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Computationally characterizing magnetic properies of novel two-dimensional (2D) materials serves
as an important first step of exploring possible applications. Using density-functional theory, we
show that single-layer Fe3GeTe2 is a potential 2D material with sufficiently low formation energy to
be synthesized by mechanical exfoliation from the bulk phase with a van der Waals layered struc-
ture. In addition, we calculated the phonon dispersion demonstrating that single-layer Fe3GeTe2 is
dynamically stable. Furthermore, we find that similar to the bulk phase, 2D Fe3GeTe2 exhibits a
magnetic moment that originates from a Stoner instability. In contrast to other 2D materials, we
find that single-layer Fe3GeTe2 exhibits a significant uniaxial magnetocrystalline anisotropy energy
of 920 µeV per Fe atom originating from spin-orbit coupling. Finally, we show that applying biaxial
tensile strains enhance the anisotropy energy, which reveals strong magnetostriction in single-layer
Fe3GeTe2 with a sizable magneostrictive coefficient. Our results indicate that single-layer Fe3GeTe2
is potentially useful for magnetic storage applications.

I. INTRODUCTION

Two-dimensional (2D) materials such as graphene and
MoS2 exhibit a number of attractive properties that have
been extensively studied in the past decade.1 However,
in contrast to mechanical and optoelectronic properties,
the possibility of magnetism in 2D materials has received
little attention. Most of thus far predicted 2D mag-
netic materials2–11 are semiconductors with their mag-
netism originating from local magnetic moments and
with exchange interactions that can be interpreted by
the Heisenberg exchange model. In contrast, only a few
metallic 2D materials exhibiting magnetic order have
been computationally characterized.12,13 Owing to the
nature of itinerant electrons in a magnetic metallic 2D
material, it is worthwhile investigating whether another
classical model namely the Stoner model is applicable to
understand the origin of the spontaneous magnetization.
In addition to this fundamental scientific question, fer-

romagnetic metallic single-layer materials hold great po-
tential for magnetic storage applications. Modern mag-
netic storage media such as tape and hard disk commonly
consists of ferromagnetic metallic thin films associated
with high density of storage.14 In essence, a 2D or single-
layer material can be regarded as a thin film with ultra-
thin thickness. Therefore, applying single-layer materials
for magnetic storage could further increase the density of

data storage. A crucial parameter for magnetic record-
ing materials is the magnetic anisotropy energy (MAE),
which is defined as energy dependence on the direction
of the magnetization. Generally, for storage applications
materials with an easy magnetization axis and sizable
MAE are desirable.

In this paper, we investigate using density-functional
theory the magnetic properties of ferromagnetic single-
layer Fe3GeTe2 (FGT), which is a prototype of ferromag-
netic metallic single-layer material. The bulk Fe3GeTe2
compound was first synthesized by Deiseroth et al. in
2006.15 Fig. 1 illustrates the structure of a single-layer
of the bulk compound. Although single-layer FGT has
not yet been synthesized, we show that the layered bulk
FGT compound exhibits a very weak van-der-Waals in-
teraction between the layers, indicating the ease to me-
chanically exfoliate nanosheets from the bulk phase. We
elucidate the origin of the ferromagnetic order and find
that it can be described by Stoner’s criterion. In addi-
tion, we determine that single-layer FGT exhibits a large
MAE of 920 µeV per Fe atom. Finally, we explore the
effect of strain on the MAE and demonstrate that apply-
ing tensile strains of 2% enhance the MAE by 50%. The
dependence of the MAE on the strain shows strong mag-
netoelastic coupling in single-layer FGT, which exhibits
a significant magnetostrictive coefficient.
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FIG. 1. (a) Top and (b) side views of the atomic structure
of single-layer Fe3GeTe2. The unit cell is enclosed by the
dotted lines. Inequivalent Fe sites are numbered by I and II,
respectively.

II. METHODS

We perform density-functional calculations on single-
layer and bulk FGT with the projector augmented wave
(PAW) method,16,17 as implemented in the Vienna ab-

initio simulation package (VASP)18,19 within the local
density approximation (LDA).20 For bulk FGT, in addi-
tion to the LDA functional, we perform several compar-
ison calculations utilizing the Perdew-Burke-Ernzerhof
(PBE)21 and vdW-DF-optB8822–25 exchange-correlation
functional. The PAW potential describe the 1s22s22p6

states of Fe, the [Ar]3s23p63d10 states of Ge, and the
[Kr]4d10 states of Te as core states. A plane wave ba-
sis set with a cutoff energy of 700 eV is used. The first
Brillouin-zone integration is carried out using a 18×18×1
and 18 × 18 × 2 Γ-centered Monkhorst-Pack grids for
single-layer and bulk FGT, respectively. For all calcu-
lations a vacuum spacing of 16 Å sufficiently reduces the
interlayer interactions due to the periodic boundary con-
ditions. The atomic positions are fully optimized until
the Hellman-Feynman forces on each atom are smaller
than 0.01 eV/Å. To calculate the MAE, we include the
spin-orbit coupling (SOC) in the computation with a full
k-point grid, i.e. a total of 324 k points. The cho-
sen energy cutoff and k-point meshes ensure the accu-
racy of the total energy, MAE and magnetic moments
to 0.1 meV/atom, 10 µeV/atom and 0.001 µB/atom, re-
spectively.

TABLE I. Lattice parameters (a0 and c0, in Å) and av-
erage magnetic moment per Fe atom (m, in units of the
Bohr magneton µB ) of bulk Fe3GeTe2 calculated with vari-
ous exchange-correlation functionals. Available experimental
data are shown for comparison. The lattice constants were
measured from X-ray experiments and the magnetic moments
were estimated via measuring the temperature-dependent
magnetic susceptibility. The effective Hubbard U parame-
ter (U = 4.3 eV) is adopted from Ref. 26, which determines
the parameter based on unrestricted Hartree-Fock theory that
is capable of removing self-interaction errors. Using different
values for the U parameters, e.g., U = 2.0 or 6.0 eV, leads to
a similar overestimation of the magnetic moment.

Methods a0 c0 m

LDA 3.897 15.851 1.438

LDA+U 4.037 16.004 2.730

PBE 4.045 16.956 2.084

PBE+U 4.195 17.035 3.040

vdW-DF-optB88 4.045 16.539 2.057

vdW-DF-optB88+U 4.185 16.863 2.976

Experiment27 4.030 16.343 1.625

Experiment15 3.991 16.336 1.2

III. RESULTS AND DISCUSSION

We first assess the validity of applying the LDA func-
tional to investigate bulk FGT, which crystallizes as a
hexagonal layered structure with space group P63/mmc
(No. 194). Table I compares the calculated and
measured15,27 lattice parameters and magnetic moment
in bulk FGT for several choices of exchange-correlation
functionals. We observe that LDA slightly underesti-
mates the lattice parameters by about 3%, which is com-
mon for a number of materials.28 More importantly, LDA
predicts the magnetic moment within the range of ex-
perimental values. Applying the Hubbard correction to
the LDA functional with an effective U of 4.3 eV26 for
the Fe d states results in a slightly better agreement in
the lattice parameters, however, the magnetic moment
is drastically overestimated. The PBE functional, on
the other hand, overestimates the lattice parameters and
magnetic moment. Furthermore, including the U param-
eter into the PBE functional worsens the overestimation.
Similarly, the vdW-DF-optB88 functional22–25 and the
vdW-DF-optB88+U method, which account for the in-
terlayer van der Waals interactions, overestimate the lat-
tice parameters and the magnetic moment. This suggests
that the LDA functional alone is sufficient to accurately
describe the structure and magnetic properties of bulk
FGT. Given the good agreement between theory and ex-
periment for bulk FGT, we expect that the LDA func-
tional is also suitable to investigate the electronic and
magnetic properties of single-layer FGT, which is the fo-
cus of this work. Henceforth, unless another method is
mentioned, the LDA functional is used throughout our
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FIG. 2. The calculated phonon spectrum of single-layer
Fe3GeTe2 with the DFT-LDA method.

work.
Fig. 1 illustrates the structure of single-layer FGT as

one nanosheet of bulk FGT. The three Fe atoms in the
unit cell are located in two inequivalent Wyckoff sites,
henceforth referred to as Fe I and Fe II, respectively.
Each unit cell consists of five sublayers, where the top
and bottom layers are occupied by the Te atoms, the
second and fourth layers by Fe I atoms, and the middle
layer by both Fe II and Ge atoms.
We calculate the in-plane lattice parameter and local

magnetic moments of the Fe I and Fe II atoms for single-
layer FGT with the LDA functional. Table II shows that
the lattice parameter of single-layer FGT is very close to
the bulk value. Additionally, the average local magnetic
moment of the Fe atoms, mavg, in single-layer FGT is
1.48µB, which is nearly identical to that of bulk FGT.
We next examine the stability of single-layer FGT

using the two criteria of (i) formation energy relative
to the bulk phase and (ii) dynamically stable phonon
modes.29,30 The layered structure of bulk FGT suggests
that a feasible experimental method to extract single-
layer FGT sheets from bulk FGT could be mechanical or
liquid exfoliation methods, which are widely used to ob-
tain various single-layer materials such as graphene.31,32

The easiness of exfoliating a layered materials depends
on the formation energy of single-layer sheets,33 which is
defined as the energy difference between single-layer and
bulk FGT.34,35

TABLE II. In-plane lattice parameter (a0, in Å), individual
and average magnetic moment of Fe I and Fe II atoms (m, in
µB), and formation energy relative to the bulk phase (∆Ef ,
in meV/atom) of single-layer Fe3GeTe2.The formation energy
are calculated with both the LDA and the vdW-DF-optB88
functionals.

a0 mI mII mavg ∆ELDA
f ∆EvdW

f

3.909 1.723 1.005 1.484 48.9 62.8

Table II shows that the calculated formation en-
ergy, ∆Ef , of single-layer FGT relative to the bulk
phase is merely 48.9 meV/atom (22.4 meV/Å2) and
62.8 meV/atom (26.6 meV/Å2) using the LDA and the
vdW-DF-optB88 functional, respectively. Although the
description of van der Waals interactions is inaccurate in
the LDA functional, we observe similar binding energies
for both functionals. The low formation energy is com-
parable to that of various of 2D materials ranging from
5 to 40 meV/Å2 as calculated using the nonlocal cor-
relation functional method and the adiabatic-connection
fluctuation-dissipation theorem within the random-phase
approximation.36 Further the ∆Ef of single-layer FGT
is also well within the empirically observed bound of
200 meV/atom for the formation energy of 2D materi-
als that have experimentally been synthesized as free-
standing materials by, e.g., the exfoliation method, while
2D materials above that energy have only been synthe-
sized as multilayers or on substrates.37,38 Therefore, we
predict that single-layer FGT can be obtained by exfoli-
ation from bulk FGT.

Fig. 2 shows the phonon spectrum of single-layer FGT.
The lack of any unstable phonon modes suggests that
single-layer FGT is dynamically stable. Hence single-
layer FGT is a metastable phase with sufficiently low
formation energy.

We proceed to investigate the electronic and mag-
netic properties of single-layer FGT. Fig. 3 shows the
spin and orbital projected band structure. Similar to
its bulk counterpart, single-layer FGT remains metallic.
We observe that the Fe 3d orbitals dominate the band
structures around the Fermi level, with only minor hy-
bridization with the Ge p and Te p states. Moreover, we
observe several partially occupied d bands crossing the
Fermi level, which is consistent with the resulting non-
integer magnetic moment.

The metallic character, non-integer magnetic moment,
and shift in the energy bands of single-layer FGT indi-
cate that the ferromagnetism is of itinerant character.
This suggests invoking the Stoner model rather than the
Heisenberg model to understand the mechanism yielding
the magnetic order, because the latter model is suitable
to describe localized magnetic moments.39 Within the
Stoner model, two parameters determine whether a metal
favors ferromagnetism or paramagnetism. The first one is
the Stoner parameter I, and the second is the density of
states at the Fermi level, D(EF) of the non spin-polarized
system. The former parameter describes the strength of
electron exchange, whereas the latter is inversely propor-
tional to the kinetic energy of the electrons. The compe-
tition between the exchange and kinetic energy are taken
into account by the Stoner criterion, according to which
ferromagnetism is adopted if I ·D(EF) > 1.

The band dispersions for the two spin channels are
quite similar, except that we observe a nearly rigid shift
between the spin-up and down bands surrounding the
Fermi level, which is a typical feature of exchange split-
ting. The magnitude of exchange splitting at each k point
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FIG. 3. Orbital-resolved (a) spin-up and (b) spin-down band structures of single-layer Fe3GeTe2. (c) Electronic density of
states for the Fe d states in the non spin-polarized system in units of states/eV/Fe atom/spin of single-layer Fe3GeTe2. This
non spin-polarized electronic structure is used to obtain the density of states at the Fermi level D(EF), which is one of the two
Stoner parameters. All the band structures are from the DFT-LDA calculations.
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FIG. 4. Angular dependence of the magnetocrystalline
anisotropy energy of single-layer Fe3GeTe2 with the direction
of magnetization lying on three different planes. The energy,
obtained from DFT-LDA calculations, is set to zero for the
case of the spin being perpendicular to the 2D material. The
inset illustrates that the spin vector S on the xz, yz, and xz

plane is rotated with an angle θ about the y, x, and z axis,
respectively.

is different, therefore we evaluate the average exchange
splitting 〈ǫk〉 for the two band structures40 as the average
difference of Kohn-Sham eigenvalues of the spin-up and
spin-down bands and obtain 〈ǫk〉 = 1.05 eV. Using the
relation 〈ǫk〉 = I · mavg, we obtain I = 0.71 eV for the
Stoner parameter. Fig. 3(c) shows that the calculated
non spin polarized density of states at the Fermi level is
D(E) = 1.56 states/eV per Fe atom and spin. Therefore,
Stoner’s criterion that I ·D(E) > 1 is satisfied giving rise
to the itinerant ferromagnetic order in single-layer FGT.

To explore potential applications of single-layer FGT

in magnetic storage, we calculate its MAE. Fig. 4 depicts
the angular dependence of MAE on the xz, yz, and xy-
planes. On the xz or the yz plane the energy strongly
depends on the direction of magnetization, whereas on
the xy plane the energy is isotropic, consistent with the
uniaxial anisotropy of the hexagonal structure. We ob-
serve that single-layer FGT exhibits an easy magnetiza-
tion axis perpendicular to the 2D plane of the material.
This agrees well with the experimental observations for
the bulk FGT phase, where the easy magnetization axis
points along the c lattice vector perpendicular to the lay-
ers of the material.15

The presence of an easy magnetization axis in single-
layer FGT affects the character of the magnetically or-
dered low-temperature phase. Recent calculations for an-
other 2D material, VS2, showed an easy plane for the
magnetization11 in contrast to the easy axis for single-
layer FGT. As a result the magnetic ordering transitions
differ between these 2D materials. The Mermin-Wagner
theorem prohibits ferromagnetic order in 2D materials
with continuous spin symmetries.41 This means single-
layer VS2 can only display a quasi-long range ordered
phase at low temperatures with a power-law decay of the
correlation function.42 The easy magnetization axis in
single-layer FGT, however, means that this material be-
longs to the family of 2D Ising magnets. A similar easy
axis has also been reported in other single-layer ferromag-
netic materials such as CrX(X=Si, Ge, and Sn)Te3.

10

Based on the hexagonal symmetry of single-layer FGT,
the angular dependence of the MAE on the magnetiza-
tion angle θ in the xz or yz plane can be fit to43

MAE(θ) = K1 sin2θ +K2 sin4θ, (1)

where K1 and K2 are the magnetocrystalline anisotropy
coefficients, and θ is measured relative to the easy axis.
Fig. 4 displays a good fit of Eq. (1) to the calculated MAE
data. The resultingK1 andK2 are 0.844 and 0.074 eV/Fe
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FIG. 5. Variation of (a) MAE and (b) total magnetic moment
per Fe atom of single-layer Fe3GeTe2 under biaxial strain cal-
culated using the DFT-LDA approach.

atom, respectively. Both K1 and K2 are positive, which
agrees with the fact that single-layer FGT exhibits a sin-
gle easy axis.
We extract from Fig. 4 the uniaxial MAE defined as the

energy difference of single-layer FGT with the magnetiza-
tion axis aligned along the easy axis and perpendicular
to it. The calculated MAE of single-layer FGT is 920
µeV/atom, which is significantly larger than the value
for many ferromagnetic transition metals such as Fe, Co,
and Ni with MAE typically in the order of µeV/atom.44

In addition, the MAE of single-layer FGT is comparable
to that of FeCo alloys(∼700-800 µeV/atom), which are
predicted to be promising magnetic recording media.45

The observed large MAE suggest that single-layer FGT
has potential for applications in magnetic data storage
applications.
The MAE can also be obtained from the force theo-

rem, the validity of which has been proved by Freeman
and coworkers.46 According to the theorem, the MAE is
calculated as

Ed =

EF∑

i,k

ǫik|θ=90◦ −

EF∑

i,k

ǫik|θ=0◦ , (2)

where the first and second term denotes the summation
of the band energies ǫik up to the Fermi level for the mag-
net moments aligned in the θ = 90◦ and 0◦ directions,
respectively. The indices of bands and wave vectors are
labeled by i and k, respectively. With Eq.3, we calcu-
late the MAE of single-layer FGT as 520 µeV/Fe atom.
Although this value is smaller than that from the torque
method47as implemented in VASP, both MAE are indeed
on the same order. This confirms again the strong mag-
netic anisotropy in single-layer FGT.
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the supercell size of single-layer FGT. An extrapolation of
N→ ∞ is shown by the red solid line.

In addition to the electronic contribution, the shape
anisotropy caused by the dipole-dipole interactions also
contributes to the MAE.48 We denote the latter contri-
bution by Ed, which can be written as49

Ed =
1

4πµ0

∑

qq′R

1

|R+ q − q′|3
{Mq ·Mq′ − 3

[(R+ q − q′) ·Mq][(R+ q − q′) ·Mq′ ]

|R+ q − q′|2
} (3)

where µ0 is the permeability of vacuum, R and q are the
lattice vectors and atomic coordinates, respectively, and
M refers to the magnetic moments. Since Mq and Mq′

are parallel to each other, ∆Ed = Ed|θ=90◦ − Ed|θ=0◦ is

determined only by the second term of Eq.3. The r−3

dependence defines the long-range nature of the dipole-
dipole interactions. We therefore test the ∆Ed as a func-
tion of supercell sizes of N × N × 1, which is shown in
Fig.6. We find that the extrapolated ∆Ed of N → ∞ is

about -36 µeV/Fe atom, which is much smaller than the
electronic contribution. Hence, the contribution of the
shape anisotropy on the MAE of single-layer FGT can
be neglected.

The significant MAE exhibited by single-layer FGT is
caused by strong spin-orbit coupling (SOC). We calculate
the total magnetic moment including SOC and find an
average orbital moment for the Fe atoms of about 0.1 µB.
Although this value is much smaller than the orbital mag-
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netic moment of an isolated Fe2+ ion of 2 µB according
to Hund’s second rule, the remaining orbital moment of
the Fe ions in single-layer FGT is sizable, which indi-
cates that the orbital motion is incompletely quenched
and thus leads to the strong SOC and the large MAE.
We also observe from Fig.3(c) that the dxy and dx2−y2

atomic orbitals of Fe dominate the high DOS at the Fermi
level that leads to the Stoner instability. In addition, the
large orbital moment perpendicular to the plane of FGT
may result in significant SOC and lead to the observed
large MAE in single-layer FGT.

Strain has been shown to affect the MAE of various
materials.50–53 To explore the possibility to tune and
further enhance the MAE of single-layer FGT, we ap-
ply biaxial strains to the material. Fig. 5(a) depicts the
calculated MAE as a function of strains ranging from
−4% (compressive) to +4% (tensile). We observe that
the MAE increases with increasing tensile strain. In par-
ticular, we observe a MAE of 1.59 meV/Fe atom for the
maximum applied tensile strain of 4%. To understand the
variation of MAE with strain, we show in Fig. 5(b) the
total magnetic moment as a function of strains. We find
that the total magnetic moment follows the same trend
as the strain is varied. This suggests that the strength of
SOC is enhanced by tensile strain leading to the increase
of the MAE.

The dependence of the MAE on the applied biaxial
strain reveals a strong magnetoelastic coupling that leads
to magnetostriction54 in ferromagnetic single-layer FGT.
To determine the corresponding magnetostrictive coeffi-
cient λ, we write the general magnetoelastic energy den-
sity Eme of a hexagonal crystal as55

Eme = B1(α
2
3 − 1/3)(ǫ11 + ǫ22) +B2(α

2
3 − 1/3)ǫ33

+B3(1/2(α
2
1 − α2

2)(ǫ11 − ǫ22) + α1α2ǫ12)

+B4(α3α1ǫ31 + α2α3ǫ23). (4)

Here, Bi (i = 1, 2, 3, 4) are the magnetoelastic coupling
coefficients56 and αj (j = 1, 2, 3) are direction cosines
of the magnetic moments relative to the easy axis. We
focus on the 2D magnetostriction mode and apply biaxial
strains ǫ11= ǫ22 = ǫ, while the other strain components
are set to zero. In this case, α3 =1 and α1 = α2 = 0,
which reduces Eq.4 to Eme = 4/3B1ǫ. We evaluate the
magnetoelastic coupling coefficient for biaxial strain as

B1 =
3

4

dEme

dǫ
, (5)

and obtain a value of 27.5 meV/Fe atom or 0.075 J/m2

by linear fitting the strain-dependent MAE shown in
Fig. 5(a). With the calculated 2D elastic stiffness con-
stant C11 of 134 N/m, we determine λ57 from λ=-B1/C11

as −559×10−6 or −559 ppm (parts per million). This
value is sizable and comparable to those of Fe1−xGax al-
loys (Galfenol) with a λ about 280 ppm,58 which indicates
strong magnetostriction in single-layer FGT.

IV. CONCLUSIONS

We predicted using density-functional calculations
that single-layer Fe3GeTe2 is a metastable metallic com-
pound with a low formation energy and dynamically sta-
ble phonon modes. In addition, we observe a signifi-
cant exchange splitting in the Fe d bands along with a
high density of states at the Fermi level. Stoner’s cri-
terion is fulfilled leading to itinerant ferromagnetic or-
der in this single-layer material. We show that single-
layer Fe3GeTe2 exhibits significant magnetocrystalline
anisotropy with an anisotropy energy of 920 µeV/atom
that is tunable by mechanical strain. Finally, we find that
single-layer Fe3GeTe2 possesses a substantial magne-
tostrictive coefficient of −556 ppm owing to strong mag-
netoelastic coupling. Our findings suggest that single-
layer Fe3GeTe2 is a promising candidate suitable for
magnetic storage applications. Further, our process of
characterizing this single-layer material including stabil-
ity, exchange interactions, magnetocrystalline anisotropy,
and tuning parameter serves as a general integral proce-
dure to search for other useful magnetic two-dimensional
materials.
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