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Abstract. Block ciphers are arguably the most important cryptographic
primitive in practice. While their security against mathematical attacks
is rather well understood, physical threats such as side-channel analysis
(SCA) still pose a major challenge for their security. An effective coun-
termeasure to thwart SCA is using a cipher representation that applies
the threshold implementation (TI) concept. However, there are hardly
any results available on how this concept can be adopted for block ci-
phers with large (i.e., 8-bit) Sboxes. In this work we provide a systematic
analysis on and search for 8-bit Sbox constructions that can intrinsically
feature the TI concept, while still providing high resistance against crypt-
analysis. Our study includes investigations on Sboxes constructed from
smaller ones using Feistel, SPN, or MISTY network structures. As a re-
sult, we present a set of new Sboxes that not only provide strong crypto-
graphic criteria, but are also optimized for TI. We believe that our results
will found an inspiring basis for further research on high-security block
ciphers that intrinsically feature protection against physical attacks.

1 Introduction

Block ciphers are among the most important cryptographic primitives. Although
they usually follow ad-hoc design principles, their security with respect to known
attacks is generally well-understood. However, this is not the case for the security
of their implementations. The security of an implementation is often challenged
by physical threats such as side-channel analysis or fault-injection attacks. In
many cases, those attacks render the mathematical security meaningless. Hence,
it is essential that a cipher implementation incorporates appropriate counter-
measures against physical attacks. Usually, those countermeasures are developed
retroactively for a given, fully specified block cipher. A more promising approach
is including the possibility of adding efficient countermeasures into the design
from the very start.

For software implementations, this has been done. Indeed, a few ciphers have
been proposed that aim to address the issue of protection against physical at-
tacks by facilitating a masked Sbox by design. The first example is certainly



NOEKEON [17], other examples include Zorro [19], Picarro [33] and the LS-
design family of block ciphers [20].

For hardware implementations, the situation is significantly different. Here,
simple masking is less effective due to several side-effects, most notably glitches
(see [27]). As an alternative to simple masking, a preferred hardware counter-
measure against side-channel attacks is the so-called threshold implementation
(TI) [32], as used for the cipher FIDES [6]. TI is a masking variant that splits
any secret data into several shares, using a simple secret-sharing scheme. Those
shares are then grouped in non-complete subsets to be separately processed
by individual subfunctions. All subfunctions jointly correspond to the target
function (i.e., the block cipher). Since none of the subfunctions depends on all
shares of the secret data at any time, it is intuitive to see that it is impossible
to reconstruct the secret by first-order side-channel observations. We provide a
more detailed description of the functionality of threshold implementations in
Section 2.

Unfortunately, it is not trivial to apply the TI concept to a given block
cipher. The success of this process strongly depends on the complexity of the
cipher’s round function and its internal components. While the linear aspects of
any cipher are typically easy to convert to TI, this is not generally true for the
non-linear Sbox. For 4-bit Sboxes, it is possible to identify a corresponding TI
representation by exhaustive search [10]. However, for larger Sboxes, in particular
8-bit Sboxes, the situation is very different. In this case, the search space is far
too large to allow an exhaustive search. In fact, 8-bit Sboxes are far from being
fully understood, from both a cryptographic and an implementation perspective.

With respect to cryptographic strength against differential and linear attacks,
the AES Sbox (and its variants) can be seen as holding the current world record.
We do not know of any Sbox with better properties, but those might well exist.
Unfortunately, despite considerable effort, no TI representation is known for the
AES Sbox that does not require any additional external randomness [7, 9, 31].

Our Contribution. In this paper we approach this problem of identifying
cryptographically strong 8-bit Sboxes that provide a straightforward TI repre-
sentation. More precisely, our goal is to give examples of Sboxes that come close
to the cryptanalytic resistance of the AES Sbox. Also, the straight application
of the TI concept to an Sbox should still lead to minimal resource and area
costs. This enables an efficient and low-cost implementation in hardware as well
as bit-sliced software.

In our work we systematically investigate 8-bit Sboxes that are constructed
based on what can be seen as a mini-cipher. Concretely, we construct Sboxes
based on either a Feistel-network (operating with two 4-bit branches and a 4-bit
Sbox as the round function), a substitution permutation network or the MISTY
network. This general approach has already been used and studied extensively.
Examples of Sboxes constructed like this are used for example in the ciphers
Crypton [25, 26], ICEBERG [41], Fantomas [20], Robin [20] and Khazad [3]. A
more theoretical study was most recently presented by Canteaut et al. in [15].
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Our idea extends the previous work by combining those constructions aiming
at achieving strong cryptographic criteria with small Sboxes that are easy to
share and intrinsically support the TI concept. As a result of our investigation,
we present a set of different 8-bit Sboxes. These Sboxes are either (a) superior
to the known constructions from a cryptographic perspective but can still be
implemented with moderate resource requirements or (b) outperform all known
constructions in terms of efficiency in the application of the TI concept to the
Sbox, while still maintaining a comparable level of cryptographic strength with
respect to other known Sboxes. All our findings are detailed in Table 1.

Outline. This work is structured as follows. Preliminaries on well-known
strategies to construct Sboxes as well as the TI concept are given in Section 2.
We discuss the applicability of TI on known 8-bit Sboxes in Section 3. The de-
tails and results of the search process are given in Sections 4 and 5, respectively.
We conclude with Section 6.

2 Preliminaries

2.1 Cryptanalytic properties for Sboxes

In this subsection we recall the tools used for evaluating the strength of Sboxes
with respect to linear, differential and algebraic properties. For this purpose, we
consider an n-bit Sbox S as a vector of Boolean functions: S = (f0, . . . , fn−1),
fi : Fn

2 → F2. We denote the cardinality of a set A by #A and the dot product

between two elements a, b ∈ Fn
2 by: 〈a, b〉 =

∑n−1
i=0 aibi.

Non-linearity. To be secure against linear cryptanalysis [28] a cipher must
not be well-approximated by linear or affine functions. As the Sbox is generally
the only non-linear component in an SP-network, it has to be carefully chosen
to ensure a design is secure against linear attacks. For a given Sbox, the main
criterium here is the Hamming distance of any component function, i.e. a linear
combination of the fi, to the set of all affine functions. The greater this distance,
the stronger the Sbox with respect to linear cryptanalysis. The Walsh transform
WS(a, b), defined as

WS(a, b) :=
∑
x∈Fn

2

(−1)〈a,x〉+〈b,S(x)〉,

can be used to evaluate the correlation of a linear approximation (a, b) 6= (0, 0).
More precisely,

P(〈b, S(x)〉 = 〈a, x〉) =
1

2
+
WS(a, b)

2n+1
.

The larger the absolute value of WS(a, b), the better the approximation by the
linear function 〈a, x〉 (or the affine function 〈a, x〉+ 1, in case WS(a, b) < 0).

This motivates the following well known definition.
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Definition 1 (Linearity). Given a vectorial Boolean function S, its linearity
is defined as

Lin(S) = max
a,b6=0

|WS(a, b)|.

The smaller Lin(S), the stronger the Sbox is against linear cryptanalysis.
It is known that for any function S from Fn

2 to Fn
2 it holds that Lin(S) ≥

2
n+1
2 [16]. Functions that reach this bound are called Almost Bent (AB) func-

tions. However, in the case n > 4 and n even, we do not know the minimal value
of the linearity that can be reached. In particular, for n = 8 the best known
non-linearity is achieved by the AES Sbox with Lin(S) = 32.

Differential Uniformity. A cipher must also be resistant against differential
cryptanalysis [5]. To evaluate the differential property of an Sbox, we consider
the set of all non-zero differentials and their probabilities (up to a factor 2−n).
That is, given a, b ∈ Fn

2 we consider

δS(a, b) := #{x ∈ Fn
2‖ S(x+ a) = S(x) + b},

which corresponds to 2n times the probability of an input difference a prop-
agating to an output difference b through the function S. This motivates the
following well known definition.

Definition 2 (Differential Uniformity). Given a vectorial Boolean function
S, its differential uniformity is defined as

Diff(S) = max
a 6=0,b

|δS(a, b)|.

The smaller Diff(S), the stronger the Sbox regarding differential cryptanalysis.
It is known that for Sboxes S that have the same number of input and output

bits it holds that Diff(S) ≥ 2. Functions that reach that bound are called Almost
Perfect Nonlinear (APN). While APN functions are known for any number n of
input bits, APN permutations are known only in the case of n odd and n = 6.

In particular, for n = 8 the best known case is Diff(S) = 4, e.g., AES Sbox.

Algebraic degree. The algebraic degree is generally considered as a good
indicator of security against structural attacks, such as integral, higher-order
differential or, most recently, attacks based on the division property.

Recall that any Boolean function f can be uniquely represented using its
Algebraic Normal Form (ANF):

f(x) =
∑
u∈Fn

2

aux
u,

where xu =
∏n−1

i=0 x
ui
i , with the convention 00 = 1. Now, the algebraic degree

can be defined as follows.
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Definition 3 (Algebraic degree). The algebraic degree of f is defined as:

deg(f) = max
u∈Fn

2

{∑
i

ui, au 6= 0

}
.

This definition can be extended to vectorial Boolean functions (Sboxes) as follows

deg(S) = max
0≤i≤n

deg(fi).

For a permutation on Fn
2 the maximum degree is n − 1. Lots of permutations

over Fn
2 achieve this maximal degree. Again the AES Sbox is optimal in this

respect, i.e., the AES Sbox has the maximal degree of 7 for 8-bit permutations.

Affine equivalence. An important tool in our search for good Sboxes is the no-
tion of affine equivalence. We say that two functions f and g are affine equivalent
if there exists two affine permutations A1 and A2 such that f = A1 ◦ g ◦A2. The
importance of this definition is given by the well-known fact that both the linear-
ity and the differential uniformity are invariant under affine equivalence. That
is, two functions that are affine equivalent have the same linear and differential
criteria.

2.2 Construction of 8-Bit Sboxes

Apart from the AES Sbox, which is basically the inversion in the finite field
F28 , hardly any primary construction for useful, cryptographically strong, 8-bit
Sboxes is known.

However, several secondary constructions have been applied successfully.
Here, the idea is to build larger Sboxes from smaller Sboxes. For block ciphers
this principle was first introduced in MISTY [29].

Later, this approach was modified and extended. In particular, it was used
by several lightweight ciphers to construct Sboxes with different optimization
criteria, e.g., smaller memory requirements, more efficient implementation, in-
volution, and easier software-level masking.

There are basically three known constructions, all of which can be seen as
mini-block ciphers: Feistel networks, the MISTY construction and SP-networks.
Figure 1 shows how these constructions build larger Sboxes from smaller Sboxes.
Note that the MISTY construction is a special case of the SPN. Indeed, the
MISTY construction is equivalent to SPN when F1 = Id and the matrix A =(
1 1
1 0

)
.

For a small number of rounds, we can systematically analyze the crypto-
graphic properties of those constructions (see [15] for the most recent results).
However, for a larger number of rounds, a theoretical understanding becomes
increasingly more difficult in most cases.

Table 1 shows the different characteristics of 8-bit Sboxes known in the lit-
erature that are built from smaller Sboxes. We excluded the PICARO Sbox [33]
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(b)

F2F1

A

(c)

Fig. 1. (a): Feistel (b) MISTY (c) SPN

from the list, since it is not a bijection. Furthermore, Zorro is also excluded since
the exact specifications of its structure are not publicly known. We refer often
to this table as it summarizes all our findings and achievements.

2.3 Threshold Implementations

The first attempts to realize Boolean masking in hardware were unsuccessful,
mainly due to glitches [27, 30]. Combinatorial circuits which receive both the
mask and the masked data, i.e., secret sharing with 2 shares, most likely exhibit
first-order leakage. Threshold Implementation (TI) has been introduced to deal
with this issue and realize masking in glitchy circuits [32].

The TI concept has been extended to higher orders [8], but our target, in this
work, is resistance against first-order attacks. Hence, we give the TI specifications
only with respect to first-order resistance. Let us assume a k-bit intermediate
value x of a cipher as one of its Sbox inputs (at any arbitrary round) and
represent it as x = 〈x1, . . . , xk〉. For n−1 order Boolean masking, x is represented

by (x1, . . . ,xn), where x =
n⊕

i=1

xi and each xi similarly denotes a k-bit vector

〈xi1, . . . , xik〉.
Applying linear functions over Boolean-masked data is trivial, since L(x) =

n⊕
i=1

L(xi). However, realization of the masked non-linear functions (Sbox) is gen-

erally non-trivial and is thus the main challenge for TI. As per the TI concepts,
at least n = t+ 1 shares should be used to securely mask an Sbox with algebraic
degree t. Moreover, TI defines three additional properties:

Correctness. The masked Sbox should provide the output in a shared form

(y1, . . . ,ym) with
m⊕
i=1

yi = y = S(x) and m ≥ n.

Non-completeness. Each output share yj∈{1,...,m} is provided by a component
function fj(.) over a subset of the input shares. Each component function
fj∈{1,...,m}(.) must be independent of at least one input share.

Uniformity. The security of most masking schemes relies on the uniform distri-
bution of the masks. Since in this work we consider only the cases with n = m
and bijective Sboxes, we can define the uniformity as follows. The masked Sbox
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with n× k input bits and n× k output bits should form a bijection. Otherwise,
the output of the masked Sbox (which is not uniform) will appear at the input of
the next masked non-linear functions (e.g., the Sbox at the next cipher round),
and lead to first-order leakage.

Indeed, the challenge is the realization of the masked Sboxes with high alge-
braic degree. If t > 2, we can apply the same trick used in [32] and [34], i.e., by
decomposing the Sbox into quadratic bijections. In other words, if we can write
S : G ◦ F , where both G and F are bijections with t = 2, we are able to imple-
ment the first-order TI of F and G with the minimum number of shares n = 3.
Such a construction needs registers between the masked F and G to isolate the
corresponding glitches.

After the decomposition, fulfilling all the TI requirements except uniformity
is straightforward. As a solution, the authors of [10] proposed to find affine
functions A1 and A2 in such a way that F : A2 ◦ Q ◦ A1. If we are able to
represent a uniform sharing of the quadratic function Q, applying A1 on all
input shares, and A2 on all output shares gives us a uniform sharing of F .

TI of 4-bit Permutations. In [11] the authors analyze 4-bit permutations and
identify 302 equivalence classes. In the following, we use the same notation as
in [11] to refer to these classes. Out of these 302, six classes are quadratic. These
six quadratic functions, whose uniform TI can be achieved by direct sharing
or with simple correction terms (see [11]) are listed in Table 2. We included
their minimum area requirements as the basis of our investigations in the next
sections. In contrast to the others, Q300 also needs to be decomposed for uniform
sharing.

2.4 Design Architectures

Due to the high area overhead of threshold implementations (particularly the
size of the shared Sbox), serialized architectures are favored, e.g. in [9, 31, 34, 39].
Our main target in this work is a serialized architecture in which one instance
of the Sbox is implemented. Furthermore, we focus on byte-wise serial designs
due to our underlying 8-bit Sbox target. In such a scenario, the state register
forms a shift register, that at each clock cycle shifts the state bytes through the
Sbox and makes use of the last Sbox output as feedback. Figure 2 depicts three
different architectures which we can consider. Note that extra logic is not shown
in this figure, e.g. the multiplexers to enable other operations like ShiftRows.

A shared Sbox with 3 shares should contain registers, e.g., PRESENT [34] and
AES [9, 31]. As an example, if the shared Sbox contains 4 stages (see Figure 2(a))
and forms a pipeline, all of the Sbox computations can be done in n + 3 clock
cycles, with n as the number of state bytes. We refer to this architecture as raw
in later sections. Note that realizing a pipeline is desirable. Otherwise, the Sbox
computations would take 3n+ 1 clock cycles.

As an alternative, we can use the state registers as intermediate registers
of the shared Sbox. Figure 2(b) shows the corresponding architecture, where
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1F1 2 3 nF2

Sbox

F3F4

(a) raw

F31F4 2 3 nF2 F1

(b) interleaved

1F 2 3 n

(c) iterative

Fig. 2. Different serialized design architectures

more multiplexers should be integrated to enable the correct operation (as an
example in Skinny [4]). In this case, all n shared Sboxes can be computed in
n clock cycles. It is noteworthy that such an optimization is not always fully
possible if intermediate registers of the shared Sbox are larger than the state
registers (e.g., in case of AES [9, 31]).

If the Sbox has been constructed by k times iterating a function F , it is
possible to significantly reduce the area cost. Figure 2(c) shows an example.
Therefore, similar to a raw architecture without pipeline, (k − 1)n + 1 clock
cycles are required for n Sboxes. This is not efficient in terms of latency, but is
favorable for low-throughput applications, where very low area is available and
in particular when SCA protection is desired. We refer to this architecture as
iterative.

3 Threshold Implementation of Known 8-Bit Sboxes

Amongst 8-bit Sboxes, the AES TI Sbox has been widely investigated while
nothing about the TI of other Sboxes can be found in public literature. The
first construction of the AES TI Sbox was reported in [31]. The authors made
use of the tower-field approach of Canright [14] and represented the full circuit
by quadratic operations. By applying second-order Boolean masking, i.e., three
shares as minimum following the TI concept, all operations are independently
realized by TI. On the other hand, the interconnection between (and concatena-
tion of) uniform TI functions may violate the uniformity. Therefore, the authors
integrated several fresh random masks – known as remasking or applying virtual
shares [11] – to maintain the uniformity, in total 48 bits for each full Sbox. Since
the AES TI Sbox has been considered for a serialized architecture, the authors
formed a 4-stage pipeline design, which also increased the area by 138 registers.

Later in [9] three more efficient variants of the AES TI Sbox were introduced.
The authors applied several tricks, e.g., increasing the number of shares to 4 and
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5 and reduce them back to 3 in order to relax the fresh randomness requirements.
Details of all different designs are listed in Table 1. In short, the most efficient
design (called nimble) forms a 3-stage pipeline, where 92 extra registers and 32
fresh random bits are required.

S5

S3

S5

L1

F

G

L2

SS0 SS1

SS2 SS3

×2 2×

CLEFIA makes use of two 8-bit Sboxes S0 and S1. The first one
is formed by utilizing four different 4-bit bijections and multipli-
cation by 2 in GF(24) defined by polynomial X4 +X + 1. The
entire SS0 : E6CA872FB14059D31, SS1 : 640D2BA39CEF8751,
SS2 : B85EA64CF72310D9, and SS3 : A26D345E0789BFC1 are
cubic and – based on the classification given in [11] – belong to
classes C210, C163, C160, and C160 respectively. Unfortunately, all
these classes are of non-alternating group and cannot be shared
with 3 shares, i.e., no solution exists either by decomposition or
remasking2. We should use at least 4 shares (which is out of our
focus), and its uniform sharing with 4 shares also needs to be done in at least 3
stages. Therefore, a 4-share version of TI S0 can be realized in 6 stages.

The second one is constructed following the AES Sbox, i.e., inversion in
GF(28), but with a different primitive polynomial and affine transformations.
Based on the observations in [2, 36], inversion in one field can be transformed to
another field by linear isomorphisms. Therefore, S1 and the AES Sbox are affine
equivalent and all difficulties to realize the AES TI Sbox hold true for S1.

P0

P1

P2

Crypton V0.5 utilizes two 8-bit Sboxes, S0 and S1, in a 3-round
Feistel, as shown here. By swapping P0 and P2 the Sbox S0 is
converted to its inverse S1. P1 : AF4752E693C8D1B0 belongs to
the cubic class C295. Similar to the sub functions of CLEFIA, it
belongs to the non-alternating group and cannot be shared with
3 shares. In short, at least 4 shares in 3 stages should be used.
Further, P0 : F968994C626A135F and P2 : 04842F8D11F72BEF
are quadratic, non-bijective functions, but that does not neces-
sarily mean that their uniform sharing with 4 shares does not exist. We have
examined this issue by applying direct sharing [11], and we could not find their
uniform sharing with either 3 or 4 shares. In this case, remasking is a poten-
tial solution. However, due to the underlying Feistel structure of S0 and S1, the
non-uniformity of the shared P0 and P2 does not affect the uniformity of the
resulting Sbox as long as the sharing of the Sbox input is uniform. More pre-
cisely, P0 output is XORed with the left half of the Sbox input. If the input is
uniformly shared, the input of P1 is uniform regardless of the uniformity of the
P0 output. See [8] and [11], where it is shown that a · b (AND gate) cannot be
uniformly shared with 3 shares, but a · b+ c (AND+XOR) can be uniform if a,
b, and c are uniformly shared. Therefore, a 4-share version of TI S0 (resp. S1)
can be realized in 5 stages.

1 In the following we denote functions by a hexadecimal-string in which the first letter
denotes the first element of the look-up table implementing the function.

2 Alternatively, one can apply the technique presented in [24].
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Table 1. Criteria for the 8-bit Sboxes

Diff. Lin. Deg. Iter. AND
Unprotected Threshold Implementationa

Type
Area[GE] Delay Area[GE] Delay Stage Mask

#b #c itera.d rawe ns itera.d rawf ns #g #h

AES [18] 4 32 7 32[12] 236 5.69

4244[31] 5 48

Inversion
3708[9] 3 44
3653[9] 3 44
2835[9] 3 32

CLEFIA (S0) [40] 10 56 7 4 shares 6 0 SPN
CLEFIA (S1) [40] 4 32 7 like AES 3 32 Inversion
Crypton V0.5 [25] 8 64 5 68 1.76 4 shares 5 0 Feistel
Crypton V1 [26] 10 64 6 111 2.40 4 shares 6 0 SPN
ICEBERG [41] 8 64 7 151 2.39 2115 1.67 9 0 SPN
Fantomas [20] 16 64 5 11 130 2.43 766 1.72 4 0 MISTY
Khazad [3] 8 64 7 154 2.48 2062 1.87 9 0 SPN
Robin [20] 16 64 6 3 12 28 79 2.37 319 1180 1.73 6 0 Feistel
Scream v3 [21] 8 64 6 12 87 2.38 2204 2.00 6 0 Feistel
Whirlpool [37] 8 56 7 146 2.37 2203 2.08 9 0 SPN

SB1 16 64 6 8 16 8 57 1.38 51 1189 1.09 8 0 SPN (BitP)
SB2 16 64 4 2 12 46 99 1.99 253 631 1.70 2 0 SPN (Mat)
SB3 8 60 7 4 24 48 198 3.98 273 1498 2.10 4 0 SPN (Mat)
SB4 8 56 7 5 30 29 140 4.09 202 1507 2.10 5 0 Feistel
SB5 10 60 7 9 27 12 95 3.19 78 1583 1.10 9 0 SPN (BitP)
SB6 10 60 7 4 20 49 174 4.78 226 1247 1.95 4 0 SPN (Mat)

a with 3 shares
b number of iterations of a unique function
c number of AND gates, important for masked bit-sliced software implementations
d excluding the required extra logic, e.g, multiplexers and registers
e fully combinatorial
f including pipeline registers
g number of stages in the pipeline
h number of fresh mask bits required for each full Sbox

P0

P1

P2

P1

 P0  
-1

P0

L

 P1
-1

Crypton V1 Sboxes are made of two 4-bit bijections
P0 : FEA1B58D9327064C, P1 : BAD78E05F634192C and their in-
verse in addition to a linear layer in between. P0 and its inverse
P−10 belong to the cubic class C278, which can be uniformly
shared with 3 and 4 shares but in 3 stages. Both P1 and its
inverse P−11 are affine equivalent to the non-alternating cubic
class C295, that – as given above – must be shared at least with
4 shares. Therefore, in order to share each Crypton V1 Sbox, 4
shares in a construction with 6 stages should be used.

P0

P1

P2

P1

 P0  
-1

P0

L

 P1
-1

S0 S0

P8

S1 S1

P8

S0 S0

ICEBERG is formed by two 4-bit bijections
S0 : D7329AC1F45E60B8 and S1 : 4AFC0D9BE6173582 in a 3-
round SPN structure, where permutation P8 is a bit permuta-
tion. Both S0 and S1 are affine equivalent to the cubic class
C270, which needs at least 3 stages to be uniformly shared
with 3 shares. Therefore, a uniform sharing of the ICEBERG
Sbox with 3 shares can be realized in 9 stages without any
fresh randomness. Amongst the smallest decompositions, we
suggest A4 ◦ Q294 ◦ A3 ◦ Q294 ◦ A2 ◦ Q294 ◦ A1 for S0 with
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A1 : B038F47CD65E921A, A2 : C6824E0AD7935F1B, A3 : 3DB50E8679F14AC2,
A4 : AC24E860BD35F971, and for S1 with A1 : 63EB50D827AF149C,
A2 : D159F37BC048E26A, A3 : 2AE608C43BF719D5, A4 : C5814D09E7A36F2B, and
Q294 : 0123456789BAEFDC.

S5

S3

S5

L1

F

G

L2

Fantomas utilizes one 3-bit bijection
S3 : 03615427 and one 5-bit bijection S5 : 00, 03,
12, 07, 14, 17, 04, 11, 0C, 0F, 1F, 0B, 19, 1A, 08, 1C, 10,
1D, 02, 1B, 06, 0A, 16, 0E, 1E, 13, 0D, 15, 09, 05, 18, 01
in a 3-round MISTY construction. S3 is affine equiv-
alent to the quadratic class Q3

3, which can be uni-
formly shared with 3 shares in at least 2 stages.
As a decomposition, we considered S3 : A3 ◦ Q1 ◦
A2 ◦ Q2 ◦ A1 with A1 : 07342516, A2 : 02461357,
A3 : 01235476, Q1 : 01234576, and Q2 : 01234675.

The construction of S5, as shown here, consists
of 4 Toffoli gates and 4 XORs. The quadratic F and G, as well as linear parts L1

and L2 are correspondingly marked. Hence, we can decompose S5 : L2◦G◦L1◦F .
The uniform sharing of both F and G can be found by direct sharing. Therefore,
the Fantomas Sbox can be uniformly shared with 3 shares in 4 stages, without
any fresh mask. Figure 3(a) depicts the block diagram representation, and the
area requirements are listed in Table 1. Each Sbox cannot be implemented iter-
atively, and each Sbox computation has a latency of 4 clock cycles. However, a
pipeline design can send out Sbox results in consecutive clock cycles, but with
a 4-clock-cycle latency.

P0

P1

P2

P1

 P0  
-1

P0

L

 P1
-1

S0 S0

P8

S1 S1

P8

S0 S0

P Q

Q P

P Q

Khazad utilizes the Anubis Sbox, which is also based on a
3-round SPN. Two 4-bit bijections P : 3FE054BCDA967821

and Q : 9E56A23CF04D7B18 in addition to a bit permuta-
tion layer form the 8-bit Sbox. Similar to ICEBERG, both
P and Q belong to the cubic class C270. Therefore, the uni-
form sharing of the Khazad (resp. Anubis) Sbox can be re-
alized in 9 stages without fresh masks. For the decomposi-
tion, we suggest A4 ◦ Q294 ◦ A3 ◦ Q294 ◦ A2 ◦ Q294 ◦ A1 for
P with A1 : 04C862AE15D973BF, A2 : A2E680C4B3F791D5,
A3 : 842EA60CB71D953F, A4 : 80D5C491A2F7E6B3, and for
Q with A1 : 082A3B194C6E7F5D, A2 : 3FB71D952EA60C84,
A3 : 19D53BF708C42AE6, A4 : 0B38291A4F7C6D5E.

Robin is constructed based on the 3-round Feistel, similar to Crypton V0.5, but a
single 4-bit bijection S4 plays the role of all functions P1, P2, and P3. Although
the swap of the nibbles in the last Feistel round is omitted, the Robin Sbox
is the only known 8-bit Sbox which can be implemented in an iterative fash-
ion. S4 : 086D5F7C4E2391BA has been taken from [42], known as the Class 13
Sbox. S4 is affine equivalent to the cubic class C223 and, as stated above, can
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be uniformly shared with 3 shares in 2 stages. As one of the smallest solu-
tions we considered A3 ◦ Q294 ◦ A2 ◦ Q294 ◦ A1 with A1 : AE268C04BF379D15,
A2 : C480A2E6D591B3F7, A3 : 20A8B93164ECFD75. Therefore, with no extra fresh
randomness we can realize uniform sharing of the Robin Sbox with 3 shares in
6 stages.

In order to implement this construction, we have four different options. A
block diagram of the design is shown in Figure 3(b) (the registers filled by the
gray color are essential for pipeline designs).

– Iterative, w/o pipeline, each Sbox in 6 clock cycles.
– Iterative, pipeline, each two Sboxes in 6 clock cycles.
– Raw, w/o pipeline, each Sbox in 6 clock cycles.
– Raw, pipeline, each 6 Sboxes in 6 clock cycles, each one with a latency of 6

clock cycles.

Note that extra control logic (such as multiplexers) is required for all iterative
designs which is excluded from Figure 3(b) and Table 1 for the sake of clarity.

Scream V3 is similar to that of Crypton V0.5, i.e., 3-round Feistel. P0, and P2 are
replaced by two almost perfect nonlinear (APN) functions
APN1 : 020B300A1E06A452 and APN2 : 20B003A0E1604A25, and P1 by
S1 : 02C75FD64E8931BA. Similar to Crypton V0.5, the two APN functions are not
bijective. However, they are cubic rather than quadratic. The source of these two
APNs is the construction given in [15]. We can decompose both of them into
two quadratic functions as APN1 : F ◦ G and APN2 : F ◦ (⊕1) ◦ G, with
F : 020B30A01E06A425 and G : 0123457689ABCDFE. By (⊕1) we represent an
identity followed by XOR with constant 1, i.e., flipping the least significant bit.
Uniform sharing of G with 3 shares can be easily achieved by direct sharing. F ,
however, cannot be easily shared. F consists of three 2-input AND gates which
directly give three output bits. To the best of our knowledge, F cannot be uni-
formly shared without applying remasking. However, as stated for Crypton V0.5,
the non-uniformity of F (in general APN1 and APN2) does not play any role
if S1 is uniformly shared.

S1 is affine equivalent to the cubic class C223 which can be uniformly shared
in 2 stages with 3 shares. Therefore, the Scream V3 Sbox can be shared by
3 shares in 6 stages, without any fresh random masks. There are many op-
tions to decompose S1; as one of the smallest solutions we suggest S1 : A3 ◦
Q294 ◦ A2 ◦ Q294 ◦ A1 with A1 : 26AE159D37BF048C, A2 : 4C086E2A5D197F3B,
A3 : 082A3B194C6E7F5D.

Whirlpool employs three different 4-bit bijections E, E−1 and R in a customized
SPN. E : 1B9CD6F3E874A250 and its inverse are affine equivalent to the cubic
class C278, which can be uniformly shared with 3 shares in at least 3 stages.
R : 7CBDE49F638A2510 also belongs to the cubic class C270. As given for ICE-
BERG and Khazad, C270 needs 3 stages for a uniform sharing with 3 shares.
Hence, the entire Whirlpool Sbox can be uniformly shared with 3 shares in 9
stages, without any extra randomness. The decomposition of R is similar to that
of Khazad, i.e., R : A4 ◦ Q294 ◦ A3 ◦ Q294 ◦ A2 ◦ Q294 ◦ A1 with
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L2 ◦ GA2 ◦ Q2 ◦ A1 
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Fig. 3. Threshold Implementation of Robin and Fantomas Sboxes, each signal repre-
sents 3 shares, the gray registers for pipeline variants
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A1 : 02138A9BCEDF4657, A2 : 0C48A6E21D59B7F3,
A3 : C509E72BD418F63A, A4 : 0A1B4E5F28396C7D.
However, the decomposition of E and E−1 are more costly. One
of the cheapest solutions is A4 ◦Q294 ◦A3 ◦Q293 ◦A2 ◦Q294 ◦A1

for E with A1 : 048CAE2673FBD951, A2 : 80C4B3F7A2E691D5,
A3 : 0B834FC71A925ED6, A4 : 014589CD2367ABEF, and for
E−1 with A1 : A2F76E3B80D54C19, A2 : A280E6C4B391F7D5,
A3 : 95F31D7B84E20C6A, A4 : 2736AFBE05148D9C, and
Q293 : 0123457689CDEFBA.

Due to their required minimum 4 shares, except for CLEFIA, Crypton V0.5,
and Crypton V1, we have implemented TI for all the aforementioned Sboxes, and
have given their area requirements as well as the number of stages (clock cycles)
in Table 1. For the synthesis, we used Synopsys Design Compiler with the UMC-
L18G212T3 [43] ASIC standard cell library, i.e., UMC 0.18µm technology node.
It is noteworthy that amongst all the Sboxes we covered, the Robin Sbox is the
only one which can be iteratively implemented. We should also emphasize that
Midori [1] and Skinny [4] (in their 128-bit versions) make use of 8-bit Sboxes.
Midori 8-bit Sboxes are made by concatenating two 4-bit Sboxes and the Skinny
one by four times iterating an 8-bit quadratic bijection. In both cases their
differential and linear properties are 64 and 128 respectively, which are notably
less compared to the strong 8-bit Sboxes listed in Table 1. Therefore, we did not
consider them in our investigations.
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Table 2. Performance figures of 4×4 quadratic bijections with respect to their TI cost

Table Area [GE] # of stages

Q4
4 0123456789ABDCFE 27 1

Q4
12 0123456789CDEFAB 63 1

Q4
293 0123457689CDEFBA 84 1

Q4
294 0123456789BAEFDC 51 1

Q4
299 012345678ACEB9FD 114 1

Q4
300 0123458967CDEFAB 151 2 (Q12 ◦ Q4)

4 Finding TI-Compliant 8-Bit Sboxes

Our goal is to find strong 8-bit Sboxes which can be efficiently implemented
as threshold implementations. To this end, we incorporate the idea of building
an 8-bit Sbox from smaller Sboxes in our search. In particular we aim to con-
struct a round function that can be easily shared and iterated to generate a
cryptographically strong Sbox. Easily shareable in our context refers to func-
tions for which an efficient uniform shared representation is known. Thus, if we
find a function with these properties, the resulting sequence of round functions
will be a good cryptographic Sbox which can be efficiently masked. As done
previously, we concentrate on the three basic constructions mentioned above:
Feistel, SPN, and MISTY. As the number of possible choices for SPN is too
large for an exhaustive search, we focus on two special cases for the linear layer
of the SP-network. First, instead of allowing general linear layers we focus on
bit-permutations only. Those have the additional advantage of being basically
for free, both in hardware and in a (bitsliced) software implementation. Second,
we focus on linear layers which correspond to matrix multiplications over F16.
Those cover the MISTY construction as a special case.

In all cases, the building blocks for our round function are 4-bit Sboxes. As
described in Section 2, those Sboxes are well-analyzed and understood regarding
both their threshold implementation [11] and their cryptographic properties. To
minimize the number of required shares, we mainly consider functions with a
maximum degree of two. Additional shares, otherwise, may increase the area or
randomness requirements for the whole circuit. In [11], six main quadratic per-
mutation classes are identified which are listed in Table 2. All existing quadratic
4-bit permutations are affine equivalent to one of those six. However, it should be
noted that permutations of class Q4

300 cannot be easily shared with three shares
without decomposition or additional randomness. Therefore, we mainly focus on
the other classes from our search. Note that we include the identity function A4

0

in the case of the SPN construction. Since the identity function does not require
any area, round functions based on a combination of identity and one quadratic
4-bit permutation can result in very lightweight designs.

One important difference to all previous constructions listed in Table 1 is
that we do consider higher number of iterations for our constructions. This is
motivated by two observations. First, it might allow to improve upon the crypto-
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graphic criteria and second it might be beneficial to actually use a simpler round
function, in particular those that can be implemented in one stage, more often
than a more complicated round function with a smaller number of itterations.
As can be seen in Table 1 this approach of increasing the number of itterations
is quite successful in many cases.

Next we describe in detail the search for good Sboxes for each of the three
constructions we considered.

4.1 Feistel-Construction

As a first construction, we examine round functions using a Feistel-network sim-
ilar to Figure 1(a). By the basic approach described below, we were able to
exhaustively investigate all possible constructions based on any 4-bit to 4-bit
function for any number of itterations between 1 and 5. This can be seen as an
extension (in the case of n = 4 and for identical round functions) to the results
given in [15] where up to 3 rounds have been studied.

However, such an exhaustive search is not possible in a naive way. As there
are 264 4-bit functions and checking the cryptographic criteria of an n-bit Sbox
requires roughly 22n basic operations, a naive approach would need more than
280 operations.

Fortunately, this task can be accelerated by exploiting the distinct structure
of Feistel-networks while still covering the entire search space.

We recall the definition of a Feistel round for the function F : Fn
2 → Fn

2 :

Feistel1F : Fn
2 × Fn

2 → Fn
2 × Fn

2 , (L,R) 7→ (R⊕ F (L), L).

We denote by FeistelnF the nth functional power of Feistel1F , i.e.,

FeistelnF = Feistel1F ◦Feistel1F ◦ · · · ◦ Feistel1F .

To reduce the search space, we show below that if G = A ◦ F ◦ A−1 for an
invertible affine function A, then FeistelnF is affine equivalent to FeistelnG.

Thus, we can reduce our search space from all 264 functions, to roughly XY
functions. Indeed, Brinkmann classified all 4 to 4 bit functions up to extended
affine equivalence [13]. There are 4713 equivalence classes up to extended affine
equivalence. Now, with the results given in Appendix A, it is enough to consider
all functions of the form A1 ◦ F + C, where A1 is an affine permutation and C
is any linear mapping on 4 bits. As FeistelnA1◦F◦A2+C′ is affine equivalent to the
function Feisteln

A2◦A1◦F◦A2◦A−1
2 +C′◦A−1

2
= FeistelnA2◦A1◦F+C , this will exhaust all

possibilities up to affine equivalence. Doing so, we reduce the search space to:

#Sboxes = 4713 · 24 · |GL(2, 4)| · 216 ' 246.50. (1)

As this is still a large search space, we emplyed GPUs to tackle this task.

4.2 SPN-Construction with Bit-Permutations as the Linear Layer

In addition to Feistel-networks, we examined round functions which are similar
to Figure 1(c). However, A is replaced by an XOR with a constant followed by
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an 8-bit permutation. Depending on F1 and F2, this construction can lead to
very lightweight round functions since constant addition and simple bit permu-
tations are very efficient in hardware circuits. For F1 and F2 we consider the
five quadratic permutations (listed in Table 2) as well as the identity function
(denoted by A4

0). Obviously, we exclude the combination F1 = F2 = A4
0. There

are 8! different 8-bit permutations and 256 possibilities for the constant addition.
If we looked for all combinations of all affine equivalents of the chosen functions,
we would have to test

#Sboxes = 256 · 8! · 35 · 3225604 · 10 ' 2105 (2)

Sboxes. This is clearly not feasible. Therefore, we decide to restrict the number
of possibilities for each of the two functions. In particular, we only consider the
representative for each class as presented in [11] without affine equivalents. This
reduces the search space to

#Sboxes = 256 · 8! · 35 · 10 ' 232, (3)

which can be completely processed.
Similar to the Feistel-network, it is possible to further reduce the complexity

of the search. To this end, we first define the round function for this type of Sbox
as

BitPerm1
F1,F2,C,P : Fn

2 × Fn
2 → F2n

2

(L,R) 7→ P
(

(F1(L)||F2(R))⊕ C
)
,

where || denotes the concatenation of the two parts. Furthermore, it can be
trivially seen that for every combination of an 8-bit permutation P1 and an 8-bit
constant C1 there exist a complementary combination of an 8-bit permutation
P2 and an 8-bit constant C2 with

P1

(
(L||R)⊕ C1

)
= P2

(
(R||L)⊕ C2

)
, ∀ R,L ∈ Fn

2 .

Thus, the search can be speeded up since BitPerm1
F1,F2,C1,P1

is the same as

BitPerm1
F2,F1,C2,P2

. Therefore, we only need to check

#Sboxes = 256 · 8! · 20 · 10 ' 231 (4)

Sboxes for this type of round function.

4.3 SPN-Construction with F16-linear Layers only

For the last type of construction, we consider another special case of the con-
struction depicted in Figure 1(c). Here we restrict ourselves to the case where
A corresponds to a multiplication with a 2 × 2 matrix with elements from F16.
Additionally, a constant is again added to the outputs of F1 and F2. As noted
before, a special case of this construction is the MISTY technique.

For F1 and F2 we consider the five quadratic functions and the identity
function. Just like for the bit permutation round function, it is not feasible to
check all affine equivalents. Therefore, we limit our search to these functions.
The field multiplication is performed with the commonly used polynomial X4 +
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Fig. 4. The smallest achievable differential uniformity and linearity for each number
of iterations for round functions with F16-linear layers and F1 = A4
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294, (�)F2 = Q4

299.

X + 1 [22]. Given that the matrix needs to be invertible and provide some form
of mixture between the two halves, this leaves us with 61200 possibilities for the
matrix multiplication. It is further possible to apply the same optimization as
for permutation-based round functions. Therefore, we need to check

#Sboxes = 256 · 61200 · 20 · 10 ' 231.5 (5)

Sboxes for this type of round function.

5 Results

We completed the search for the three aforementioned types of round functions
with up to ten iterations.

The search for Feistel-networks for all 4713 classes takes around two weeks on
a machine with four NVIDIA K80s for a specific set of parameters. In particular,
the performance depends on the bounds defined by cryptographic properties
(differential uniformity) as well as the iteration count of the network. Note that,
with respect to cryptographic criteria, our search shows that for iterations ≤ 5
no 8-bit balanced Feistel with identical round functions can have a linearity below
56 and a differential uniformity below 8.

Furthermore, the search for SPNs with bit permutations (resp. with F16-
linear layer) required around 48 hours (resp. 54 hours) on one Intel Xeon CPU
with 12 cores. It was possible to detect some very basic relations between the
security, number of iterations and area of the Sbox. Figure 4 shows the smallest
differential uniformity and linearity values which can be achieved for a specific
number of iterations using a round function based on the F16-linear layer with
constant addition. As expected, the more iterations are applied, the higher re-
sistance against linear and differential cryptanalysis could be achieved. The size
of each of the considered quadratic permutations is given in Table 2. Bigger
functions like Q4

293 and Q4
299 achieve good cryptographic properties with fewer

iterations than smaller functions like Q4
4. For the other combinations of (F1, F2)
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and types of round functions the graphs behave similarly. Depending on the
remaining layers of the cipher and the targeted use case, a designer needs to
find a good balance between the parameters. In the following, we present a few
selected Sboxes optimized for different types of applications.

In our evaluation, we only consider Sboxes with differential uniformity at
most 16 and linearity of at most 64. These are the worst properties between the
observed constructed 8-bit Sboxes in Table 1. From the cryptographic stand-
point, our Sboxes should not be inferior to these functions. We identified the
following strong Sboxes that cover the most important scenarios.

– SB1: This Sbox possesses a very small round function. In a serial design the
round function is usually implemented only once to save area.

– SB2: This Sbox is selected to enable an efficient implementation in a round-
based design. For this not only the size of the round function is important but
also the number of iterations. Additional iterations require additional instan-
tiations of the round function with a dedicated register stage. Furthermore,
this Sbox requires the least number of iterations and can be implemented
with a very low number of AND gates. Thus, it is also suited to masked
software implementations.

– SB3: This Sbox has very good cryptographic properties and requires one
less iteration than SB4.

– SB4: This Sbox has very good cryptographic properties.
– SB5: This Sbox is similar to SB1 which has a small round function. However,

it trades area for better cryptographic properties.
– SB6: This Sbox is similar to SB2 that is optimized for raw implementations.

However, it trades area for better cryptographic properties.

5.1 Selected Sboxes

In this section, we supply the necessary information to implement the selected
Sboxes. For this, we first recall the basic structure of the round functions. Table 1
shows that our selected round functions consists of bit permutations and F16-
linear layers. The structure of both types is similar to Figure 1(c). We denote
the most (resp. least) significant four bits as L (resp. R). The round function
Round : F4

2 × F4
2 7→ F8

2 is then defined as

Round(L,R) = P
(
(F1(L)||F2(R))⊕ C

)
,

where C is an 8-bit constant and P (.) denotes either an 8-bit permutation or
an F16-linear layer. In Table 3, we describe a specific bit permutation with an
eight-element vector where each element denotes the new bit position, e.g., no
permutation is 01234567 whereas complete reversal is 76543210. The F16-linear
layer is realized as a multiplication with a 2 × 2 matrix with elements in F16.
Let us denote the most (resp. least) significant four input bits to the matrix
multiplication as LM (resp. RM ). The multiplication is then defined as

MatMul(LM , RM ) = (E1 · LM ⊕ E2 ·RM ||E3 · LM ⊕ E4 ·RM ) ,
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Table 3. Specifics of the selected Sboxes.

F1 F2 Const. (Hex) Parameter Type Iterations

SB1 A4
0 Q4

294 04 62750413 Perm. 8
SB2 Q4

293 Q4
293 EE [2, 4, 4, 2] Matrix 2

SB3 Q4
293 Q4

299 6C [2, 2, 3, 11] Matrix 4
SB5 Q4

4 Q4
294 85 20647135 Perm. 9

SB6 Q4
293 Q4

294 F8 [0, 5, 13, 15] Matrix 4

F G A Type Iterations

SB4 0001024704638EAD 028A9B1346CEDF57 6273627351405140 Feistel 5

where E1, E2, E3, E4 ∈ F16 are the elements of the chosen matrix. To describe
the linear layers of our Sboxes we give the specific [E1, E2, E3, E4] for each matrix
in Table 3.

These parameters combined with the number of iterations enable the real-
izations of each Sbox. To increase efficiency of the TI the constant is added to
only one of the shares. In some cases, the area of the design can be reduced by
adding a particular constant to the two remaining shares. This is based on the
fact that an additional NOT gate can turn e.g., an AND gate to a smaller NAND
gate [35]. The following linear layer still needs to be applied to all shares. Table 3
contains this condensed description of the selected Sboxes. Further details for
each of them can be found in Appendix B.

For SB4, since it uses a Feistel-network, we construct the Sbox using the
round function H(x) = G(F (x))⊕A(x), where F is taken from the 4713 equiv-
alence classes; G and A represent the linear and affine parts respectively. H, F ,
G and A are all 4-bit to 4-bit functions. The full definition of the round is then
simply (L,R) 7→ (R⊕H(L), L).

5.2 Comparison

Table 1 gives an overview of our results and we summarize the most important
observations in the following. The first observation is that our proposed designs
do not require fresh mask bits to achieve uniformity. This is an improvement over
all TI types of the AES Sbox and some other Sboxes from Table 1. They need up
to 64 bits of randomness for one full Sbox. Given that modern ciphers usually
include multiple rounds with many Sboxes, this can add up to a significant
amount of randomness which needs to be generated.

Furthermore, all of our proposed Sboxes can be implemented iteratively. This
comes with the advantage that even the more complex designs, e.g., SB4 and
SB5, can be realized with very few gates depending on the design architecture.
From all the other Sboxes in Table 1 this is only possible for Robin and its round
function requires more area than any of our proposed Sboxes.

In particular, SB1 and SB2 require the least area in their respective target
architectures (i.e., iterative and raw) out of all considered 8-bit Sboxes. The dif-
ference for the iterative architecture is especially large where SB1 needs roughly
six times less area than the Robin Sbox.
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SB2 requires the least number of stages. Additionally, it requires only 12
AND gates for the whole Sbox which is very close to the best number, i.e., 11 for
Fantomas. This is an advantage for masked bit-sliced implementations making
SB2 suitable for software and hardware designs. A more detailed discussion of
this aspect is given in Appendix C.

As expected, we did not find any Sbox with better cryptographic properties
than the AES Sbox. However, SB3 and SB4 can still provide better resistance
against cryptanalysis attacks than most of the other considered Sboxes. This
comes at the cost of an increased area for the raw implementations. Nevertheless,
the required area is still smaller than any AES TI and their round function is
still smaller than Robin for iterative designs.

As depicted in Figure 4, a trade-off between resources and cryptographic
properties is possible. If SB1 and SB2 do not provide the desired level of security
and SB3 and SB4 are too large, SB5 and SB6 might be the best solution. Their
cryptographic properties are still better or equal than the competitors while the
area is significantly smaller than SB3 and SB4. For the sake of completeness,
we included the area requirement of the unprotected implementation as well as
the latency of different designs in Table 1.

Decryption usually requires the inverse of the Sbox. Therefore, it is important
that the Sbox inverse has comparably good properties to the original Sbox.
For SB4 this is obvious since the Feistel-structure makes it straightforward to
construct the inverse. Therefore, inverse SB4 has exactly the same properties as
SB4. For the other cases, this is not trivial. Nevertheless, the inverse of each of
our-considered quadratic functions is self-affine equivalent.

6 Conclusion and Future Work

In this work we identified a set of six 8-bit S-boxes with highly useful proper-
ties using a systematic search on a range of composite Sbox constructions. Our
findings include 8-bit Sboxes that provide comparable or even higher resistance
against linear and differential cryptanalysis with respect to other 8-bit Sbox
but intrinsically support the TI concept without any external randomness. At
the same time our selected Sboxes come with a range of useful implementation
properties, such as a highly efficient serialization option, or a very low area re-
quirement. Future work comprises extended criteria for the Sbox composition,
including diffusion layers beyond permutations.
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A Feistel-Search Complexity Reduction

The following proposition summarizes the equivalence we described above.

Proposition 1. Let F and G be such that there exists an affine function A such
that G = A ◦ F ◦A−1. We define:

B : Fn
2 × Fn

2 → Fn
2 × Fn

2

(L,R) 7→ (A(L), A(R)).

Then we have Feistel1G = B ◦ Feistel1F ◦B−1.

Proof. ∀(L,R) ∈ Fn
2 × Fn

2

Feistel1G(L,R) = (R⊕G(L), L)

= (R⊕A(F (A−1(L))), L)

= (A(A−1(R)⊕ F (A−1(L)), A(A−1(L)))

= B(A−1(R)⊕ F (A−1(L)), A−1(L))

= B(Feistel1F (A−1(L), A−1(R)))

= B(Feistel1F (B−1(L,R)))

ut

A ◦ F ◦ A−1 F

A−1 A−1

A A

Fig. 5. Illustration of the two equivalence representation of Feistel1G.

It follows that FeistelnG = B(FeistelnF (B−1)), since middle terms cancel each
others. Thus, we have FeistelnG is affine equivalent to FeistelnF , and have the same
cryptanalytic properties. In Figure 5 we represent the two equivalent represen-
tation of Feistel1G.
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B Selected Sboxes

Table 4. Distribution of the algebraic degrees of the component functions of SB1.

Order 1 2 3 4 5 6 7

Count 0 0 3 4 120 128 0

Table 5. The round function of SB1(xy). 8 iterations of it result in the final Sbox.

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 80 C0 84 C4 00 40 04 44 A0 E0 E4 A4 24 64 60 20
1 81 C1 85 C5 01 41 05 45 A1 E1 E5 A5 25 65 61 21
2 90 D0 94 D4 10 50 14 54 B0 F0 F4 B4 34 74 70 30
3 91 D1 95 D5 11 51 15 55 B1 F1 F5 B5 35 75 71 31
4 82 C2 86 C6 02 42 06 46 A2 E2 E6 A6 26 66 62 22
5 83 C3 87 C7 03 43 07 47 A3 E3 E7 A7 27 67 63 23
6 92 D2 96 D6 12 52 16 56 B2 F2 F6 B6 36 76 72 32
7 93 D3 97 D7 13 53 17 57 B3 F3 F7 B7 37 77 73 33
8 88 C8 8C CC 08 48 0C 4C A8 E8 EC AC 2C 6C 68 28
9 89 C9 8D CD 09 49 0D 4D A9 E9 ED AD 2D 6D 69 29
A 98 D8 9C DC 18 58 1C 5C B8 F8 FC BC 3C 7C 78 38
B 99 D9 9D DD 19 59 1D 5D B9 F9 FD BD 3D 7D 79 39
C 8A CA 8E CE 0A 4A 0E 4E AA EA EE AE 2E 6E 6A 2A
D 8B CB 8F CF 0B 4B 0F 4F AB EB EF AF 2F 6F 6B 2B
E 9A DA 9E DE 1A 5A 1E 5E BA FA FE BE 3E 7E 7A 3A
F 9B DB 9F DF 1B 5B 1F 5F BB FB FF BF 3F 7F 7B 3B
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Table 6. Distribution of the algebraic degrees of the component functions of SB2.

Order 1 2 3 4 5 6 7

Count 0 7 24 224 0 0 0

Table 7. The round function of SB2(xy). 2 iterations of it result in the final Sbox.

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 22 60 A6 E4 1A 58 DC 9E 41 03 79 3B FD BF 87 C5
1 06 44 82 C0 3E 7C F8 BA 65 27 5D 1F D9 9B A3 E1
2 6A 28 EE AC 52 10 94 D6 09 4B 31 73 B5 F7 CF 8D
3 4E 0C CA 88 76 34 B0 F2 2D 6F 15 57 91 D3 EB A9
4 A1 E3 25 67 99 DB 5F 1D C2 80 FA B8 7E 3C 04 46
5 85 C7 01 43 BD FF 7B 39 E6 A4 DE 9C 5A 18 20 62
6 CD 8F 49 0B F5 B7 33 71 AE EC 96 D4 12 50 68 2A
7 E9 AB 6D 2F D1 93 17 55 8A C8 B2 F0 36 74 4C 0E
8 14 56 90 D2 2C 6E EA A8 77 35 4F 0D CB 89 B1 F3
9 30 72 B4 F6 08 4A CE 8C 53 11 6B 29 EF AD 95 D7
A 97 D5 13 51 AF ED 69 2B F4 B6 CC 8E 48 0A 32 70
B B3 F1 37 75 8B C9 4D 0F D0 92 E8 AA 6C 2E 16 54
C DF 9D 5B 19 E7 A5 21 63 BC FE 84 C6 00 42 7A 38
D FB B9 7F 3D C3 81 05 47 98 DA A0 E2 24 66 5E 1C
E 78 3A FC BE 40 02 86 C4 1B 59 23 61 A7 E5 DD 9F
F 5C 1E D8 9A 64 26 A2 E0 3F 7D 07 45 83 C1 F9 BB
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Table 8. Distribution of the algebraic degrees of the component functions of SB3.

Order 1 2 3 4 5 6 7

Count 0 0 0 0 0 63 192

Table 9. The round function of SB3(xy). 4 iterations of it result in the final Sbox.

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 77 5C 32 19 FD D6 B8 93 40 05 CA 8F 2E 6B A4 E1
1 54 7F 11 3A DE F5 9B B0 63 26 E9 AC 0D 48 87 C2
2 31 1A 74 5F BB 90 FE D5 06 43 8C C9 68 2D E2 A7
3 12 39 57 7C 98 B3 DD F6 25 60 AF EA 4B 0E C1 84
4 FB D0 BE 95 71 5A 34 1F CC 89 46 03 A2 E7 28 6D
5 D8 F3 9D B6 52 79 17 3C EF AA 65 20 81 C4 0B 4E
6 9E B5 DB F0 14 3F 51 7A A9 EC 23 66 C7 82 4D 08
7 BD 96 F8 D3 37 1C 72 59 8A CF 00 45 E4 A1 6E 2B
8 4C 67 09 22 C6 ED 83 A8 7B 3E F1 B4 15 50 9F DA
9 6F 44 2A 01 E5 CE A0 8B 58 1D D2 97 36 73 BC F9
A C0 EB 85 AE 4A 61 0F 24 F7 B2 7D 38 99 DC 13 56
B E3 C8 A6 8D 69 42 2C 07 D4 91 5E 1B BA FF 30 75
C 86 AD C3 E8 0C 27 49 62 B1 F4 3B 7E DF 9A 55 10
D A5 8E E0 CB 2F 04 6A 41 92 D7 18 5D FC B9 76 33
E 29 02 6C 47 A3 88 E6 CD 1E 5B 94 D1 70 35 FA BF
F 0A 21 4F 64 80 AB C5 EE 3D 78 B7 F2 53 16 D9 9C
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Table 10. Distribution of the algebraic degrees of the component functions of SB4.

Order 1 2 3 4 5 6 7

Count 0 0 0 0 0 15 240

Table 11. The round function of SB4(xy). 5 iterations of it result in the final Sbox.

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 60 70 40 50 20 30 00 10 E0 F0 C0 D0 A0 B0 80 90
1 21 31 01 11 61 71 41 51 A1 B1 81 91 E1 F1 C1 D1
2 72 62 52 42 32 22 12 02 F2 E2 D2 C2 B2 A2 92 82
3 13 03 33 23 53 43 73 63 93 83 B3 A3 D3 C3 F3 E3
4 64 74 44 54 24 34 04 14 E4 F4 C4 D4 A4 B4 84 94
5 A5 B5 85 95 E5 F5 C5 D5 25 35 05 15 65 75 45 55
6 E6 F6 C6 D6 A6 B6 86 96 66 76 46 56 26 36 06 16
7 07 17 27 37 47 57 67 77 87 97 A7 B7 C7 D7 E7 F7
8 58 48 78 68 18 08 38 28 D8 C8 F8 E8 98 88 B8 A8
9 89 99 A9 B9 C9 D9 E9 F9 09 19 29 39 49 59 69 79
A 5A 4A 7A 6A 1A 0A 3A 2A DA CA FA EA 9A 8A BA AA
B AB BB 8B 9B EB FB CB DB 2B 3B 0B 1B 6B 7B 4B 5B
C 1C 0C 3C 2C 5C 4C 7C 6C 9C 8C BC AC DC CC FC EC
D 4D 5D 6D 7D 0D 1D 2D 3D CD DD ED FD 8D 9D AD BD
E 8E 9E AE BE CE DE EE FE 0E 1E 2E 3E 4E 5E 6E 7E
F FF EF DF CF BF AF 9F 8F 7F 6F 5F 4F 3F 2F 1F 0F
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Table 12. Distribution of the algebraic degrees of the component functions of SB5.

Order 1 2 3 4 5 6 7

Count 0 0 0 0 0 3 252

Table 13. The round function of SB5(xy). 9 iterations of it result in the final Sbox.

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 64 60 65 61 24 20 25 21 74 70 71 75 35 31 30 34
1 E4 E0 E5 E1 A4 A0 A5 A1 F4 F0 F1 F5 B5 B1 B0 B4
2 66 62 67 63 26 22 27 23 76 72 73 77 37 33 32 36
3 E6 E2 E7 E3 A6 A2 A7 A3 F6 F2 F3 F7 B7 B3 B2 B6
4 6C 68 6D 69 2C 28 2D 29 7C 78 79 7D 3D 39 38 3C
5 EC E8 ED E9 AC A8 AD A9 FC F8 F9 FD BD B9 B8 BC
6 6E 6A 6F 6B 2E 2A 2F 2B 7E 7A 7B 7F 3F 3B 3A 3E
7 EE EA EF EB AE AA AF AB FE FA FB FF BF BB BA BE
8 44 40 45 41 04 00 05 01 54 50 51 55 15 11 10 14
9 C4 C0 C5 C1 84 80 85 81 D4 D0 D1 D5 95 91 90 94
A 46 42 47 43 06 02 07 03 56 52 53 57 17 13 12 16
B C6 C2 C7 C3 86 82 87 83 D6 D2 D3 D7 97 93 92 96
C CC C8 CD C9 8C 88 8D 89 DC D8 D9 DD 9D 99 98 9C
D 4C 48 4D 49 0C 08 0D 09 5C 58 59 5D 1D 19 18 1C
E CE CA CF CB 8E 8A 8F 8B DE DA DB DF 9F 9B 9A 9E
F 4E 4A 4F 4B 0E 0A 0F 0B 5E 5A 5B 5F 1F 1B 1A 1E
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Table 14. Distribution of the algebraic degrees of the component functions of SB6.

Order 1 2 3 4 5 6 7

Count 0 0 0 0 1 62 192

Table 15. The round function of SB6(xy). 4 iterations of it result in the final Sbox.

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 E6 B9 4B 14 9F C0 32 6D 07 58 F5 AA D3 8C 21 7E
1 EB B4 46 19 92 CD 3F 60 0A 55 F8 A7 DE 81 2C 73
2 EF B0 42 1D 96 C9 3B 64 0E 51 FC A3 DA 85 28 77
3 E2 BD 4F 10 9B C4 36 69 03 5C F1 AE D7 88 25 7A
4 E7 B8 4A 15 9E C1 33 6C 06 59 F4 AB D2 8D 20 7F
5 EA B5 47 18 93 CC 3E 61 0B 54 F9 A6 DF 80 2D 72
6 E3 BC 4E 11 9A C5 37 68 02 5D F0 AF D6 89 24 7B
7 EE B1 43 1C 97 C8 3A 65 0F 50 FD A2 DB 84 29 76
8 E4 BB 49 16 9D C2 30 6F 05 5A F7 A8 D1 8E 23 7C
9 E9 B6 44 1B 90 CF 3D 62 08 57 FA A5 DC 83 2E 71
A E5 BA 48 17 9C C3 31 6E 04 5B F6 A9 D0 8F 22 7D
B E8 B7 45 1A 91 CE 3C 63 09 56 FB A4 DD 82 2F 70
C EC B3 41 1E 95 CA 38 67 0D 52 FF A0 D9 86 2B 74
D E1 BE 4C 13 98 C7 35 6A 00 5F F2 AD D4 8B 26 79
E E0 BF 4D 12 99 C6 34 6B 01 5E F3 AC D5 8A 27 78
F ED B2 40 1F 94 CB 39 66 0C 53 FE A1 D8 87 2A 75
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C Masked bitslice implementation

For completeness we also look at the masked bitslice implementation of Sboxes
with a low number of AND gates (≤ 16), i.e. SB1 and SB2. Software imple-
mentations are not vulnerable to glitches hence the probing model [23] is good
to model the security of these implementations. We use the solution for secure
AND proposed in [23] and take advantage of the proof of Rivain and Prouff [38]
to limit the number of shares. The results are plotted in Figure 6. As expected
the number of AND is determinant for large masking order and the cost of the
linear part becomes negligible. In particular, SB2, Scream v3 and Robin have
the same number of AND (12) and differ just by the linear part. The 3 curves
converge toward the same curve.
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Fig. 6. Bitslice masked implementation for the ATMEGA644p.
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