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STRONG APPROXIMATION FOR SET-INDEXED PARTIAL
SUM PROCESSES VIA KMT CONSTRUCTIONS III

EMMANUEL RIO

ABSTRACT. We generalize the results of Komlds, Major and Tusnady
concerning the strong approximation of partial sums of independent
and identically distributed random variables with a finite r-th moment
to the case when the parameter set is two-dimensional. The most
striking result is that the rates of convergence are exactly the same as
in the one-dimensional case.

1. INTRODUCTION AND RESULTS

In this paper, we continue the research started in Rio (1993a, 1993b, 1990).
So, the purpose of this paper is to establish strong invariance principles for
partial-sum processes indexed by a class S of subsets of the unit cube ]0, 1]%.
These processes are determined by an array (X;);ez of random variables.
If § is any collection of subsets of the unit cube, we define the partial-sum

process {X (vS) : 5 € S} by

XwS)=)_ X.

ieEvS

When d = 1, § is the class of subintervals of [0, 1] and (X;);>0 is a sequence of
independent and identically distributed real-valued random variables with a
finite r-th moment for some r > 2, Komlés, Major and Tusnady (1975, 1976)
proved that a sequence (Y;);so of independent and identically distributed
Gaussian variables may be constructed in such a way that

sup X (1S) =Y (vS)] = o(r¥") as. (1.1)

By the second Borel-Cantelli lemma, the rates of strong approximation ap-
pearing above are optimal [Breiman (1967)].

Our aim is to obtain optimal rates of convergence in strong invari-
ance principles for partial-sum processes when the time parameter is multi-
dimensional. In that case the optimal rates depend mostly on the geometric
properties of the class S [see Beck (1985) and Rio (1993a)]. When S is
a Vapnik-Chervonenkis class of subsets of the unit cube with uniformly
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320 EMMANUEL RIO

bounded perimeter (such as the class of Euclidean balls or the class of
boxes...) Rio (1993a) obtained
sup | X (vS) = Y (©S)| = o( ' Y/2/logv) a.s. (1.2)
SeSs
for any r > 2d/(d — 1) and (1.1) for 2 < r < 2d/(d — 1). It comes from the
lower bounds of Beck (1985) that (1.2) is optimal, up to an eventual factor
Viogv, when S is the class of Euclidean balls [Rio (1993a)].

However, Beck (1985) proved that for the class of Euclidean balls and
the class of lower-left orthants the lower bounds to the distances between
the normalized empirical measure and the nearest Brownian measure have
entirely different order of magnitude. For example, when § is the class of
lower-left orthants, the lower bounds to the distance between the normal-
ized empirical measure 7, (.) and the Brownian measure are of the order of
n=' /% (logn)(?=1/2 Furthermore, in the two-dimensional case, the strong
invariance principle for the normalized uniform empirical process holds with
rate n~'/%(logn)? [Tusnddy (1977)]. By contrast, when S is the class of Eu-
clidean balls, the lower bounds to the distance between the normalized em-
pirical measure Z,(.) and the Brownian measure are of the order of n /%),

So one can think that (1.2) may be improved. In this paper, we prove
that (1.1) holds for any r > 2, when d = 2 and § is the class of lower-left
orthants. Let us now state our main result.

NoTATION 1.1. Throughout the paper, Z? is equipped with the product
order. We set 1 = (1,1).

THEOREM 1.2. Let (X;);eze be an array of real-valued independent random
variables with common distribution function I’ such that

/Rx?dF(x) — 1 and /RxdF(x) 0.

Assume furthermore that

/ |z|"dF(z) < co for some 1 > 4.
R

Then there exists an array (Y;);ez of independent standard normal random
variables such that

= o) as.

sup ‘ Z (X;—-Yi)

me[l,v]? 1<i<m

Now we prove Theorem 1.2. The proof of this theorem is mainly based
on a two-dimensional construction of the two arrays of independent random
variables, which combines the matching method of Tusnddy (1977) [this
matching method can be modified to obtain a strong invariance principle
for the two-dimensional Poisson process| together with a powerful exten-
sion of the results of Komlés, Major and Tusnady (1976) to non identically
distributed random variables, due to Sakhanenko (1985a, 1985b). This tech-
nique was already used in Rio (1990) to obtain an error term of the order
of v2/"(logr)?. In this paper, we remove the extra factor (logr)? using
adaptive truncations as in Bass (1985) and the new levels of truncations
introduced in Laurent-Bonvalot (1991). Unfortunately the matching tech-
niques fail when d > 3 and we are unable to generalize this result to higher
dimensions. Now we describe our method of construction of the two arrays.
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SET-INDEXED PARTIAL SUM PROCESSES III 321

2. CONSTRUCTION OF THE ARRAYS

Contrary to Rio (1993a, 1993b), we construct the two arrays in Z*. The
main tool for the construction is a matching argument, which is similar to
the matching argument previously used by Tusnddy (1977). In order to
construct the arrays, we need to introduce some more notation.

DEFINITION 2.1. Let (X;);ezz be asequence of real-valued random variables
with mean zero. For any nonincreasing cadlag function H : RT — R™, let
H~1 denote the cadlag inverse function of H, which is defined by

H™ (u) =sup{t € RT : H(t) > u},

with the convention that sup ) = 0. For any real-valued random variable X

with distribution function F, we denote by Q) x or () the inverse function
of Hx :t — P(|X]| > ¢).

Throughout the sequel, we need the following representation of a ran-
dom variable Z with distribution function F.

NoTATION 2.2. Let Z be a random variable with distribution function F
and ¢ be a random variable with uniform distribution, independent of Z.
Let

Hylt=0) = P(2]> t) = li Hz (o

and u be the uniformly distributed random variable which is defined by
uw=Hz(|Z]) + 6(Hz(|Z] = 0) = Hz(|Z]))-

Then |Z| = Qr(u) almost surely. We denote by (G the bivariate distribution
function of (u,Z) and by I, the distribution function of Z1,55--1.

In order to construct the arrays, we need the following lemma, due to

Skorohod (1976).

LEMMA 2.3. If rq and ry are random variables with values in two Polish
spaces R1 and R, and ¢ is a random variable with uniform distribution
over [0, 1] independent of (ry,rs), then there exists a measurable function
¢: Ry X Ry x[0,1] — [0, 1] and a measurable function g : Ry X [0,1] — Ry
for which there hold the following relations: ((rq,r2,0) is independent of ry,
has uniform distribution over [0,1] and r1 = ¢(r2,((r1,72,9)) a.s.

From Lemma 2.3, it follows that it suffices to construct the two arraysin
another probability space. Let (7;);cz be an array of independent random
variables with common distribution function F. In order to construct the
arrays, we will divide Z? into dyadic squares. Clearly, for any natural integer
N, [1,2VF12\[1, 2]? is a disjoint union of three dyadic squares (C, n)y=123
of the length 2. So we will define the arrays (X;)icc, , and (Y;)iec, v as a
measurable function of (Z;);ec, , and some auxiliary random variable. The
main step of the proof is the following theorem.

THEOREM 2.4. Let IV be a distribution function satisfying the assumptions
of Theorem 1 and @ be any nonincreasing function from ]0,1] to RT such
that Q > Qp and u — u*/*?Q(u) is nonincreasing.
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322 EMMANUEL RIO

An array (X;);en on2 of independent random variables with common

distribution function F' and an array (Y;);ep ov12 of independent and Gaus-
sian random variables with

E(Y;) = / vdFyn(z) and E(Y?) = / 2 dFyn(z) (a)
R R
may be constructed in such a way that, for any w in ]0, 1],

]P’( sup Z (X, - Y;)

men 2Vl 52

> eQ(u)) < 2Ny (b)

for some constant ¢, depending only on r and on [ x*dF(x).

Proof. Clearly we may assume that the underlying probability space con-
tains an array (u;, Z;); of independent random variables with common dis-
tribution G.

In order to prove Theorem 2.4, we shall use repeatedly the following

extension of the results of Komlds, Major and Tusnady (1976), due to Sakha-
nenko (1985a, 1985b).
THEOREM 2.5. Let o > 2 and (&;)iep,n] be a sequence of independent real-
valued random variables having a finite moment of order . Then there
exists a sequence (1;);ecp,n of independent Gaussian random variables sat-
isfying the condition

(&) = E(n:), E(§7) =E(nf) for any i€ [l,n]

and such that

E( sup i(& — 1)

mn =1

) < Cat Y (G,
i=1

where C' is some positive universal constant.

Let us now introduce the two-dimensional Haar basis on the space
2([1,2M]2 N Z?) equipped with the usual inner product.
DEFINITION 2.6. Let I;; =](k — 1)27,k2/] N Z. and e;x be the indicator
function of /;j. For any positive integer j we set €, = €; 1 — 2€;_1 2k-
Then '
B={eni}U{é:j€[l,N], ke 1,287}

is an orthogonal basis of the space £2([1,2V] N Z) equipped with the usual
inner product. Therefore B ® B is an orthogonal basis of ¢2([1,2]? N Z?)
equipped with the usual inner product.

We denote by B’ = {eg; : [ € [1,2"]} the usual orthonormal basis of
C([1,2N]N Z). Then

B' @ {ena}UB@{ém:j€[l,N],me[1,2V77]}

is an orthogonal basis of ¢*([1,2V]?> N Z?) equipped with the usual inner
product.
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Consequently, to define the Gaussian array (Y;); it suffices to construct
a Gaussian random vector with independent components

(Vv L€ 1,2V, Ve kv, Vi jum = Ly §y kym)
fulfilling
E(Vn,) = 2VE(Z1 59-2v-1), Var Vi =2V Var(Z1,59-2n-1)  (2.1)
and
]E(VLJ“N 1) (VL k7]7 ) 07 (22(1)
2° L= NV&I’VL k,N,1 = 2° L= ]VarVL Jk,jom = Var(Z]Iu>2 2N — 1) (22b)

Then the array (Y;); will be uniquely defined by the equations
Vni= e @ent), Vipni= (Y | eng @érg)

and ) B
Vikjm = (Y | €jm @ €L k)

We want to construct the Gaussian random array from the random
variables (u;, 7;);. Throughout the construction, we assume that the under-
lying probability space is rich enough in the following sense: there exists a
sequence (4;);>0 of independent random variables having uniform distribu-
tion on [0, 1] and being independent of the sequence (u;, Z;);.

We start by the construction of the partial sums in each row of the
random variables. By Theorem 2.5, a sequence (z;);epy 22~ of independent
random variables with common distribution function F5yx and a sequence
(i) ig[1,22~7 of independent Gaussian random variables satisfying

E(ni) = E(z;) and E(n}) = E(2})

K3

may be constructed in such a way that
22]\7

( sup ‘Z i = M) )<03r 67’2]E|962|37’)

N
m<22 i—1

By Lemma 2.3, there exists a uniformly distributed random variable ¢ inde-

pendent of (2;); and a measurable function Wy : R2" x [0,1] — R2" such
that

N(@i @y, vy R Ty, - () =
(771‘|'““|‘772N7---77712N+1‘|‘““|‘77(1+1)2N7---)-

Let Z2N = Zill,,>9-2v-1. Clearly the random variables (Z}Y); are in-
dependent and identically distributed with distribution Fyy. Now we set

UNZ Zl2]1\7—|— —I—ZféVN and

(VNJ7 .. .,VNJ7 .. ) = \IIN(UNJ7 .. .,UNJ7 .. .,51). (23)
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Then (Vni1)ien 2~ is @ Gaussian random vector with independent compo-
nents fulfilling (2.1), and

m 3r
B sup [ Y (Una—Vin)| ) < CEnT2VR(ZY ). (2.4)

N
mL2 =1

In order to define the random fields (X;); and (Y;); we will use a match-
ing argument. Let Il be a random permutation of the space of sites, indepen-
dent of the array (u;, Z;);. Assume furthermore that each row is invariant
under the action of II. Then (Z1;)); is a sequence of independent random
variables with common distribution function F and

Uny = Zfy + -+ 2 Ti12%) - (2.5)

Hence (2.5) still holds if we replace Z; by X; = Zy1(;) in each site. So we
will define the array (X;); and the Gaussian array (Y;); from a random
permutation II, conditionally to the o-field generated by (u;, Z;);.

The permutation II will be defined as a product of random permuta-
tions. Let

Fn =o{d, (ui, Z;) 11 € [1, 2N2). (2.6)

Clearly we may assume that the underlying probability space contains a
sequence (II)pep vy of independent random permutations of [1,2N]? for
which the following properties hold: the sequence (Ilp)re[i N7 is indepen-
dent of F and Iz has the structure below:

DEFINITION 2.7. For i < 2N — 2L=1 Jet 71,1, denote the transposition
between (I,i) and (I,i+ 2%71). Let (by1i)(,en 2]z be an array of inde-
pendent random variables with common distribution the Bernoulli law with
parameter (1/2). We set

2N2N L2L 1

Nl i+ (k—1)2l
HL_H H H L,l,z-l—k 1)2L

=1 k=1 =1

Note that the rectangles [1, m] X I, ; are invariant under the action of Ily,.

In order to define the Gaussian array, we need to introduce a nonin-
creasing filtration (Fr)refo,n7. Throughout we assume that our auxiliary
sequence (8;);>¢ of uniformly distributed random variables is independent
of the o-field generated by the array (u;, Z;); and the random permutations
(L) Lepi,n-

DEFINITION 2.8. For any L in [1, N], we set

gr = O'{HL7 0; 11 E]QN_L7 QN_L+1]}

and we define the nonincreasing filtration (Fr)reo,n by Fr-1 = FL V Gr,
where Fy is defined by (2.6).

We now describe the (N — L 4 1)-th step of the construction, which is
the construction of the random variables V7, ;. ;. These random variables will
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be Fj_i-measurable and independent of F;,. Here we need some additional
notation.

DEFINITION 2.9. For L in [0, N[, let the array (Z}L))i of independent ran-
dom variables with distribution F' be defined by Z}L) = M, 4100llx(s)- Ve

set ZZ(N) = Z;. Let us define the array (X;); by X; = ZZ(O). We also define
(L,K))‘ b
i by

the arrays of truncated random variables (Z;
ZZ(L,K)

= ZHL+1O~~~OHN(i) ]IUHL+10~~~0HN(i)Z2_K_1'
0,K 'S
We set, (0K = x K

NoTATION 2.10. For k € [1,2V~F], we define the truncated innovations
Uppi by Up gy = (XN eg @ épp) = (ZEBNFLY eg @ e ).

Let L be in [1, N]. Using Lemma 2.3, we will define the random vector
(VL,k1)1e1,2v] as measurable function of (Zl(f))m and (br,;;);; in such a
way that this random vector will be independent of Fr and Gaussian with

the prescribed covariance structure.

For the sake of simplicity of notations, we fix L and take k& = 1 for
the construction. We first study the conditional law of the random vector
(UL k1) 1en 27 given Fr. By definition of Iz,

2L—1

UL ka= Bl - QbL,z,i)(Zz(,ZL’NJFL_I) - Zl(fjr]z:r_%_l))- (2.7)
i=1

Let the random sequences (£,), and (z,), be defined by

2= 2D L VR and e, = 10— 261, 5, (2.8)
where (l,,1,) is the unique pair of integers in [1,2V] x [1,2571] such that
p=(l, — )27t 44,

Clearly the so defined random variables z, are Fr-measurable, inde-
pendent and identically distributed. Hence the G;_j-measurable sequence
(¢p)pepi,2v+r-1) of independent Rademacher random variables is indepen-
dent of the sequence (z,),en 2n+2-1-

So, by Theorem 2.5 and Lemma 2.3, there exists a measurable function
ORI RRETT T [0,1] — R2"" 7" for which there hold the following
properties:

PropERTY 2.11. If § is a random variable with uniform law over [0, 1],
independent of the sequence (z,,€,),, then the random vector
\II(ZI7Z27 <oy €15€25 - 75) = (917917 .. '7y2N+L—1)

is a standard normal random vector conditional on the random variables
(zp)p and

m 3 2N+L—1
.
]E( sup E zp(gp — Up) 21, 29, ) < C(Sr)w E |zp|3r
m§2N+L—1 =1 =1
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326 EMMANUEL RIO

Hence the random variables (z,y,), are Gaussian and independent con-
ditional on the sequence (z,),.

In order to define the Gaussian random variables Vr, , n1 and Vi i ;
we need further notation.

NoTation 2.12. Let (8;), be a sequence of independent and uniformly
distributed random variables, independent of (z1, z2,...,61,22,...,0). We
set

wp = Mz (12p]) + 6, (e, (12 = 0) = Hz, (12])-

! !
Let 21 = zip(1=1)2L-15 Y10 = Yip(1—1)2L-1 and uj; = Uit (1—1y2L-1- We set

2N 2L—1 2N 2L—1
Wna = E E 21, Wi = E E eni(l)ziiyn
=1 i=1 =1 i=1

and, for j < N and m in [1,2V77],

2N 2L—1
Wj,m = E E ej,m(l)zl,iyl,iﬂu;)i22—f—L
=1 =1
and
2N 2L—1
Wim=>_  Eim(D2niynilly >e-i-c.
=1 =1
We also set
2N 2L—1 2N 2L—1
2 = ~ 2
Dy = E E 2l Dny = E E €N,1(l)21,i
=1 i=1 =1 i=1

and, for j < N and m in [1,2V 7],

gN gL-1

Dijm =YD eml)zilly somi-t
=1 =1
gN gL-1

2 ~ 2

Dijm = €J7m(l)zl,zﬂu;  >2-i-L
=1 =1

Throughout the end of this subsection, we study the distributions of

the random variables conditional on the random variables (z,,4,),. Clearly

{Wn1, Wjm: (j,m) €[1,N] x [1,2V=7]} is a conditionally Gaussian array.
Let us study the covariance structure of this conditionally Gaussian array.
We first note that

Var W]'Jn = Var Wmm = D]'Jn7 COV(VV]'JH7 W]'7m) = D]'7m. (29)
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Let (4, m) and (j',m') be two distinct indices. We may assume that j < j'.
Then

2
COV(VV]'JH7 W]v’m/) = Z Z é]v’ml (l)éj,m(l)zl%iﬂu;)i22—f—L

In the same way one can prove that
Cov(Wim, Wit ) = € g (m27) D . (2.11)
Note also that

COV(W]'W“ WNJ) = D]'Jn and COV(VV]'JH7 WNJ) = D]'7m. (212)

From (2.10) and (2.11) the random variables T} ,,, = Dj,ij,m - f)ijj’m
are independent, centered and Gaussian. Moreover, by (2.12), these random
variables are independent of Wiy ;.

It remains to normalize these new independent random variables. Let
{55\7,17§},m : (j,m) € [1,N] x [1,2V=7]} be an array of independent stan-
dard normal random variables, independent of the o-field generated by the
previously defined random variables. Clearly

VarTjm = Djm(D3,, — D3 ) = T

Therefore we define the random variables V; ,,, by

27+L Var X3V -

‘N/j,m = F,—(DJ'JHWJ'JH — Bj,mwj,m) if F]'Jn 75 0 (2.13(1)
]7m
and
Vim = 27t Var XN E 3T, = 0. (2.13b)

In the same way we set

Vivg = DP /2N Var XPN Wiy if Dy #0 (2.14a)
Ving = /2Nt Var XEN ¢l otherwise. (2.14b)

By definition, the variables {Vi x.1,Vjm :j € [1, N],m € [1,2V=7]} are
independent, centered and Gaussian with

and

VarVy v = oN+L yar X%N and Var ‘N/jm = 21t yar X%N
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conditional on the random variables (z;,d,),. Now, by Lemma 2.3 again

there exists some uniformly distributed random variable u independent of
the random sequence (z,,£,), and such that

(VL,N,17‘~/j,m ] € [1N],m & [172N_]]) = (I>L(21722, o3 E1,E9, .. .,u)

(2.15)
for some measurable function ®y,.
Let the random sequences (¢F), and (z}), be defined by
2= 2T BT and ey = 1= 201,40, (2.16)

where (I,,1,) is the unique pair of integers in [1,2V]x](k—1)2L, (k—1/2)2%]
such that p= (I, — 1)2F71 + 4, — (k — 1)2L.

Clearly the so defined random variables z;f are Fr-measurable, inde-
pendent and identically distributed. Hence the G;_j-measurable sequence
(eg)pe[mwﬂ—l] of independent Rademacher random variables is indepen-
dent of the sequence (z,),ep 2n+2-1-

DEFINITION 2.13. Let the random variables Vy ;. nv1 = (Y | en1®¢ér &) and

VL,k,J}m = (Y | éjm @ €L k) be defined from (2§, 25, ... ef ek ... 8 on-1)
via &, .
Since the sequences (25785)29 are independent together and identically

distributed when k& varies, the so defined variables are Fj_i-measurable.
Furthermore they are independent, Gaussian and satisfy (2.2) conditionally

to Fr. Hence the array (Y;); which is uniquely defined by Definition 2.13
and (2.3) is a Gaussian array fulfilling the assumptions of Theorem 2.4.

3. UPPER BOUNDS FOR THE CONSTRUCTION

NoTtaTION 3.1. Weset A= sup Z (Xi - Yyl
mell 2V 52,

In order to control the error term, it will be convenient to use the Haar
expansion of the indicator functions of the interval [see Bretagnolle and
Massart (1989)].

DEFINITION 3.2. For any integer p in [1,2V], let k(j, p) be the integer such

that p belongs to I x(jp) and €7 = é;x(j ). Let the coefficients v;(p) be
defined by
N
H[l,p] —p2 €N,1 +27](p)6]
J=1

Clearly, for any array (&;); of real-valued random variables,

N
Z &=p27 V(] My ) @ ena) + Z’Yj(l’) (€ gy my @ €5). - (3.1)

1<i<(m.,p) =1
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Let

A = Z |X; — X2N| and A; = A; v+ Z sup  Aj -1k
i€[1,2N]2 L—1 kE[1,287F]

for i = 2,3, where

N+L N+L-1
Ay n =0, Az,L—Lk:Z Z X" = Xop M,

m=1pelp i
m m

A3 Ny = sup Z(UN,Z —Vni)|, As -1 = sup Z(UL,k,l - Vi)

N N
mL2 =1 mL2 =1

and VLJgJ = (Y | €1, ® éLJg).

The following inequality derives straightforwardly from (3.1), using the
same method as in Rio (1993a, pp. 772-773):

A <AL+ Ay + As.
In order to prove Theorem 2.4, we have to prove that, for ¢ = 1,2, 3,
P(A; > C,Q(u)) < 22V 1y (3.2)

for some constant C). depending only on r and on [, 2*dF(z).
3.1. CONTROL OF A4

Throughout the sequel, ¢ will denote a positive constant depending only on
r and on E(X7), which may vary from line to line.

By definition of Ay, Ay = Ay 9+ Ay where

Ao = Z Qr(ui)ly <o and Aqy = Z Qr(ui)ly, guz2-2n-1).

i€[1,2V]2 i€[1,2M]2
Since P(A1 9 # 0) < 22N u, it suffices to prove that
P(Ar 1 > cQ(u)) < 22Vu. (3.3)

Now

P(QF(ui)HuiE]u,Z—zN—l] # 0) < 272Nt

and consequently we get from Theorem 2.13 in Petrov (1995, p. 63) that

1
E(ATY) < 2022N/ Q¥ (v)dv < 422N uQ?" (u) (3.4)

because of the monotonicity of v — v3/2Q (v). Hence (3.4) follows, there-
fore completing the control of A;. O
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In order to prove (3.2) for ¢ = 2,3, we will bound up the moments of
order 3r of the random variables A;. First of all we note that (3.2) follows
from the upper bound

E(AY) < Q¥ (272N ) (3.5)

via Markov’s inequality, seeing that, under (3.5),

P(Ai > CI/BrQ(u)) < (%)37’ < 92N+1,,

for any u < 272V~1 because of the monotonicity of u — u3/2Q37’(u).

Now, by the Holder inequality,

N B N
B < (o0vD =) (Bl + 017 s AT 1)
L=1

L=0 k<2b—t
N'2L—1
<37 (BAINV) + 30 3 L E(ATN 1) ) (3.6)
L=1 k=1

Hence (3.5) follows from (3.6) and the estimates below via the monotonicity
of u— u32Q% (u).

ProrosiTIiON 3.3. Under the assumptions of Theorem 2.4, for i = 2,3 there
exists some constant ¢ such that

1

]E(Af’f}\f) < 022N/ Q?’r(u)du (a)
2—2N-—-1
and, for any L in [1, N] and any k in [1,27V 1],
1
BAY ) <™ [ g o)
9—N—-L-1

Proof. We start by the proof in the case ¢ = 2.
3.2. CONTROL OF A,

To prove (3.2), we only need to prove Proposition 3.3(b). Since

2N
Y BPUXEE - XN £ 0) < 1,
m=1pelp i

we get from Theorem 2.13 in Petrov (1995, p. 63) that

E(AYL 1) < 2VHPE(|XHE - XTI

1
< 62N+L/ Q" (u)du.
2

—N—-L-1

Hence Proposition 3.3(b) holds.
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3.3. CONTROL OF Ajg

When 7 = 3, Proposition 3.3(a) follows immediately from (2.4). To prove
Proposition 3.3(b), we first note that the random variables (A3 ;4 ;) are
identically distributed. So we take k = 1 throughout.

NoTaTioN 3.4. Let Wi 1, = zi1y11 + -+ 21201y 201, with the same
notations as in section 2. We set

Ay = sup ‘Z(UL,I,Z — Wriy)| and As = sup ‘Z(WL,I,Z - Vi)
=1 =1

m<2N m<2N

Clearly
Asr_11 <Ay + As. (3.7)

Now, by Property 2.11,

E(A]") < C(6r) 2N HPE(IXYTETHP)
1
< C(6r)67’2N+L/ Q*" (u)du. (3.8)
29— N—-L
It remains to bound up the 3r-th moment of Aj.
NoTaTION 3.5. Let Ag y = |VL.7N71 — Wil and Ag j_1,m = |f/'7m - W]'7m|
for jin [1, N]and m in [1,2V77]. Set A7z v = 0. For m = 1,2, let

p

E ZpypH2N+Lu’p<2‘

i=14(m—1)2N+L—2

A7 N_1m = sup
pE](m—1)2N+L_27m2N+L_2]
and, for j in [1, N — 1] and m in [1,27V 7],

p

Z Zpyp]IZH'Lu’pE[l,Z["

i=14(m—1)2i+L-2

Arj-1m = sup
pEl(m—1)2i+L =2 mai+L-2]

Using the Haar expansion of 1|, introduced in Definition 3.2 and
arguing as in Rio (1993a, pp. 772-773), we get that

As < Ag + 247,

where
N

A, = Ai,N + Z sup Ai,j—l,m for i =6,7.

j=1 mE[l2N =]

Hence Proposition 3.3(b) follows from the estimates below thanks to the
Hélder inequality again and the monotonicity of v — u3/2Q37’(u).
ProrosiTION 3.6. Under the assumptions of Theorem 2.4, there exists
some constant ¢ such that

E(Agy) < 2V / 1 Q" (u)du (a)

9—N—-L-1
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and, for i = 6,7, any j in [1, N] and any m in [1,2V 7],

E(A._, ) < e2itE /2 Q% (u)du. (b)

i,7—1,m
7] ? —]—L—l

Proof. To prove Proposition 3.6, we start by the case ¢ = 7. Since the
random variables (A; ;) are identically distributed, we can take m =1
throughout.

Conditional on the random variables (z,,u;), the random variables
A7 ;. are suprema of partial sums of independent GGaussian random vari-

ables. Hence the Paul Lévy inequality yields

2N+L—2 3 /2
E(Aij’N_m | 21, 22, .yl uh, .0 ) < c( Z Z;Hulp<21—N—L) (3.9)
p=1
and
pitt—e 3r/2
E(Agj’j—l,l | 21722,...,u'1,u'2,...) S C( Z Z;H2j+Lu'p€[1,2[) . (310)
p=1
By Theorem 2.13 in Petrov (1995, p. 63) again it follows that
E(A?’N—l,l) < 02N+L_2E(Zfr) (3.11)
and .
E(AY, ;) < /T2 /2___L 7 (u)du. (3.12)
Noting that
Q.,(2u) <2Qp(u+2"V"F) < 2Qp(u), (3.13)

we then derive Proposition 3.6 in the case ¢ = 7 from (3.11) and (3.12).

It remains to prove Proposition 3.6 for : = 6. We first note that, by the
monotonicity of u — u?/2Q%" (u),

2L /21 Q¥ (w)du < Q27 171. (3.14)

—j—L—1

Hence Proposition 3.6(b) in the case ¢ = 6 is an immediate consequence of
the exponential estimates below.

Cramm 3.7. Under the assumptions of Theorem 2.4, there exists some pos-
itive constant ¢ such that

E(exp(cA&N/Q(Q_N_L))) <3, (a)

E(exp(cA&j_Ll/Q(2_1_j_L))) < 3. (b)
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Proof of Claim 3.7. We start by the proof of Claim 3.7(a). By Lemma 2.3,
there exists some standard normal random variable £ independent of Dy ;
and such that

Wi —=Ving =8 Dni — /E(Dny) ).

Hence

1 (Dn1—E(Dy1))?
E(Dn1)+ Dy

286,v <Q27VTHE +(Q2TYTH) (3.15)

Since ¢ is a standard normal, E(exp(t¢?)) = (1 — 2¢)~'/? and consequently
E(exp(€?/3)) < 2. To prove Claim 3.7(a), it remains to prove that

P((Dni—E(Dna1))* > Ma(E(Dng) + Dni)) < 2exp(—2/3),  (3.16)

where M = 4Q*(27V~1). Now Dy 1 is a sum of independent and nonnega-
tive random variables each bounded by M. It follows that

Var DNJ S ME(DNJ).

So, by Bernstein’s inequality [see Pollard (1984, pp. 191-194)], on the one
hand

P((Dn1—E(Dn1))* > Ma(E(Dya) + D))
<P((Dnjg —E(Dny))? > E(Dn,)Mz) (3.17)

< 2exp(—2/(2+ (Ma/E(Dy1))'1?)) < 2exp(~2/3)
for any + < M~'E(Dy,1) . On the other hand, if Mz > E(Dy 1), then

IET’((DN,1—E(DN,1))2 > Ma(E(Dnj) + D))
<P(Dn1—E(Dn,)| > Mz) (3.18)

< 2exp(—a/(1+2(Me) "E(Dy1))) < 2exp(—2/3)

by Bernstein’s inequality again. Hence (3.16) holds and as a byproduct, we
have:
P(Ag n > Mz) < dexp(—z/3). (3.19)

Claim 3.7(a) follows.

We now prove Claim 3.7(b). For the sake of simplicity of notations, we
omit the index 1 throughout. Clearly the decomposition below holds:

. . N N . D.

Vi—-W.=V.— (W. — Z2Z2W.,) - ZW.

j j i — (W D, i) D,
with the convention that (D;/D;) = 0 if D; = 0. By Lemma 2.3, there
exists some standard normal random vector (§,¢') independent of (D, f)])

and such that

W, = ¢'\/D;, V; = /2 var x2¥ and W, — %Wj :g(

2_7/2\1/2
D]-—D].)/
D;
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Therefrom
Ag 1,10 < |As 1|+ 1A 1] + [Avo,j-1],
where
Asj-1 = —&'\/D}/D; + £(V/D; — \/(D;}-D})/D;)
and

Ag j—1 = &(VED;) —/D; ), Ajo,j—1 = (/27 Var X3¥ — \/E(D;) ).

We first bound up |Ag j_1|. Since (£,¢’) is independent of (D, f)]) and

has the distribution N (0, I5), there exists some standard normal variable £
such that
Afjo1 = 2Dj - /Di-b)E".

A joal €QERTTFNET + DI(DQERTTITY),

so that it only remains to obtain the inequality below:

Hence

P(D: > M'aD;) < 2exp(—z/8) (3.20)

where M' = 4Q?*(2--1-1).
Let (¢},), be a sequence of independent symmetric signs, independent
of the sequence (z,,u}), and

9i+L—2

2 2
D = E P22 —imL — 20 giar—a 1l —i-L).
J €p( prup227d L p+2i+L—2 Ulp+2]‘+L—222 ! L)
p:l

Arguing as in Section 2, it is easily seen that the random vector (f);, D;)

has the same distribution as (D;, D;). Now, by (3.13) and the Hoeffding
inequality [see Pollard (1984, pp. 191-194)],

P<|D;|2 >t | 21422 .. ) < QGXP(—t(8MIDj)_1)7

therefore completing the proof of (3.20).

To bound up the random variable |Ag ;_1|, we proceed exactly as in
the proof of Claim 3.7(a), In that way, we get that

P(|Ag j_1] > M'z) < dexp(—z/3). (3.21)

Since Ay j—1 is a centered Gaussian random variable, it suffices to
bound up the variance of Ayg ;1. Now

1

E(D;) = 27+~ /2—]-—L 2 (u)du.
Moreover
2—2N—1
0<1—Var XV < 2/ Q% (u)du < 2072N)/2| x4 |2
0
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by the Cauchy-Schwarz inequality. Hence there exists some positive integer

Ny depending only on fR z*dF(z) such that Var X3V > 1/2 for N > Nj.
Then

21

< (VarX%N — /;N_L Q2F(u)alu)2 + i(/OQ_j_L 2 (u)du)2

g—i—L—1

< (Var X3V - /;N_L Q?F(u)du)2 + (4/0 Q?F(u)duf

by (3.13). Now

2=J-L-2 VarAjp j—1 < l(VaI’X%N - l/ ; (u)du) (3.22)
2 2 Jo—ji—L

1 2—N—L
VarX%N—/ Q%(u)du:/ 2F(u)du— (]EX%N)27
9—-N-L 2—2N-—-1
and therefore
1 2—N—L
‘VarX%N—/ Qb g/ L @b(du+ E(Xy — XEY)?)
- ot
< / Q2 (u)du. (3.23)
0

Hence, by (3.22) and (3.23),

g—i=L

. 2 1
Var Ajg ;1 < 68 2]+L(/ Q%(u)du) < 68/ Q%(u)du
0

0

by the Cauchy-Schwarz inequality. Claim 3.7(b) holds, therefore completing
the proof of Proposition 3.3(b) for ¢ = 3. Hence Theorem 2.4 holds.

4. STRONG APPROXIMATION

In this section, we derive Theorem 1.2 from Theorem 2.4. First of all, we
prove that there exists some quantile function ¢ satisfying the assumptions
of Theorem 2.4 and such that Q" is integrable.

LEMMA 4.1. Let Q be defined by /uQ"(u) = sup VtQ%(t) for any u in
t€fu,1]
10, 1]. Then @) satisfies the assumptions of Theorem 2.4 and

/OlQr(u)dug 2/R|ac|7’dF(ac).

Proof.. Since Q% is a nonincreasing function from ]0, 1] into R, there exists
a Radon measure v such that

Qr(t) :/R]It@dy(x). (4.1)
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Hence

Q" (u) < /R(x/u)l/?dy(x). (4.2)

Then, integrating (4.2) and applying Fubini’s theorem, we get Lemma 4.1.
O

Let ¢ be the function defined in Lemma 4.1. Applying Theorem 2.4
repeatedly, we may construct an array (X;);ez of independent random vari-
ables with common distribution function F and an array (Y;);ezz of inde-
pendent Gaussian random variables with

E(Y;) = E(X?Y), VarY; = Var X2V for any i € [1,28H1)2\ [1,2V)?

and E(Y1) = E(XY), Var Y1 = Var XY in such a way that, for any nonnega-
tive integer L and any w in ]0, 1],

]P’( sup (X; - Y))
mell 2b+1]2 ;m o
igQ,2L ]2

> 3c,,Q(u)) < 392+, (4.3)

and P(| Xy — Y1| > ¢Q(u)) < 2u. Now, applying (4.3) with u = uy =

2V=Ly summing on L € [0, N — 1] and noting that Z Q2% u) < 4rQ(u),
K>0

we get that

> 16re,Q(u)) <2V (14)

]P’( sup Z (X, - Y))

mel 2V b S

Let (Y;); be the array of independent standard normal random variables
which is defined from (Y;); by the normalization equations

Y; = E(Y;) + v/ VarY; Y. (4.5)
We set
Dy = sup (X; —Y;)| and Ry = sup (Y; = V).
mel12V)? ' 52, mel1,2V)? ! 52,
Clearly

<Dy+ Rn.

sup Z (X;—=Y5)

men 2Vl 52

To bound up Ry we note that, for any 7 in [1, 2512\ [1, 2%]?,
9—2L—1 9—2L—1

IE(Y;)| < /0 Qr(u)du < 9(2L+1)(=141/r) (/0 QrF(u)du)l/r (4.6)

and
2—2L—1

Parlvi-vy <2 [ Qhtudus 24l (4.7
0
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by the Cauchy-Schwarz inequality [see Einmahl (1987) for a detailed proof
of (4.7)]. Hence

> B = o2*M7) as N = oo (4.8)
t€[1,2N]2
and B
> Var(Y; - Y;) < 2N Xq|5. (4.9)
t€[1,2N]2

Since the class of lower-left orthants is a Vapnik-Chervonenkis class of sub-
sets of R? [see Assouad (1983)], it follows from classical estimates for the
tail distribution of the supremum of a Gaussian process [see Dudley (1973)]
that

(Vi — B(Y:) - V)| ) <eN"/2, (4.10)

]E( sup
me[l1,2V]? 1<i<m

Hence, by (4.8), (4.10) and Markov’s inequality,
P(Ry > e2*N/7) < ce™"NT/2972N

for N large enough and consequently Ry = o(22V/7) a.s.

It remains to prove that Dy = 0(2*N/") a.s. Let H denote the cadlag
inverse of ). Clearly H is the tail function of Q(U) for any uniformly
distributed random variable U. Let us apply (4.4) with v = H(e2*V/7),
Since Q(H (u)) < u, we get that

P(Dy > 16r¢,e22N/7) < 22N+ f (222N/7) (4.11)
and from now on the end of the proof is straightforward using the integra-
bility of 2 — H(z'/") and the Borel-Cantelli lemma. a
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