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Strong and tunable nonlinear optomechanical
coupling in a low-loss system
J. C. Sankey1, C. Yang1, B. M. Zwickl1, A. M. Jayich1 and J. G. E. Harris1,2*

A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator
coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the
mechanical and optical degrees of freedom. However, the form of this coupling is crucial in determining which phenomena
can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing
a flexible dielectric membrane enable us to realize several different forms of the optomechanical coupling. These include cavity
detunings that are (to lowest order) linear, quadratic or quartic in the membrane’s displacement, and a cavity finesse that is
linear in (or independent of) the membrane’s displacement. All these couplings are realized in a single device with extremely
low optical loss and can be tuned over a wide range in situ. In particular, we find that the quadratic coupling can be increased
three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable
of demonstrating the quantization of the membrane’s mechanical energy.

Nearly all optomechanical systems realized so far can
be characterized by a linear relationship between the
optical cavity’s detuning ω(x) and the displacement of the

mechanical element x (ref. 1). In the classical regime this ‘linear’
optomechanical coupling has enabled powerful laser cooling and
sensitive displacement readout of the mechanical element2–7. As
ω′ ≡ ∂ω/∂x increases, this linear coupling becomes stronger, and
it should become possible to observe quantum effects such as
laser cooling to the mechanical ground state8,9, quantum-limited
measurements of force and displacement10,11 and the production of
squeezed light12. In the quantum regime, however, the form of the
optomechanical coupling plays a crucial role in determining which
phenomena are observable. For example, linear coupling provides
a continuous readout of x , and so precludes a direct measurement
of one of the most striking features associated with the quantum
regime: the quantization of themechanical oscillator’s energy.

One device that has demonstrated a nonlinear optomechanical
coupling consists of a thin dielectric membrane placed inside a
Fabry–Perot cavity13. With the membrane positioned at a node (or
antinode) of the intracavity standing wave, ω(x) ∝ x2 to lowest
order. This ‘quadratic’ optomechanical coupling is compatible with
a quantum non-demolition (QND) readout of the membrane’s
energy Hm = h̄ωmnm, where ωm is the membrane’s resonant
frequency and nm is the membrane’s phonon number. Two distinct
schemes have been proposed for using this quadratic coupling
to demonstrate the quantization of the membrane’s energy. Both
schemes assume the membrane is laser cooled to mean phonon
number 〈nm〉< 1. Numerical estimates indicate that this level of
cooling should be feasible for the device described here, provided
it is precooled cryogenically8,9.

The goal of the first scheme is to monitor nm with resolution
sufficient to observe individual quantum jumps. This is not
feasible with the devices demonstrated so far, and would require
substantial improvements to the quadratic coupling strength
ω′′ ≡ ∂2ω/∂x2, the membrane’s optical absorption and the
membrane’s mechanical properties13.
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In the second scheme, the laser-cooled membrane would be
mechanically driven from the ground state to a large-amplitude
coherent state with 〈nm〉�1. The quadratic coupling would then be
used to monitor the membrane’s energy with resolution sufficient
to resolve fluctuations ∝

√
〈nm〉 corresponding to the shot noise

of the membrane’s phonons. Detailed calculations14 show that
this second scheme is considerably less demanding than the first,
though it still requires substantial improvements to ω′′ and the
membrane’s optical absorption.

Here we demonstrate an optomechanical device in which
ω′′ is increased by at least three orders of magnitude, whereas
the membrane’s optical absorption is substantially decreased.
The device satisfies the requirements for observing phonon
shot noise at a bath temperature T = 300mK, and represents
substantial progress toward observing individual quantum jumps.
The improvement in ω′′ is achieved by exploiting the full spectrum
of the optical cavity’s transverse modes, which exhibits numerous
avoided crossings as a function of the membrane’s position.
These crossings were not considered in previous work, which
assumed a one-dimensional model of the cavity and only a single
transverse optical mode13,15.

In addition to increased ω′′, we demonstrate considerable
flexibility within a single device: (1) ω′′ can be varied in situ
by adjusting the position and tilt of the membrane; (2) it is
possible to tune ω′′ to zero, thereby realizing a purely quartic
optomechanical coupling ω(x)∝ x4; (3) the gradient of the cavity
relaxation κ ′≡ ∂κ/∂x can be tuned over a wide range or set to zero;
(4) cavity modes with different forms of ω(x) (for example, linear
and quadratic) can be simultaneously addressed using multiple
laser frequencies, allowing for simultaneous laser cooling and QND
energy readout. Each type of coupling offers distinct functionality,
and together they represent a new set of tools for observing and
controlling quantum effects in optomechanical systems. We find
that the features in the cavity spectrum responsible for these
couplings are reproduced by a straightforward theoretical model,
allowing for optimization of future devices.
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Figure 1 |Avoided crossings in cavity spectra. a, Schematic of our set-up. b, Cavity transmission as a function of laser detuning and membrane
displacement. The membrane is positioned near the cavity waist, and the input laser is coupled to the low-order transverse cavity modes. The transverse
modes corresponding to the strongest transmission peaks are labelled. Images of each of these modes (captured with an infrared camera) are shown. Solid
lines show model results. c, Left, refined scans of the box labelled ‘c’ in b with the membrane aligned (upper) and tilted by 0.4 mrad (lower). Right, the
corresponding predictions of the model. d, Refined scan of the box labelled ‘d’ in c.

Strong purely quadratic optomechanical coupling
Our optomechanical system is shown schematically in Fig. 1a.
Two fixed end mirrors (radius of curvature R = 5 cm) form a
Fabry–Perot cavity with free spectral range 2.374GHz (length
L=6.313 cm) and empty-cavity finesseF=50,000. A 1mm2 flexible
Si3N4 membrane of nominal thickness t =50 nm and real refractive
index Re[n] = 2.0 is placed near the cavity waist. The membrane

is mounted on a motorized stage, providing control over the
membrane’s coarse position along the cavity axis (x̃) as well as its
tilt about the two transverse axes (ỹ and z̃). Piezoelectric transducers
allow for nanometre-scale displacements along x̃ .

Figure 1b shows the cavity’s transmission spectrum as a
function of membrane position x . The cosine-like detuning
curves are similar to those demonstrated previously13 and achieve
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Figure 2 | Tunability of avoided crossings for the membrane tilted by 0.48mrad about z̃. a, Transmission spectrum for the membrane positioned near the
cavity waist (x=0 µm). b, Transmission spectrum for the membrane displaced by−0.5 mm. c, Magnitudes of the gaps labelled in a and b plotted as a
function of the membrane’s displacement. Error bars indicate the frequency resolution of the transmission spectra from which the gaps were estimated.
Inset, magnitudes of the same gaps calculated from the model described in the text.
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Figure 3 |Optical relaxation gradients at avoided crossings. a, Measurements of cavity relaxation rate (upper) and detuning (lower) for each cavity mode
versus position for the membrane tilted by 0.66 mrad about the axis indicated in the figure. b, The same but for the membrane tilted through 0.61 mrad
about a different axis (indicated in the figure). The dotted arrows highlight the crossing whose gradient κ ′ reverses sign. c, Relaxation rate κ of the TEM00

mode as a function of membrane position. Symbols are data; the black solid line is a smoothed version of the data to show the λ/2= 532 nm periodicity.

ω′′/2π= 30 kHz nm−2 at their extrema. The data in Fig. 1b were
taken with the laser coupled to several of the cavity’s lower-
order transverse modes, and a number of apparent crossings
between these modes can be seen. We focus specifically on
the region highlighted by the dotted box in Fig. 1b, where the
TEM00 ‘singlet’ and the TEM{20,11,02} ‘triplet’ modes cross. Figure 1c
shows this region in greater detail with the membrane (1) lying
in the ỹ–z̃ plane and (2) tilted by 0.4mrad about the z̃ axis.

The behaviour in Fig. 1c(left) is ubiquitous among multiplets
of higher-order transverse modes: tilting the membrane lifts the
multiplet degeneracy, with modes of greater spatial extent along the
membrane slope (ỹ in this case) perturbed themost.

The central result of this article is illustrated in Fig. 1d, which
shows a high-resolution scan of the region indicated by the dotted
box in Fig. 1c. These data demonstrate that the apparent crossings
between the various optical modes are avoided, and that at their
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Table 1 |Comparison of parameters (cavity length L, finesse F, quadratic coupling ω′′, membrane frequency ωm, quality factor Qm

and mass m) to observe energy quantization in a mechanical resonator for the two schemes.

F ω′′/2π (MHz nm−2) ωm/2π Qm m

Quantum jumps: 300,000 10 100 kHz 1.2× 107 50 pg 6(0)
= 1.1

Phonon shot noise: 50,000 0.9 1 MHz 1.2× 107 40 ng S= 7.9

Both cases assume 5 µW of 1,064 nm light incident on a cavity of length L=6.313 cm in a 3He cryostat, the membrane positioned within 0.5 pm of the avoided crossing and the mechanical motion laser
cooled to nT <0.2 from a starting temperature T= 300 mK. For the phonon shot-noise experiment, the estimate assumes the membrane is driven to 1 nm amplitude of motion.

anticrossings ω(x) is purely quadratic with ω′′/2π substantially
greater than 30 kHz nm−2. For example, the TEM20–TEM00 crossing
in Fig. 1d shows ω′′/2π= 4.5MHznm−2 (dashed white lines). The
TEM02–TEM00 crossing is not resolved in the main body of Fig. 1d,
but the line-scan in the inset shows a splitting ≈ 200 kHz between
these modes. Assuming the crossing is of the usual hyperbolic form
ω(x)=±

√
(ω′x)2+ωs

2, where ω′ is the slope of ω(x) far from the
crossing and 2ωs is the gap at the degeneracy point, the data in
the inset indicate ω′′/2π∼> 30MHznm−2, which is three orders of
magnitude greater than previously demonstrated13.

We note that if the membrane is positioned so that two
modes realize a quadratic coupling, other modes will still
realize a linear coupling. In Fig. 1d this occurs at the position
x = 0 nm: here the eigenmodes formed by the TEM02 and TEM00
modes exhibit quadratic coupling whereas the TEM11 mode’s
coupling is linear. This means that lasers tuned to different
eigenmodes can simultaneously exploit different forms of the
optomechanical coupling.

We can understand the origin of these features by noting that
avoided crossings generally reflect a broken symmetry that prevents
eigenmodes from becoming degenerate. An ideal empty Fabry–
Perot cavity possesses symmetry that enables degeneracy between
transverse modes, but in our device we expect this symmetry to be
broken for two reasons: the curved wavefronts of the cavity modes
may not overlap perfectly with the flat membrane (for example, if
the membrane is tilted or displaced from the cavity waist), and the
empty cavity itself may be slightly asymmetric (for example, owing
to imperfect form of the endmirrors).

To make a quantitative analysis of the cavity spectrum and
the features in Fig. 1b–d, we developed a perturbative solution
of the Helmholtz equation to calculate the eigenmodes and
eigenfrequencies of a symmetric optical cavity into which a
dielectric slab is placed at an arbitrary location and tilt. As described
elsewhere16, the empty-cavity eigenfrequencies are perturbed by
an amount proportional to the eigenvalues of the matrix V,
where Vi,j ∝

∫ ∫ ∫
ψi(x,y,z)ψj(x,y,z) dx dy dz . Here ψk is the kth

unperturbed eigenmode of the cavity and the integral is taken over
the volume of the membrane.

Applying this theory to the four cavity modes of interest
(the singlet and triplet modes) quantitatively reproduces the
large-scale (∼GHz) sinusoidal shape of ω(x) seen in Fig. 1b
if we assume Re[n] = 2.0 and t = 39 nm (black lines). The
discrepancy between the fitted and nominal values of t presumably
reflects a combination of fabrication tolerances (∼5 nm) and
the limits of a first-order perturbation theory that includes only
four eigenmodes. Nonetheless, the intermediate-scale (∼10MHz)
features in Fig. 1c(left), such as the lifting of the triplet’s degeneracy,
are also quantitatively reproduced (Fig. 1c(right)). Small-scale
features such as avoided crossings agree with the model reasonably
well and are discussed below.

Tunability of quadratic coupling
The second result of this article is that ω′′ can be tuned over a wide
range by moving the membrane along the x̃ axis. This tunability
is important because in some situations it may be desirable to

decrease ω′′ to relax other experimental constraints. For example,
if ωs (∝1/ω′′) is small enough, the membrane’s motion may result
in non-adiabatic transfer of light between the two cavity modes
through Landau–Zener–Stückelberg-like transitions17.

The tunability of ω′′ is illustrated in Fig. 2a, b, which each
show six avoided crossings between the singlet and triplet modes.
When the membrane is at the cavity waist (Fig. 2a) the upper gaps
(triangles) are open and the lower gaps (squares) are closed. When
the membrane is displaced 500 µm (Fig. 2b) from the waist, the
two lower gaps open, the upper right gap opens further, and the
upper left gap closes. The full dependence of ωs on membrane
position is shown in Fig. 2c.

The perturbative model (Fig. 2c inset) reproduces the linear
dependence of ωs(x) as well as the slope ∂ωs/∂x measured for each
of the six gaps. The model differs from the data by a constant offset
∼3–4MHz for the middle and upper gaps (triangles and crosses in
Fig. 2c), which we attribute to asymmetry in the empty cavity that is
not included in themodel.We find below (Fig. 3c) that it is possible
to compensate for this intrinsic asymmetry by adjusting the axis
of the membrane tilt.

Tunable coupling betweenmotion and optical relaxation
In addition to creating large ω′′, mixing between the cavity modes
also causes the cavity loss rate κ to vary with x . Figure 3a(upper)
shows κ(x) for the singlet and triplet modes (the corresponding
detunings are shown in Fig. 3a(lower)). Far from the crossings
each cavity mode has a different κ , reflecting the different
overlap between each mode’s transverse profile and the mirrors’
inhomogeneities. At each avoided crossing the two modes swap
their value of κ , leading to a large κ ′ ≡ ∂κ/∂x . The dashed line in
Fig. 3a indicates a crossing at which κ ′>600 kHz nm−1.

Note that these data were taken with the membrane’s tilt axis
rotated by 45◦ to (ỹ+ z̃)/

√
2, and the transverse eigenmodes have

followed (inset camera images). The ability to rotate the transverse-
mode profiles provides some control over which portions of the
mirrors the optical modes sample, and enables us to tune κ ′ in
situ. In Fig. 3b we have rotated the membrane tilt axis back to z̃ ,
with the result that the same crossing shows κ ′ =−10 kHz nm−1.
Significantly, the sign of κ ′ has changed, implying that at an
intermediate tilt axis κ ′= 0.

Gradients in κ can have several consequences. A linear variation
of κ with x could preclude a QNDmeasurement of nm, so the ability
to tune κ ′ to zero is appealing. Separately, it has been predicted
that large values of κ ′ can be used to laser cool the membrane
to its ground state even when the device is not in the resolved-
sideband regime18. However, numerical estimates show that, even
with κ ′ = 600 kHz nm−1, the usual optomechanical coupling8,9 is
more promising for laser cooling the devices described here.

Variations in κ can also arise from optical absorption in the
membrane. Previous measurements using non-stoichiometric SiNx
membranes found that variations in κ were proportional to the
overlap of the intracavity standing wave and the membrane, and
were consistent with Im(n)≈ 2× 10−4 for λ= 1,064 nm (ref. 15).
Subsequent work found lower absorption in stoichiometric Si3N4
membranes, with Im(n) ∼< 10−5 for λ= 985 nm (ref. 19). Figure 3c
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shows κ for the TEM00 mode (using a Si3N4 membrane and
λ= 1,064 nm) as x is varied over a few λ. The small-scale (�λ)
variations in κ(x) are reproducible and periodic, and presumably
arise from mixing with higher-order modes. To estimate the
contribution to κ(x) from absorption in themembrane (as opposed
to mixing with higher-order modes), we extract the Fourier
component of κ(x) corresponding to the overlap between the
membrane and the intracavity standing wave. This sets an upper
limit of Im(n) ∼< 1.5× 10−6 at λ = 1,064 nm. The lower optical
absorption observed here should enable the use of cavities with
higher F while decreasing the quantum noise in the cavity and the
heating of the membrane.

Feasibility of observingmechanical energy quantization
To estimate the feasibility of observing energy quantization in the
membrane, we first use the expressions derived elsewhere13 for
6(0), the signal-to-noise ratio for measurement of a single quantum
jump. Assuming a single-port cavity20, we estimate 6(0)

= 1.1 for
a device with the parameters listed in the first row of Table 1.
This scheme requires higher finesse and smaller values of m and
ωm (which could be realized by patterning the membrane into a
free-standing pad supported by narrow beams), as well as cryogenic
precooling to T = 300mK. The key advances presented in this
paper regarding the realization of this scheme are the demonstration
of (1) sufficiently large ω′′ and (2) sufficiently low optical loss to
meet these requirements.

The requirements for observing phonon shot noise in the
membrane are described in ref. 14. The ratio between the
phonon shot-noise signal and the measurement imprecision for
such a measurement is S = 8n̄mnT6(0), where nT = kBT/h̄ωm.
The parameters listed in the second row of Table 1 result in
S = 7.9. Significantly, these parameters correspond to the device
demonstrated here; the value of ω′′/2π=0.9MHznm2 corresponds
to the lower avoided crossings resolved in Fig. 2b, and the amplitude
of the membrane’s motion (x0 = 1 nm) is well below the onset
of either dynamical bistability21 or Landau–Zener transitions.
A quality factor Qm = 1.2 × 107 was demonstrated in similar
membranes at T = 300mK (ref. 21).

Purely quartic optomechanical coupling
The final point of this article is to demonstrate a new type
of optomechanical nonlinearity: quartic (x4) coupling. Figure 4a
shows that, when the membrane tilt is increased to ∼1mrad, ω(x)
for the TEM20 mode undergoes a smooth transition from ω′′ > 0
(top) to ω′′< 0 (bottom); between these limits ω′′= 0 (middle) and
ω(x)∝ x4 to lowest order. A similar transition is visible in the faint
backgroundmodes of Figs 2a and 4b as a function ofmode index.

This form of ω(x) can be used to realize an optomechanical
coupling described (in the rotating-wave approximation) by the
Hamiltonian term H (4)

coup = h̄ω(4)x4
zpfnγ n

2
m, with ω(4)

≡ ∂4ω/∂x4,
xzpf=

√
h̄/2mωm and nγ the intracavity photon number. This type

of coupling can be used, for example, to prepare Schrödinger cat
states in the membrane22,23.

Although the quartic coupling in Fig. 4a is quite weak (ω(4)/2π=
0.4Hz nm−4), it may be possible to increase ω(4) using avoided
crossings. For example, the interaction between the triplet and
quintuplet modes (Fig. 4b) shows avoided crossings in which ω′′
changes sign. In analogy with the tunability of ω′′ demonstrated in
Fig. 2c, we expect that careful arrangement of themembrane tilt and
position will enable some of the crossings in Fig. 4b to be purely
quartic with a substantially larger ω(4).

Summary
We have demonstrated an optomechanical device in which the
strength and the form of the optomechanical coupling can be tuned
over a wide range in situ. We have demonstrated control over
whether the optical cavity detuning is (to lowest order) linear,
quadratic or quartic in the displacement of a micromechanical
membrane, and shown that the quadratic coupling is three orders of
magnitude stronger than previously demonstrated. This device also
demonstrates extremely lowoptical loss, and an optical loss gradient
that can be tuned to zero. These represent important advances in the
ongoing effort to observe and manipulate quantum behaviour in a
solid mechanical oscillator.

In particular, the combination of low optical loss and
strong quadratic coupling demonstrated here should enable the
observation of themembrane’s energy quantizationwithout further
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improvements to the present device. This combination will also
enable other functionalities related to quadratic coupling, including
dispersive QND readout of the intracavity photon number,
two-phonon laser cooling, conditional squeezing between the
reflected light and the membrane’s motion, and various types of
passive optical squeezing15,24.

Methods
All measurements were made at room temperature and pressure <10−5 torr. The
end mirrors were clamped to an invar spacer, and a mount equipped with three
motorized actuators (for tilting and displacing the membrane) was mounted on
this spacer. Two small piezoelectric elements provided finer positioning of the
membrane along the cavity axis. Spectroscopy was carried out by sweeping the
frequency of a continuous-wave Nd:YAG laser from low to high and stepping the
membrane position with the piezo elements. The cavity’s optical loss was measured
through cavity ringdown.

Received 23 February 2010; accepted 13 May 2010;
published online 27 June 2010
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