
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 142, Number 5, May 2014, Pages 1717–1731
S 0002-9939(2014)11905-8
Article electronically published on February 19, 2014

STRONG ANALYTIC SOLUTIONS

OF FRACTIONAL CAUCHY PROBLEMS

JEBESSA B. MIJENA AND ERKAN NANE

(Communicated by Mark M. Meerschaert)

Abstract. Fractional derivatives can be used to model time delays in a dif-
fusion process. When the order of the fractional derivative is distributed over
the unit interval, it is useful for modeling a mixture of delay sources. In some
special cases a distributed order derivative can be used to model ultra-slow
diffusion. We extend the results of Baeumer and Meerschaert in the single
order fractional derivative case to the distributed order fractional derivative
case. In particular, we develop strong analytic solutions of distributed order
fractional Cauchy problems.

1. Introduction

This paper develops a strong analytic solution for distributed order fractional
Cauchy problems. Cauchy problems ∂u

∂t = Lu model diffusion processes and have
appeared as an essential tool for the study of dynamics of various complex sto-
chastic processes arising in anomalous diffusion in physics [26, 32], finance [11],
hydrology [7], and cell biology [30]. Complexity includes phenomena such as the
presence of weak or strong correlations, different sub- or super-diffusive modes,
and jump effects. For example, experimental studies of the motion of macro-
molecules in a cell membrane show apparent subdiffusive motion with several si-
multaneous diffusive modes (see [30]). The simplest case, L = Δ =

∑
j ∂

2u/∂x2
j ,

governs a Brownian B(t) with density u(t, x), for which the square root scaling
u(t, x) = t−1/2u(1, t−1/2x) pertains [10].

The fractional Cauchy problem ∂βu/∂tβ = Lu with 0 < β < 1 models anomalous
sub-diffusion, in which a cloud of particles spreads slower than the square root of
time. When L = Δ, the solution u(t, x) is the density of a time-changed Brownian
motion B(E(t)), where the non-Markovian time change E(t) = inf{τ > 0;D(τ ) >
t} is the inverse or first passage time of a stable subordinator D(t) with index β.
The scaling D(ct) = c1/βD(t) in law implies E(ct) = cβE(t) in law for the inverse
process, so that u(t, x) = t−β/2u(1, t−β/2x).

The process B(E(t)) is the long-time scaling limit of a random walk [19, 20]
when the random waiting times between jumps belong to the β-stable domain of
attraction. Roughly speaking, a power-law distribution of waiting times leads to a
fractional time derivative in the governing equation. Recently, Barlow and C̆erný
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[5] obtained B(E(t)) as the scaling limit of a random walk in a random environ-
ment. More generally, for a uniformly elliptic operator L on a bounded domain
D ⊂ R

d, under suitable technical conditions and assuming Dirichlet boundary con-
ditions, the diffusion equation ∂u/∂t = Lu governs a Markov process Y (t) killed at
the boundary, and the corresponding fractional diffusion equation ∂βu/∂tβ = Lu
governs the time-changed process Y (E(t)) [23].

In some applications, waiting times between particle jumps evolve according to a
more complicated process which cannot be adequately described by a single power
law. A mixture of power laws leads to a distributed order fractional derivative in
time [9, 16–18, 21, 27]. An important application of distributed order diffusions is
to model ultraslow diffusion where a plume of particles spreads at a logarithmic
rate [21, 31]. This paper considers the distributed order time-fractional diffusion
equations with the generator L of a uniformly bounded and strongly continuous
semigroup in a Banach space. Hahn et al. [12] discussed the solutions of such
equations on Rd, as well as the connections with certain subordinated processes.
Kochubei [14] proved strong solutions on Rd for the case L = Δ. Luchko [15]
proved the uniqueness and continuous dependence on initial conditions on bounded
domains. Meerschaert et al. [24] established the strong solutions of distributed
order fractional Cauchy problems in bounded domains with Dirichlet boundary
conditions.

When L is the generator of a uniformly bounded and continuous semigroup on
a Banach spaces, Baeumer and Meerschaert [3] showed that the solution of

∂βu/∂tβ = Lu

is analytic in a sectorial region. A similar problem has been considered in the
literature on a purely analytic level without a probabilistic interpretation of the
subordination representation; see, for example, Prüss [29, Corollary 4.5]. The case
of a single fractional order was also considered by Bazhlekova [6].

In this paper, we extend the results of Baeumer and Meerschaert [3] to the
distributed order fractional diffusion case. We follow the methods of Baeumer and
Meerschaert, with some crucial changes in the proof of our main results. Our proofs
work for operators L that are generators of uniformly bounded and continuous
semigroups on Banach spaces.

The paper is organized as follows. In the next section we give a brief introduction
about semigroups and their generators. In Section 3, we give preliminaries on the
distributed order fractional derivatives and the corresponding inverse subordinators.
We state and prove our main results in Section 4.

2. Cauchy problems and semigroups

A family of linear operators {T (t) : t ≥ 0} on a Banach space X such that
||T (t)f || ≤ M ||f || for all f ∈ X and all t ≥ 0 is called uniformly bounded. If
T (tn)f → T (t)f in X for all f ∈ X whenever tn → t, then the operator T is
strongly continuous. It is easy to check that {T (t); t ≥ 0} is strongly continuous if
T (t)f → f in X for all f ∈ X as t → 0. A family of linear operators {T (t) : t ≥ 0}
on a Banach spaceX such that T (0) is the identity operator and T (s+t) = T (s)T (t)
for all s, t ≥ 0 is called a semigroup.
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For any strongly continuous semigroup {T (t); t > 0} on a Banach space X we
define the generator

(2.1) Lf = lim
t→0+

T (t)f − f

t
in X,

meaning that ||t−1(T (t)f − f)− Lf || → 0 in the Banach space norm. The domain
D(L) of this linear operator is the set of all f ∈ X for which the limit in (2.1)
exists. The domain D(L) is dense in X, and L is closed, meaning that if fn → f
and Lfn → g in X, then f ∈ D(L) and Lf = g (see, for example, Corollary I.2.5
in [28]).

Another consequence of T (t) being a strongly continuous semigroup is that
u(t) = T (t)f solves the abstract Cauchy problem

d

dt
u(t) = Lu(t); u(0) = f

for f ∈ D(L). Furthermore, the integrated equation T (t)f = L
∫ t

0
T (s)fds + f

holds for all f ∈ X (see, for example, Theorem I.2.4 in [28]).

3. Distributed order fractional derivatives

The Caputo fractional derivative [8] is defined for 0 < β < 1 as

(3.1)
∂βu(t, x)

∂tβ
=

1

Γ(1− β)

∫ t

0

∂u(r, x)

∂r

dr

(t− r)β
.

Its Laplace transform is

(3.2)

∫ ∞

0

e−st ∂
βu(t, x)

∂tβ
dt = sβũ(s, x)− sβ−1u(0, x),

where ũ(s, x) =
∫∞
0

e−stu(t, x)dt and it incorporates the initial value in the same
way as the first derivative. The distributed order fractional derivative is

(3.3) D
(μ)u(t, x) :=

∫ 1

0

∂βu(t, x)

∂tβ
μ(dβ),

where μ is a finite Borel measure with μ(0, 1) > 0. For a function u(t, x) continuous
in t ≥ 0, the Riemann-Liouville fractional derivative of order 0 < β < 1 is defined
by

(3.4)

(
∂

∂t

)β

u(t, x) =
1

Γ(1− β)

∂

∂t

∫ t

0

u(r, x)

(t− r)β
dr.

Its Laplace transform is

(3.5)

∫ ∞

0

e−st

(
∂

∂t

)β

u(t, x) dt = sβ ũ(s, x).

If u(·, x) is absolutely continuous on bounded intervals (e.g., if the derivative exists
everywhere and is integrable), then the Riemann-Liouville and Caputo derivatives
are related by

(3.6)
∂βu(t, x)

∂tβ
=

(
∂

∂t

)β

u(t, x)− t−βu(0, x)

Γ(1− β)
.

The Riemann-Liouville fractional derivative is more general, as it does not require
the first derivative to exist. It is also possible to adopt the right hand side of (3.6)
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1720 JEBESSA B. MIJENA AND ERKAN NANE

as the definition of the Caputo derivative; see for example Kochubei [14]. Hence
we adopt this as our definition of a Caputo derivative in this paper. Then the
(extended) distributed order derivative is

(3.7) D
(μ)
1 u(t, x) :=

∫ 1

0

[(
∂

∂t

)β

u(t, x)− t−βu(0, x)

Γ(1− β)

]
μ(dβ),

which exists for u(t, x) continuous and agrees with the usual definition (3.3) when
u(t, x) is absolutely continuous.

Distributed order fractional derivatives are connected with random walk limits.
For each c > 0, take a sequence of i.i.d. waiting times (Jc

n) and i.i.d. jumps (Y c
n ).

Let Xc(n) = Y c
1 + · · · + Y c

n be the particle location after n jumps, and T c(n) =
Jc
1 + · · ·+ Jc

n the time of the nth jump. Suppose that Xc(ct) ⇒ A(t) and T c(ct) ⇒
Dψ(t) as c → ∞, where the limits A(t) and Dψ(t) are independent Lévy processes.
The number of jumps by time t ≥ 0 is Nc

t = max{n ≥ 0 : T c(n) ≤ t}, and
[22, Theorem 2.1] shows that Xc(Nc

t ) ⇒ A(Eψ(t)), where

(3.8) Eψ(t) = inf{τ : Dψ(τ ) > t}.
A specific mixture model from [21] gives rise to distributed order fractional

derivatives: Let (Bi), 0 < Bi < 1, be i.i.d. random variables such that P{Jc
i >

u|Bi = β} = c−1u−β, for u ≥ c−1/β. Then T c(ct) ⇒ Dψ(t), a subordinator with

E[e−sDψ(t)] = e−tψ(s), where

(3.9) ψ(s) =

∫ ∞

0

(e−sx − 1)φ(dx).

Then the associated Lévy measure is

(3.10) φ(t,∞) =

∫ 1

0

t−βν(dβ),

where ν is the distribution of Bi. An easy computation gives

ψ(s) =

∫ 1

0

sβΓ(1− β)ν(dβ) =

∫ 1

0

sβμ(dβ).(3.11)

Here we define μ(dβ) = Γ(1 − β)ν(dβ). Then, Theorem 3.10 in [21] shows that
c−1Nc

t ⇒ Eψ(t), where Eψ(t) is given by (3.8). The Lévy process A(t) defines a
strongly continuous convolution semigroup with generator L, and A(Eψ(t)) is the
stochastic solution to the distributed order fractional diffusion equation

(3.12) D
(μ)
1 u(t, x) = Lu(t, x),

where D
(μ)
1 is given by (3.7) with μ(dβ) = Γ(1− β)ν(dβ). The condition

(3.13)

∫ 1

0

1

1− β
ν(dβ) < ∞

is imposed to ensure that μ(0, 1) < ∞. Since φ(0,∞) = ∞ in (3.9), Theorem 3.1
in [22] implies that Eψ(t) has a Lebesgue density

(3.14) fEψ(t)(x) =

∫ t

0

φ(t− y,∞)PDψ(x)(dy).

Note that Eψ(t) is almost surely continuous and nondecreasing.
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4. Main results

LetDψ(t) be a strictly increasing Lévy process (subordinator) with E[e−sDψ(t)] =

e−tψ(s), where the Laplace exponent is

(4.1) ψ(s) = bs+

∫ ∞

0

(e−sx − 1)φ(dx),

b ≥ 0, and φ is the Lévy measure of Dψ. Then we must have either

(4.2) φ(0,∞) = ∞
or b > 0 or both; see [22]. Let

(4.3) Eψ(t) = inf{τ ≥ 0 : Dψ(τ ) > t}
be the inverse subordinator.

Let T be a uniformly bounded, strongly continuous semigroup on a Banach
space. Let

(4.4) S(t)f =

∫ ∞

0

(T (l)f)fEψ(t)(l)dl,

where fEψ(t)(l) is a Lebesgue density of Eψ(t).
Using (3.14), it is easy to show that∫ ∞

0

e−stfEψ(t)(l)dt =
1

s
ψ(s)e−lψ(s).

Using Fubini’s Theorem, we get

(4.5)

∫ ∞

0

ψ(s)e−lψ(s)T (l)fdl = s

∫ ∞

0

e−stS(t)fdt.

We define a sectorial region of the complex plane C(α) = {reiθ ∈ C : r > 0, |θ| <
α}. We call a family of linear operators on a Banach space X strongly analytic in a
sectorial region if for some α > 0 the mapping t → T (t)f has an analytic extension
to the sectorial region C(α) for all f ∈ X (see, for example, section 3.12 in [13]).

Let 0 < β1 < β2 < · · · < βn < 1. In the next theorem we consider the case where

ψ(s) = c1s
β1 + c2s

β2 + · · ·+ cns
βn .

In this case the Lévy subordinator can be written as

Dψ(t) = (c1)
1/β1D1(t) + (c2)

1/β2D2(t) + · · ·+ (cn)
1/βnDn(t),

where D1(t), D2(t), · · · , Dn(t) are independent stable subordinators of index 0 <
β1 < β2 < · · · < βn < 1.

Theorem 4.1. Let (X, ||.||) be a Banach space and L be the generator of a uni-
formly bounded, strongly continuous semigroup {T (t) : t ≥ 0}. Then the family
{S(t) : t ≥ 0} of linear operators from X into X given by (4.4) is uniformly
bounded and strongly analytic in a sectorial region. Furthermore, {S(t) : t ≥ 0} is
strongly continuous and g(x, t) = S(t)f(x) is a solution of

n∑
i=1

ci
∂βig(x, t)

∂tβi
= Lg(x, t); g(x, 0) = f(x)

for β1 < β2 < · · · < βn ∈ (0, 1).
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Proof. We adapt the methods of Baeumer and Meerschaert [3, Theorem 3.1] with
some very crucial changes in the following. For the purpose of completeness of the
arguments we have included some parts verbatim from Baeumer and Meerschaert
[3].

Since {T (t) : t ≥ 0} is uniformly bounded we have ||T (t)f || ≤ M ||f || for all
f ∈ X. Bochner’s Theorem ([1, Thm. 1.1.4]) implies that a function F : R1 → X
is integrable if and only if F (s) is measurable and ||F (s)|| is integrable, in which
case

||
∫

F (l)dl|| ≤
∫

||F (l)||dl.

For fixed f ∈ X and applying Bochner’s Theorem with F (l) = (T (l)f)fEψ(t)(l) we
have that

||S(t)f || = ||
∫ ∞

0

(T (l)f)fEψ(t)(l)dl||

≤
∫ ∞

0

||(T (l)f)fEψ(t)(l)||dl

=

∫ ∞

0

||T (l)f ||fEψ(t)(l)dl

≤
∫ ∞

0

M ||f ||fEψ(t)(l)dl = M ||f ||,

since fEψ(t)(l) is the Lebesgue density for Eψ(t). This shows that {S(t) : t ≥ 0} is
a well defined and uniformly bounded family of linear operators on X.

The definition of T (t) and the dominated convergence theorem imply

||S(t)f − f || = ||
∫ ∞

0

(T (l)f − f)fEψ(t)(l)dl||

≤
∫ ∞

0

||T (l)f − f ||fEψ(t)(l)dl

→ ||T (0)f − f || = 0

as t → 0+. This shows lim
t→0+

S(t)f = f . Now if t, h > 0, we have

||S(t+ h)f − S(t)f || ≤
∫ ∞

0

||T (l)f |||fEψ(t+h)(l)− fEψ(t)(l)|dl → 0

as h → 0+ since Eψ(t+ h) =⇒ Eψ(t) as h → 0. This shows that {S(t) : t > 0} is
strongly continuous.

Let q(s) =
∫∞
0

e−stT (t)fdt and r(s) =
∫∞
0

e−stS(t)fdt for any s > 0, so that we
can write (4.5) in the form

(4.6) ψ(s)q(ψ(s)) = sr(s)

for any s > 0. Now we want to show that this relation holds for certain complex
numbers. Fix s ∈ C+ = {z ∈ C : R(z) > 0}, and let F (t) = e−stT (t)f . Since F is
continuous, it is measurable, and we have ||F (t)|| ≤ |e−st|M ||f || = e−tR(s)M ||f ||
since ||T (t)f || ≤ M ||f ||, so that the function ||F (t)|| is integrable. Then Bochner’s
Theorem implies that q(s) =

∫∞
0

F (t)dt exists for all s ∈ C+, with

(4.7) ||q(s)|| = ||
∫ ∞

0

F (t)dt|| ≤
∫ ∞

0

||F (t)||dt ≤
∫ ∞

0

e−tR(s)M ||f ||dt = M ||f ||
R(s)

.
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Since q(s) is the Laplace transform of the bounded continuous function t 	→ T (t)f ,
Theorem 1.5.1 of [1] shows that q(s) is an analytic function on s ∈ C+.

Now we carry out the details of the proof only in the case n = 2. We want to
show that r(s) is the Laplace transform of an analytic function defined on a sectorial
region. Theorem 2.6.1 of [1] implies that if for some real x and some α ∈ (0, π/2]
the function r(s) has an analytic extension to the region x + C(α + π/2) and
if sup{||(s − x)r(s)|| : s ∈ x + C(α′ + π/2)} < ∞ for all 0 < α′ < α, then
there exists an analytic function r(t) on t ∈ C(α) such that r(s) is the Laplace
transform of r(t). We will apply the theorem with x = 0. It follows from (4.6) that
r(s) = 1

sψ(s)q(ψ(s)) for all s > 0, but here the right hand side is well defined and
analytic on the set of complex s that are not on the branch cut and are such that
R(ψ(s)) = R(c1s

β1 + c2s
β2) > 0. Since β1 < β2, it suffices to consider R(sβ2) > 0,

so if 1/2 < β2 < 1, then r(s) has a unique analytic extension to the sectorial
region C(π/2β2) = {s ∈ C : Re(sβ2) > 0} (e.g., [13, 3.11.5]), and we note that
π/2β2 = π/2 + α for some α > 0. If β2 < 1/2, then r(s) has an analytic extension
to the sectorial region s ∈ C(π/2 + α) for any α < π/2 and R(sβ2) > 0 for all such
s. Now for any complex s = reiθ such that s ∈ C(π/2 + α′) for any 0 < α′ < α, we
have in view of (4.6) and (4.7) that

||sr(s)|| = ||ψ(s)q(ψ(s))||
= |c1sβ1 + c2s

β2 |||q(c1sβ1 + c2s
β2)||

=

∣∣∣∣ c1r
β1eiβ1θ + c2r

β2eiβ2θ

c1rβ1 cos(β1θ) + c2rβ2 cos(β2θ)

∣∣∣∣
×||R(c1s

β1 + c2s
β2)q(c1s

β1 + c2s
β2)||

≤
∣∣∣∣ c1r

β1eiβ1θ

c1rβ1 cos(β1θ) + c2rβ2 cos(β2θ)

∣∣∣∣M ||f ||

+

∣∣∣∣ c2r
β2eiβ2θ

c1rβ1 cos(β1θ) + c2rβ2 cos(β2θ)

∣∣∣∣M ||f ||

≤
(

1

cos(β1θ)
+

1

cos(β2θ)

)
M ||f ||,(4.8)

which is finite since |β1θ| < |β2θ| < π/2. Hence Theorem 2.6.1 of [1] implies there
exists an analytic function r(t) on t ∈ C(α) with Laplace transform r(s). Using the
uniqueness of the Laplace transform (e.g., [1, Thm. 1.7.3]), it follows that t 	→ S(t)f
has an analytic extension (namely t 	→ r(t)) to the sectorial region t ∈ C(α). Next
we wish to apply Theorem 2.6.1 of [1] again to show that for any 0 < β1 < β2 < 1
the function

(4.9) t 	→
∫ t

0

(t− u)−βi

Γ(1− βi)
S(u)fdu, i = 1, 2,

has an analytic extension to the same sectorial region t ∈ C(α). It is easy to show
that

(4.10)

∫ ∞

0

t−βi

Γ(1− βi)
e−stdt = sβi−1

for any 0 < βi < 1 and any s > 0. Since r(s) is the Laplace transform of t 	→ S(t)f ,
it follows from the convolution property of the Laplace transform (e.g. property
1.6.4 of [1]) that the function (4.9) has Laplace transform sβi−1r(s) for all s > 0.
Since r(s) has an analytic extension to the sectorial region s ∈ C(π/2+α), so does
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sβi−1r(s). For any x > 0, if s = x+ reiθ for some r > 0 and |θ| < π/2 + α′ for any
0 < α′ < α, then in view of (4.8) we have

||(s− x)sβi−1r(s)|| = ||(s− x)sβi−2sr(s)||

≤ r||sβi−2||
(

1

cos(β1θ)
+

1

cos(β2θ)

)
M ||f ||,

where ||s|| is bounded away from zero, ||s|| ≤ r + x and βi − 2 < −1, so that
||(s − x)sβi−1r(s)|| is bounded on the region x + C(α′ + π/2) for all 0 < α′ < α.
Then it follows as before that the function (4.9) has an analytic extension to the
sectorial region t ∈ C(α).

Since {T (t) : t ≥ 0} is a strongly continuous semigroup with generator L, The-

orem 1.2.4 (b) in [16] implies that
∫ t

0
T (s)fds is in the domain of the operator L

and

T (t)f = L

∫ t

0

T (s)fds+ f.

Since the Laplace transform q(s) of t 	→ T (t)f exists, Corollary 1.6.5 of [1] shows

that the Laplace transform of t 	→
∫ t

0
T (s)fds exists and equals s−1q(s). Corol-

lary 1.2.5 of [28] shows that L is closed. Fix s and let g = q(s) =
∫∞
0

e−stT (t)fdt
and gn be a finite Riemann sum approximating this integral, so that gn → g in X.
Let hn = s−1gn and h = s−1g. Then gn, g are in the domain of L, gn → g and
hn → h. Since hn is a finite sum, we also have L(hn) = s−1L(gn) → s−1L(g). Since
L is closed, this implies that h is in the domain of L and that L(h) = s−1L(g). In

other words, the Laplace transform of t 	→ L
∫ t

0
T (s)fds exists and equals s−1Lq(s).

Then we have by taking the Laplace transform of each term∫ ∞

0

e−slT (l)fdt = s−1L

∫ ∞

0

e−slT (l)fdl + s−1f

for all s > 0. Multiply through by s to obtain

s

∫ ∞

0

e−slT (l)fdl = L

∫ ∞

0

e−slT (l)fdl + f

and substitute c1s
β1+c2s

β2 for s to get (c1s
β1+c2s

β2)
∫∞
0

e−(c1s
β1+c2s

β2 )lT (l)fdl =

L
∫∞
0

e−(c1s
β1+c2s

β2)lT (l)fdl + f for all s > 0. Now use (4.5) twice to get

s

∫ ∞

0

e−slS(l)fdl = L

(
s

c1sβ1 + c2sβ2

∫ ∞

0

e−slS(l)fdl

)
+ f,

and multiplying both sides by c1s
β1−2 + c2s

β2−2 we get
(4.11)

(c1s
β1−1+c2s

β2−1)

∫ ∞

0

e−slS(l)fdl = Ls−1

∫ ∞

0

e−stS(l)fdl+c1s
β1−2f+c2s

β2−2f,

where we have again used the fact that L is closed. The term on the left hand side
of (4.11) is c1s

β1−1r(s) + c2s
β2−1r(s), which was already shown to be the Laplace

transform of the function c1
∫ t

0
(t−u)−β1

Γ(1−β1)
S(u)fdu+ c2

∫ t

0
(t−u)−β2

Γ(1−β2)
S(u)fdu, which is

analytic in a sectorial region. Equation (4.10) also shows that sβi−2 is the Laplace

transform of t 	→ t1−βi

Γ(2−β) . Now take the term c1s
β1−2f + c2s

β2−2f to the other side

and invert the Laplace transforms. Using the fact that {S(t) : t ≥ 0} is uniformly
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bounded, we can apply the Phragmen-Mikusinski inversion formula for the Laplace
transform (see [2, Corollary 1.4]) to obtain

c1

(∫ t

0

(t− u)−β1

Γ(1− β1)
S(u)fdu− t1−β1

Γ(2− β1)
f

)

+ c2

(∫ t

0

(t− u)−β2

Γ(1− β2)
S(u)fdu− t1−β2

Γ(2− β2)
f

)

= lim
n→∞

L

Nn∑
j=1

αn,j
ecnj l

cnj

∫ ∞

0

e−cnj lS(l)fdl,

where the constants Nn, αn,j , and cnj are given by the inversion formula and the
limit is uniform on compact sets. Again using the fact that L is closed we get

c1

(∫ t

0

(t− u)−β1

Γ(1− β1)
S(u)fdu− t1−β1

Γ(2− β1)
f

)

+c2

(∫ t

0

(t− u)−β2

Γ(1− β2)
S(u)fdu− t1−β2

Γ(2− β2)
f

)

= L

∫ t

0

S(l)fdl,(4.12)

and since the function (4.9) is analytic in a sectorial region, the left hand side of
(4.12) is differentiable for t > 0 and Corollary 1.6.6 of [1] shows that

(4.13)
d

dt

∫ t

0

(t− u)−βi

Γ(1− βi)
S(u)fdu

has Laplace transform sβir(s) and hence (4.13) equals dβiS(t)f

dtβi
. Now take the

derivative with respect to t on both sides of (4.12) to obtain

c1

(
dβ1

dtβ1
S(t)f − t−β1

Γ(1− β1)
f

)
+ c2

(
dβ2

dtβ2
S(t)f − t−β2

Γ(1− β2)
f

)
= LS(t)f

for all t > 0, where we use the fact that L is closed to justify taking the derivative
inside. Using the relation (3.6) between the Rieman-Liouville and Caputo fractional
derivatives we have proved the theorem. �

The next theorem provides an extension with subordinator Dμ(t) as the weighted
average of an arbitrary number of independent stable subordinators. Let Eμ(t) be

the inverse of the subordinator Dμ(t) with Laplace exponent ψ(s) =
∫ 1

0
sβdμ(β)

where suppμ ⊂ (0, 1).

Theorem 4.2. Let (X, || · ||) be a Banach space and μ be a positive finite measure
with suppμ ⊂ (0, 1). Then the family {S(t) : t ≥ 0} of linear operators from X

into X given by S(t)f =

∫ ∞

0

(T (l)f)fEμ(t)(l)dl is uniformly bounded and strongly

analytic in a sectorial region. Furthermore, {S(t) : t ≥ 0} is strongly continuous
and g(x, t) = S(t)f(x) is a solution of

(4.14) D
(μ)
1 g(x, t) =

∫ 1

0

∂β
t g(x, t)μ(dβ) = Lg(x, t); g(x, 0) = f(x).
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Proof. Since suppμ ⊂ [0, 1), the density fEμ(t)(l), l ≥ 0, exists, and since ||T (l)f || ≤
M ||f ||, then S(t)f exists and ||S(t)f || ≤ M ||f ||. Also, S(t)f is strongly continuous
as in Theorem 4.1.

Let q(s) =
∫∞
0

e−stT (t)fdt and r(s) =
∫∞
0

e−stS(t)fdt for any s > 0. Then by
(4.5) we have

(4.15) ψ(s)q(ψ(s)) = sr(s), where ψ(s) =

∫ 1

0

sβμ(dβ)

for any s > 0. Now we want to show that this relation holds for certain complex
numbers s. In Theorem 4.1, we have shown that q(s) is an analytic function on

s ∈ C+ and ||q(s)|| ≤ M ||f ||
R(s) .

Now we want to show that r(s) is the Laplace transform of an analytic function
defined on a sectorial region. It follows from equation (4.15) that

r(s) =

(∫ 1

0

sβ−1μ(dβ)

)
q

(∫ 1

0

sβμ(dβ)

)

for all s > 0, but the right hand side here is well defined and analytic on the

set of complex s such that R
(∫ 1

0
sβμ(dβ)

)
> 0. Let β1 = sup{supp μ} and fix

ε > 0 small such that π/2−ε
β1

> π/2. So if 1/2 < β1 < 1, then r(s) has a unique

analytic extension to the sectorial region C(π/2−ε
β1

) ⊂ {s ∈ C : R(
∫ 1

0
sβμ(dβ)) > 0};

note that π/2−ε
β1

= π/2 + α for some α > 0. If 0 < β1 < 1/2, then r(s) has

an analytic extension to the sectorial region s ∈ C(π/2 + α) for any α < π/2,

and R(
∫ 1

0
sβμ(dβ)) > 0 for all such s. Now for any complex s = reiθ such that

s ∈ C(π/2 + α
′
) for any 0 < α

′
< α, we have that

||sr(s)|| =

∣∣∣∣
∣∣∣∣
(∫ 1

0

sβμ(dβ)

)
q

(∫ 1

0

sβμ(dβ)

)∣∣∣∣
∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣

∫ 1

0

sβμ(dβ)

R
(∫ 1

0

sβμ(dβ

)
∣∣∣∣∣∣∣∣∣
M ||f ||

=

∣∣∣∣∣
∫ 1

0
rβ cos(βθ)μ(dβ) + i

∫ 1

0
rβ sin(βθ)μ(dβ)∫ 1

0
rβ cos(βθ)μ(dβ)

∣∣∣∣∣M ||f ||

≤

⎛
⎜⎜⎝1 +

∣∣∣∣∣∣∣∣

∫ 1

0

rβ sin(βθ)μ(dβ)∫ 1

0

rβ cos(βθ)μ(dβ)

∣∣∣∣∣∣∣∣

⎞
⎟⎟⎠M ||f ||

≤

⎛
⎜⎜⎝1 +

∫ 1

0

rβ(dβ)

cos(π/2− ε)

∫ 1

0

rβμ(dβ)

⎞
⎟⎟⎠M ||f ||

=

(
1 +

1

cos(π/2− ε)

)
M ||f || < ∞.
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Hence Theorem 2.6.1 of [1] implies that there exists an analytic function r(t) on t ∈
C(α) with Laplace transform r(s). Using the uniqueness of the Laplace transform,
we find that t 	→ S(t)f has an analytic extension r(t) to the sectorial region t ∈
C(α).

As in Theorem 4.1 for any β ∈ suppμ the function

(4.16) t 	→
∫ t

0

(t− u)−β

Γ(1− β)
S(u)fdu

has an analytic extension to the sectorial region t ∈ C(α).
Next we wish to apply Theorem 2.6.1 of [1] again to show that for any 0 < β < 1

the function

(4.17) t 	→
∫ t

0

(∫ 1

0

(t− u)−β

Γ(1− β)
μ(dβ)

)
S(u)fdu

has analytic extension to the sectorial region t ∈ C(α). Since∫ ∞

0

(∫ 1

0

t−β

Γ(1− β)
μ(dβ)

)
e−stdt =

∫ 1

0

sβ−1μ(dβ)

for any 0 < β < 1 and any s > 0 and r(s) is the Laplace transform of t 	→ S(t)f ,
it follows from convolution property of the Laplace transform that the function
(4.17) has Laplace transform s−1ψ(s)r(s) for all s > 0. Since r(s) has an analytic
extension to the sectorial region s ∈ C(π/2 + α), so does s−1ψ(s)r(s). For any

x > 0, if s = x+ reiθ for some r > 0 and |θ| < π/2 + α
′
for any 0 < α

′
< α, then

we have

||(s− x)

(∫ 1

0

sβ−1μ(dβ)

)
r(s)||

= ||(s− x)

∫ 1

0

sβ−2s.r(s)μ(dβ)||

≤ r||
∫ 1

0

sβ−2μ(dβ)||(1 + 1

cos(π/2− ε)
)M ||f ||

≤ r

(∫ 1

0

||sβ−2||μ(dβ)
)(

1 +
1

cos(π/2− ε)

)
M ||f ||

≤ r

(∫ 1

0

xβ−2μ(dβ)

)(
1 +

1

cos(π/2− ε)

)
M ||f ||

=
r

x2

(∫ 1

0

xβμ(dβ)

)(
1 +

1

cos(π/2− ε)

)
M ||f ||.

Since μ is a positive finite measure and x > 0, ||(s− x)s−1ψ(s)r(s)|| is bounded on

the region x + C(α
′
+ π/2) for all 0 < α

′
< α. Then it follows as before that the

function (4.17) has an analytic extension to the sectorial region C(α).
Since {T (t) : t ≥ 0} is a strongly continuous semigroup with generator L, The-

orem 1.2.4 (b) in [28] implies that
∫ t

0
T (l)fdl is in the domain of the operator L

and

T (t)f = L

∫ t

0

T (l)fdl + f.
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Then by taking the Laplace transform of both sides we have∫ ∞

0

e−stT (t)fdt = s−1L

∫ ∞

0

e−stT (t)fdt+ s−1f

for all s > 0. Multiply both sides by s to obtain

s

∫ ∞

0

e−stT (t)fdt = L

∫ ∞

0

e−stT (t)fdt+ f

and substitute ψ(s) =
∫ 1

0
sβμ(dβ) for s to obtain

ψ(s)

∫ ∞

0

e−ψ(s)tT (t)fdt = L

∫ ∞

0

e−ψ(s)tT (t)fdt+ f

for all s > 0. Now use (4.15) twice to get

s

∫ ∞

0

e−stS(t)fdt = L
s

ψ(s)

∫ ∞

0

e−stS(t)fdt+ f

and multiply through by s−2ψ(s) to get

s−1ψ(s)

∫ ∞

0

e−stS(t)fdt = Ls−1

∫ ∞

0

e−stS(t)fdt+ ψ(s)s−2f

since L is closed. Invert the Laplace transform to get∫ t

0

(∫ 1

0

(t− u)−β

Γ(1− β)
μ(dβ)

)
S(u)fdu−

∫ 1

0

t1−β

Γ(2− β)
fμ(dβ)

= lim
n→∞

L

Nn∑
j=1

αn,j
ecnj

t

cnj

∫ ∞

0

e−Cnj
tS(t)fdt,

(4.18)

where the constants Nn, αn,j , and cn are given by the inversion formula.

Next, using Fubini’s Theorem we show that
∫ 1

0

∫ t

0
(t−u)−β

Γ(1−β) S(u)fduμ(dβ) have the

same Laplace transform, s−1ψ(s)r(s). This is true because∫ 1

0

∫ ∞

0

||e−st

∫ t

0

(t− u)−β

Γ(1− β)
S(u)f ||dudtμ(dβ)

≤ M ||f ||
∫ 1

0

∫ ∞

0

e−st

∫ t

0

(t− u)−β

Γ(1− β)
dudtμ(dβ)

= M ||f ||
∫ 1

0

∫ ∞

0

e−stt1−β

Γ(2− β)
dtμ(dβ)

≤ M ||f ||
∫ 1

0

sβ−2μ(dβ) < ∞.

(4.19)

Since μ is a positive finite measure and S(t)f is uniformly bounded, using Fubini’s
Theorem and the uniqueness of the Laplace transform for functions in L1

loc(R
d)

(Theorem 1.7.3 in [1]) we have∫ 1

0

[∫ t

0

(t− u)−β

Γ(1− β)
S(u)fdu− t1−β

Γ(2− β)
f

]
μ(dβ)

= lim
n→∞

L

Nn∑
j=1

αn,j
ecnj

t

cnj

∫ ∞

0

e−Cnj
tS(t)fdt.

(4.20)
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Again using the fact that L is closed we get∫ 1

0

[∫ t

0

(t− u)−β

Γ(1− β)
S(u)fdu− t1−β

Γ(2− β)
f

]
μ(dβ) = L

∫ t

0

S(u)fdu

and now take the derivative with respect to t on both sides to obtain∫ 1

0

(
dβ

dtβ
S(t)f − t−β

Γ(1− β)
f

)
μ(dβ) = LS(t)f

for all t > 0, where we use the fact that L is closed to justify taking the derivative
inside. �

Corollary 4.3. Let 0 < γ ≤ 2 and let −(−Δ)γ/2 be the fractional Laplacian on
L1(Rd) corresponding to the semigroup T (t) on L1(Rd). Let Y (t) be the correspond-
ing symmetric stable process (i.e. T (t)f(x) = Ex(f(Y (t)))). Then the family {S(t) :
t ≥ 0} of linear operators from X into X given by S(t)f =

∫ ∞

0

(T (l)f)fEμ(t)(l)dl =

E(f(Y (Eμ(t)))) is uniformly bounded and strongly analytic in a sectorial region.
Furthermore, {S(t) : t ≥ 0} is strongly continuous and g(x, t) = S(t)f(x) is a
solution of

(4.21)

∫ 1

0

∂β
t g(x, t)μ(dβ) = −(−Δ)γ/2g(x, t); g(x, 0) = f(x).

Remark 4.4. It looks like a challenging problem to extend the methods applied in
the main results to more general time operators defined as ψ(∂t)−φ(t,∞), where ψ
is defined in (4.1). Meerschaert and Scheffler [22] define this operator by its Laplace
transform as ∫ ∞

0

e−stψ(∂t)g(t)dt = ψ(s)g̃(s).

Likewise it looks like a challenging problem to extend the results in this paper to
the case where ψ(s) = (s + λ)β − λβ for λ > 0. This ψ gives rise to the so-called
tempered fractional derivative operator studied in [4, 25].
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