homeomorphic to

∂∆∨
λ ≃Sn.

The problem to set up the real MA equation is quite subtle. On a piecewise linear

manifold the notion of a convex function is dependent on charts, and so does the real

MA operator. To set up an invariant notion of the real MA equation, it is necessary to

make branch cuts to charts. The location of such cuts seems to depend on some gradient

condition on the convex function in question, and is hard to predict in the absence of

symmetry. Thus the global real MA equation on polyhedral sets has the feature of a free

boundary problem.

• The a-priori estimate approach in this paper says very little about the CY metrics

in regions with high curvature concentration. In the case of CY 3-folds, the author

[31] recently constructed the 3-dimensional analogues of the Ooguri–Vafa metric, which

are conjectured to be the universal metric models for the neighbourhood of the most

singular fibres in a generic SYZ fibration. A program to tackle the 3-fold case of the

SYZ conjecture based on gluing ideas is outlined in [31], which has the ultimate aim to

give a global description of the metric, and to produce a special Lagrangian fibration

globally. This gluing approach requires very refined information on the singularities of

the real MA equation, which is still far from what we can establish by a-priori estimate

considerations.

Acknowledgement. This work was completed when the author was a postdoc at the

IAS, funded by the Zurich Insurance Company Membership. The pluripotential theoretic

approach is inspired by the talks of Boucksom. The author would like to thank S. Sun, S.

Donaldson, Y. Jhaveri, C. Mooney and P. Sarnak for discussions, W. Feldman for giving

a simple proof to a technical lemma, the referee for useful comments, and the IAS for

providing a stimulating research environment.
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2. Analytic backgrounds

2.1. Skoda inequality

An upper semicontinuous L1-function ϕ on a coordinate ball in Cn is called plurisubhar-

monic (psh) if it satisfies the sub mean value inequality when restricted to complex lines;

this implies
√
−1 ∂∂̄ϕ⩾0. The basic intuition is that regularity properties for psh func-

tions in general dimensions are analogous to subharmonic functions on Riemann surfaces.

This is captured by the basic version of the Skoda inequality.

Theorem 2.1. (Cf. [41, Theorem 3.1]) If ϕ is psh on B2⊂Cn, with
∫
B2

|ϕ|ωnE⩽1

with respect to the standard Euclidean metric ωE , then there are dimensional constants

α and C such that

log

∫
B1

e−αϕωnE ⩽C.

Remark 2.2. If instead
∫
B2

|ϕ|ωnE⩽C ′ for some constant C ′, then we can apply The-

orem 2.1 to a scaling of ϕ, to get a Skoda inequality with modified α and C.

Remark 2.3. Assuming an L1-bound on ϕ, then we can take a suitable cutoff func-

tion χ, and via integration by parts,∫
B1

√
−1 ∂∂̄ϕ∧ωn−1

E ⩽
∫
B2

χ
√
−1 ∂∂̄ϕ∧ωn−1

E

=

∫
B2

ϕ
√
−1 ∂∂̄χ∧ωn−1

E ⩽ ∥χ∥C2 ∥ϕ∥L1 ⩽C.

This simple idea is a basic version of the Chern–Levine inequality.

The basic Skoda inequality immediately implies a global version. On a compact

Kähler manifold (X,ω), we say an upper semicontinuous L1-function ϕ∈PSH(X,ω) if

its sum with the local potential of ω is psh, so that ωϕ=ω+
√
−1 ∂∂̄ϕ⩾0. This is the

generalised notion of Kähler potentials.

Theorem 2.4. On a fixed (X,ω), there are positive constants α and C depending

only on X and ω such that∫
X

e−αϕωnX ⩽C for all ϕ∈PSH(X,ω) with supϕ= 0.

Remark 2.5. Here,
∫
X
|ϕ|ωnX is automatically bounded using the Harnack inequality,

because ∆ϕ⩾−n for ϕ∈PSH(X,ω).

Remark 2.6. The supremum of all such α is known as Tian’s alpha invariant [38].
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2.2. Ko lodziej’s estimate on pluripotentials

Here, we outline a method to estimate Kähler potentials, pioneered by Ko lodziej [28],

and further developed by [12] and [16], [22]. Our exposition largely adapts [16], [22], [15],

with special attention to the dependence of constants. Unlike in [16], we do not impose

a volume normalisation.

Given an n-dimensional Kähler manifold (X,ω), for ϕ∈PSH(X,ω)∩L∞, pluripoten-

tial theory allows one to make sense of the Monge–Ampère (MA) measure ωnϕ , generalising

the notion of volume forms. The basic problem is to estimate ϕ from a-priori bounds

on ωnϕ . A key concept is the capacity of subsets K⊂X:

Capω(K) = sup

{∫
K

ωnu |u∈PSH(X,ω), 0⩽u⩽ 1

}
.

We wish to sketch the main ideas behind a prototypical result.

Theorem 2.7. Let (X,ω) be a compact Kähler manifold, and ϕ∈PSH(X,ω)∩C0 be

such that ωnϕ is an absolutely continuous measure. Assume there are positive constants

α and A such that the Skoda type estimate holds with respect to ωnϕ :

∫
X

e−αu
ωnϕ

Vol(X)
⩽A for all u∈PSH(X,ω) with supX u= 0. (2.1)

(i) For fixed n, α, and A, there is number B(n, α,A)such that, if∫
ϕ⩽−t0 ω

n
ϕ

Vol(X)
< (2B)−2n

for some t0, then

minϕ⩾−t0−(4B+1)

(∫
ϕ⩽−t0 ω

n
ϕ

Vol(X)

)1/2n
.

(ii) If supX ϕ=0, then ∥ϕ∥C0⩽C(n, α,A).

The first ingredient is the following.

Lemma 2.8. (Cf. [16, Lemma 2.3])) The MA measure of sublevel sets controls the

capacity of lower sublevel sets: for τ⩾0 and 0⩽t⩽1,

tn Capω(ϕ<−τ−t)⩽
∫
ϕ<−τ

ωnϕ .

The second ingredient below contains the most substance.
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Lemma 2.9. (Volume-capacity estimate) In the setting of Theorem 2.7, for any

compact set K⊂X we have∫
K
ωnϕ

Vol(X)
⩽Aeα exp

(
−α

(
Vol(X)

Capω(K)

)1/n)
. (2.2)

In particular there is a constant B=B(n, α,A) verifying the power law bound∫
K
ωnϕ

Vol(X)
⩽Bn

(
Capω(K)

Vol(X)

)2
.

Sketch of proof. We may assume K is not pluripolar, for otherwise
∫
K
ωnϕ=0 and

Capω(K)=0. We introduce the Siciak extremal function

VK,ω = sup{u∈PSH(X,ω) :u⩽ 0 on K},

whose upper semicontinuous regularisation V ∗
K,ω∈PSH(X,ω). By the Alexander–Taylor

comparison principle (cf. [22, Proposition 7.1]),

e− supX VK,ω ⩽ e exp

(
−
(

Vol(X)

Capω(K)

)1/n)
.

By the Skoda integrability assumption (2.1), and the fact that VK,ω=V ∗
k,ω a.e with respect

to ωn (so by absolute continuity also for ωnϕ),∫
X

eα(supX VK,ω−VK,ω)ωnϕ =

∫
X

eα(supX VK,ω−V ∗
K,ω)ωnϕ ⩽AVol(X),

and hence∫
K

e−αVK,ωωnϕ ⩽
∫
X

e−αVK,ωωnϕ ⩽Aeα Vol(X) exp

(
−α

(
Vol(X)

Capω(K)

)1/n)
.

The volume-capacity estimate (2.2) follows because VK,ω⩽0 on K.

The third ingredient is an elementary decay lemma:

Lemma 2.10. (Cf. [16, Lemma 2.4 and Remark 2.5]) Let f : [t′0,∞)![0,∞) be a

non-increasing right-continuous function such that
f(t′0)<

1

2B
,

tf(τ+t)⩽Bf(τ)2 for all τ ⩾ 0 and 0⩽ t⩽ 1,

lim
t!∞

f(t) = 0.

Then, f(t)=0 for t⩾t′0+4Bf(t′0).
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Proof of Theorem 2.7. We consider the normalised capacity of sublevel sets

f(t) =

(
Capω(ϕ<−t)

V ol(X)

)1/n
.

Combining the first two ingredients, we have

tf(t+τ)⩽Bf(τ)2 for all 0⩽ t⩽ 1 and τ ⩾ 0.

Using the first ingredient to control capacity by the volume,

f(t′0)⩽

(∫
ϕ⩽−t0 ω

n
ϕ

Vol(X)

)1/2n
<

1

2B
, with t′0 = t0+

(∫
ϕ⩽−t0 ω

n
ϕ

Vol(X)

)1/2n
.

Since ϕ∈C0 is bounded below, limt!∞ f(t)=0. Applying the decay lemma, for

t> t′0+4Bf(t′0)

the sublevel set {ϕ⩽−t} has zero capacity, hence zero Lebesgue measure, so ϕ has the

lower estimate as claimed in the first statement.

For the second statement, by (2.1) we have an a-priori exponential decay(∫
ϕ⩽−t ω

n
ϕ

Vol(X)

)1/2n
⩽A1/2ne−αt/2n, t⩾ 0,

which allows us to find an appropriate t0.

Remark 2.11. Theorem 2.7 implies a famous result of Ko lodziej stating that, if we

fix (X,ω) and p>1, then ϕ has a C0-bound depending only on

X, ω, and

∥∥∥∥ωnϕωn
∥∥∥∥
Lp

(cf. [16, Theorem A]). It is enough to check (2.1), which reduces by Hölder inequality to

the standard Skoda inequality (cf. Theorem 2.4), with modified constants. The strength

of Theorem 2.7 is that it still applies when the complex/Kähler structures are highly

degenerate, as it distills the dependence on (X,ω) to only three constants n, α, and A.

Theorem 2.7 gives a criterion for two Kähler potentials to be close to each other.

Corollary 2.12. (Stability estimate) Let (X,ω) be a compact Kähler manifold,

and ϕ, ψ∈PSH(X,ω)∩C0 be such that ωnϕ is absolutely continuous. Assume ∥ψ∥C0⩽A′

and the Skoda type estimate (2.1). Then, there is a number B(n,A,A′, α), such that if∫
ϕ−ψ⩽−t0 ω

n
ϕ

Vol(X)
< (2B)−2n

for some t0, then

min(ϕ−ψ)⩾−t0−(4B+1)

(∫
ϕ−ψ⩽−t0 ω

n
ϕ

Vol(X)

)1/2n
.

.
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Proof. If ψ is smooth, this follows from Theorem 2.7 by changing ω into ωψ, and

changing ϕ into ϕ−ψ, and checking the Skoda type estimate holds with modified con-

stants. In general, one can approximate ψ∈PSH(X,ω) by a decreasing sequence of

functions in PSH(X,ω)∩C∞ [2], and since ψ∈C0, the convergence is uniform by Dini’s

theorem.

2.3. Algebraic metrics and asymptotes

This section is included for motivational purposes. On any compact complex manifold

X with a positive line bundle L, any fixed Kähler metric ω in the class 2πc1(L) is

the curvature form of a Hermitian metric h on L. Consider the projective embedding

ιk:X↪!P(H0(X,Lk)∗) for k≫1. The L2 norms on sections induce Euclidean metrics on

the vector spaces H0(X,Lk), hence Fubini–Study metrics ωFS,k on P(H0(X,Lk)∗). A

famous result of Tian says that ω is approximated by the algebraic metrics k−1ι∗kωFS,k

as k!∞; this idea has been much exploited in regularisation theorems.

This construction is particularly transparent in the toric case, as explained in [13].

Let (X,L) be an n-dimensional polarised toric manifold with moment polytope P ,

so a Tn-invariant basis {sm} of H0(X,Lk) corresponds to kP∩Zn, or equivalently

P∩k−1Zn after rescaling. The L2-metric on H0(X,Lk) is diagonal in the basis; i.e. the

toric assumption reduces the unitary group acting on H0(X,Lk) to its maximal torus.

Concretely, let ϕ denote the torus-invariant Kähler potential on X∩(C∗)n, equivalently

thought as some convex function of t⃗∈Rn via the logarithm map (C∗)n!Rn. Then,

Im(k) = ∥sm∥2L2 =

∫
X

|sm|2dVol = const

∫
Rn

e−k(ϕ−t⃗·m) dt⃗, m∈P∩k−1Zn, (2.3)

and the Fubini–Study potentials are

k−1ι∗kϕFS,k = k−1 log

( ∑
m∈P∩k−1Zn

Im(k)−1|sm|2
)
. (2.4)

Now, the right-hand side of (2.3) is a Laplace-type integral, and its dominant contribution

comes from the neighbourhood of the point t⃗0, where t⃗·m−ϕ(⃗t) is maximized among

t⃗∈Rn. The maximum is the value of the Legendre transform of ϕ:

u(m) = sup
t⃗

(⃗t·m−ϕ(t)).

The steepest descent method yields the asymptote

k−1 log Im(k) =u(m)+O(k−1 log k), k!∞.
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In the ‘continuum limit’ k!∞, the discrete sum
∑
m∈P∩k−1Zn is replaced by an integral.

Now, the right-hand side of (2.4) is to leading order

k−1 log

∫
P

ek(−u(m)+t⃗·m)dm, t⃗∈Rn.

This is another Laplace-type integral, and its limit as k!∞ is the Legendre transform

of u, which gives back the function ϕ.

The moral is that in the presence of toric symmetry, algebraic approximation of

Kähler metrics is related to Legendre transforms.

2.4. Extension of Kähler potentials

Extension theorems allow us to think extrinsically about Kähler currents on subvarieties

in some ambient projective manifold.

Theorem 2.13. ([10, Theorem B]) Let (X,ω) be a projective manifold with a Kähler

form representing an integral class, and Y be a smooth subvariety of X. Then, any

ϕ∈PSH(Y, ω|Y ) extends to ϕ∈PSH(X,ω).

2.5. Savin’s small perturbation theorem

Savin [35] proved that for a large class of second-order elliptic equations satisfying certain

structural conditions, any viscosity solution C0-close to a given smooth solution has

interior C2,γ-bound. In particular, this applies to complex MA equation. Combined

with the Schauder estimate,

Theorem 2.14. Fix k⩾2 and 0<γ<1. On the unit ball, let v be a given smooth

solution to the complex Monge–Ampère equation (
√
−1 ∂∂̄v)n=1. Then, there are con-

stants 0<ε≪1 and C depending on n, k, γ, and ∥v∥Ck,γ , such that, if

(
√
−1 ∂∂̄(u+v))n = 1+f, ∥f∥Ck−2,γ <ε, and ∥u∥C0 <ε,

then ∥u∥Ck,γ(B1/2)
⩽Cε.

Savin’s theorem has fully non-linear nature, because the perturbative machinery

only applies once the solution has a-priori C2 bound. His proof has two main parts: first

he shows a Harnack inequality by a non-trivial application of Aleksandrov–Bakelman–

Pucci estimates, and then uses a compactness argument to prove C2,γ estimate, similar

to De Giorgi’s almost flatness theorem for minimal surfaces [11].
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2.6. Regularity theory for real Monge–Ampère

There is an extensive literature on the local regularity theory for the real Monge–Ampère

equation, largely due to the Caffarelli school. The author thanks C. Mooney for bringing

some of these results to his attention. All results surveyed here can be found in [33].

Any convex function on an open set v: Ω⊂Rn!R has an associated Borel measure

called the Monge–Ampère measure, defined by

MA(v)(E) = |∂v(E)|,

where |∂v(E)| denotes the Lebesgue measure of the image of the subgradient map on

E⊂Ω. Given a Borel measure µ, a solution to MA(v)=µ is called an Aleksandrov solution

to det(D2v)=µ; if v∈C2, this is the classical real Monge–Ampère equation. We shall

assume a 2-sided density bound

det(D2v) = f in B1, 0<Λ1 ⩽ f ⩽Λ2.

LetB1\Σ be the set of strictly convex points of v, namely there is a supporting hyperplane

touching the graph of v only at one point. Then Caffarelli [6]–[8] shows that

• If f∈Cγ(B1), then v∈C2,γ
loc (B1\Σ). So, by Schauder theory, if f is smooth, then

v is smooth in B1\Σ.

• If L is a supporting affine linear function to v such that the convex set {v=L} is

not a point, then {v=L} has no extremal point in the interior of B1.

• The above affine linear set {v=L} has dimension k< 1
2n.

Mooney [33] shows further that

• The singular set Σ has (n−1)-Hausdorff measure zero. Consequently B1\Σ is

path connected (because a generic path joining two given points does not intersect a

subset of zero (n−1)-Hausdorff measure).

• The solution v∈W 2,1
loc (B1), even if Σ is non-empty.

Remark 2.15. A classical counterexample of Pogorelov shows that, for n=3, the

singular set Σ can contain a line segment. This is generalised by Caffarelli [8], who for

any k< 1
2n constructs examples where f is smooth but Σ contains a k-plane. A surprising

example of Mooney [33] shows that the Hausdorff dimension of Σ can be larger than

n−1−ε for any small ε. This means that the local regularity theory surveyed above is

essentially optimal.

Remark 2.16. On a compact Hessian manifold, the real MA equation makes sense,

and Viaclovsky and Caffarelli [9] show that the interior singularity cannot occur if the

density f is smooth and positive.
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2.7. Special Lagrangian fibration

A real n-dimensional submanifold L of a compact Calabi–Yau n-fold (X,ω, J,Ω) is called

a special Lagrangian (SLag) with phase angle θ if

ω|L = 0 and Im(eiθΩ)|L = 0. (2.5)

They are special cases of calibrated submanifolds introduced by Harvey and Lawson

[25], and in particular are minimal submanifolds. The classical result of McLean says

that the deformation theory of SLags with phase θ is unobstructed, and the first-order

deformation space is isomorphic to H1(L,R). Thus, if L is diffeomorphic to Tn, then

the deformation space is n-dimensional, compatible with the SYZ conjecture that X

admits a SLag Tn-fibration. A sufficient condition to construct Slag fibrations, under

the very strong hypothesis of collapsing metric with locally bounded sectional curvature,

is obtained by Zhang [42, Theorem 1.1].

The essence of Zhang’s result is a standard application of the implicit function

theorem, and we shall summarize the key points (cf. [42, §4] for more details). Denote

Yr=Tn×B(0, r)⊂Tnxi
×Rnyi≃T

∗Tn, where r≫1 is fixed. The trivial example of a SLag

fibration is the following: the CY structure is the flat model

g=
∑

(dx2i +dy2i ), ω=
∑

dxi∧dyi, Ω =
∧

(dxj+
√
−1 dyj),

and the Slag fibration is just the projection to the Rnyi factor, namely the tori Tn×{y}
are SLags. Zhang considers a family of CY structures (gk, ωk,Ωk) converging to (g, ω,Ω)

in the C∞-sense on Y2r (which follows from his bounded sectional curvature assumptions

by elliptic bootstrap), such that ωk∈[ω]∈H2(Y2r,R). Small deformations of the standard

Tn fibres can be represented as graphs on Tn: for y∈Rn and a 1-form σ on Tn orthogonal

to the harmonic 1-forms dx1, ..., dxn, write

L(y, σ) = Graph(x 7! y+σ(x))⊂T ∗Tn.

The condition for L(y, σ) to be a SLag with respect to (gk, ωk,Ωk) is

ωk|L(y,σ) = 0 and Im(e
√
−1θkΩk)|L(y,σ) = 0, (2.6)

where θk are chosen so that ∫
Tn

e
√
−1θkΩk > 0.

Zhang shows by perturbation arguments that, for each y∈B
(
0, 32r

)
and k⩾k0≫1, there

is a unique σ=σk,y such that L(y, σk,y) solves (2.6) with small norm bound ∥σk,y∥<δ≪1.

He then uses another implicit function argument to show that these SLags indeed define

a local SLag Tn-fibration on some open subset of Y3r/2 containing Yr.
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3. Degenerating Calabi–Yau hypersurfaces

We now set the scene for the main work: a particular class of Calabi–Yau hypersurfaces

Xs inside CPn+1 near the large complex structure limit, polarised by the class O(n+2)|Xs

up to a rescaling factor. Special attention will be focused on the simplest case of the

Fermat family (cf. Example 3.1). We freely borrow from Haase–Zharkov [23], [24], whose

setting includes more general CY hypersurfaces in toric varieties. The key notion is

that the degenerating complex structures are controlled by piecewise linear data, an idea

studied extensively under the name of tropical geometry.

The philosophy is that every concept in Kähler geometry ought to have an analogue

in the tropical world, and the combinatorial nature of the tropical version should simplify

the original problem in Kähler geometry. However, it does not appear clear what is the

tropical analogue of the notion of Kähler metrics; we devote §3.4 and S3.5 to investigate

this question, and answer it in the Fermat case by utilizing the large discrete symmetry

group.

3.1. Complex structure

Let N≃Zn+1, M=Hom(N,Z), and denote NR=N⊗R and MR=M⊗R. We regard

CPn+1 as a toric Fano manifold P∆, with moment polytope ∆⊂MR corresponding to

the anticanonical class O(n+2). More explicitly, ∆ is the (n+1)-simplex inside

MR ≃
{ n+1∑

0

yi = 0

}
⊂Rn+2

spanned by the vertices

(n+1,−1, ...−1), (−1, n+1,−1, ...,−1), ..., (−1, ...,−1, n+1).

In particular, ∆ is a reflexive integral Delzant polytope, with dual polytope

∆∨ = {w∈N⊗R : ⟨m,w⟩⩾−1for all m∈∆}⊂Rn+2/R(1, 1, ... 1)

being the (n+1)-simplex spanned by the vertices (1, 0, ..., 0), ..., (0, ..., 0, 1). The integral

points m∈∆Z=∆∩M parameterize monomials zm in the anticanonical linear system

H0(P∆,O(n+2)). We study the family of hypersurfaces

Xs =

{
Fs(z) =

∑
m∈∆Z

ame
sλ(m)zm = 0

}
⊂P∆, s≫ 1. (3.1)
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Here, am are a fixed collection of coefficients, with a0=1 corresponding to the unique

interior integral point 0∈∆Z. For any vertex m of ∆, we require am ̸=0. The function

λ is defined for those m∈∆Z for which am ̸=0; by assumption λ(0)=0, and λ(m)<0

otherwise. The natural piecewise linear extension of λ to MR is assumed to be concave,

whose domains of linearity are by assumption simplices, producing a triangulation of ∆.

Using the adjunction formula, we can write down a holomorphic volume form Ωs on Xs

such that, along Xs,

dFs∧Ωs = dlog z1∧... dlog zn+1, (3.2)

with z1, z2, ..., zn+1 the standard coordinates on (C∗)n+1⊂P∆. We will always assume

s≫1, and all the constants in the estimates are independent of s.

Example 3.1. The Fermat family is given explicitly as

Xs =

{
Z0Z1 ... Zn+1+e−s

n+1∑
i=0

Zn+2
i = 0

}
, (3.3)

namely we choose am=1 for m corresponding to the monomials Z0 ... Zn+1 and Zn+2
i ,

and choose λ to be the piecewise linear function with value 0 at the origin and −1 at the

vertices of ∆.

The key notion to describe the complex structure degeneration is a piecewise linear

object called the tropicalisation of the hypersurfaces. Define the non-negative piecewise

linear function Lλ on NR by

Lλ(x) = max
m∈∆Z
am ̸=0

{⟨x,m⟩+λ(m)}.

The tropicalisation A∞
λ is defined as the non-smooth locus of Lλ, or equivalently the

locus inside NR where the maximum Lλ is achieved by at least two values of m. There

is precisely one bounded component in the complement of A∞
λ ,

∆∨
λ = {x :Lλ(x) = 0}⊂NR,

whose boundary ∂∆∨
λ⊂A∞

λ . The relation between the hypersurfaces and the tropicali-

sation is furnished by the rescaled log map, that is

Logs:P∆ ⊃ (C∗)n+1 −!Rn+1 ≃NR,

z 7−! 1

s
(log |z1|, ..., log |zn+1|).

The image As
λ=Logs(Xs∩(C∗)n+1) is called the amoeba. The following proposition will

be tacitly used frequently, as it allows us to think of regions on Xs efficiently in terms of

the regions on A∞
λ , up to a tiny amount of fuzziness.
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Proposition 3.2. (Cf. [23, Proposition 3.2]) The amoebas As
λ converge in the Haus-

dorff distance to A∞
λ as s!∞. In fact,

{
distRn+1(x,A∞

λ )⩽
C

s
, for all x∈Logs(Xs),

distRn+1(x,Logs(Xs))⩽
C
s

, for all x∈A∞
λ .

Sketch of proof. Let x=Logs(z) and let m′∈∆Z saturate the maximum for Lλ(x).

Applying Logs to the inequality

|esλ(m
′)zm

′
|=

∣∣∣∣− ∑
m ̸=m′

am
am′

esλ(m)zm
∣∣∣∣⩽C max

m ̸=m′
{esλ(m)|zm|},

we see that

Lλ(x) = ⟨x,m′⟩+λ(m′)⩽ max
m ̸=m′

{⟨x,m⟩+λ(m)}+
C

s
,

so distRn+1(x,A∞
λ )⩽C/s. The other inequality of the claim can be proved by constructing

local models of Xs in regions whose Logs-images are close to x∈A∞
λ , and then use

the implicit function theorem to show that Xs is a small perturbation of these local

models. A good general survey on tropical geometry and the amoeba can be found in

Mikhalkin [32].

Example 3.3. In the Fermat family example above, ∆∨
λ=−∆∨ is the reflexion of ∆∨.

The tropicalisation A∞
λ is naturally stratified according to the subset of m∈∆Z sat-

urating the maximum Lλ(x). This induces a kind of quantitative stratification structure

on As
λ for s≫1.

Lemma 3.4. There is a fixed number δ1>0 such that, for any x∈NR, there is a

simplex σ in the triangulation of ∆ verifying ⟨x,m⟩+λ(m)<Lλ(x)−δ1 for m∈∆Z\σ.

Sketch of proof. For any fixed x∈NR, the function ⟨x,m⟩+λ(m) is a concave func-

tion of m∈MR. By our assumptions, the set of m∈∆Z saturating the maximum must be

the set of vertices of some simplex σ in the triangulation of ∆. By a compactness argu-

ment, for any x in a given compact subset of NR, there is a simplex σ in the triangulation

of ∆, verifying ⟨x,m⟩+λ(m)<Lλ(x)−δ1 for m∈∆Z\σ.

To reduce to the compact case, we consider all possible subsets S⊂∆Z with elements

m(1), ...,m(|S|), and the possibly unbounded polytopes defined by

⟨m(1), x⟩+λ(m(1))⩾ ⟨m(2), x⟩+λ(m(2))⩾ ⟨m(|S|), x⟩+λ(m(|S|))

⩾ ⟨m(1), x⟩+λ(m(|S|))−1⩾ ⟨m,x⟩+λ(m) for all m∈∆Z\S.
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There are only finitely many choices of such polytopes, and together they cover NR.

By construction, only m∈S can allow ⟨x,m⟩+λ(m) to come close to Lλ(x). Any un-

bounded polytope is the sum of a bounded polytope (generated by the vertices) and a

convex polyhedral cone (generated by the infinite rays). The polyhedron cone is con-

tained in the subspace

⟨m(1), x⟩= ...= ⟨m(|S|), x⟩.

We can use this to reduce an arbitrary x in the (unbounded) polytope to a bounded

polytope, and thus extending the claim to all x∈NR.

With any simplex σ⊂∂∆ in the triangulation, we associate the subset

A∞
λ,σ = {x∈A∞

λ :Lλ(x) = ⟨x,m⟩+λ(m) for all m∈σ}.

Clearly, if σ≺σ′, then A∞
λ,σ⊃A∞

λ,σ′ . The intuition is that larger σ correspond to more

non-generic regions, and the complement of their neighbourhoods correspond to more

generic regions.

Notation. We need a few terminologies to describe A∞
λ,σ. The face of ∂∆∨

λ dual to

σ is F∨
σ =∂∆∨

λ∩A∞
λ,σ. The outward normal cone to σ is

NC∆(σ) = {x∈NR : ⟨m,x⟩⩽ ⟨m′, x⟩ for all m∈∆Z and m′ ∈σ}.

By the Delzant polytope property, NC∆(σ) is isomorphic to Rl⩾0, where n+1−l is the

dimension of the minimal face of ∂∆ containing σ. The Minkowski sum of two sets A

and B means A+B={a+b:a∈A and b∈B}.

Lemma 3.5. (Cf. [23, Lemma 3.1]) If dimσ⩾1, then A∞
λ,σ=F∨

σ +NC∆(σ).

Lemma 3.6. We have

A∞
λ = ∂∆∨

λ∪
⋃

dimσ⩾1

A∞
λ,σ.

Proof. Let x∈A∞
λ . If m=0∈∆ achieves the maximum Lλ(x), then x∈∂∆∨

λ . If not,

then the maximum is achieved by at least two m∈∂∆, so x∈A∞
λ,σ for some σ⊂∂∆ with

dimσ⩾1.

Remark 3.7. The intuition is that a neighbourhood of ∂∆∨
λ corresponds to a toric

region, while A∞
λ,σ controls how Xs approaches the toric boundary of P∆, and the strat-

ification is related to how the toric boundary components intersect.

Our next goal is to assign good holomorphic charts to Xs related to the stratification

structure. We first consider the toric region, which shall be covered by (C∗)n-charts. Let

w∈N be the primitive integral outward normal vector to a facet

F (w) = {m∈∆ : ⟨w,m⟩= 1}
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of ∆. The chart parameterised by w is contained inside the region

Us,ow = {z ∈Xs : esλ(m)|zm|≪ 1 for all m∈∆Z\(F (w)∪{0})}. (3.4)

Let m0∈F (w)∩∆Z, and choose an integral basis m1, ...,mn for {m∈M :⟨w,m⟩=0}.

Then, the monomials zm1 , ..., zmn provide the local (C∗)n-coordinates on the chart, since,

by the implicit function theorem, Xs is locally a graph {zm0 =f(zm1 , ..., zmn)}. In fact,

by the defining equation (3.1) of the hypersurface, we have

z−m0 ≈−
∑

m∈F (w)

ame
sλ(m)zm−m0 ,

whence the holomorphic volume form is (cf. (3.2))

Ωs =±dlog zm0∧... dlog zmn

dFs
≈ dlog zm1∧... dlog zmn . (3.5)

(Here, mi are suitably oriented to take care of ±1.) We regard the above region as

an open subset of (C∗)n, and denote the chart Usw as the largest Tn-invariant subset,

delineated by a collection of affine linear inequalities on the variables log |zmi |.
In the tropical limit s=∞, the region Logs(U

s,o
w ) becomes

U∞,o
w = {x∈A∞

λ : ⟨m,x⟩+λ(m)< 0 for all m∈∆Z\(F (w)∪{0})}

Inside this, the limiting version of Logs(U
s
w) is

U∞
w = {(U∞,o

w ∩∂∆∨
λ)+R⩾0w}∩A∞

λ .

Later we shall also need the slightly shrunken regions for 0<δ≪δ1: let

Us,ow,δ = {z ∈Xs : esλ(m)|zm|≪ e−sδ for all m∈∆Z\(F (w)∪{0})},

whose largest Tn-invariant subset is Usw,δ. The tropical limit of Logs(U
s,o
w,δ) is

U∞,o
w,δ = {x∈A∞

λ : ⟨m,x⟩+λ(m)<−δ for all m∈∆Z\(F (w)∪{0})},

containing the limiting version of Logs(U
s
w,δ), namely

U∞
w,δ = {(U∞,o

w ∩∂∆∨
λ)+R⩾0w}∩A∞

λ .

As the choice of w varies, such regions U∞,o
w,δ cover a neighbourhood of ∂∆∨

λ as a conse-

quence of Lemma 3.4; so do U∞
w,δ. This means that the charts of toric type already cover

part of the neighbourhood of the toric boundary.
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Example 3.8. In the n=1 case, Xs are elliptic curves, and the toric charts cover the

entire Xs. In the n=2 case, Xs are quartic K3 surfaces, and the toric charts cover most

parts of Xs including a large portion of the intersection of Xs with the toric boundary

of P3, but do not cover a tiny neighbourhood of the 24 points located at the intersection

of Xs with {Zi=Zj=0}.

We now consider the neighbourhood of the toric boundary near the stratum A∞
λ,σ,

but keeping away from higher strata and from ∂∆∨
λ . Here,

|am′esλ(m
′)zm

′
|≪ |amesλ(m)zm| for all m′ ∈∆Z\σ and m∈σ.

Since most terms in the defining equation (3.1) are negligible in our region, the hyper-

surface is locally approximately ∑
m∈σ∩∆Z

ame
sλ(m)zm≈ 0.

We focus on the subregion where m′
0∈σ achieves the maximal magnitude for

|amesλ(m)zm|,

and m′
1∈σ achieves the second largest magnitude. These two magnitudes must be

of comparable size by the hypersurface equation. Choose an integral basis w1, ... wl

for the outward normal cone NC∆(σ), so ⟨m,wi⟩=1 for m∈σ∩∆Z. Denote the ver-

tices of σ as m′
i, for i=0, 1, ...,dimσ, and choose an integral basis m1, ...,mdimσ−1 of

spanQ{m′
2−m′

0, ...,m
′
dimσ−m′

0}∩M . Choose m0 so that m0, ...,mdimσ−1 is an integral

basis of spanQ{m′
1−m′

0, ...,m
′
dimσ−m′

0}∩M , and complete this into an integral basis

{m0, ...,mn−l} for span{w1, ... wl}⊥, providing (n+1−l) C∗-variables zm0 , ..., zmn−l . We

then find mj , for j=1, 2, ... l, with ⟨mj , wi⟩=−δij , and we can demand m1+...ml=−m′
0,

since ⟨m′
0, wi⟩=1. These provide the C-variables zmj , for 1⩽j⩽l, which can vanish on

the toric boundary. On this local piece of Xs, the variables zmj and zm1 , ... zmn−l furnish

a set of local coordinates, as the C∗-variable zm0 is expressible locally as a function of

them.

The holomorphic volume form (3.2) is

Ωs =± dlog zm1zm1∧... dlog zml∧dlog zm0∧... dlog zmn−l

dFs

=± dzm1∧... dzml

z−m
′
0

∧ dlog zm0∧... dlog zmn−l

dFs

≈±(dzm1∧... dzml)∧(dlog zm1∧... dlog zmn−l)∧ dlog zm0

am′
1
esλ(m

′
1)dzm

′
1−m′

0

=
dzm1∧... dzml

am′
1
esλ(m

′
1)zm

′
1−m′

0d
∧(dlog zm1∧... dlog zmn−l),

(3.6)
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up to choosing appropriate ordering of the coordinates. Here, d is the divisibility of

m′
1−m′

0 inside the group

spanQ{m′
1−m′

0, ...,m
′
dimσ−m′

0}∩M/ spanZ{m1, ...,mdimσ−1}≃Z.

Notice that am′
1
esλ(m

′
1)zm

′
1−m

′
0 is uniformly equivalent to am′

0
esλ(m

′
0) in this region.

Remark 3.9. The discussion above can be simplified if one assumes the triangulation

of ∆ is maximal, namely each simplex is Z-isomorphic to the standard simplex. We choose

not to do so because this stronger assumption would exclude the Fermat family.

Remark 3.10. A problem when we work with the coordinates zm1 , ..., zmn−l , zmj is

the inequality constraint to keep am′
0
esλ(m

′
0)zm

′
0 and am′

1
esλ(m

′
1)zm

′
1 as the two dominant

monomials. This means such a holomorphic chart is not quite as simple as the product

of D(1)ℓ with a long annulus in (C∗)n−l. In practice we will cover this region by lots

of simpler charts which we call the charts of boundary type. Let P be any point in this

region, such that maxm |amesλ(m)zm| is large but still comparable to 1 (to guarantee the

chart overlaps non-trivially with some toric-type chart). The associated chart uses the

same coordinates zm1 , ..., zmn−l , zmj as above, but describes only a small region:

UP = {|zmj |≲ |zmj (P )| for all j, and |zmi−zmi(P )|<c|zmi(P )| for all i},

where 0<c≪1 is a fixed-dimensional constant. These charts have an interpretation in

terms of the strata A∞
λ,σ (cf. Lemma 3.5): the point P corresponds roughly to a point

P ′ on the face F∨
σ ⊂∆∨

λ , and allowing |zmj | to decrease to zero corresponds to taking the

Minkowski sum with the outward normal cone NC∆(σ), so the tropical analogue of our

small chart is {P ′}+NC∆(Σ).

Example 3.11. For generic quartic K3 surfaces, the following simple situation models

a small neighbourhood of the 24 points on K3∩{Zi=Zj=0}. Locally the dominant

monomials are (z1z2)−1, (z1z2)−1z0, and 1, where z1 and z2 are C-coodinates which

vanish on toric boundaries, and z0 is a C∗-coordinate; together z0, z1, and z2 are local

coordinates on P3. The local model hypersurface is

{−(z1z2)−1+(z1z2)−1z0 = 1}= {z0 = 1+z1z2},

so z1 and z2 can be used as local coordinates on the hypersurface. The holomorphic

volume form Ω on the hypersurface is (up to a normalising factor)

Ω =
dlog z0∧dlog z1∧dlog z2

d(−(z1z2)−1+(z1z2)−1z0−1)
= z−1

0 dz1∧dz2.
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This is the typical boundary-type behaviour. A significant part of the boundary-type

region overlaps with the toric region. In this example, when |z1| is not too small, we can

view z1 as a C∗-coordinates, so {z1, z0} provides a toric-type chart, as we can express

z2=z−1
1 (z0−1). In this chart,

Ω = z−1
0 dz1∧dz2 = dlog z1∧dlog z0,

which agrees with the standard holomorphic volume form in toric-type charts. The same

behaviour happens when |z2| is not too small. The problem mentioned in Remark 3.10

is due to the fact that this local model is only a valid approximate description of the

K3 for z0, z1, and z2 satisfying some inequality constraints. The prescription of charts

of boundary type means that we are simultaneously using the charts {|z1|≲ν, |z2|≲ν−1}
for many choices of parameters ν. Notice the scaling symmetry

z1 7−! νz1, z2 7−! ν−1z2

means that there is no obviously preferred chart of boundary type. More concrete exam-

ples can be found in [31, §1.1.6].

Local charts of the toric type and the boundary type cover the entire hypersurface

Xs for s≫1, and a substantial portion of any boundary-type chart is in fact already

covered by toric charts. Almost all the measure is contained in the toric-type region.

3.2. Piecewise linear structure

Proposition 3.12. The polyhedral complex ∂∆∨
λ is homeomorphic to Sn.

Proof. This is because ∂∆∨
λ is the boundary of a convex polyhedron ∆∨

λ with non-

trivial interior.

We now assign a collection of charts to ∂∆∨
λ , whose transition functions are piecewise

linear. (Some authors prefer the terminology ‘piecewise affine’.) These are closely related

to the holomorphic charts on Xs in §3.1.

Let w∈N be the primitive integral outward normal vector to a facet F (w) of ∆,

and choose an integral basis m1, ...mn for {m∈M :⟨w,m⟩=0}, suitably oriented to be

compatible with (3.5). On the open subset of ∂∆∨
λ ,

∂∆∨
λ∩U∞

w = {x∈ ∂∆∨
λ : ⟨m,x⟩+λ(m)< 0 for all m∈∆Z\(F (w)∪{0})},

we regard m1, ...,mn as the affine linear coordinates, also written as xm1 , ... xmn . Such

charts cover ∂∆∨
λ . We denote by S̃ing the subset of points on ∂∆∨

λ which do not lie on the
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interior of the top-dimensional faces. It is easy to check that the transition functions on

overlapping charts in ∂∆∨
λ \S̃ing lie in SL(n,Z)⋉Rn, so the volume form dxm1∧... dxmn

is defined independent of the choice of charts. We call the associated measure dµ∞ the

Lebesgue measure on ∂∆∨
λ , with respect to which S̃ing is a null set. The set S̃ing has real

codimension 1, and the transition functions are in general only piecewise linear.

Remark 3.13. The affine structure on ∂∆∨
λ \S̃ing can be often extended to a subset

of ∂∆∨
λ with codimension-2 complement. This in general involves a somewhat ad-hoc

choice of the singular locus. In the Fermat family case, due to the discrete symmetry,

the barycentric subdivision provides a canonical choice (cf. §3.5).

We now examine the normalised canonical measure on Xs

dµs =
1

(4πs)n
(
√
−1)n

2

Ωs∧Ωs. (3.7)

Proposition 3.14. As s!∞, the push-forward measure (Logs)∗dµs converges to

the Lebesgue measure dµ∞ supported on ∂∆∨
λ . In particular,∫

Xs

dµs!Vol(∂∆∨
λ) =

∫
∂∆∨

λ

dµ∞. (3.8)

Morever, there is a uniform exponential measure decay estimate

dµs({z ∈Xs : distRn+1(Logs(z), ∂∆∨
λ)>s−1Λ})⩽C ′e−CΛ for all Λ> 0. (3.9)

Sketch of proof. Using Lemma 3.5 and the holomorphic volume form formula (3.6),

the neighbourhood of the toric boundary near A∞
λ,σ only contributes O(s−l) to the nor-

malised measure, where l=dimNC∆(σ). The same lemmas imply (3.9) by summing

over contributions from boundary-type regions. In the toric region corresponding to the

neighbourhood of ∂∆∨
λ , the convergence of the normalised volume measure follows from

Proposition 3.2 and formula (3.5).

Remark 3.15. The measure convergence holds for much more general degenerating

families, by the work of Boucksom et al. [5]. The fact that the measure is concentrated

along ∂∆∨
λ justifies why we focus on ∂∆∨

λ rather than A∞
λ .

3.3. Kählerian polarisation

We specify a polarisation class [∆] on the toric manifold CPn+1=P∆. A standard back-

ground Kähler metric is (a suitable multiple of) the Fubini–Study metric:

ωFS =

√
−1(n+2)

2
∂∂̄ log(|Z0|2+... |Zn+1|2)

=

√
−1(n+2)

2
∂∂̄ log

( ∑
m∈vertices(∆)

e(2/(n+2))⟨m,Log(z)⟩
)
.
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Our normalisation guarantees that the potential has the asymptotic behaviour

sup
z

∣∣∣∣n+2

2
log

( ∑
m∈vertices(∆)

e(2/(n+2))⟨m,Log(z)⟩
)
−max
m∈∆

⟨m,Log(z)⟩
∣∣∣∣<∞.

A general (singular) Kähler metric ωu on (P∆, [∆]) is given by a relative potential u∈
PSH(X,ωFS). Alternatively, one thinks of ωu as a collection of local absolute potentials:


u0 =u+

n+2

2
log

( ∑
m′∈vertices(∆)

e(2/(n+2))⟨m′,Log(z)⟩
)
,

um =u+
(n+2)

2
log

( ∑
m′∈vertices(∆)

e(2/(n+2))⟨m′,Log(z)⟩
)
−⟨m,Log(z)⟩,

(3.10)

where u0 is a local potential in a compact region, and um give the local potentials near

the toric boundary.

We call a convex function u on NR=Rn+1 admissible if it satisfies the asymptotic

growth condition

sup
x

∣∣∣u(x)−max
m∈∆

⟨m,x⟩
∣∣∣<∞, (3.11)

which captures the information of the Kähler class.

Proposition 3.16. A convex function u is admissible if and only if the Kähler

current defined by the psh function u�Log on (C∗)n+1 extends to a torus-invariant Kähler

current on (P∆, [∆]) with continuous local potentials.

Sketch of proof. Convex functions on (C∗)n correspond to torus-invariant psh func-

tions via the log map (cf. Lemma 4.3 below). The asymptotic condition is clearly neces-

sary by the local boundedness of um near the toric boundary pieces.

Conversely, if u is admissible, then near the toric boundary the appropriate local

potential um is bounded. Using also the convexity of um, we claim um�Log extends

continuously over the boundary region. This amounts a local problem: if v is a bounded

convex function on (−∞, 0)n, hence necessarily an increasing function in each coordinate,

then v(log |z1|, ..., log |zn|) extends continuously over the zi=0 planes. Such an extension

can be done inductively on dimension, and the continuity uses Dini’s theorem. Morever,

since the bounded function um�Log is psh away from the boundary divisor, it must

remain psh after the extension, so gives rise to a continuous local potential.

A general (singular) Kähler metric ωφ on Xs in the polarisation class s−1[∆] is given

by a potential φ∈PSH(Xs, s
−1ωFS). The normalising factor s−1 is aimed at extracting
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non-trivial limits as s!∞. We can completely analogous define the local potentials:
φ0 =φ+

n+2

2s
log

( ∑
m′∈vertices (∆)

e(2/(n+2))⟨m′,Log(z)⟩
)
,

φm =φ+
n+2

2s
log

( ∑
m′∈vertices (∆)

e(2/(n+2))⟨m′,Log(z)⟩
)
−⟨m,Logs(z)⟩,

(3.12)

which are by definition psh on respective regions.

In particular, we can represent the Calabi–Yau metric ωCY,s on Xs by a potential

φCY,s. The Calabi–Yau condition is

ωnCY,s = ass
−n dµs, (3.13)

where the normalising constant

as =

∫
Xs

[∆]n∫
Xs

dµs
! a∞ =

∫
Xs

[∆]n

Vol(∂∆∨
λ)

(3.14)

as s!∞ (cf. Proposition 3.14).

3.4. Extension property and locally convex functions

We now discuss the issue of finding a tropical notion analogous to Kähler metrics. The

concept of a Kähler metric is formulated in terms of a collection of local psh functions

ϕj on overlapping complex charts, whose differences {ϕi−ϕj} represent a given cocycle

of local pluriharmonic function. Intuitively, the analogue should be a collection of local

convex functions uj whose differences {ui−uj} represent a given cocycle of local affine

functions.

To the author’s awareness there is no definitive formulation of local convexity on

polyhedral sets. In the case of interest, we need to define a class of ‘locally convex

functions’ on ∂∆∨
λ . The problem is that on S̃ing⊂∂∆∨

λ , the transition functions between

different charts are only piecewise linear, so convexity is not invariantly defined. This

problem also prevents us from setting up a general global notion of real MA equation on

∂∆∨
λ , which is an essential ingredient in the SYZ conjecture in general. We will attempt

to give a special definition in the Fermat case (cf. §3.5).

However, the extension Theorem 2.13 provides an alternative viewpoint: (1,1)-type

Kähler currents can be defined extrinsically. By analogy, we propose that the correct

notion should be equivalent to the following.

Definition 3.17. A continuous function u on ∂∆∨
λ satisfies the extension property if

it extends to an admissible convex function on NR=Rn+1 defined in §3.3.
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Example 3.18. The zero function extends to Lλ, which is admissible and convex.

The problem is to make this definition both intrinsic to ∂∆∨
λ , and local in nature.

We do not fully succeed but shall make some partial progress.

Proposition 3.19. A continuous function u on ∂∆∨
λ satisfies the extension property

if and only if, for every x∈∂∆∨
λ , there exists p∈∆ such that, for any y∈∂∆∨

λ , one has

u(y)⩾u(x)+⟨p, y−x⟩.

Proof. The ‘if’ direction is because the asymptotic growth condition (3.11) implies

the gradient of u must be contained in ∆.

For the ‘only if’ direction, we apply the Legendre transform:

u∗(p) = sup
x∈∂∆∨

λ

{⟨x, p⟩−u(x)}, p∈∆,

and consider a version of the double Legendre transform:

u∗∗(x) = sup
p∈∆

{⟨x, p⟩−u∗(p)}.

Clearly u∗∗ is convex, and admissible by the boundedness of u∗, and u∗∗(x)⩽u(x) on

∂∆∨
λ because

⟨x, p⟩−u∗(p)⩽u(x) for all p∈∆.

Our characterisation precisely ensures that u∗∗(x)⩾u(x) on ∂∆∨
λ . Then u∗∗ provides the

canonical extension.

Remark 3.20. The above characterisation is not completely intrinsic because it uses

the extrinsic pairing ⟨· , ·⟩:MR×NR!R. On the positive side it uses only the value of u

on ∂∆∨
λ .

Remark 3.21. At x∈∂∆∨
λ , the vector p∈∆ in the hypothesis is a subgradient of the

canonical extension u∗∗, namely u∗∗(y)−u(x)⩾⟨p, y−x⟩.

We now introduce a local notion. The function u below will be analogous to ϕ0 in

(3.12). Recall the charts ∂∆∨
λ∩U∞

w associated with outward normal vectors w introduced

in §3.2, with local coordinates xm1 , ..., xmn .

Definition 3.22. Let u be a continuous function on ∂∆∨
λ , with which we associate

a collection of local functions {um}m∈∆Z by the rule um=u−⟨x,m⟩. We regard um as

a function on the charts ∂∆∨
λ∩U∞

w , with ⟨w,m⟩=1. We say that u is a locally convex

function if all of the um’s are convex on their corresponding charts.
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Remark 3.23. One can reconstruct u from the local functions {um}, as long as

their mutual differences define a correct cocycle {m−m′}. Thus, this definition has the

intrinsic local feature we desire, in analogy with the notion of Kähler potentials.

Remark 3.24. For fixed w, and m and m′ satisfying ⟨m,w⟩=⟨m′, w⟩=1, the prop-

erties of um and um′ being convex on the w-chart are equivalent, because m−m′ is an

affine function. However, on the overlap of the w-chart and the w′-chart, if um is convex

in one chart, it is not automatically convex in the other.

Remark 3.25. If a convex function is not sufficiently regular, there can be a null set

of points at which the subgradient is not unique. Later we will abuse language to use

the word gradient to refer to any choice of subgradient.

Proposition 3.26. If u satisfies the extension property, then u is locally convex.

Proof. Let ⟨m,w⟩=1, and consider the function um on the chart ∂∆∨
λ∩U∞

w . Given

x in the chart, we need to find p⃗ such that

um(y)−um(x)⩾ p⃗·(y−x)w,

where p⃗ is a covector, and (y−x)w refers to the representation of y−x in the local

coordinates xm1 , ... xmn ; after identifying xm1 , ... xmn as coordinates on the plane

m⊥ = {⟨m,x′⟩= 0},

we may regard (y−x)w as an element of m⊥, and according to the decomposition

NR =m⊥⊕Rw,

we have

y−x= (y−x)w+⟨y−x,m⟩w.

Since the properties of um and um′ being convex in the w-chart are equivalent if

⟨m,w⟩=⟨m,w⟩=1, we may assume that Lλ(x) is attained by ⟨m,x⟩+λ(m). By the

extension property and Proposition 3.19, there is some p∈∆ such that

u(y)−u(x)⩾ ⟨p, y−x⟩,

and hence

um(y)−um(x)⩾ ⟨p−m, y−x⟩= ⟨p−m, (y−x)w⟩+⟨y−x,m⟩⟨p−m,w⟩.

As p∈∆, we have ⟨p, w⟩⩽1=⟨m,w⟩. Since Lλ(x) is attained by ⟨m,x⟩+λ(m), and the

polytope ∆∨
λ lies in the half-space {⟨m, ⟩+λ(m)⩽0}, we have

⟨m, y⟩+λ(m)⩽ 0 = ⟨m,x⟩+λ(m).

Combining the above, we have

um(x)−um(y)⩾ ⟨p−m, (y−x)w⟩+⟨y−x,m⟩⟨p−m,w⟩⩾ ⟨p−m, (y−x)w⟩,

so we have produced p⃗ as required.



syz conjecture for calabi–yau hypersurfaces in the fermat family 27

3.5. Extension property: the Fermat case

We do not know the equivalence between the extension property and the local convexity

property. However, in the case of the Fermat family Example 3.1, the polyhedral set

∂∆∨
λ=−∂∆∨ has a discrete symmetry by the permutation group of the vertices of ∆,

corresponding to the permutations of the monomials Zn+2
0 , ..., Zn+2

n+1 . This can be used

to our advantage.

Notation. Denote the vertices of ∂∆∨
λ as w0, ..., wn+1, which coincide with the out-

ward normal vectors , because ∂∆∨
λ=−∂∆∨. Denote the vertices of ∆ as m0, ...,mn+1,

so that

⟨wi,mj⟩=

{
1, if i ̸= j,

−(n+1), if i= j.

Let Star(wi) be the star of wi in the barycentric subdivision of ∂∆∨
λ . Let Sing⊂S̃ing be

the subset of points not contained in the interior of any of these stars. The affine structure

on ∂∆∨
λ \S̃ing extends to ∂∆∨

λ \Sing, by decreeing that, on the interior of Star(wi), we

use the coordinates for the chart U∞
w ∩∂∆∨

λ . As Sing has codimension 2 inside ∂∆∨
λ , this

makes ∂∆∨
λ into a singular affine manifold.

Proposition 3.27. In the Fermat case, if u is a locally convex function on ∂∆∨
λ ,

which is invariant under the permutation group, then u satisfies the extension property.

Proof. We need to prove the characterisation in Proposition 3.19. Without loss

of generality, Lλ(x) is achieved by ⟨m0, x⟩+λ(m0). We need to find p∈∆, such that

u(y)−u(x)⩾⟨p, y−x⟩. For this we study the gradient of the function um0 on the various

w-charts.

First, notice that, for x′ and y′ on the face {Lλ=⟨m0, ⟩+λ(m0)}, namely the convex

hull of w1, ..., wn+1, the vector y′−x′ is parallel to the face, and by convexity of um0 the

directional derivative ∇um0 ·(y′−x′) is monotone along the path from x′ to y′, so must

be maximized at y′. In particular, we consider such line segments on the face parallel to

wi−wj for i, j⩾1. By the discrete symmetry, ∇um0 ·(wj−wi) must be zero on the plane

of reflection bisecting the face. Thus, for i, j⩾1, i ̸=j, the subset of the face

{∇um0 ·wi⩾∇um0 ·wj}∩{Lλ = ⟨m0, ⟩+λ(m0)}

agrees exactly with the half of the face containing wi. Therefore, the subset of the face

{∇um0 ·wi⩾∇um0 ·wj for all j⩾ 1}

is exactly the intersection of Star(wi) with the face. Without loss of generality, x lies

in Star(w1).



28 y. li

We follow the notation in the proof of Proposition 3.26. In the w1-chart, denote the

gradient of um0 as p⃗, so that, for y in the w1-chart, one has

um0(y)−um0(x)⩾ p⃗·(y−x)w1 .

A priori p⃗ lives in MR/Rm0. We lift p⃗ to MR by demanding ⟨p⃗, w1⟩=0, so, by the above

discussion, ⟨p⃗, wi⟩⩽0 for i⩾1. Define p=p⃗+m0, then ⟨p, wi⟩⩽1 for all i⩾1. We regard

p∈MR as the gradient of u at x, and write p=∇u as a function of x. This construction

can be made on other faces as well, and on the intersection of two faces the definitions

are compatible.

We claim that p∈∆: it suffices to show that ⟨p, w0⟩⩽1. Notice that

w0 =−
n+1∑
1

wi =

n+1∑
i=2

(w1−wi)−(n+1)w1.

Consider the line segment in the face joining x to the boundary of the face in the di-

rection
∑n+1
i=2 (w1−wi), which stays inside Star(w1), and along which ∇u·

∑n+1
i=2 (w1−wi)

increases, or equivalently ⟨∇u,w0⟩ increases. But the boundary of the face

{Lλ = ⟨m0, ⟩+λ(m0)}

lies also on a different face, and we can use the information from this new face to deduce

that ⟨∇u,w0⟩⩽1 there.

By construction for y in the w1-chart,

u(y)−u(x)⩾ ⟨p⃗(x), (y−x)w1
⟩+⟨m0, y−x⟩= ⟨∇u(x), y−x⟩.

We claim that, in fact,

u(y)−u(x)⩾ ⟨∇u(x), y−x⟩

holds for all y∈∂∆∨
λ . We are left to check the claim for y on the face {Lλ=⟨m1, ⟩+λ(m1)},

namely the complement of the w1-chart. Consider the wi-chart for i>1. We can write,

according to the decomposition NR=(m1)⊥⊕Rwi, that

y−x= (y−x)wi,m1 +⟨m1, y−x⟩wi.

By local convexity, in the wi-chart um1 is convex, so there is some p⃗′ such that, for any

y′ in the wi-chart, one has

um1(y′)−um1(x)⩾ p⃗′ ·(y′−x)wi,m1 .
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But a gradient vector of um1 at x is ∇u(x)−m1, so we may take p⃗′=∇u(x)−m1. Thus,

u(y)−u(x)⩾ p⃗′ ·(y−x)wi,m1 +⟨m1, y−x⟩= ⟨∇u(x), y−x⟩−⟨p⃗′, wi⟩⟨m1, y−x⟩.

Now, ⟨m1, y−x⟩⩾0 as in the proof of Proposition 3.26, and ⟨p⃗′, wi⟩⩽0 by ∇u∈∆. This

implies that u(y)−u(x)⩾⟨∇u(x), y−x⟩, as required.

We have verified the characterisation in Proposition 3.19, and hence the extension

property.

The proof above contains some additional information about the gradients.

Corollary 3.28. In the region Star(wi)+R⩾0wi⊂NR, the directional derivative

of the canonical extension u=u∗∗ satisfies ⟨wi,∇u⟩=1. In particular, in this region,

for any m with ⟨m,wi⟩=1, the function um=u−m is constant upon translation in the

wi-direction.

Proof. By Remark 3.21, the ∇u introduced in the above proof is actually the gra-

dient of the extension u over NR. By the proof above, we know that ⟨∇u,wi⟩=1 on

Star(wi)⊂∂∆∨
λ . This directional derivative can only increase as x∈NR moves in the

w1-direction. But ∇u∈∆ on NR, since the extension is admissible, so ⟨∇u,wi⟩⩽1 every-

where, and hence the claim is proved.

For later use, we define the notion of real MA equation in the Fermat case.

Definition 3.29. Let u be a locally convex function on ∂∆∨
λ invariant under the

discrete symmetry. Then, u is called an Aleksandrov solution of the real MA equation

on ∂∆∨
λ \Sing if th following conditions hold.

• On the interior of any top-dimensional face of ∂∆∨
λ , in a set of standard local

affine coordinates xm1 , ..., xmn with dxm1∧dxm2 ... dxmn equal to the standard volume

form dµ∞, the function u satisfies MA(u)=dµ∞ in the Aleksandrov sense.

• On Star(w)⊂U∞
w ∩∂∆∨

λ , we use the standard affine coordinates xm1 , ..., xmn asso-

ciated with the U∞
w ∩∂∆∨

λ chart. We demand, for any vertex m of ∆ with ⟨m,w⟩, that

the local function um=u−m satisfies MA(um)=dµ∞ in the Aleksandrov sense.

Schematically we write MA(u)=dµ∞.

Remark 3.30. Notice that the definition is compatible on overlapping charts, because

the transition functions lie in SL(n,Z)⋉Rn. On the locus Sing⊂∂∆∨
λ , we make no

definition.
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4. Estimates on the Kähler potential

This section is concerned with estimating the Kähler potential on the degenerating hy-

persurfaces Xs in the Fermat family. The expectation that the potentials converge in the

s!∞ limit to a solution of a real MA equation, motivates us to produce local convex

functions by taking average of local Kähler potentials. Convex functions have better

a-priori regularity than psh functions: a Lipschitz bound is automatic. These arguments

work for general Kähler potentials, without using the complex MA equation. The main

difficulty is then to show that, for the Calabi–Yau metric, the local potentials are C0-

close to their averaging convex functions, at least in the generic region; equivalently, the

local potentials have small local oscillations. This part relies on the method of Ko lodziej,

as outlined in §2.2, and a key ingredient is an improved uniform Skoda inequality.

Most arguments apply to more general contexts, and the only reason we restrict to

the Fermat family of hypersurfaces is to use the extension property, which enables us to

patch up the local convex functions into a global regularisation of the original Kähler

potential.

4.1. Harnack inequality

Consider a general possibly singular Kähler potential φ∈PSH(Xs, s
−1ωFS) on Xs, nor-

malised to supXs
φ=0. We think of φ equivalently as a collection of local potentials

{φ0, φm} as in §3.3. In the region Usw⊂Xs, we can find m∈∆Z with ⟨m,w⟩=1 and C∗-

coordinates zm1 , ..., zmn as in §3.1. Recall that dµs is the normalised canonical measure

induced by the holomorphic volume form.

Notation. Denote Xtoric
s as the union of all the toric regions Usw,δ for various choices

of m and w. It is tacitly understood that slightly shrunken domains correspond to a

slightly larger choice of δ, and we shall abusively use the same notation for shrunken

domains.

Proposition 4.1. (Harnack-type inequality) Suppose φ∈PSH(Xs, s
−1ωFS) with

supXs
φ=0. Then the average integral

−
∫
Xtoric

s

|φ| dµs⩽C.

Proof. (Cf. [1, proof of Proposition 3.1]) Consider the local potentials ϕ=φm on

various coordinate charts in §3.1, both of the toric type and of the boundary type. The

charts can be chosen so that the Lebesgue measures thereof are uniformly equivalent to

dµs up to a scaling factor. We have |ϕ−φ|⩽C uniformly on charts. Suppose that a
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coordinate ball B(p, 3R) is contained in (the universal cover of) the local chart. Since ϕ

is psh and ϕ−C⩽0, for z∈B(p,R),

ϕ(y)−C ⩽−
∫
B(y,2R)

(ϕ−C)≲−
∫
B(p,R)

(ϕ−C),

hence

−
∫
B(p,R)

|φ|≲ 1+ inf
B(p,R)

(−φ).

To deduce the global version of the Harnack-type inequality, we need a transitivity prop-

erty, namely we can connect the chart containing the maximum point of φ to any of the

toric charts in Xtoric
s via a chain of O(1) number of charts, such that infB(p,R) |φ| on

charts increase by only O(1) in each step. This last fact is because we can choose the

chains of successive charts B(pi, 5Ri) such that the measure of the overlap occupies a

non-trivial portion of the previous chart:

|B(pi, Ri)∩B(pi+1, Ri+1)|≳ 1
10 |B(pi, Ri)|,

which would force

inf
B(pi+1,Ri+1)

|φ|⩽ inf
B(pi+1,Ri+1)∩B(pi,Ri)

|φ|⩽−
∫
B(pi+1,Ri+1)∩B(pi,Ri)

|φ|

≲−
∫
B(pi,Ri)

|φ|≲ 1+ inf
B(pi,Ri)

|φ|.

Remark 4.2. Notice this transitivity argument allows us to move from boundary-

type charts into toric charts, but not conversely, because the measure is much larger on

toric charts.

4.2. Local potentials: convexity

We continue with a general φ∈PSH(Xs, s
−1ωFS) normalised to supXs

φ=0, whose local

potentials are {φ0, φm}. A simple observation is the following.

Lemma 4.3. Let Φ be any psh function on the open subset of

{1< |ζi|<Λ for all i= 1, ... n}⊂ (C∗)n.

Then, the Tn-invariant function

Φ̄(log |ζ1|, ..., log |ζn|) =
1

(2π)n

∫
Tn

Φ(|ζ1|eiθ1 , ..., |ζn|eiθn) dθ1 ... dθn

is a convex function in the variables x1=log |ζ1|, ..., xn=log |ζn|.
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Proof. Since the Tn-action on (C∗)n is holomorphic, Φ(ζ1e
iθ1 , ..., ζne

iθn) is psh in ζ

for any choice of θi, so the average function Φ̄ is also psh. Any Tn-invariant psh function

must be convex in the log coordinates, because of the formula

√
−1 ∂∂̄Φ̄ =

1

4

∑ ∂2Φ̄

∂xi∂xj

√
−1 dlog ζi∧d log ζj ⩾ 0.

In the region Usw⊂Xs, we can find m∈∆Z, with ⟨m,w⟩=1, and C∗-coordinates

zm1 , ..., zmn

as in §3.1, and consider the local potential ϕ=φm. Set

xmi =
log |zmi |

s
.

We produce the local average function

ϕ̄(xm1 , ... xmn) =
1

(2π)n

∫
Tn

ϕ(|zm1 |eiθ1 , ..., |zmn |eiθn) dθ1 ... dθn. (4.1)

Proposition 4.4. In the chart Usw the average function ϕ̄ is convex, and on the

shrunken chart Usw,δ it has a Lipschitz bound :

|ϕ̄|⩽C, |ϕ̄(x)−ϕ̄(x′)|⩽C|x−x′|. (4.2)

Proof. By Lemma 4.3, ϕ̄ is convex, and by Proposition 4.1 it has an L1 bound in

the xmi coordinates: ∫
|ϕ̄|dxm1 ... dxmn ⩽C.

Clearly, ϕ̄ is also bounded above, so for the argument we may pretend ϕ̄⩽0 upon shifting

by a bounded constant.

We claim that ϕ̄(x) is bounded from below for x in a shrunken interior region. The

ball B(x, 2r) is contained in the coordinate chart, with r bounded below by a positive

constant. For y in the annulus B(x, 2r)\B(x, r), we have

2ϕ̄
(x+y

2

)
⩽ ϕ̄(x)+ϕ̄(y),

so, upon integration,∫
|ϕ̄|≳

∫
2
∣∣∣ϕ̄(x+y

2

)∣∣∣ dy⩾ ∫
(|ϕ̄(x)|+|ϕ̄(y)|) dy,

which bounds |ϕ̄(x)|. Thus, on a slightly shrunken x-domain, the oscillation is bounded:

osc ϕ̄= (sup− inf)ϕ̄⩽C,

and the Lipschitz bound follows again by convexity.
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Remark 4.5. We discuss some intuition about log scales. Let P∈Xs lie in Usw,δ, then

a log scale |zmi |∼|zmi(P )| around P refers to the subregion

{
1
2 |z

mi(P )|≲ |zmi |≲ 2|zmi(P )| for all 1⩽ i⩽n
}
.

Now, log |zmi | vary by order O(s) within Usw,δ, so there are an enormous number of log

scales. The long range behaviour of Xs is similar to (C∗)n, with half of the dimensions

compactified into Tn. On the other hand, over one log scale Xs behaves qualitatively like

the unit disc in Cn. The concept of local oscillation of a function refers to the oscillation

within one log scale. In particular the Lipschitz bound (4.2) implies a local oscillation

bound

osc|zmi |∼|zmi (P )|ϕ̄⩽Cs−1.

4.3. Local potentials: plurisubharmonicity

The following lemma is a special case of the principle that for a subharmonic function, the

standard mean value inequality has interesting strengthenings if there is more information

about microscopic averages.

Lemma 4.6. Let Φ be a subharmonic function on Bn2 ×T k=B2×Rk/εZk equipped

with the Euclidean metric

g=

n∑
1

dx2i +

k∑
1

dy2j ,

where 0<ε≪1. Let v be the averaging function of Φ over the T k fibres. Assume −
∫
|Φ|≲1

and a Lipschitz bound Lip(v)≲1, then on B1×T k we have Φ⩽v+Cε1/2.

Proof. (Courtesy of W. Feldman) By passing to the universal cover B2×Rk, the

standard mean value inequality implies that

sup
B3/2×Tk

Φ≲−
∫

|Φ|≲ 1.

Let p∈B1×T k, which lifts to a point p in B1×Rk. Consider the Euclidean ball

Bg(p, εR)⊂B3/2×Rk,

where R≫1 is a parameter to be chosen. Then, by the mean value inequality,

Φ(p)⩽−
∫
Bg(p,εR)

Φ.
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Define the subset E⊂Bg(εR) as the union of all interior lattice cubes, then

Bg(p, εR)\E⊂Bg(p, εR)\Bg(p, ε(R−C)),

and, by the lattice periodicity of Φ, we have
∫
E

Φ=
∫
E
v. By partitioning the integral∫

Bg(p,ε)
Φ into the contributions from E and Bg(p, εR)\E,

−
∫
Bg(p,εR)

Φ⩽−
∫
Bg(p,εR)

v+CR−1 sup
Bg(p,εR)

(Φ−v)⩽−
∫
Bg(p,εR)

v+CR−1.

By the Lipschitz bound of v, the right-hand side is bounded above by

v(p)+Lip(v)εR+CR−1 ⩽ v(p)+C(εR+R−1).

Choosing R=ε−1/2 gives Φ(p)⩽v(p)+Cε1/2.

Back to the setting of Proposition 4.4,

Corollary 4.7. (Local potential upper bound) On Usw,δ, then ϕ−ϕ̄⩽Cs−1/2.

Proof. The psh property of ϕ implies subharmonicity. By the Harnack inequality

in Proposition 4.1 the average L1-integral is bounded, and by Proposition 4.4 there is a

Lipschitz bound on the local average function ϕ̄.

Corollary 4.8. (Local L1-oscillation bound) Over one log scale inside Usw,δ,

−
∫
|zmi |∼|zmi (P )|

|ϕ−ϕ̄| dµs⩽Cs−1/2.

Proof. Recall the local oscillation of ϕ̄ in one log scale is O(s−1). Since the local sup

of ϕ differs from the local average of ϕ by O(s−1/2), the local L1-oscillation is likewise

bounded by O(s−1/2).

Remark 4.9. The s-dependence is probably not optimal.

We now seek a local L1-oscillation bound on the charts of boundary type UP (cf. Re-

mark 3.10). The idea is that any chart of boundary-type overlaps with some chart of toric

type in an annulus region, where the L1-oscillation bound is already known. It would be

enough to transfer the L1-oscillation bound from the annulus to the deep interior of the

chart.

Lemma 4.10. Let Φ be a psh function on the {|zi|⩽4 for all i}⊂Cn. Then,

−
∫
B1

|Φ|≲−
∫
{1<|zi|<4 for all i}

|Φ|.
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Proof. We induct on dimension. For n=1, the unit ball is already enclosed by an

annulus, so supB(1) Φ is bounded above, and the mean value property applied to all balls

B(p, 2) with 1<|p|⩽2 gives a lower bound on −
∫
B(1)

Φ. Thus, the L1-bound in B(1) is

clear.

For general n, notice by induction that we can bound, for each i⩽n,

−
∫
{1< |zi|< 4 and |zj |< 4 for all j ̸= i}

|Φ|≲−
∫
{1<|zj |<4 for all j}

|Φ|,

so Φ is controlled in L1 on an annulus enclosing B(1), and we can bound −
∫
B(1)

|Φ| similar

to the n=1 case.

Corollary 4.11. (Local L1-oscillation bound II) In the chart of boundary type UP ,

the local potential ϕ satisfies

−
∫
UP

∣∣∣∣ϕ−−
∫
UP

ϕ

∣∣∣∣ dµs⩽Cs−1/2.

4.4. Locally convex function

In §4.2 we produced a collection of local average functions ϕ̄=ϕ̄m,w on Usw corresponding

to various choices of w and m with ⟨m,w⟩=1. But the local coordinates xm1 , ..., xmn are

naturally interpreted also as coordinates on ∂∆∨
λ (cf. §3.2), so ϕ̄m,w can be alternatively

viewed as a collection of convex functions on the charts U∞
w ∩∂∆∨

λ of ∂∆∨
λ . (Notice that

these local functions are defined without the need to shrink the domain to U∞
w,δ).

The intuition is that up to C0-small error, the differences of these local functions

agree with the cocycle {m−m′}, or equivalently, up to some C0-small fuzziness

ϕ̄m,w+⟨m,x⟩

glue to a locally convex function on ∂∆∨
λ , in the sense of Definition 3.22. The more

precise statement is the following.

Lemma 4.12. On overlapping charts of ∂∆∨
λ ,

|ϕ̄m,w−ϕ̄m′,w′ +(m−m′)|⩽Cs−1/2.

Proof. Since we know that the local L1-oscillation estimate holds in every local

region, in a log scale in Usw, not necessarily in the shrunken region Usw,δ,

−
∫
|zmi |∼|zmi (P )|

∣∣∣∣φm−−
∫
φm

∣∣∣∣dµs⩽Cs−1/2.
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Since ϕ̄m,w is convex, a local L1-bound implies a local L∞-bound in a slightly shrunken

region, so, in the log scale, ∣∣∣∣ϕ̄m,w−−
∫
φm

∣∣∣∣⩽Cs−1/2.

Likewise for ϕ̄m′,w′ . By definition, the local potentials differ by

φm−φm′ = ⟨m′−m,Logs(z)⟩.

Notice that, for a given point P on ∂∆∨
λ , the log scales on Usw and Usw′ around P have a

non-trivial percentage of overlapping measure. Thus,

|ϕ̄m,w−ϕ̄m′,w′ +(m−m′)|≲ s−1/2+

∣∣∣∣−∫ φm−−
∫
φm′ +(m−m′)

∣∣∣∣
≲ s−1/2+−

∫
overlap

|φm−φm′ +(m−m′)|≲ s−1/2.

Remark 4.13. The tropical version U∞
w of Usw is in general larger than U∞

w ∩∂∆∨
λ ;

it typically contains also some subset stretching to infinity along the w-direction. If we

regard ϕ̄m,w as local functions on A∞
λ instead of ∂∆∨

λ , then there is a delicate issue.

The lemma above does not imply that ϕ̄m,w+⟨m,x⟩ for various choices of m and w

glue approximately on overlapping regions far from ∂∆∨
λ . The problem is that such

overlapping regions have too small measure, which breaks down the proof.

4.5. Legendre transform, extension, regularisation

We restrict to the Fermat case, and consider a general φ∈PSH(Xs, s
−1ωFS) with

sup
Xs

φ= 0,

invariant under the symmetric group permuting the monomials Zn+2
0 , ..., Zn+2

n+1 . The

goal of this section is to canonically patch together the local convex functions in §4.4

approximately to produce a convex admissible function on NR=Rn+1. We will then

induce a potential ψ∈PSH(Xs, s
−1ωFS)∩C0 which is a regularisation of φ in the sense

that it enjoys better a-priori bounds than φ.

Proposition 4.14. There is an admissible convex function u on NR such that, on

U∞
w ∩∂∆∨

λ ,

|u−(ϕ̄m,w+m)|⩽Cs−1/2. (4.3)
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Proof. The idea is to regard ϕ̄m,w+⟨m,x⟩ as approximately defining a locally convex

function on ∂∆∨
λ in the sense of Definition 3.22, and then the problem is essentially to

prove an effective version of the extension property (cf. Proposition 3.27). We will outline

the main modifications.

We will produce u by mimicking the Legendre duality construction in Proposi-

tion 3.19. For p∈∆, define

u∗(p) = sup
x∈∂∆∨

λ

{⟨x, p⟩−(ϕ̄m,w+⟨m,x⟩)},

where it is tacitly understood that ϕ̄m,w+⟨m,x⟩ is defined only over ∂∆∨
λ∩U∞

w , and

the sup is taken over all choices of m and w, whenever ϕ̄m,w is defined. Since ϕ̄m,w are

uniformly bounded on ∂∆∨
λ , we see that ∥u∗∥C0(∆)⩽C. We then define a convex function

u on NR by another Legendre transform

u(x) = sup
p∈∆

{⟨p, x⟩−u∗(p)},

which is admissible, because u∗ is bounded. By the same reasoning in Proposition 3.19,

on ∂∆∨
λ∩U∞

w ,

u(x)⩽ ϕ̄m,w+⟨m,x⟩+Cs−1/2.

We are only left to show that

u(x)⩾ ϕ̄m,w+⟨m,x⟩−Cs−1/2,

which amounts to showing that there exists p∈∆ such that, for any y∈∂∆∨
λ ,

ϕ̄m′,w′(y)+⟨m′, y⟩⩾ ϕ̄m,w(x)+⟨m,x⟩+⟨p, y−x⟩−Cs−1/2.

Notice that our setting enjoys the discrete symmetry. This last step is the effective

version of Proposition 3.27, and the proof is basically the same.

By construction, u has a number of additional properties.

Corollary 4.15. The canonical extension u satisfies an a-priori Lipschitz bound{
|u−maxm⟨m,x⟩|⩽C, for all x∈NR,

|u(x)−u(x′)|⩽C|x−x′|, for all x, x′ ∈NR.
(4.4)

Morever, in the region Star(w)+R⩾0w⊂NR, for any m with ⟨m,w⟩=1, the function

um=u−m is constant upon translation in the w-direction.
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Proof. The first inequality is because the Legendre transform u∗(p) is bounded on

∆ as in the above proof, and the second is because ∇u∈∆. The morever statement is

essentially identical to Corollary 3.28.

By a small variant of Proposition 3.16, when we pull back the admissible convex

functions u via Logs, we obtain a torus-invariant Kähler current on (P∆, s
−1[∆]) with

continuous local potentials. In details, we write ψ0=u�Logs, and define
ψ=ψ0−

n+2

2s
log

( ∑
m′∈vertices(∆)

exp

(
2

n+2
⟨m′,Log(z)⟩

))
,

ψm =ψ0−⟨m,Logs(z)⟩=um�Logs .

(4.5)

By construction, ψ∈PSH(P∆, s
−1ωFS)∩C0, and ψ0 and ψm are the local potentials of

ψ (cf. (3.12)). By Corollary 4.15, ∥ψ∥C0⩽C, and ψ inherits the Lipschitz bound from u.

By a slight abuse of notation, the restriction to Xs will still be denoted as

ψ ∈PSH(Xs, s
−1ωFS)∩C0.

We think of ψ as a regularisation of φ.

Remark 4.16. As explained in §2.3, on toric manifolds the Legendre transform arises

from a limiting version of approximation by algebraic metrics, which in turn is a more

standard way to regularize an arbitrary Kähler potential. Now Xs is not a toric manifold,

but the toric symmetry holds approximately in generic regions, which motivates us to

take the Legendre transform as a replacement of algebraic regularisation.

We now specify some subregions on Xtoric
s with coordinate descriptions. These are

intimately related to ∂∆∨
λ \Sing, which is covered by the stars of the vertices and the

interior of the top-dimensional faces (cf. §3.5).

Notation. (Star-type regions on Xs) On the region Usw⊂Xs, recall the coodinates

zmi , and regard xmi =s−1 log |zmi | as local coordinates also on U∞
w ∩∂∆∨

λ . Let Us,∗w ⊂Usw,δ
be the subset where the xmi coordinates correspond to points in Star(w)⊂∂∆∨

λ . The

tropical analogue of Us,∗w is (Star(w)+R⩾0w)∩A∞
λ .

Notation. (Face-type regions on Xs) Consider a slightly shrunken subset of the

interior of a given top-dimensional face of ∂∆∨
λ . This can be regarded as a subset of

U∞
w,δ∩∂∆∨

λ , where we regard xmi =s−1 log |zmi | as local affine coordinates. Let

Us,facew ⊂Usw

be the subset where the xmi coordinates correspond to points in this shrunken face. The

tropical analogue of Us,facew ⊂Usw is the shrunken face.
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The intuition is that when z∈Xs has Logs image close to ∂∆∨
λ , or if this image

approaches infinity in specific directions, then φ−ψ is bounded above by a very small

number.

Proposition 4.17. (Local potential upper bound)

• Inside Us,∗w ⊂Xs, for ⟨m,w⟩=1, the local potentials satisfy

φm−ψm⩽Cs−1/2, or equivalently φ−ψ⩽Cs−1/2.

• Inside Us,facew , the local potentials satisfies

φ0−ψ0 ⩽Cs−1/2, or equivalently φ−ψ⩽Cs−1/2.

Proof. In the star-type-region case, by Corollary 4.7, we have the upper bound

φm−ϕ̄m,w ⩽Cs−1/2.

By Proposition 4.14 and Corollary 4.15, in Us,∗w we can replace ϕ̄m,w by ψm up to an

error bounded by Cs−1/2, hence the claim. The face-type-region case follows the same

argument, without the translational invariance statement of Corollary 4.15.

4.6. Improved Skoda inequality

Recall the local L1-oscillation bounds in both toric- and boundary-type regions, from

Corollaries 4.8 and 4.11. Consequently, we have the following.

Lemma 4.18. (Local Skoda estimate) Consider any

φ∈PSH(Xs, s
−1ωFS)

normalised to supXs
φ=0. There are uniform positive constants α and C such that the

local potentials ϕ satisfy the following conditions:

• In a log scale in the toric region,

−
∫
|zmi |∼|zmi (P )|

e−α
√
s(ϕ−−

∫
ϕ) dµs⩽C.

• In a boundary-type chart,

−
∫
UP

e−α
√
s(ϕ−−

∫
ϕ) dµs⩽C.
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Proof. Apply the standard Skoda inequality (cf. Theorem 2.1) to the rescaled func-

tion s1/2(ϕ−−
∫
ϕ).

Remark 4.19. The local average −
∫
ϕ can be replaced by the local supremum using

the mean value inequality.

Corollary 4.20. (Global Skoda estimate) Consider any φ∈PSH(Xs, s
−1ωFS) nor-

malised to supXs
φ=0. There are uniform positive constants α and C such that

−
∫
Xs

e−αφ dµs⩽C. (4.6)

Proof. By the local Skoda estimate and the Remark above, for both a log scale in

the toric region, and a boundary-type chart, the local average

−
∫
eα

√
s(−φ+suploc φ) dµs⩽C, (4.7)

so in particular −
∫
eα(−φ+suploc φ)⩽C. But we have already achieved a C0-bound on local

average functions, and in particular a lower bound on local suprema. Thus

−
∫
e−αφ dµs⩽Ce−α suploc φ⩽C,

or equivalently
∫
loc
e−αφ dµs⩽C

∫
loc

dµs for local integrals. To pass from this to the

global Skoda estimate, we need to take a large collection of log scales and boundary-type

charts and sum over the estimates:∫
Xs

e−αφ dµs⩽C
∑∫

loc

dµs.

The only problem is to ensure that the local charts can be chosen without substantially

overcounting the measure. For points on Xs whose Logs image is at O(s−1) Euclidean

distance to ∂∆∨
λ , it is easy to choose the charts so that each point is contained in O(1)

number of charts. Away from ∂∆∨
λ , the points deep inside the boundary-type charts in

general do not have this local finiteness property, but this is compensated by the fact

that the measure dµs decays exponentially away from ∂∆∨
λ (cf. (3.9)). The conclusion is

that ∑∫
loc

dµs⩽C

∫
Xs

dµs,

whence the global Skoda estimate.

We now specialize to the Fermat case, and consider φ∈PSH(X, s−1ωFS) normalised

to supXs
φ=0 with discrete symmetry, as in §4.5. The regularisation of φ produced via

Legendre transform is denoted as ψ.
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Theorem 4.21. (Improved Skoda estimate) In the Fermat case above, there are

uniform constants α and C such that

−
∫
Xs

e−α
√
s(φ−ψ) dµs⩽C. (4.8)

Proof. On either a log scale in the toric region, or a boundary-type chart, we have

by the local L1-oscillation estimate and the mean value inequality that∣∣∣∣sup
loc

φm−−
∫
loc

φm

∣∣∣∣⩽Cs−1/2 and

∣∣∣∣sup
loc

ψm−−
∫
loc

ψm

∣∣∣∣⩽Cs−1/2.

Notice also the local averages of φm and ψm differ by O(s−1/2), so∣∣∣sup
loc

φm−sup
loc

ψm

∣∣∣⩽Cs−1/2 and
∣∣∣sup
loc

φ−sup
loc

ψ
∣∣⩽Cs−1/2.

Combined with (4.7),

−
∫
loc

e−α
√
s(φ−ψ) dµs⩽C.

The summation argument as in the global Skoda estimate proves the claim.

Remark 4.22. This means ϕ−ψ can only fail to be bounded below by Cs−1/2 on a

set with exponentially small probability measure. Notice that we have not yet used the

complex MA equation.

4.7. L∞ and stability estimates for CY potentials

We finally impose the Calabi–Yau condition, and consider the CY potential φ=φCY,s

normalised to supXs
φ=0, solving (3.13):

ωnCY,s = (s−1ωFS+
√
−1 ∂∂̄φ)n = ass

−n dµs.

Theorem 4.23. (L∞-estimate) The Calabi–Yau potential φCY,s satisfies the uni-

form L∞-estimate ∥φCY,s∥L∞⩽C.

Proof. We apply Ko lodziej’s estimate in Theorem 2.7. The Skoda-type inequality

(2.1) is verified in Corollary 4.20, and hence the L∞ estimate.

We now specialize to the Fermat case. Clearly φ is invariant under the discrete

symmetry of the hypersurface. Recall the regularisation is denoted as ψ=ψCY,s, coming

from the double Legendre transform construction u=uCY,s (cf. §4.5). The local potentials

of φCY,s and ψCY,s are denoted φm=φCY,s,m and ψm=ψCY,s,m according to the same

convention as (3.12).
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Theorem 4.24. In the Fermat case, there is a uniform stability estimate

φCY,s−ψCY,s⩾−Cs−1/2 log s. (4.9)

Proof. We apply Corollary 2.12. The Skoda estimate is verified in Corollary 4.20.

The improved Skoda estimate theorem (Theorem 4.21) implies an exponential volume

decay:
1

Vol(Xs)

∫
φ−ψ⩽−t

ωnϕ ⩽Ce−αt
√
s,

hence there exists c≫1, such that for t0=cs−1/2 log s,(
1

Vol(Xs)

∫
φ−ψ⩽−t0

ωnϕ

)1/2n
⩽Ce−αt0

√
s/2n =Ce−αc log s/2n⩽Cs−1/2.

Theorem 2.7 then implies φ−ψ⩾−Cs−1/2 log s as required.

Remark 4.25. In the theorems above only an upper bound on the volume measure

is actually needed. The intuition is that the Skoda inequality is already so close to

an L∞ estimate, that a very tiny amount of extra assumptions are needed to conclude

L∞-estimate.

Combining this with the upper bound from Proposition 4.17 yields the following.

Corollary 4.26. In the Fermat case, there is a uniform C0-stability estimate:

• Inside Us,∗w ⊂Xs, for ⟨m,w⟩=1, the local potentials satisfy

|φCY,s,m−ψCY,s,m|⩽Cs−1/2 log s,

or equivalently

|φCY,s−ψCY,s|⩽Cs−1/2 log s.

• Inside Us,facew , the local potentials satisfy

|φCY,s,0−ψCY,s,0|⩽Cs−1/2 log s,

or equivalently

|φCY,s−ψCY,s|⩽Cs−1/2 log s.

The point is that in the generic region of Xs the Calabi–Yau local potentials are

C0-approximated by their regularisations, which build in convexity by construction, and

therefore have a-priori Lipschitz bounds.
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5. Fermat case: Metric convergence and SYZ fibration

We focus on the Fermat family case. We will produce a solution of the real MA equa-

tion on ∂∆∨
λ by a subsequential limit, which induces a real MA metric on the regular

locus (cf.§̃5.1). Then we show the Calabi–Yau metrics on the degenerating hypersurfaces

converge to the real MA metric, both in a C∞
loc-sense (cf. §5.2) and in the global Gromov–

Hausdorff sense (cf. §5.3). The strong regularity estimates will in particular imply that

in the generic region of Xs the CY metrics are collapsing with bounded curvature, which

by a result of Zhang [42] allows one to produce a special Lagrangian fibration in the

generic region of Xs (cf. §5.4).

5.1. Limiting real MA metric

We work in the context of §4.7, and use the notations therein. We shall extract some

subsequential limit of local potentials for the CY metric ωCY,s, and check that up to

a constant it solves the real MA equation on ∂∆∨
λ \Sing according to Definition 3.29

(cf. also §2.6).

Since the convex functions uCY,s on NR produced by double Legendre transform have

uniform Lipschitz bounds (4.4), by the Arzela–Ascoli theorem we can take a subsequential

limit as s!∞ such that uCY,s!u∞ in C0
loc-topology. Later we will sometimes suppress

mentioning the subsequence for brevity. In particular, u∞ is convex and admissible. We

can also pass Corollary 4.15 to the limit, to see that in the region Star(w)+R⩾0w⊂NR,

for any m with ⟨m,w⟩=1, the function u∞,m=u∞−m is constant upon translation in

the w-direction. In particular, in such regions the C0
loc convergence improves to

∥uCY,s,m−u∞,m∥C0! 0.

By construction ψCY,s,m=uCY,s,m�Logs, and uCY,s,0=uCY,s�Logs. Thus the stabil-

ity estimate Corollary 4.26 implies that

• Inside Us,∗w ⊂Xs, for ⟨m,w⟩=1, the local potentials satisfy

|φCY,s,m−u∞,m�Logs |! 0.

• Inside Us,facew , the local potentials satisfy

|φCY,s,0−u∞�Logs |! 0.

The rest of this section is devoted to proving the following result.
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Theorem 5.1. On ∂∆∨
λ \Sing, the locally convex function u∞ solves the real MA

equation in the sense of Definition 3.29 up to a scaling constant :

MA(u∞) =
a∞
πnn!

dµ∞, (5.1)

where dµ∞ is the Lebesgue measure on ∂∆∨
λ , and the constant a∞ is defined by (3.14).

The intuitive idea is to pass the complex MA equation to some weak limit. The

main problem is that the sequence φCY,s live on different manifolds, so we need more

effective estimates to pass to the limit.

Lemma 5.2. Let u be a bounded convex function on the square {|xi|<1}⊂Rn. Via

the rescaled log map s−1 Log: (C∗)n!Rn, the function u pulls back to a psh function on

{| log |zi||<s}. Then, the real MA measure of u is related to the push-forward of the

complex MA measure of u�s−1 Log by

MA(u) =
sn

πnn!
(s−1 Log)∗(

√
−1 ∂∂̄(u�s−1 Log))n.

Proof. If u is smooth, then

MA(u)(K) =

∫
K

det(D2u) dx1 ... dxn =
sn

πnn!

∫
(s−1 Log)−1(K)

(
√
−1 ∂∂̄(u�s−1 Log))n.

Since u∈C0, and both the real and complex MA operators are weakly continuous with

respect to C0-limits, this equality passes to general u.

Lemma 5.3. (Chern–Levine type estimate) Let u be a psh function on the annulus

region U={| log |zi||<s, for all i}⊂(C∗)n, with ∥u∥L∞≲1. Then, the following state-

ments hold.

• On the shrunken set E=
{∣∣log |zi|

∣∣< 1
2s
}

, the measure∫
E

(
√
−1 ∂∂̄u)n⩽Cs−n.

• Let u+v is another psh function, with ∥v∥L∞≪1. Let f be any compactly sup-

ported function on the square {|xi|<1}⊂Rn. Then,∫
f{(

√
−1 ∂∂̄(u+v))n−(

√
−1 ∂∂̄u)n}⩽Cs−n ∥f∥C2 ∥v∥L∞ .

Proof. Let χ be a compactly supported non-negative smooth function on the square

{|xi|<1}⊂Rn, equal to 1 on
{
|xi|⩽ 1

2

}
. We identify χ with χ�s−1 Log, and denote

ωstd =
√
−1

∑
dlog zi∧d log zi.
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Then,

−Cs−2ωstd ⩽
√
−1 ∂∂̄χ⩽Cs−2ωstd.

The basic obervation is that if T is a positive current of bidegree (n−1, n−1), then, by

integration by part,∫
E

√
−1 ∂∂̄u∧T ⩽

∫
supp(χ)

χ
√
−1 ∂∂̄u∧T

=

∫
supp(χ)

u
√
−1 ∂∂̄χ∧T ⩽Cs−2

∫
supp(χ)

ωstd∧T.

Iterating this argument to lower the power of
√
−1 ∂∂̄u,∫

E

(
√
−1 ∂∂̄u)n⩽Cs−2n

∫
U

ωnstd ⩽Cs−n.

The second statement is proved similarly by removing
√
−1 ∂∂̄v factors iteratively.

Proof of Theorem 5.1. There are two subcases: the interior of the top-dimensional

faces of ∂∆∨
λ , and the star of the vertices Star(w). Since the arguments are almost the

same, we focus on the latter.

On the interior of Star(w), we have local affine coordinates xm1 , ..., xmn , related to

the holomorphic C∗-coordinates zm1 , ... zmn by xmi =s−1 log |zmi |. The star-type region

Us,∗w ⊂Xs can be viewed as a subset of (C∗)n, so we use the rescaled map

s−1 Log: (C∗)nzmi −!Rnxmi

to pull back the function u∞,m on Star(w). On the other hand, Xs∩(C∗)n+1 maps into

NR via Logs, so we can also pull back u∞,m via Logs. These two pull-backs differ by at

most Cs−1, using Corollary 4.15. We also write ϕ=φCY,s,m.

Take a local test function f∈C2
c supported in the interior of Star(w), then f is iden-

tified as a local function on Us,∗w ⊂Xs via s−1 Log. By the Chern–Levine-type estimate

above,

sn
∫
f{(

√
−1 ∂∂̄ϕ)n−(

√
−1 ∂∂̄(u∞,m�s−1 Log))n}

⩽C∥ϕ−u∞,m�s−1 Log ∥L∞ ∥f∥C2! 0,

as s!∞. By the Calabi–Yau condition (3.13) and Proposition 3.14,

sn(
√
−1 ∂∂̄ϕ)n = asdµs = a∞dµs(1+o(1)) as s!∞.

Pushing forward via s−1 Log, and applying Lemma 5.2,

πnn!

∫
f MA(u∞) = lim

s!∞

∫
fas(s

−1 Log)∗ dµs = a∞

∫
f dµ∞.

Since this holds for every f∈C2
c , on the interior of this top-dimensional face we obtain

the measure equality (5.1).
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5.2. Higher regularity in the generic region

Once we know the subsequential limit u∞ satisfies the real MA equation, then by the

local regularity theory surveyed in §2.6, we have the following.

Corollary 5.4. (Regularity of real MA solution) Inside ∂∆∨
λ \Sing, let R be the

set of strictly convex points of u∞. Then, u∞∈C∞
loc(R), and the complement of R is a

closed subset of Hausdorff (n−1)-measure zero. In particular, R is path connected, and

is open and dense in ∂∆∨
λ \Sing.

Remark 5.5. In dimension 2, the local regularity theory implies that R=∂∆∨
λ \Sing,

namely the real MA solution is smooth wherever the affine structure is defined. The

same might hold in any higher dimension, although this cannot be concluded by local

regularity results alone (cf. Remark 2.15).

We now proceed to a very explicit coordinate version of higher-order estimates for

the local CY potentials, by transferring regularity from the real MA equation to the

complex MA equation.

Let x∈R, then u∞ (resp. the appropriate u∞,m) has Ck,γ-bound on some coordinate

ball B(x, 2r(x))⊂R contained in a shrunken face (resp. Star(w)). For clarity, we focus

on the face case. The radius r(x) and the Ck,γ-bound depend on the choice of x, but are

uniform for x in any fixed compact subset of R. We identify u∞ with its pull-back to

(s−1 Log)−1(B(x, r(x)))⊂Us,facew ⊂Xs.

The local CY potential φCY,s,0 on (s−1 Log)−1(B(x, 2r(x))) satisfies∥∥φCY,s,0−u∞�s−1 Log
∥∥
C0! 0, s!∞

along the subsequence. We may regard

(s−1 Log)−1(B(x, 2r(x)))

as an open subset of (C∗)n. On the universal cover of (C∗)n, we use the natural coordi-

nates s−1 log zmi for i=1, ... n.

Now, φCY,s,0 satisfies the complex MA equation (cf. (3.13) and (3.7))

(
√
−1 ∂∂̄φCY,s,0)n = ass

−n dµs =
as

(4πs2)n
√
−1

n2

Ωs∧	Ωs.

By the holomorphic volume form formula (3.5),

(
√
−1 ∂∂̄φCY,s,0)n =

as
(4π)n

(1+o(1))
∏
i

√
−1s−1dlog zmi∧s−1d log zmi ,
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where the o(1) term in fact has exponentially small C∞ bounds in s−1 log zmi coordi-

nates; the higher-order bound uses that Ωs is holomorphic. On the other hand, by the

calculation in §5.1, the pull-back of u∞ satisfies

(
√
−1 ∂∂̄(u∞�s−1 Log))n =

a∞
(4π)n

∏
i

s−1
√
−1dlog zmi∧s−1d log zmi .

To summarize, the deviation of the right-hand side is negligible and the deviation between

φCY,s,0 and u∞�s−1 Log is small in C0-norm. Applying Savin’s theorem (Theorem 2.14),

we get the following.

Theorem 5.6. (Smooth convergence in generic regions) As s!∞ along the subse-

quence, assume the coordinate ball B(x, 2r(x))⊂R. Then, on the region

(s−1 Log)−1(B(x, r(x)))⊂Xs,

we have the following higher-regularity estimates with respect to the Ck,γ-norm in the

s−1 log zmi coordinates.

• In the face-type-region-Us,facew case

∥φCY,s,0−u∞�s−1 Log ∥Ck,γ((s−1 Log)−1(B(x,r(x)))! 0.

• In the star-type-region-Us,∗w case, for ⟨m,w⟩=1,

∥φCY,s,m−u∞,m�s−1 Log ∥Ck,γ((s−1 Log)−1(B(x,r(x)))! 0.

The convergence rate is uniform for x on any fixed compact subset of R.

The intuition is that in the generic regular locus in the toric part of Xs, the local

CY potentials converge in some C∞
loc sense.

Notation. For every compact K⊂R, let Us,K denote the union of the regions

(s−1 Log)−1(B(x, r(x))) for x∈K;

the convergence rates will be uniform on Us,K . Notice that

lim sup
s!∞

Vol(Us,K)

Vol(Xs)
⩾

∫
K
dµ∞∫

∂∆∨
λ
dµ∞

,

so by taking a compact exhaustion of R, we may assume that Us,K occupies a percentage

of the total measure arbitrarily close to 1.
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Remark 5.7. If one can show that the limiting real MA metric is unique, then there

will be no need to pass to a subsequence.

Next, we discuss CY metrics in (s−1 Log)−1(B(x, r(x)))⊂Us,K .

• In the face-type-region case, up to C∞-small error in the s−1 log zmi coordinates,

ωCY,s =
√
−1 ∂∂̄φCY,s,0

≈
√
−1 ∂∂̄u∞�s−1 Log =

1

4

∂2u∞
∂xmi∂xmj

√
−1s−1dlog zmi∧s−1 d log zmj ,

and hence the CY metrics gCY,s is, up to C∞-small error,

gCY,s≈Re

{
1

2

∂2u∞
∂xmi∂xmj

s−1dlog zmi⊗s−1 d log zmj

}
. (5.2)

• Likewise in the star-type-region case, up to C∞ small error in the s−1 log zmi

coordinates, 
ωCY,s≈

1

4

∂2u∞,m

∂xmi∂xmj

√
−1s−1dlog zmi∧s−1 d log zmj ,

gCY,s≈Re

{
1

2

∂2u∞,m

∂xmi∂xmj
s−1dlog zmi⊗s−1 d log zmj

}
.

(5.3)

Notice that, in such local (C∗)n coordinates, the rescaled log map s−1 Log gives a

local Tn-fibration. The metric associated with
√
−1 ∂∂̄(u∞�s−1 Log) is a semiflat metric,

namely a Tn-invariant metric which is flat when restricted to any Tn-fibre. Thus, (5.2)

and (5.3) assert that the Calabi–Yau metrics gCY,s are C∞-approximated by semiflat

metrics in the regular regions.

Corollary 5.8. On Us,K⊂Xs the sectional curvature has a uniform bound

|Riem(gCY,s)|⩽C,

and the injectivity radius satisfies

C−1s−1 ⩽ inj⩽Cs−1,

with constants depending on K⊂R.

5.3. Gromov–Hausdorff convergence

On the regular locus R⊂∂∆∨
λ , we have a well-defined real MA metric

g∞ =


1

2

∑
i,j

∂2u∞
∂xi∂xj

dxi dxj , on the face regions,

1

2

∑
i,j

∂2u∞,m

∂xi∂xj
dxi dxj , on the star regions.

(5.4)
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Notice the definitions are compatible on overlapping regions. The metric asymptotes

(5.2)(5.3) say that in some C∞
loc sense the collapsing CY metrics gCY,s converge to the

metric g∞ on R, and we know R is path connected because its complement has zero

Hn−1-measure.

Remark 5.9. We do not know if the metric completion of R is homeomorphic to

∂∆∨
λ≃Sn, as the regularity theory of the real MA equation on a singular affine manifold

is not yet developed, and we know little about what can happen near singularities.

The goal of this section is to show the following result.

Theorem 5.10. Any subsequential Gromov–Hausdorff limit of the collapsing CY

metrics (Xs, gCY,s) contains an open dense subset locally isometric to R.

Remark 5.11. Here, ‘local isometry’ means a diffeomorphism Ψ between two open

sets U and U ′, such that around any point x∈U , the map Ψ preserves the distance

d(Ψ(x),Ψ(y))=d(x, y) if d(x, y)<rx is sufficiently small depending on x. There is no

claim about isometry for points separated by large distances.

Proposition 5.12. There is a uniform diameter bound

diam(Xs, gCY,s)⩽C.

Proof. This argument is essentially the same as [39, Theorem 3.1]. We quote [39,

Lemma 3.2].

Lemma 5.13. Let (M2n, g) be a closed Riemannian manifold with Ric(g)⩾0, let

p∈M and 1<R⩽diam(X, g). Then,

R−1

4n
⩽

Vol(B(p, 2(R+1)))

Vol(B(p, 1))
.

Using Theorem 5.6, we can find inside the regular region of Xs some geodesic ball

BgCY,s
(p, r) of radius r<1, occupying a non-trivial portion of the total volume:

Vol(BgCY,s
(p, r)))

Vol(Xs)
⩾ ε> 0,

with ε independent of s. Now, applying the lemma to the rescaled CY metric r−2gCY,s,

diam(Xs)−r
4nr

⩽
Vol(BgCY,s

(p, 2(diam(Xs)+r)))

Vol(BgCY,s
(p, r))

⩽
Vol(Xs)

Vol(BgCY,s
(p, r))

⩽ ε−1,

so diam(Xs)⩽Cr⩽C as required.
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Proof of Theorem 5.10. By Theorem 5.6, we already know the C∞ metric conver-

gence over any properly contained open subset of R, which corresponds to a region

Us⊂Xs, with nearly the full measure

Vol(Us)> (1−ε) Vol(Xs),

where ε can be chosen arbitrarily small. This gives rise to an open subset U in any

Gromov–Hausdorff subsequential limit, locally isometric to R. It now suffices to show

any point p∈Xs\Us is close to Us; this would imply the density of U inside the Gromov–

Hausdorff limit.

For any r>0 such that the geodesic ball BgCY,s
(p, r)⊂Xs\Us, the Bishop–Gromov

inequality implies(
r

diam(Xs)

)2n
⩽

Vol(BgCY,s
(p, r))

Vol(Xs)
⩽

Vol(Xs\Us)
Vol(Xs)

<ε.

Taking the sup of all such r,

distgCY,s
(p, Us)⩽ ε1/2n diam(Xs)⩽Cε1/2n,

which can be made arbitrarily small.

5.4. Special Lagrangian fibration in the generic region

In the setting of §5.2, the very strong regularity bounds in the generic region leads to

the existence of special Lagrangian Tn-fibrations thereon.

Theorem 5.14. For any fixed compact K⊂R, for s≫1 depending on K, there is a

special Lagrangian (SLag) Tn-fibration on an open subset of Xs containing Us,K .

Remark 5.15. By considering a compact exhaustion of R, we can choose K so that

the region Us,K occupies a percentage of the total measure on Xs arbitrarily close to 1.

Proof. As K is a compact subset in the open set R, we can find an open set U⊂K
properly contained in R. This ensures that the smooth convergence in Theorem 5.6

happens uniformly on a slightly larger set Us,K′ than Us,K . We assume s≫1 as ususal.

Consider a coordinate region (s−1 Log)−1(B(x, r(x)) contained in this larger set,

which is topologically Tn×B(x, r(x)). Here, the Tn is well defined as a homology cycle

independent of the coordinates. We define the phase angles θs by requiring∫
Tn

e
√
−1θsΩ> 0.
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We consider the rescaled CY metrics (s2gCY,s, s
2ωCY,s), so the diameter of Tn fibres

are now of order O(1) by (5.2) and (5.3). Within any log scale, these rescaled CY

structures are C∞-close to the standard flat structures in §2.7 up to constant factors.

By construction the Kähler forms are exact in these coordinate charts. Thus, by Zhang’s

result surveyed in §2.7, within any log scale, we can construct a SLag Tn-fibration with

phase θs, whose fibres are very small C∞-perturbations of the fibres of the map

Log: (C∗)n−!Rn,

(zm1 , ..., zmn) 7−! (log |zm1 |, ..., log |zmn |).

Observe that on overlapping charts, the Log-fibres with respect to one chart are

very small C∞-perturbations of the Log-fibres of the other chart. Then the uniqueness

part of Zhang’s argument shows that on overlapping charts the SLag Tn-fibrations are in

fact defined independent of charts. (It is the local universal family of SLags within the

perturbative regime.) Thus, the local constructions glue to a SLag fibration on a subset

of Xs containing Us,K , as required.

References

[1] B locki, Z., The Calabi–Yau theorem, in Complex Monge–Ampère Equations and
Geodesics in the Space of Kähler Metrics, Lecture Notes in Math., 2038, pp. 201–227.
Springer, Berlin–Heidelberg, 2012.

[2] B locki, Z. & Ko lodziej, S., On regularization of plurisubharmonic functions on mani-
folds. Proc. Amer. Math. Soc., 135 (2007), 2089–2093.

[3] Boucksom, S., Favre, C. & Jonsson, M., Solution to a non-Archimedean Monge–
Ampère equation. J. Amer. Math. Soc., 28 (2015), 617–667.

[4] — The non-Archimedean Monge–Ampère equation, in Nonarchimedean and Tropical Ge-
ometry, Simons Symp., pp. 31–49. Springer, Cham, 2016.

[5] Boucksom, S. & Jonsson, M., Tropical and non-Archimedean limits of degenerating
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