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Abstract— The paper presents a general theory of coupling
of eigenvalues of complex matrices of arbitrary dimension
smoothly depending on real parameters. The cases of weak
and strong coupling are distinguished and their geometric
interpretation in two and three-dimensional spaces is given.
General asymptotic formulae for eigenvalue surfaces near
diabolic and exceptional points are presented demonstrating
crossing and avoided crossing scenarios. Two numerical exam-
ples from crystal optics illustrate effectiveness and accuracy of
the presented theory.

I. INTRODUCTION

Behavior of eigenvalues of matrices dependent on param-
eters is a problem of general interest having many important
applications in natural and engineering sciences. In modern
physics, e.g. quantum mechanics, crystal optics, physical
chemistry, acoustics and mechanics, multiple eigenvalues
in matrix spectra associated with specific effects attract
great interest of researchers since the papers [1], [2]. In
recent papers, see e.g. [3]–[6], two important cases are
distinguished: the diabolic points (DPs) and the exceptional
points (EPs). From mathematical point of view DP is a
point where the eigenvalues coalesce, while corresponding
eigenvectors remain different; and EP is a point where both
eigenvalues and eigenvectors merge forming a Jordan block.
Both the DP and EP cases are interesting in applications and
were observed in experiments [6], [7].

In this paper we present a general theory of coupling
of eigenvalues of complex matrices of arbitrary dimen-
sion smoothly depending on multiple real parameters. Two
essential cases of weak and strong coupling based on a
Jordan form of the system matrix are distinguished. These
two cases correspond to diabolic and exceptional points,
respectively. We derive general formulae describing coupling
and decoupling of eigenvalues, crossing and avoided crossing
of eigenvalue surfaces. It is emphasized that the presented
theory of coupling of eigenvalues of complex matrices gives
not only qualitative, but also quantitative results on behavior
of eigenvalues based only on the information taken at the
singular points. The paper is based on the author’s previous
research on interaction of eigenvalues for matrices and
differential operators depending on multiple parameters [8]–
[11]; for more references see the recent book [12].
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II. STRONG COUPLING OF EIGENVALUES

Let us consider the eigenvalue problem

Au = λu (1)

for a general m×m complex matrix A smoothly depending
on a vector of n real parameters p = (p1, . . . , pn). Assume
that, at p = p0, two eigenvalues coalesce, i.e., the matrix
A0 = A(p0) has an eigenvalue λ0 of algebraic multiplicity
2. This eigenvalue can have one or two linearly independent
eigenvectors u, which determine the geometric multiplicity.

Let us consider a double λ0 possessing a single eigenvec-
tor u0. This case corresponds to the exceptional point. An
associated vector u1 given by

A0u1 = λ0u1 + u0 (2)

is the second vector of the invariant subspace corresponding
to λ0. An eigenvector v0 and an associated vector v1

corresponding to the complex conjugate eigenvalue λ0 of
the adjoint matrix (Hermitian transpose) A

∗ are determined
by

A
∗
0v0 = λ0v0, A

∗
0v1 = λ0v1 + v0,

(u1,v0) = 1, (u1,v1) = 0,
(3)

where (u,v) =
∑n

i=1 uivi denotes the Hermitian inner
product. The last two equations in (3) are the normalization
conditions determining v0 and v1 uniquely for a given u1.

Let us introduce real n-dimensional vectors f , g, h, r with
the components

fs = Re
(

∂A
∂ps

u0,v0

)
, gs = Im

(
∂A
∂ps

u0,v0

)
,

hs = Re
((

∂A
∂ps

u0,v1

)
+

(
∂A
∂ps

u1,v0

))
,

rs = Im
((

∂A
∂ps

u0,v1

)
+

(
∂A
∂ps

u1,v0

))
,

s = 1, . . . , n.

(4)

Then the bifurcation of λ0 into a pair of simple eigenvalues
λ+ and λ− under the perturbation of the parameter vector
p = p0 + Δp is described by the asymptotic formula [12]

λ± = λ0 ±
√〈f ,Δp〉 + i〈g,Δp〉

+(〈h,Δp〉 + i〈r,Δp〉)/2,
(5)

where the angular brackets denote inner product of real
vectors (terms of order o(‖Δp‖) are neglected inside and
outside the square root). The corresponding eigenvectors are
given by the asymptotic formula

u± = u0 ±
√

〈f ,Δp〉 + i〈g,Δp〉u1. (6)
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One can see that both the eigenvalues and eigenvectors
coalesce at the exceptional point. We call such a coupling of
eigenvalues strong.

Expressing real and imaginary parts of the eigenvalues λ±
from formula (5), we find

Reλ± = λ0 + 〈h,Δp〉/2

±
√(√〈f ,Δp〉2 + 〈g,Δp〉2 + 〈f ,Δp〉)/2,

(7)

Imλ± = λ0 + 〈r,Δp〉/2

±
√(√〈f ,Δp〉2 + 〈g,Δp〉2 − 〈f ,Δp〉)/2.

(8)

According to equation (5), the eigenvalue remains double
if 〈f ,Δp〉 = 〈g,Δp〉 = 0. Thus, the double complex
eigenvalue with a single eigenvector has codimension 2 and
appears at points of the surface of dimension n − 2 in the
space of n parameters [13].

Let us study behavior of the eigenvalues λ+ and λ− de-
pending on one parameter, say p1, when the other parameters
p2, . . . , pn are fixed in the neighborhood of p0. We assume
that f2

1 + g2
1 �= 0, which is the nondegeneracy condition.

Separating real and imaginary parts in (5) and isolating the
increment Δp1 in one of the equations, we get

g1(ReΔλ)2 − 2f1ReΔλ ImΔλ − g1(ImΔλ)2 = γ, (9)

where Δλ = λ± − λ0 and γ =
∑n

s=2(fsg1 − f1gs)Δps is a
small real constant.

If Δpj = 0, j = 2, . . . , n, or if they are nonzero
but satisfy the equality γ = 0, then equation (9) yields
two perpendicular lines intersecting at the point λ0 of the
complex plane. Due to variation of the parameter p1 two
eigenvalues λ± approach along one of the lines, merge to
λ0 at Δp1 = 0, and then diverge along the other line; see
Figure 1b, where the arrows show motion of eigenvalues with
a monotonous change of p1. The real and imaginary parts
of the eigenvalues λ± cross at p1 = p0

1 forming the double
cusps.

If γ �= 0, then equation (9) defines hyperbolae in the com-
plex plane. As Δp1 changes monotonously, two eigenvalues
λ+ and λ− moving along different branches of hyperbola
come closer, turn and diverge; see Figure 1a,c. Note that
for a small γ the eigenvalues λ± come arbitrarily close to
each other without coupling that means avoided crossing.
When γ changes the sign, the quadrants containing hyperbola
branches are changed to the adjacent. Either real parts of
the eigenvalues λ± cross due to variation of p1 while the
imaginary parts avoid crossing or vice-versa, as shown in
Figure 1a,c. By using (7), (8) we find that the crossings
occur at p×1 = p0

1 −
∑n

s=2(gs/g1)Δps and

Reλh = Reλ0 − 1
2g1

∑n
s=2(h1gs − g1hs)Δps,

Imλr = Imλ0 − 1
2g1

∑n
s=2(r1gs − g1rs)Δps.

If the vector of parameters consists of only two compo-
nents p = (p1, p2), then in the vicinity of the point p0,
corresponding to the double eigenvalue λ0, the eigenvalue
surfaces (7) and (8) have the form of the well-known
Whitney umbrella; see Figure 2.

III. WEAK COUPLING OF EIGENVALUES

Let us consider the case when λ0 is a double eigenvalue
of the matrix A0 = A(p0) with two eigenvectors u1 and u2.
This coupling point is known as a diabolic point. Since the
eigenvectors do not coincide at p0, we call such a coupling
of eigenvalues weak.

Let us denote by v1 and v2 two eigenvectors of the
complex conjugate eigenvalue λ0 for the matrix A

∗
0 satis-

fying the normalization conditions (u1,v1) = (u2,v2) = 1,
(u1,v2) = (u2,v1) = 0. These conditions define the unique
vectors v1 and v2 for given u1 and u2. Under perturbation
of parameters p = p0 + Δp, the bifurcation of λ0 into two
simple eigenvalues λ+ and λ− and corresponding eigenvec-
tors are described by the asymptotic formulae [12]

λ± = λ0 + Δλ±, u± = α±u1 + β±u2. (10)

The quantities Δλ±, α±, and β± are found from the 2 × 2
eigenvalue problem(

〈g11,Δp〉 〈g12,Δp〉
〈g21,Δp〉 〈g22,Δp〉

)(
α±
β±

)
= Δλ±

(
α±
β±

)
, (11)

where dij = (d1
ij , . . . , d

n
ij) is a complex vector with the

components

dk
ij =

(
∂A

∂pk
ui,vj

)
, (12)

and 〈dij ,Δp〉 = 〈Redij ,Δp〉 + i〈Imdij ,Δp〉.
By using (10), (11), we find the expressions for real and

imaginary parts of the increments Δλ± as

ReΔλ± =
Re 〈d11 + d22,Δp〉

2
±

√
|c| + Re c

2
, (13)

ImΔλ± =
Im 〈d11 + d22,Δp〉

2
±

√
|c| − Re c

2
, (14)

where

c =
〈d11 − d22,Δp〉2

4
+ 〈d12,Δp〉〈d21,Δp〉. (15)

The eigenvalue remains double under perturbation of pa-
rameters (λ+ = λ−) if Re c = Im c = 0. In general, the
perturbed double eigenvalue λ+ = λ− possesses a single
eigenvector u+ = u−, i.e., the weak coupling becomes
strong due to perturbation [12]. The perturbed double eigen-
value has two eigenvectors only when the matrix in the left-
hand side of (11) is proportional to the identity matrix, i.e.,
〈d11,Δp〉 = 〈d22,Δp〉 and 〈d12,Δp〉 = 〈d21,Δp〉 = 0.
These conditions represent six independent equations taken
for real and imaginary parts. Thus, weak coupling of eigen-
values is a phenomenon of codimension 6 [13], [14]. We
remark that some symmetries may decrease this codimen-
sion, e.g., the codimension is 3 for Hermitian matrices [1].
Another interesting case encountered in physical applications
corresponds to a complex non-Hermitian perturbation of a
symmetric two-parameter real matrix, when the eigenvalue
surfaces have coffee-filter singularity [3], [4], [14]. A general
theory of this phenomenon is given in [15].
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Fig. 1. Strong coupling of eigenvalues and avoided crossing.

Fig. 2. Crossing of eigenvalue surfaces near a point of strong interaction.
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First, let us study behavior of the eigenvalues λ+ and
λ− depending on one parameter, say p1, when the other
parameters p2, . . . , pn are fixed in the neighborhood of p0.
In case Δp2 = · · · = Δpn = 0, expressions (10) and (11)
yield

Δλ± =
(
(d1

11 + d1
22)/2

±
√

(d1
11 − d1

22)2/4 + d1
12d

1
21

)
Δp1.

(16)

The eigenvalues λ+ and λ− are smooth functions of one
parameter at the coupling point Δp1 = 0, see Figure 3a.
The corresponding eigenvectors u+ and u− remain different
(linearly independent) at all values of ε including their limits
at the point p0.

If the perturbations Δp2, . . . ,Δpn are nonzero, the avo-
ided crossing of the eigenvalues λ± with a change of p1

is a typical scenario. We can distinguish different cases by
checking intersections of real and imaginary parts of λ+ and
λ−. By using (13), we find that Re λ+ = Re λ− if Im c = 0,
Re c < 0. Analogously, from (14) it follows that Im λ+ =
Im λ− if Im c = 0, Re c > 0. Let us write expression (15) in
the form c = c0 + c1Δp1 + c2(Δp1)2, where the coefficients
c0, c1, and c2 are expressed in terms of components of the
vectors dij and the fixed perturbations Δp2, . . . ,Δpn. If the
discriminant D = (Im c1)2 − 4Im c0Im c2 > 0, the equation
Im c = 0 yields two solutions

Δpa
1 =

−Im c1 −
√

D

2Im c2
, Δpb

1 =
−Im c1 +

√
D

2Im c2
. (17)

There are no real solutions if D < 0, and the single solution
corresponds to the degenerate case D = 0. At the points
pa
1 = p0

1 + Δpa
1 and pb

1 = p0
1 + Δpb

1 the values of c are real,
and we denote them by ca and cb, respectively. The sign of
ca,b determines whether the real or imaginary parts of λ±
coincide at pa,b

1 .
In the nondegenerate case D �= 0, there are four types

of avoided crossing shown in Figure 3b–e. These cases are
classified according to the number of intersection for real and
imaginary parts of the eigenvalues λ±, and are distinguished
by the signs of the quantities D, ca, and cb.

Consider a system depending on two parameters p1 and
p2. Let us write expression (15) in the form c = c11(Δp1)2+
c12Δp1Δp2 + c22(Δp2)2, where

c11 = (d1
11 − d1

22)
2/4 + d1

12d
1
21,

c12 = (d1
11−d1

22)(d
2
11−d2

22)/2+d1
12d

2
21+d2

12d
1
21,

c22 = (d2
11 − d2

22)
2/4 + d2

12d
2
21.

If the discriminant D′ = (Im c12)2−4Im c11Im c22 > 0, the
equation Im c = 0 yields the two crossing lines

la : 2Im c11Δp1 + (Im c12 +
√

D′)Δp2 = 0,

lb : 2Im c11Δp1 + (Im c12 −
√

D′)Δp2 = 0.
(18)

There are no real solutions if D′ < 0, and the lines la and
lb coincide in the degenerate case D′ = 0. At points of the
lines la,b the values of c are real numbers of the same sign;

we denote γa = sign c for the line la, and γb = sign c for
the line lb.

It follows from (13) and (14) that the real or imaginary
parts of λ± coincide at la,b for negative or positive γa,b,
respectively. According to the signs of D′, γa, and γb,
we distinguish four types of the graphs for Re λ±(p1, p2)
and Im λ±(p1, p2) as shown in Figure 4. The singularities
of these surfaces include cones, intersecting surfaces, and
“clusters of shells”.

IV. EXAMPLE

Consider propagation of light in a homogeneous non-
magnetic crystal in the general case when the crystal pos-
sesses natural optical activity (chirality) and dichroism (ab-
sorption) in addition to biaxial birefringence. The optical
properties of the crystal are characterized by the inverse
dielectric tensor η. The vectors of electric field E and
displacement D are related as E = ηD. A monochromatic
plane wave of frequency ω that propagates in a direction
specified by a real unit vector s = (s1, s2, s3) has the form

D(r, t) = D(s) exp iω
(

n(s)
c s

T
r − t

)
,

H(r, t) = H(s) exp iω
(

n(s)
c s

T
r − t

)
,

(19)

where n(s) is a refractive index, and r = (x1, x2, x3) is the
real vector of spatial coordinates. Substituting the wave (19)
into Maxwell’s equations, we find [3], [16]

ηD(s) − s(sT ηD(s)) =
1

n2(s)
D(s). (20)

Equation (20) can be written in the form of an eigenvalue
problem for the complex non-Hermitian matrix A(s) =
(I − ss

T )η(s) dependent on the vector of parameters s =
(s1, s2, s3), where λ = n−2, u = D, and I is the identity
matrix. Notice that one of the eigenvalues of the matrix A

is always zero.
As a numerical example, we choose the inverse dielectric

tensor in the form

η =

⎛
⎝ 3 i 2i

i 1 0
2i 0 2

⎞
⎠ + i

⎛
⎝ 0 −s1 0

s1 0 −s3

0 s3 0

⎞
⎠ , (21)

where s3 =
√

1 − s2
1 − s2

2. The first matrix in the right-
hand side of (21) constitutes an anisotropy tensor, and the
second matrix describes chirality of the crystal. When s1 =
s2 = 0, the matrix A has the double eigenvalue λ0 = 2
with the single eigenvector u0 = (i,−1, 0)T and associated
vector u1 = (0, 1, 0)T . The eigenvector v0 = (i, 1, 1+i/2)T

and associated vector v1 = (i, 0, 1/2 − i/4)T correspond to
the double eigenvalue λ0 = 2 of the adjoint matrix A

∗.
Calculating the derivatives of the matrix A(s1, s2) at the
point s0 = (0, 0, 1) and using formulae (4), we obtain

f = (0, 4), g = (−4, 0), h = (0, 0), r = (−4, 0).

The eigensurfaces Reλ(s1, s2) and Imλ(s1, s2) in the vicin-
ity of the point s0 = (0, 0, 1) are given by the asymptotic
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Fig. 3. Weak coupling of eigenvalues and avoided crossing: a) Δp2 = · · · = Δpn = 0, b) D < 0, c) D > 0 and cacb < 0, d) D > 0 and ca,b < 0,
e) D > 0 and ca,b > 0.

expressions (7), (8) as

Reλ± = 2 ±
√

2s2 + 2
√

s2
1 + s2

2,

Imλ± = −2s1 ±
√

−2s2 + 2
√

s2
1 + s2

2.
(22)

These surfaces have the Whitney umbrella singularity at s1 =
s2 = 0, see Figure 2.

As a second numerical example, consider

η =

⎛
⎝ 1 + 5i 0 1 + 4i

0 1 + 5i 2i
1 + 4i 2i 4

⎞
⎠

+4i

⎛
⎝ 0 −s1 − is2 is3

s1 + is2 0 −s3

−is3 s3 0

⎞
⎠ .

(23)

At s0 = (0, 0, 1), the matrix A has the double eigenvalue
λ0 = 1 + 5i with two eigenvectors u1 = (1, 0, 0)T and
u2 = (0, 1, 0)T . The eigenvectors of λ0 for the adjoint matrix
A

∗ are v1 = (1, 0, −3−4i
1−5i )T and v2 = (0, 1, 2i

1−5i )
T . Taking

derivatives of the matrix A with respect to parameters s1

and s2 and using formula (12), we obtain

d11 = (−2 − 8i, 0), d12 = (6i,−9 − 4i),

d21 = (−10i, 7 − 4i), d22 = (0,−4i).
(24)

Using (24) in (13)–(15), we find approximations for real and
imaginary parts of the nonzero eigenvalues λ± near s0 as

Re λ± = 1 − s1 ±
√

(|c| + Re c)/2,

Im λ± = 5 − 4s1 − 2s2 ±
√

(|c| − Re c)/2,
(25)
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Fig. 4. Eigenvalue surfaces near a point of weak coupling: a) D′ < 0, b) D′ > 0 and γaγb < 0, c) D′ > 0 and γa,b < 0, d) D′ > 0 and γa,b > 0.
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where c = (45 + 8i)s2
1 + 128is1s2 + (−83 + 8i)s2

2. The
graphs for both Reλ(s1, s2) and Imλ(s1, s2) are given by
two surfaces intersecting at s1 = s2 = 0 as shown in
Figure 4b.

V. CONCLUSION

A general theory of coupling of eigenvalues of complex
matrices smoothly depending on multiple real parameters
has been presented. This theory gives a clear and complete
picture of crossing and avoided crossing of eigenvalues with
a change of parameters, providing qualitative and quantitative
description of eigenvalue surfaces based only on the informa-
tion at the diabolic and exceptional points. This information
includes eigenvalues, eigenvectors and associated vectors
with derivatives of the system matrix taken at the singular
points.
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